101
|
Yao S, Pan F, Prpic V, Wise GE. Differentiation of stem cells in the dental follicle. J Dent Res 2008; 87:767-71. [PMID: 18650550 DOI: 10.1177/154405910808700801] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The dental follicle (DF) differentiates into the periodontal ligament. In addition, it may be the precursor of other cells of the periodontium, including osteoblasts and cementoblasts. We hypothesized that stem cells may be present in the DF and be capable of differentiating into cells of the periodontium. Stem cells were identified in the DF of the rat first mandibular molar by Hoechst staining, alkaline phosphatase staining, and expression of side-population stem cell markers. These cells were shown to be able to differentiate into osteoblasts/cementoblasts, adipocytes, and neurons. Treating the DF cell population with doxorubicin, followed by incubation in an adipogenesis medium, suggested that the adipocytes originated from stem cells. Thus, a possibly puripotent stem cell population is present in the rat DF.
Collapse
Affiliation(s)
- S Yao
- Department of Comparative Biomedical Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | | | | | | |
Collapse
|
102
|
Jin ZL, Zhang YK, Sun HY, Lin Z, Bi YC, Duan YZ, Ding Y. Osteogenic-related gene expression profiles of human dental follicle cells induced by dexamethasone. Acta Pharmacol Sin 2008; 29:1013-20. [PMID: 18718169 DOI: 10.1111/j.1745-7254.2008.00834.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AIM Human dental follicle cells (hDFC) have the ability to differentiate into mineralized tissue-forming cells during root and periodontal development or osteogenic induction in vitro. The present study aimed to validate the osteogenic induction of hDFC by dexamethasone (DEX) and to explore the changes of related genes responsible for the osteogenic differentiation process. METHODS Passage-cultured hDFC were induced by DEX and analyzed for mineralization activity by morphological observation, alkaline phosphatase (ALP) activity, and alizarin red S staining. GEArray Q series human osteogenesis gene array was used to describe large-scale gene expression in treated hDFC compared to the control group. Quantitative real-time RT-PCR was performed to confirm the microarray data by analyzing the expression of 7 critical transcripts. RESULTS Osteogenic differentiation of hDFC was confirmed by morphological change, elevated ALP activity and calcified nodules. In 96 genes investigated through the microarray analysis, 20 genes were upregulated and 8 genes were downregulated more than 2-fold. The results of the real-time RT-PCR correlated with the microarray analysis. The expression of the transforming growth factor-beta superfamily showed varying degrees of increase, and fibroblast growth factors exhibited a differential changing trend of expression. The expression of most types of collagen genes representative of extracellular matrixes increased under DEX treatment while small mothers against decapentaplegic 6 and 7 expressions significantly decreased. CONCLUSION Our results demonstrated that hDFC displayed osteoblastic features in both phenotypic and genotypic traits induced by DEX in vitro.
Collapse
Affiliation(s)
- Zuo-lin Jin
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China.
| | | | | | | | | | | | | |
Collapse
|
103
|
Mukhopadhyay P, Webb CL, Warner DR, Greene RM, Pisano MM. BMP signaling dynamics in embryonic orofacial tissue. J Cell Physiol 2008; 216:771-9. [PMID: 18446813 DOI: 10.1002/jcp.21455] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The bone morphogenetic protein (BMP) family represents a class of signaling molecules, that plays key roles in morphogenesis, cell proliferation, survival and differentiation during normal development. Members of this family are essential for the development of the mammalian orofacial region where they regulate cell proliferation, extracellular matrix synthesis, and cellular differentiation. Perturbation of any of these processes results in orofacial clefting. Embryonic orofacial tissue expresses BMP mRNAs, their cognate proteins, and BMP-specific receptors in unique temporo-spatial patterns, suggesting functional roles in orofacial development. However, specific genes that function as downstream mediators of BMP action during orofacial ontogenesis have not been well defined. In the current study, elements of the Smad component of the BMP intracellular signaling system were identified and characterized in embryonic orofacial tissue and functional activation of the Smad pathway by BMP2 and BMP4 was demonstrated. BMP2 and BMP4-initiated Smad signaling in cells derived from embryonic orofacial tissue was found to result in: (1) phosphorylation of Smads 1 and 5; (2) nuclear translocation of Smads 1, 4, and 5; (3) binding of Smads 1, 4, and 5 to a consensus Smad binding element (SBE)-containing oligonucleotide; (4) transactivation of transfected reporter constructs, containing BMP-inducible Smad response elements; and (5) increased expression at transcriptional as well as translational levels of Id3 (endogenous gene containing BMP receptor-specific Smad response elements). Collectively, these data document the existence of a functional Smad-mediated BMP signaling system in cells of the developing murine orofacial region.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Department of Molecular, Cellular and Craniofacial Biology, University of Louisville Birth Defects Center, ULSD, University of Louisville, Louisville, Kentucky 40292, USA.
| | | | | | | | | |
Collapse
|
104
|
Lossdörfer S, Fiekens D, Salik MI, Götz W, Jäger A. Subculture affects the phenotypic expression of human periodontal ligament cells and their response to fibroblast growth factor-2 and bone morphogenetic protein-7 in vitro. J Periodontal Res 2008; 43:563-9. [PMID: 18624939 DOI: 10.1111/j.1600-0765.2008.01087.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Although periodontal ligament cells display several osteoblastic traits, their phenotypic expression is still not well established. It remains a matter of debate whether they resemble a terminally differentiated cell type or an intermediate maturation state that potentially can be directed towards a fibroblastic or an osteoblastic phenotype. MATERIAL AND METHODS To explore the characteristics of periodontal ligament cells in greater detail, fourth-passage, sixth-passage and eighth-passage human periodontal ligament cells were cultured for up to 3 wk. Ki-67, alkaline phosphatase, osteocalcin, osteoprotegerin and receptor activator of nuclear factor-kappaB ligand (RANKL) mRNA expression was quantified by real-time polymerase chain reaction. Furthermore, the cellular response to fibroblast growth factor-2 and bone morphogenetic protein-7 was examined in first-passage and fourth-passage cells. Dermal fibroblasts (1BR.3.G) and osteoblast-like cells (MG63) served as reference cell lines. RESULTS Proliferation decreased over time and was highest in fourth-passage cells. The expression of differentiation parameters, osteoprotegerin and RANKL increased with culture time and was higher in fourth-passage cells than in cells of later passages. The RANKL/osteoprotegerin ratio increased steadily until day 21. Administration of fibroblast growth factor-2 enhanced cell numbers in both passages, whereas alkaline phosphatase and osteocalcin production remained unchanged. By contrast, exposure of periodontal ligament cells to bone morphogenetic protein-7 resulted in a reduction of cell number in the first and fourth passages, whereas the production of alkaline phosphatase and osteocalcin was enhanced. In dermal fibroblasts, differentiation parameters did not respond to both stimuli. MG63 cells behaved similarly to periodontal ligament cells. CONCLUSION These results indicate that subculture affects the phenotypic expression of human periodontal ligament cells with respect to the characteristics that these cells share with osteoblasts. Furthermore, the periodontal ligament cell phenotype can be altered by fibroblastic and osteoblastic growth factors.
Collapse
Affiliation(s)
- S Lossdörfer
- Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany.
| | | | | | | | | |
Collapse
|
105
|
Morsczeck C, Ernst W, Florian C, Reichert TE, Proff P, Bauer R, Müller-Richter U, Driemel O. Gene expression of nestin, collagen type I and type III in human dental follicle cells after cultivation in serum-free medium. Oral Maxillofac Surg 2008; 12:89-92. [PMID: 18618166 DOI: 10.1007/s10006-008-0111-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 05/13/2008] [Indexed: 05/26/2023]
Abstract
BACKGROUND Undifferentiated human dental cells and especially human dental follicle cells are interesting for potential dental treatments. These somatic stem cells are cultured usually in cell culture medium containing bovine serum. In the age of bovine spongiform encephalopathy (BSE), a serum-free cell culture system for dental follicle cells are recommended, if these cells will be applied in dentistry. PURPOSE However, less is known about the cultivation of dental follicle cells in serum-replacement medium. In this study, we cultivated dental follicle cells in serum-free cell culture medium, which is normally applied for neuronal stem/progenitor cells. MATERIALS AND METHODS Dental follicle cells were cultivated in both serum-free and serum-containing cell culture media, and gene expression profiles were recorded for connective tissue markers collagen type I and type III and for the human dental follicle cell marker nestin. RESULTS It is interesting to note that the gene expressions of collagens and nestin were similar after applying both cell culture conditions. CONCLUSION Although the gene expression of dental follicle cell markers was unchanged, a more appropriate serum-free cell culture medium is recommended for cell proliferation of dental follicle cells.
Collapse
Affiliation(s)
- Christian Morsczeck
- Institut für Humangenetik, Universität Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Chen S, Gluhak-Heinrich J, Martinez M, Li T, Wu Y, Chuang HH, Chen L, Dong J, Gay I, MacDougall M. Bone morphogenetic protein 2 mediates dentin sialophosphoprotein expression and odontoblast differentiation via NF-Y signaling. J Biol Chem 2008; 283:19359-70. [PMID: 18424784 DOI: 10.1074/jbc.m709492200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Dentin sialophosphoprotein (DSPP), an important odontoblast differentiation marker, is necessary for tooth development and mineralization. Bone morphogenetic protein 2 (BMP2) plays a vital role in odontoblast function via diverse signal transduction systems. We hypothesize that BMP2 regulates DSPP gene transcription and thus odontoblast differentiation. Here we report that expression of BMP2 and DSPP is detected during mouse odontogenesis by in situ hybridization assay, and BMP2 up-regulates DSPP mRNA and protein expression as well as DSPP-luciferase promoter activity in mouse preodontoblasts. By sequentially deleting fragments of the mouse DSPP promoter, we show that a BMP2-response element is located between nucleotides -97 and -72. By using antibody and oligonucleotide competition assays in electrophoretic mobility shift analysis and chromatin immunoprecipitation experiments, we show that the heterotrimeric transcription factor Y (NF-Y) complex physically interacts with the inverted CCAAT box within the BMP2-response element. BMP2 induces NF-Y accumulation into the nucleus increasing its recruitment to the mouse DSPP promoter in vivo. Furthermore, forced overexpression of NF-Y enhances promoter activity and increases endogenous DSPP protein levels. In contrast, mutations in the NF-Y-binding motif reduce BMP2-induced DSPP transcription. Moreover, inhibiting BMP2 signaling by Noggin, a BMP2 antagonist, results in significant inhibition of DSPP gene expression in preodontoblasts. Taken together, these results indicate that BMP2 mediates DSPP gene expression and odontoblast differentiation via NF-Y signaling during tooth development.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Pediatric Dentistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Abstract
The role of bone morphogenetic proteins (BMPs) in bone healing has been shown in numerous animal models. To date, at least 20 BMPs have been identified, some of which have been shown in vitro to stimulate the process of stem cell differentiation into osteoblasts in human and animal models. Having realized the osteoinductive properties of BMPs and having identified their genetic sequences, recombinant gene technology has been used to produce BMPs for clinical application - most commonly, as alternatives or adjuncts in the treatment of cases in which fracture healing is compromised. BMP-2 and BMP-7 are approved for clinical use in open fractures of long bones, non-unions and spinal fusion. However, despite significant evidence of their potential benefit to bone repair and regeneration in animal and preclinical studies, there is, to date, a dearth of convincing clinical trials. The purpose of this paper is to give a brief overview of BMPs and to critically review the clinical data currently available on the use of BMP-2 and BMP-7 in fracture healing.
Collapse
Affiliation(s)
- Oliver P Gautschi
- Department of Orthopaedic and Trauma Surgery, Royal Perth Hospital, School of Anatomy and Human Biology, University of Western Australia, Perth, Western Australia, Australia.
| | | | | |
Collapse
|
108
|
Buxton PG, Cobourne MT. Regenerative approaches in the craniofacial region: manipulating cellular progenitors for oro-facial repair. Oral Dis 2007; 13:452-60. [PMID: 17714347 DOI: 10.1111/j.1601-0825.2007.01403.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This review aims to highlight the potential for regeneration that resides within the bony tissues of the craniofacial region. We examine the five main cues which determine osteogenic differentiation: heritage of the cell, mechanical cues, the influence of the matrix, growth factor stimulation and cell-to-cell contact. We review how successful clinical procedures, such as guided tissue regeneration and distraction osteogenesis exploit this resident ability. We explore the developmental origins of the flat bones of the skull to see how such programmes of differentiation may inform new therapies or regenerative techniques. Finally we compare and contrast existing approaches of hard tissue reconstruction with future approaches inspired by the regenerative medicine philosophy, with particular emphasis on the potential for using chondrocyte-inspired factors and replaceable scaffolds.
Collapse
Affiliation(s)
- P G Buxton
- Eastman Dental Institute, UCL, London, UK.
| | | |
Collapse
|
109
|
Hou LT, Li TI, Liu CM, Liu BY, Liu CL, Mi HW. Modulation of osteogenic potential by recombinant human bone morphogenic protein-2 in human periodontal ligament cells: effect of serum, culture medium, and osteoinductive medium. J Periodontal Res 2007; 42:244-52. [PMID: 17451544 DOI: 10.1111/j.1600-0765.2006.00940.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND OBJECTIVE Bone morphogenic proteins are known, in animal models, to promote many developmental processes, including osteogenesis. Clinical trials are currently underway to evaluate the potential of bone morphogenic proteins to promote bone and periodontal regeneration in humans. The aim of this study was to establish an optimal cell culture condition for using to study the biological effects of recombinant human bone morphogenic protein-2 on periodontal ligament cells. MATERIAL AND METHODS The roles of serum concentration, types of culture medium (alpha-modified essential medium or Dulbecco's modified Eagle's medium), the presence of osteoinductive medium (including dexamethasone, ascorbic acid and beta-glycerophosphate), and timing of addition of the osteoinductive medium and recombinant human bone morphogenic protein-2, on the expression of alkaline phosphatase were investigated in cultured periodontal ligament cells. Cytochemical stainings and biological assay of alkaline phosphatase were also demonstrated. RESULTS Our results suggested that an increased concentration of serum might mask the effect of recombinant human bone morphogenic protein-2 on the expression of alkaline phosphatase in periodontal ligament cells. alpha-Modified essential medium was found to induce a stronger cytochemical staining of the alkaline phosphatase than Dulbecco's modified Eagle's medium under similar culture conditions. Pre-incubation of cells with osteoinductive medium before the addition of various concentrations of recombinant human bone morphogenic protein-2 enhanced greater alkaline phosphatase expression than the simultaneous presence of both osteoinductive medium and recombinant human bone morphogenic protein-2. CONCLUSION The findings of this study suggest that the effect of recombinant human bone morphogenic protein-2 on periodontal ligament cells could be efficiently investigated after the proper selection of culture variables and temporal sequence of adding bioactive factors. The optimal culture condition identified in this study might be useful in further studies to elucidate the regulatory mechanism of periodontal ligament cells in periodontal regeneration after stimulation with recombinant human bone morphogenic protein-2.
Collapse
Affiliation(s)
- L-T Hou
- Graduate Institute of Clinical Dentistry, College of Medicine, National Taiwan University, and Department of Periodontology, National Taiwan University Hospital, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
110
|
Yamada S, Tomoeda M, Ozawa Y, Yoneda S, Terashima Y, Ikezawa K, Ikegawa S, Saito M, Toyosawa S, Murakami S. PLAP-1/Asporin, a Novel Negative Regulator of Periodontal Ligament Mineralization. J Biol Chem 2007; 282:23070-80. [PMID: 17522060 DOI: 10.1074/jbc.m611181200] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Periodontal ligament-associated protein-1 (PLAP-1)/asporin is a recently identified novel member of the small leucine-rich repeat proteoglycan family. PLAP-1/asporin is involved in chondrogenesis, and its involvement in the pathogenesis of osteoarthritis has been suggested. We report that PLAP-1/asporin is also expressed specifically and predominantly in the periodontal ligament (PDL) and that it negatively regulates the mineralization of PDL cells. In situ hybridization analysis revealed that PLAP-1/asporin was expressed specifically not only in the PDL of an erupted tooth but also in the dental follicle, which is the progenitor tissue of the PDL during tooth development. Overexpression of PLAP-1/asporin in mouse PDL-derived clone cells interfered with both naturally and bone morphogenetic protein 2 (BMP-2)-induced mineralization of the PDL cells. On the other hand, knockdown of PLAP-1/asporin transcript levels by RNA interference enhanced BMP-2-induced differentiation of PDL cells. Furthermore co-immunoprecipitation assays showed a direct interaction between PLAP-1/asporin and BMP-2 in vitro, and immunohistochemistry staining revealed the co-localization of PLAP-1/asporin and BMP-2 at the cellular level. These results suggest that PLAP-1/asporin plays a specific role(s) in the periodontal ligament as a negative regulator of cytodifferentiation and mineralization probably by regulating BMP-2 activity to prevent the periodontal ligament from developing non-physiological mineralization such as ankylosis.
Collapse
Affiliation(s)
- Satoru Yamada
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Kémoun P, Laurencin-Dalicieux S, Rue J, Vaysse F, Roméas A, Arzate H, Conte-Auriol F, Farges JC, Salles JP, Brunel G. Localization of STRO-1, BMP-2/-3/-7, BMP receptors and phosphorylated Smad-1 during the formation of mouse periodontium. Tissue Cell 2007; 39:257-66. [PMID: 17662325 DOI: 10.1016/j.tice.2007.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone morphogenetic proteins (BMPs) and BMP receptors (BMPRs) are known to regulate the development of calcified tissues by directing mesenchymal precursor cells differentiation. However, their role in the formation of tooth-supporting tissues remains unclear. We investigated the distribution pattern of STRO-1, a marker of mesenchymal progenitor cells and several members of the BMP pathway during the development of mouse molar periodontium, from the post-natal days 6 to 23 (D6 to D23). STRO-1 was mainly localized in the dental follicle (DF) at D6 and 13 then in the periodontal ligament (PDL) at D23. BMP-2 and -7 were detected in Hertwig's epithelial root sheath (HERS) and in DF, then later in differentiated periodontal cells. BMP-3 was detected after D13 of the periodontal development. BMPRs-Ib, -II, the activin receptor-1 (ActR-1) and the phosphorylated Smad1 were detected in DF and HERS at D6 and later more diffusely in the periodontium. BMPR-Ia detection was restricted to alveolar bone. These findings were in agreement with others data obtained with mouse immortalized DF cells. These results suggest that STRO-1 positive DF cells may be target of BMPs secreted by HERS. BMP-3 might be involved in the arrest of this process by inhibiting the signaling provided by cementogenic and osteogenic BMPs.
Collapse
Affiliation(s)
- P Kémoun
- Department of Oral Biology, Faculty of Odontology, 3 chemin des Maraîchers, 31062 Toulouse Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Kémoun P, Laurencin-Dalicieux S, Rue J, Farges JC, Gennero I, Conte-Auriol F, Briand-Mesange F, Gadelorge M, Arzate H, Narayanan AS, Brunel G, Salles JP. Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell Tissue Res 2007; 329:283-94. [PMID: 17443352 DOI: 10.1007/s00441-007-0397-3] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 02/09/2007] [Indexed: 12/14/2022]
Abstract
The dental follicle (DF) surrounding the developing tooth germ is an ectomesenchymal tissue composed of various cell populations derived from the cranial neural crest. Human dental follicle cells (HDFC) are believed to contain precursor cells for cementoblasts, periodontal ligament cells, and osteoblasts. Bone morphogenetic proteins (BMPs) produced by Hertwig's epithelial root sheath or present in enamel matrix derivatives (EMD) seem to be involved in the control of DF cell differentiation, but their precise function remains largely unknown. We report the immunolocalization of STRO-1 (a marker of multipotential mesenchymal progenitor cells) and BMP receptors (BMPR) in DF in vivo. In culture, HDFC co-express STRO-1/BMPR and exhibit multilineage properties. Incubation with rhBMP-2 and rhBMP-7 or EMD for 24 h increases the expression of BMP-2 and BMP-7 by HDFC. Long-term stimulation of these cells by rhBMP-2 and/or rhBMP-7 or EMD significantly increases alkaline phosphatase activity (AP) and mineralization. Expression of cementum attachment protein (CAP) and cementum protein-23 (CP-23), two putative cementoblast markers, has been detected in EMD-stimulated whole DF and in cultured HDFC stimulated with EMD or BMP-2 and BMP-7. RhNoggin, a BMP antagonist, abolishes AP activity, mineralization, and CAP/CP-23 expression in HDFC cultures and the expression of BMP-2 and BMP-7 induced by EMD. Phosphorylation of Smad-1 and MAPK is stimulated by EMD or rhBMP-2. However, rhNoggin blocks only Smad-1 phosphorylation under these conditions. Thus, EMD may activate HDFC toward the cementoblastic phenotype, an effect mainly (but not exclusively) involving both exogenous and endogenous BMP-dependent pathways.
Collapse
Affiliation(s)
- Philippe Kémoun
- Laboratory of Oral Biology, Faculty of Odontology, University Paul-Sabatier, 3 Chemin des Maraîchers, 31062, Toulouse Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Pi SH, Lee SK, Hwang YS, Choi MG, Lee SK, Kim EC. Differential expression of periodontal ligament-specific markers and osteogenic differentiation in human papilloma virus 16-immortalized human gingival fibroblasts and periodontal ligament cells. J Periodontal Res 2007; 42:104-13. [PMID: 17305867 DOI: 10.1111/j.1600-0765.2006.00921.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontal ligament cells and gingival fibroblasts are important in the remodeling of periodontal tissue, but human papilloma virus (HPV)16-immortalized cell lines derived from human periodontal ligament cells and gingival fibroblasts has not been characterized. The purpose of this study was to establish and differentially characterize the immortalized cell lines from gingival fibroblasts and periodontal ligament by HPV16 transfection. MATERIAL AND METHODS Cell growth, cell cycle analysis, western blot for cell cycle regulatory proteins and osteogenic differentiation markers, and reverse transcription-polymerase chain reaction for periodontal ligament-specific markers were performed. RESULTS Both immortalized cell lines (immortalized gingival fibroblasts and immortalized periodontal ligament cells) grew faster than primary cultured gingival fibroblasts or periodontal ligament cells. Immortalized gingival fibroblasts and immortalized periodontal ligament cells overexpressed proteins p16 and p21, and exhibited degradation of proteins pRb and p53, which normally cause cell cycle arrest in G2/M-phase. Western blotting and reverse transcription-polymerase chain reaction for periodontal ligament-specific and osteogenic differentiation marker studies demonstrated that a cell line, designated IPDL, mimicked periodontal ligament gene expression for alkaline phosphatase, osteonectin, osteopontin, bone sialoprotein, bone morphogenic protein-2, periostin, S-100A4 and PDLs17. CONCLUSION These results indicate that IPDL and immortalized gingival fibroblast cell lines consistently retain normal periodontal ligament and gingival fibroblast phenotypes, respectively, and periodontal ligament markers and osteogenic differentiation in IPDL are distinct from immortalized gingival fibroblast cells.
Collapse
Affiliation(s)
- S-H Pi
- Department of Periodontology, College of Dentistry, Wonkwang University, Iksan, Korea
| | | | | | | | | | | |
Collapse
|
114
|
Luan X, Ito Y, Dangaria S, Diekwisch TGH. Dental follicle progenitor cell heterogeneity in the developing mouse periodontium. Stem Cells Dev 2006; 15:595-608. [PMID: 16978062 PMCID: PMC2738600 DOI: 10.1089/scd.2006.15.595] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As a developmental precursor for diverse periodontal tissues, the dental follicle (DF) harbors great promise for periodontal tissue regeneration. However, development of optimal therapy awaits the answer to a key question that impinges on many issues in development-Do adult progenitor tissues form a homogeneous cell population that differentiates into target tissues when they arrive at the site, or they contain heterogeneous cell populations that are committed to specific fates? To address the homogeneity/heterogeneity question, we analyzed differentiation pathways and markers in several cloned DF cell lines. Our studies revealed that each of our cloned DF lines featured remarkably unique characteristics, indicative of a separate and distinct lineage. One line, DF1, was high in proliferative activity but did not display any mineralization behavior, suggesting that it might be related to a periodontal ligament-type lineage. DF2 was similar to DF1, but featured remarkably high alkaline phosphatase activity indicative of a highly undifferentiated state. DF3 matched the mineralization characteristics of a same stage alveolar bone line AB1 in terms of gene expression and von Kossa staining, indicating that DF3 might be of cementoblastic or alveolar bone osteoblastic lineage. To verify the multilineage potential of the DF for purposes of tissue engineering, a series of differentiation induction experiments was conducted. For identification purposes, characteristics of these heterogeneous follicular progenitor cells were compared with follicle components in tissue sections of the postnatal developing periodontium. The presence of heterogeneous cell populations in the DF mirrors individual developmental pathways in the formation of the dental integument. The profound cellular heterogeneity of the DF as an adult progenitor for tissue regeneration also suggests that heterogeneous cellular constituents might play as much of a role in tissue regeneration as the inducible characteristics of individual lineages might do.
Collapse
Affiliation(s)
- Xianghong Luan
- Department of Orthodontics and Oral Biology, Brodie Laboratory for Craniofacial Genetics, The University of Illinois at Chicago College of Dentistry, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
115
|
Nervina JM, Camargo PM, Bezouglaia O, Tetradis S. Prostanoid- and interleukin-1-induced primary genes in cementoblastic cells. J Periodontol 2006; 77:1362-70. [PMID: 16881805 DOI: 10.1902/jop.2006.050354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Cementum is a key component of a functional periodontal organ. However, regenerating lost cementum is difficult and often incomplete. Identifying molecular mediators of cementoblast differentiation and function should lead to better targeted treatment for periodontitis. Prostaglandins increase mineralization of murine cementoblastic OCCM cells and alveolar bone formation, whereas the cytokine interleukin-1 (IL-1) inhibits alveolar bone formation. We hypothesized that differentially induced primary genes in OCCM cells may mediate anabolic and catabolic responses. Our objective was to identify primary genes differentially induced by the synthetic prostanoid fluprostenol and IL-1 in cementoblastic cells. METHODS Confluent OCCM cells were pretreated with the protein synthesis inhibitor cycloheximide followed by fluprostenol or IL-1 for 1.5 hours. cDNA generated from each group was used for cDNA subtraction hybridization to identify differentially induced genes. Preferential gene induction was verified by Northern blot analysis. RESULTS Thirteen fluprostenol- and seven IL-1-regulated genes were identified. Among the fluprostenol-induced genes was mitogen-activated protein (MAP) kinase phosphatase 1 (MKP1), a negative regulator of MAP kinase signaling. To verify the cDNA subtraction hybridization results, OCCM cells were treated with fluprostenol or prostaglandin F2 (PGF2), and MKP1 mRNA levels were determined. The 0.001 to 1 microM fluprostenol and 0.01 to 1 microM PGF2 significantly induced MKP1 mRNA levels, which peaked at 1 hour of treatment and returned to baseline at 2 hours. CONCLUSIONS Fluprostenol enhanced, whereas IL-1 inhibited, OCCM mineralization. Using cDNA subtraction hybridization, we identified primary genes that correlate with the observed anabolic and catabolic responses. These findings further our understanding of cementoblast function and suggest that differentially induced genes may mediate cementum formation and resorption.
Collapse
Affiliation(s)
- Jeanne M Nervina
- Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA 90095-1668, USA
| | | | | | | |
Collapse
|
116
|
Friedman MS, Long MW, Hankenson KD. Osteogenic differentiation of human mesenchymal stem cells is regulated by bone morphogenetic protein-6. J Cell Biochem 2006; 98:538-54. [PMID: 16317727 DOI: 10.1002/jcb.20719] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (MSC) are multipotent, self-renewing, mesodermal-origin stem cells that are sequestered in the endosteal compartment. MSC are maintained in a relative state of quiescence in vivo but in response to a variety of physiological and pathological stimuli, proliferate and differentiate into osteoblasts, chondrocytes, adipocytes, or hematopoiesis-supporting stromal cells. Little is understood regarding the cellular or molecular events underlying MSC fate decisions. We report that human MSC (hMSC) cultured in defined, serum-free conditions respond to a narrow spectrum of growth factors with osteogenic commitment, differentiation, and hydroxyapatite deposition. Of the osteogenic factors we examined, only treatment with bone morphogenetic protein (BMP) results in osteoinduction under defined serum-free conditions. Among BMP-2, 4, 6, and 7, BMP-6 is the most consistent and potent regulator of osteoblast differentiation and, of these BMPs, only BMP-6 gene expression is detected prior to hMSC osteoblast differentiation. Addition of exogenous BMP-6 to hMSC induces the expression or upregulation of a repertoire of osteoblast-related genes including type I collagen, osteocalcin, bone sialoprotein, and their regulatory transcription factors Cbfa1/Runx2, and Osterix. This translates into increased production of osteogenic extracellular matrix (ECM) with subsequent hydroxyapatite deposition.
Collapse
Affiliation(s)
- Michael S Friedman
- Graduate Program in Cellular and Molecular Biology, University of Michigan, USA
| | | | | |
Collapse
|
117
|
Popowics T, Foster BL, Swanson EC, Fong H, Somerman MJ. Defining the roots of cementum formation. Cells Tissues Organs 2006; 181:248-57. [PMID: 16612090 DOI: 10.1159/000091386] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Significant progress has been seen in research aimed at regeneration of the disease-damaged periodontium. Our own strategy has been to approach periodontal tissue development (i.e. root, cementum, periodontal ligament, and bone) as a source for the identification of key regulators of cellular processes that may be applicable to periodontal tissue repair. Specifically, enamel-like molecules, bone morphogenetic proteins (BMPs), and phosphates have been investigated for their role in altering gene expression and cell functions in follicle cells, periodontal ligament cells, and cementoblasts. Amelogenin, leucine-rich amelogenin peptide, and tyrosine-rich amelogenin peptide have been found to similarly affect cementoblast gene expression and cementoblast-mediated mineralization in vitro; however, these enamel-like factors do not increase cell proliferation as has been observed in cells treated with Emdogain (Biora AB, Malmö, Sweden), an enamel matrix derivative. BMP-2 has been found to promote differentiation of follicle cells into a cementoblast/osteoblast phenotype, and BMP-3 is being investigated as a negative regulator of mineralization. The increased ratio of phosphate to pyrophosphate in the local region during root development has been found to significantly enhance the extent of cementum formation in animal models. Furthermore, phosphate has been identified as a regulator of cementoblast SIBLING (small integrin-binding ligand N-linked glycoprotein) gene expression in vitro. These investigations of candidate factors for periodontal regeneration have uncovered mechanisms regulating gene expression and cell function in cells controlling the behavior of periodontal tissues (i.e. follicle cells, periodontal cells, and cementoblasts) and offer new directions to consider for clinical repair of periodontal defects.
Collapse
Affiliation(s)
- T Popowics
- Department of Oral Biology, University of Washington School of Dentistry, Seattle, Wash. 98195, USA.
| | | | | | | | | |
Collapse
|
118
|
Affiliation(s)
- Margarita Zeichner-David
- Centre for Craniofacial Molecular Biology, School of Dentistry, Division of Surgical, Therapeutics and Bioengineering Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
119
|
Aghaloo TL, Pirih FQ, Shi A, Bezouglaia O, Tetradis S. Parathyroid hormone induces mitogen-activated kinase phosphatase 1 in murine osteoblasts primarily through cAMP-protein kinase A signaling. J Periodontol 2006; 77:21-30. [PMID: 16579699 DOI: 10.1902/jop.2006.77.1.21] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Parathyroid hormone (PTH) regulates osteoblast function by binding to the PTH receptor 1 (PTHR1) to activate downstream signaling to induce expression of primary response genes (PRGs), which affect various aspects of the osteoblast phenotype. We previously identified PTH-induced PRGs in MC3T3-E1 cells, including mitogen-activated protein kinase (MAPK) phosphatase 1 (mkp1), which dephosphorylates members of the MAPK family. The aim of this study was to explore the molecular mechanisms of PTH's induction of mkp1 in primary mouse osteoblasts. METHODS Northern and Western analyses were used to determine mkp1 mRNA and protein expression. In vivo experiments were also performed to determine PTH's effect on mkp1 in mouse calvariae and long bones. RESULTS A total of 10 nM PTH and PTH-related protein (PTHrP) maximally induced mkp1 mRNA levels after 1 hour in osteoblasts. PTH also increased mkp1 protein expression, and induced mkp1 mRNA independent of new protein synthesis. PTHR1 triggers protein kinase A (PKA), PKC, and calcium pathways. Although PKA and PKC agonists induced mkp1 mRNA levels, only cyclic adenosine 3':5'-monophosphate (cAMP)-PKA inhibition blocked PTH-induced mkp1 mRNA levels. These data suggest that PTH-induced mkp1 mRNA levels are primarily mediated through the cAMP-PKA pathway. Further, prostaglandin E2 (PGE2), which activates cAMP-PKA and PKC, induced mkp1 mRNA to a greater extent than PGF2alpha and fluprostenol, which activate PKC signaling only. Finally, PTH maximally induced mkp1 mRNA levels in mouse calvariae and long bones in vivo at 0.5 hours. CONCLUSIONS mkp1's in vitro and in vivo induction in PTH-target tissues suggests its involvement in some of the effects of PTH on osteoblast function. mkp1 may be an important target gene in the anabolic effect of PTH on osteoblasts.
Collapse
Affiliation(s)
- Tara L Aghaloo
- Division of Diagnostic and Surgical Sciences, University of California, Los Angeles, School of Dentistry, Los Angeles, CA 90095-1668, USA.
| | | | | | | | | |
Collapse
|
120
|
Foster BL, Nociti FH, Swanson EC, Matsa-Dunn D, Berry JE, Cupp CJ, Zhang P, Somerman MJ. Regulation of cementoblast gene expression by inorganic phosphate in vitro. Calcif Tissue Int 2006; 78:103-12. [PMID: 16467974 DOI: 10.1007/s00223-005-0184-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 10/18/2005] [Indexed: 10/25/2022]
Abstract
Examination of mutant and knockout phenotypes with altered phosphate/pyrophosphate distribution has demonstrated that cementum, the mineralized tissue that sheathes the tooth root, is very sensitive to local levels of phosphate and pyrophosphate. The aim of this study was to examine the potential regulation of cementoblast cell behavior by inorganic phosphate (P(i)). Immortalized murine cementoblasts were treated with P(i) in vitro, and effects on gene expression (by quantitative real-time reverse-transcriptase polymerase chain reaction [RT-PCR]) and cell proliferation (by hemacytometer count) were observed. Dose-response (0.1-10 mM) and time-course (1-48 hours) assays were performed, as well as studies including the Na-P(i) uptake inhibitor phosphonoformic acid. Real-time RT-PCR indicated regulation by phosphate of several genes associated with differentiation/mineralization. A dose of 5 mM P(i) upregulated genes including the SIBLING family genes osteopontin (Opn, >300% of control) and dentin matrix protein-1 (Dmp-1, >3,000% of control). Another SIBLING family member, bone sialoprotein (Bsp), was downregulated, as were osteocalcin (Ocn) and type I collagen (Col1). Time-course experiments indicated that these genes responded within 6-24 hours. Time-course experiments also indicated rapid regulation (by 6 hours) of genes concerned with phosphate/pyrophosphate homeostasis, including the mouse progressive ankylosis gene (Ank), plasma cell membrane glycoprotein-1 (Pc-1), tissue nonspecific alkaline phosphatase (Tnap), and the Pit1 Na-P(i) cotransporter. Phosphate effects on cementoblasts were further shown to be uptake-dependent and proliferation-independent. These data suggest regulation by phosphate of multiple genes in cementoblasts in vitro. During formation, phosphate and pyrophosphate may be important regulators of cementoblast functions including maturation and regulation of matrix mineralization.
Collapse
Affiliation(s)
- B L Foster
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
Repair of tooth supporting alveolar bone defects caused by periodontal and peri-implant tissue destruction is a major goal of reconstructive therapy. Oral and craniofacial tissue engineering has been achieved with limited success by the utilization of a variety of approaches such as cell-occlusive barrier membranes, bone substitutes and autogenous block grafting techniques. Signaling molecules such as growth factors have been used to restore lost tooth support because of damage by periodontal disease or trauma. This paper will review emerging periodontal therapies in the areas of materials science, growth factor biology and cell/gene therapy. Several different polymer delivery systems that aid in the targeting of proteins, genes and cells to periodontal and peri-implant defects will be highlighted. Results from preclinical and clinical trials will be reviewed using the topical application of bone morphogenetic proteins (BMP-2 and BMP-7) and platelet-derived growth factor-BB (PDGF) for periodontal and peri-implant regeneration. The paper concludes with recent research on the use of ex vivo and in vivo gene delivery strategies via gene therapy vectors encoding growth promoting and inhibiting molecules (PDGF, BMP, noggin and others) to regenerate periodontal structures including bone, periodontal ligament and cementum.
Collapse
Affiliation(s)
- M Taba
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, 48108, USA
| | | | | | | |
Collapse
|
122
|
Abstract
OBJECTIVE Left untreated, periodontal disease results in destruction of periodontal tissues including cementum, bone and the periodontal ligament, and subsequently, tooth loss. Increased research efforts focused on understanding periodontal disease at the cellular, molecular and clinical level have resulted in improved modalities for arresting disease progression; however, outcomes of existing procedures are not predictable and often disappointing. Critical to improving the predictability of regenerative therapies is targeting studies toward enhancing our understanding of the cellular and molecular events required to restore periodontal tissues. DESIGN Toward this goal our laboratory has focused on defining cells, mechanisms and factors regulating development of periodontal tissues, using in vitro and in vivo rodent models. RESULTS AND CONCLUSION Results from these studies have enabled us to identify attractive candidate factors/cells including: 1) products secreted by epithelial cells that act on mesenchymal cells (amelogenins): we observed that both follicle cells and cementoblasts are responsive to amelogenin-like molecules resulting in changes in the expression of genes associated with cell maturation; 2) morphogens (bone morphogenetic proteins, BMP): we report that follicle cells respond differently to BMPs vs. cementoblasts, depending on dose of and specific BMP used; 3) phosphates: existing data suggest that phosphates act as signaling molecules regulating the expression of genes associated with cementoblast maturation. Knowledge gained from these studies has provided insight as to the cells/factors required for designing improved regenerative therapies.
Collapse
Affiliation(s)
- B L Foster
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, 98195, USA
| | | |
Collapse
|
123
|
Fong HK, Foster BL, Popowics TE, Somerman MJ. The Crowning Achievement: Getting to the Root of the Problem. J Dent Educ 2005. [DOI: 10.1002/j.0022-0337.2005.69.5.tb03942.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hanson K. Fong
- Department of Material Science and EngineeringUniversity of Washington
| | | | | | | |
Collapse
|
124
|
Morsczeck C, Götz W, Schierholz J, Zeilhofer F, Kühn U, Möhl C, Sippel C, Hoffmann KH. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 2005; 24:155-65. [PMID: 15890265 DOI: 10.1016/j.matbio.2004.12.004] [Citation(s) in RCA: 592] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 12/19/2004] [Accepted: 12/20/2004] [Indexed: 12/12/2022]
Abstract
The dental follicle is an ectomesenchymal tissue surrounding the developing tooth germ. It is believed that this tissue contains stem cells and lineage committed progenitor cells or precursor cells (PCs) for cementoblasts, periodontal ligament cells, and osteoblasts. In this study, we report the isolation of PCs derived from dental follicle of human third molar teeth. These fibroblast-like, colony forming and plastic adherent cells expressed putative stem cell markers Notch-1 and Nestin. We compared gene expressions of PCs, human mesenchymal stem cells (hMSCs), periodontal ligament cells (PDL-cells) and osteoblasts (MG63) for delimitation of PCs. Interestingly, PCs expressed higher amounts of insulin-like growth factor-2 (IGF-2) transcripts than hMSCs. Differentiation capacity was demonstrated under in vitro conditions for PCs. Long-term cultures with dexamethasone produced compact calcified nodules or appeared as plain membrane structures of different dimensions consisting of a connective tissue like matrix encapsulated by a mesothelium-like cellular structure. PCs differentially express osteocalcin (OCN) and bone sialoprotein (BS) after transplantation in immunocompromised mice but without any sign of cementum or bone formation. Therefore, our results demonstrate that cultured PCs are unique undifferentiated lineage committed cells residing in the periodontium prior or during tooth eruption.
Collapse
Affiliation(s)
- C Morsczeck
- Stiftung Caesar, Center of Advanced European Studies and Research, Ludwig Erhard Allee 2, 53175 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Stains J, Lecanda F, Towler D, Civitelli R. Heterogeneous nuclear ribonucleoprotein K represses transcription from a cytosine/thymidine-rich element in the osteocalcin promoter. Biochem J 2005; 385:613-23. [PMID: 15361071 PMCID: PMC1134736 DOI: 10.1042/bj20040680] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 08/16/2004] [Accepted: 09/10/2004] [Indexed: 11/17/2022]
Abstract
HnRNP K (heterogeneous nuclear ribonucleoprotein K) was biochemically purified from a screen of proteins co-purifying with binding activity to the osteocalcin promoter. We identify hnRNP K as a novel repressor of osteocalcin gene transcription. Overexpression of hnRNP K lowers the expression of osteocalcin mRNA by 5-fold. Furthermore, luciferase reporter assays demonstrate that overexpression of hnRNP K represses osteocalcin transcription from a CT (cytosine/thymidine)-rich element in the proximal promoter. Electrophoretic mobility-shift analysis reveals that recombinant hnRNP K binds to the CT-rich element, but binds ss (single-stranded), rather than ds (double-stranded) oligonucleotide probes. Accordingly, hnRNP K antibody can supershift a binding activity present in nuclear extracts using ss sense, but not antisense or ds oligonucleotides corresponding to the CT-rich -95 to -47 osteocalcin promoter. Importantly, addition of recombinant hnRNP K to ROS 17/2.8 nuclear extract disrupts formation of a DNA-protein complex on ds CT element oligonucleotides. This action is mutually exclusive with hnRNP K's ability to bind ss DNA. These results demonstrate that hnRNPK, although co-purified with a dsDNA-binding activity, does not itself bind dsDNA. Rather, hnRNP K represses osteocalcin gene transcription by inhibiting the formation of a transcriptional complex on the CT element of the osteocalcin promoter.
Collapse
Key Words
- cytosine/thymidine
- heterogeneous nuclear ribonucleoprotein k
- osteoblast
- osteocalcin
- transcription regulation
- cmv, cytomegalovirus
- ct, cytosine/thymidine
- ds, double-stranded
- dtt, dithiothreitol
- emsa, electrophoretic mobility-shift assay
- erk, extracellular-signal-regulated kinase
- gal4bd, gal4 dna-binding domain
- gapdh, glyceraldehyde-3-phosphate dehydrogenase
- hnrnp k, heterogeneous nuclear ribonucleoprotein k
- mem, minimal essential medium
- sp1, specificity protein 1
- ss, single-stranded
Collapse
Affiliation(s)
- Joseph P. Stains
- *Division of Bone and Mineral Diseases, Washington University School of Medicine, and Barnes-Jewish Hospital, St. Louis, MO, U.S.A
| | - Fernando Lecanda
- †Carcinogenesis Unit, Center of Applied Medical Research (CIMA) and Department of Histology and Pathology, University of Navarra, Pamplona, Spain
| | - Dwight A. Towler
- *Division of Bone and Mineral Diseases, Washington University School of Medicine, and Barnes-Jewish Hospital, St. Louis, MO, U.S.A
| | - Roberto Civitelli
- *Division of Bone and Mineral Diseases, Washington University School of Medicine, and Barnes-Jewish Hospital, St. Louis, MO, U.S.A
| |
Collapse
|
126
|
Saito M, Handa K, Kiyono T, Hattori S, Yokoi T, Tsubakimoto T, Harada H, Noguchi T, Toyoda M, Sato S, Teranaka T. Immortalization of cementoblast progenitor cells with Bmi-1 and TERT. J Bone Miner Res 2005; 20:50-7. [PMID: 15619669 DOI: 10.1359/jbmr.041006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Revised: 07/01/2004] [Accepted: 08/03/2004] [Indexed: 12/31/2022]
Abstract
UNLABELLED A cementoblast progenitor cell line designated BCPb8 was successfully isolated from dental follicle cells immortalized with Bmi-1 and hTERT. BCPb8 showed the potential to differentiate into cementoblasts on implantation into immunodeficient mice. BCPb8 was confirmed to be the first established cementoblast progenitor cell line and will provide a useful model for investigating cementogenesis. INTRODUCTION The dental follicle is the mesenchymal tissue surrounding the developing tooth germ. During tooth root development, progenitor cells present in the dental follicle are believed to play a central role in the formation of periodontal components (cementum, periodontal ligament, and alveolar bone). However, little more is known about the biology of these progenitors. Previously, we observed that cultured bovine dental follicle cells (BDFCs) contained putative cementoblast progenitors. To further analyze the biology of these cells, we attempted to isolate cementoblast progenitors from immortalized BDFC through expression of the polycomb group protein, Bmi-1, and human telomerase reverse transcriptase (hTERT). MATERIALS AND METHODS BDFCs were transduced with replication-deficient retroviruses carrying human Bmi-1(LXSN-Bmi-1), and hTERT (LXSH-hTERT) for immortalization. Single cell clones were established from immortalized BDFC, and differentiation into cementoblasts was assessed by implantation into immunodeficient mice. RESULTS AND CONCLUSION BDFCs expressing Bmi-1 and hTERT showed an extended life span-90 population doublings more than normal BDFCs-and still contained cells with the potential to differentiate into cementoblasts on implantation into immunodeficient mice. From these cells, we established a clonal cell line, designated BCPb8, which formed cementum-like tissue that was reactive to the anti-cementum-specific monoclonal antibody 3G9 and expressed mRNA for bone sialoprotein, osteocalcin, osteopontin, and type I collagen on implantation. Thus, by using Bmi-1 and hTERT, we succeeded in immortalizing cementoblast progenitor cells from BDFC without affecting differentiation potential. The BCPb8 cell line is the first immortalized clonal cell line of cementoblast progenitors and could be a useful tool not only to study cementogenesis but also to develop regeneration therapy for patients with periodontitis.
Collapse
Affiliation(s)
- Masahiro Saito
- Department of Operative Dentistry and Endodontics, Kanagawa Dental College, Yokosuka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Stains JP, Civitelli R. Gap junctions regulate extracellular signal-regulated kinase signaling to affect gene transcription. Mol Biol Cell 2004; 16:64-72. [PMID: 15525679 PMCID: PMC539152 DOI: 10.1091/mbc.e04-04-0339] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Osteoblasts are highly coupled by gap junctions formed by connexin43. Overexpression of connexin45 in osteoblasts results in decreased chemical and electrical coupling and reduces gene transcription from connexin response elements (CxREs) in the osteocalcin and collagen Ialpha1 promoters. Here, we demonstrate that transcription from the gap junction-dependent osteocalcin CxRE is regulated by extracellular signal-regulated protein kinase (ERK) and phosphatidylinositol 3-kinase (PI3K) cascades. Overexpression of a constitutively active mitogen-activated protein kinase kinase (MEK), Raf, or Ras can increase transcription more than twofold of the CxRE, whereas inhibition of MEK or PI3K can decrease transcription threefold from the osteocalcin CxRE. Importantly, disruption of gap junctional communication by overexpression of connexin45 or treatment with pharmacological inhibitors of gap junctions results in reduced Raf, ERK, and Akt activation. The consequence of attenuated gap junction-dependent signal cascade activation is a decrease in Sp1 phosphorylation by ERK, resulting in decreased Sp1 recruitment to the CxRE and inhibited gene transcription. These data establish that ERK/PI3K signaling is required for the optimal elaboration of transcription from the osteocalcin CxRE, and that disruption of gap junctional communication attenuates the ability of cells to respond to an extracellular cue, presumably by limiting the propagation of second messengers among adjacent cells by connexin43-gap junctions.
Collapse
Affiliation(s)
- Joseph P Stains
- Division of Bone and Mineral Diseases, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO 63110, USA
| | | |
Collapse
|
128
|
Abstract
Tooth eruption requires alveolar bone resorption and formation, both of which appear to be regulated by the dental follicle. Osteoclastogenesis needed for this bone resorption appears to occur as a result of a reduction in the expression of the osteoprotegerin (OPG) gene in the dental follicle at a specific time. This reduction in expression is mediated in vitro in the follicle cells by colony-stimulating factor-1 (CSF-1) and parathyroid hormone-related protein (PTHrP). Using enzyme-linked immunosorbent assays and immunoblotting, this study shows that the reduction in expression of OPG after incubation of the dental follicle cells in either CSF-1 or PTHrP also results in a reduction in its secretion. We also show, by laser capture microdissection, that PTHrP is expressed in vivo in the stellate reticulum such that it could inhibit OPG expression via a paracrine effect on the follicle. Bone formation is enhanced by OPG secretion, and incubation of the follicle cells with bone morphogenetic protein-2 (BMP-2) enhances OPG secretion. Thus, a reduction in secretion of the OPG protein at defined times may promote the osteoclastogenesis and alveolar bone resorption needed for eruption, and enhancement of OPG secretion at other times may promote alveolar bone formation.
Collapse
Affiliation(s)
- G E Wise
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | |
Collapse
|
129
|
O'Shaughnessy RFL, Christiano AM, Jahoda CAB. The role of BMP signalling in the control of ID3 expression in the hair follicle. Exp Dermatol 2004; 13:621-9. [PMID: 15447722 DOI: 10.1111/j.0906-6705.2004.00206.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Both the production of the hair shaft in anagen and the initiation of a new hair cycle at telogen are the result of reciprocal interactions between the dermal papilla and the overlying epithelial cells. Secreted factors, such as those of the bone morphogenetic protein (BMP) family, play a crucial role in moderating these interactions. Analysis of hair follicles in different stages of the hair cycle showed that BMP signalling was only active during anagen and again during telogen. During catagen, no BMP signalling occurred in the dermal papilla. ID3, a gene expressed in the dermal papilla of both vibrissa and pelage follicles, is a BMP target, and as such, we found that ID3 was expressed from the earliest stages of morphogenesis. During the hair cycle, ID3 was only expressed in the dermal papilla at middle anagen and telogen. To test the significance of ID3 expression in the dermal papilla, we cultured dermal papilla cells and found that ID3 expression fell significantly after a single passage. ID3 expression was returned to in vivo levels in low- and high-passage cells by culturing to high confluence or by the addition of BMP4. These studies reinforce the requirement for active BMP signalling and cell-cell contacts in the dermal papilla during specific stages in the hair cycle.
Collapse
|
130
|
Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364:149-55. [PMID: 15246727 DOI: 10.1016/s0140-6736(04)16627-0] [Citation(s) in RCA: 2403] [Impact Index Per Article: 120.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Periodontal diseases that lead to the destruction of periodontal tissues--including periodontal ligament (PDL), cementum, and bone--are a major cause of tooth loss in adults and are a substantial public-health burden worldwide. PDL is a specialised connective tissue that connects cementum and alveolar bone to maintain and support teeth in situ and preserve tissue homoeostasis. We investigated the notion that human PDL contains stem cells that could be used to regenerate periodontal tissue. METHODS PDL tissue was obtained from 25 surgically extracted human third molars and used to isolate PDL stem cells (PDLSCs) by single-colony selection and magnetic activated cell sorting. Immunohistochemical staining, RT-PCR, and northern and western blot analyses were used to identify putative stem-cell markers. Human PDLSCs were transplanted into immunocompromised mice (n=12) and rats (n=6) to assess capacity for tissue regeneration and periodontal repair. Findings PDLSCs expressed the mesenchymal stem-cell markers STRO-1 and CD146/MUC18. Under defined culture conditions, PDLSCs differentiated into cementoblast-like cells, adipocytes, and collagen-forming cells. When transplanted into immunocompromised rodents, PDLSCs showed the capacity to generate a cementum/PDL-like structure and contribute to periodontal tissue repair. INTERPRETATION Our findings suggest that PDL contains stem cells that have the potential to generate cementum/PDL-like tissue in vivo. Transplantation of these cells, which can be obtained from an easily accessible tissue resource and expanded ex vivo, might hold promise as a therapeutic approach for reconstruction of tissues destroyed by periodontal diseases.
Collapse
Affiliation(s)
- Byoung-Moo Seo
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Nemcovsky CE, Beny L, Shanberger S, Feldman-Herman S, Vardimon A. Bone Apposition in Surgical Bony Defects Following Orthodontic Movement: A Comparative Histomorphometric Study Between Root- and Periodontal Ligament-Damaged and Periodontally Intact Rat Molars. J Periodontol 2004; 75:1013-9. [PMID: 15341361 DOI: 10.1902/jop.2004.75.7.1013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The influence of orthodontic tooth movement with diminished periodontal support is unclear. The aim of the present study was to evaluate bone healing in surgical defects following orthodontic tooth movement with and without periodontal ligament (PDL) and root surface damage. METHODS The study comprised 33 adult male Wistar rats, divided into two groups: group 1 (n = 14) with bony defect and no root damage and group 2 (n = 19) with periodontal bony defect including root/PDL damage on the mesial root of the maxillary first molar. One week after a surgical defect was created, orthodontic protraction of the right maxillary first molar was initiated in both groups. After 2 weeks of protraction, retention of 1 week was established; at the end of this period block sections were made. Histomorphometric analysis through light microscopy of decalcified tissue was performed. Results were statistically analyzed using independent samples t test and analysis of variance (ANOVA) with repeated measures. RESULTS Differences between groups in total area of bone defect and bone apposition were not statistically significant. Bone apposition calculated as percentage of the bone defect was significantly (t-test) greater (P = 0.002) in group 2 (46.21%) than in group 1 (24.95%). Within each group, area of bone apposition was significantly (ANOVA) greater in the distal than in the mesial quadrants of the bony defect (P = 0.006) and in the apical than the occlusal ones (P = 0.021). CONCLUSION Following orthodontic tooth movement, periodontal bony defects showed enhanced bony healing compared with alveolar bone defects with no direct association with the periodontal attachment apparatus.
Collapse
Affiliation(s)
- Carlos E Nemcovsky
- Department of Periodontology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | | | |
Collapse
|
132
|
Jin QM, Zhao M, Webb SA, Berry JE, Somerman MJ, Giannobile WV. Cementum engineering with three-dimensional polymer scaffolds. J Biomed Mater Res A 2004; 67:54-60. [PMID: 14517861 PMCID: PMC2581746 DOI: 10.1002/jbm.a.10058] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cloned cementoblasts (OCCMs), periodontal ligament fibroblasts (SV-PDLs), and dental follicle (SV-F) cells obtained from mice were used as a tool to study periodontal tissue engineering. OCCM, SV-PDL, and SV-F cells were seeded onto three-dimensional poly lactic-co-glycolic acid (PLGA) scaffolds and cultured with the use of bioreactors or implanted subcutaneously in severe combined immune deficiency (SCID) mice for up to 6 weeks. We explored the behavior of these cells in porous PLGA sponges by cell growth, expression of mineral-associated genes using reverse transcriptase polymerase chain reaction, and mineralization by histologic analysis in vitro and in vivo. Results indicated that cells attached to PLGA scaffolds under either static or dynamic conditions in vitro. Only OCCM implants, retrieved from both in vitro bioreactors and SCID mice at 3-and 6-weeks post-cell implantation exhibited mineral formation. Types I and XII collagens, osteocalcin, and bone sialoprotein genes were detected in all implants retrieved from SCID mice. These results suggest that delivery of selected cells via PLGA scaffolds may serve as a viable approach for promoting periodontal tissue regeneration.
Collapse
Affiliation(s)
- Q-M Jin
- Center for Craniofacial Regeneration and Department of Periodontics/Prevention/Geriatrics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | | | | | | | | | | |
Collapse
|
133
|
Zhao M, Jin Q, Berry JE, Nociti FH, Giannobile WV, Somerman MJ. Cementoblast delivery for periodontal tissue engineering. J Periodontol 2004; 75:154-61. [PMID: 15025227 PMCID: PMC2596890 DOI: 10.1902/jop.2004.75.1.154] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Predictable periodontal regeneration following periodontal disease is a major goal of therapy. The objective of this proof of concept investigation was to evaluate the ability of cementoblasts and dental follicle cells to promote periodontal regeneration in a rodent periodontal fenestration model. METHODS The buccal aspect of the distal root of the first mandibular molar was denuded of its periodontal ligament (PDL), cementum, and superficial dentin through a bony window created bilaterally in 12 athymic rats. Treated defects were divided into three groups: 1) carrier alone (PLGA polymer sponges), 2) carrier + follicle cells, and 3) carrier + cementoblasts. Cultured murine primary follicle cells and immortalized cementoblasts were delivered to the defects via biodegradable PLGA polymer sponges, and mandibulae were retrieved 3 weeks and 6 weeks post-surgery for histological evaluation. In situ hybridization, for gene expression of bone sialoprotein (BSP) and osteocalcin (OCN), and histomorphometric analysis were further done on 3-week specimens. RESULTS Three weeks after surgery, histology of defects treated with carrier alone indicated PLGA particles, fibrous tissue, and newly formed bone scattered within the defect area. Defects treated with carrier + follicle cells had a similar appearance, but with less formation of bone. In contrast, in defects treated with carrier + cementoblasts, mineralized tissues were noted at the healing site with extension toward the root surface, PDL region, and laterally beyond the buccal plate envelope of bone. No PDL-bone fibrous attachment was observed in any of the groups at this point. In situ hybridization showed that the mineralized tissue formed by cementoblasts gave strong signals for both BSP and OCN genes, confirming its nature as cementum or bone. The changes noted at 3 weeks were also observed at 6 weeks. Cementoblast-treated and carrier alone-treated defects exhibited complete bone bridging and PDL formation, whereas follicle cell-treated defects showed minimal evidence of osteogenesis. No new cementum was formed along the root surface in the above two groups. Cementoblast-treated defects were filled with trabeculated mineralized tissue similar to, but more mature, than that seen at 3 weeks. Furthermore, the PDL region was maintained with well-organized collagen fibers connecting the adjacent bone to a thin layer of cementum-like tissue observed on the root surface. Neoplastic changes were observed at the superficial portions of the implants in two of the 6-week cementoblast-treated specimens, possibly due in part to the SV40-transformed nature of the implanted cell line. CONCLUSIONS This pilot study demonstrates that cementoblasts have a marked ability to induce mineralization in periodontal wounds when delivered via polymer sponges, while implanted dental follicle cells seem to inhibit periodontal healing. These results confirm the selective behaviors of different cell types in vivo and support the role of cementoblasts as a tool to better understand periodontal regeneration and cementogen-
Collapse
Affiliation(s)
- Ming Zhao
- Center for Craniofacial Regeneration and Department of Periodontics/Prevention/Geriatrics, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Qiming Jin
- Center for Craniofacial Regeneration and Department of Periodontics/Prevention/Geriatrics, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Janice E. Berry
- Center for Craniofacial Regeneration and Department of Periodontics/Prevention/Geriatrics, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Francisco H. Nociti
- Department of Prosthodontics and Periodontics, Division of Periodontics, School of Dentistry at Piracicaba, UNICAMP, Piracicaba, São Paulo, Brazil; previously, Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA and Center for Craniofacial Regeneration and Department of Periodontics/Prevention/Geriatrics, University of Michigan
| | - William V. Giannobile
- Center for Craniofacial Regeneration and Department of Periodontics/Prevention/Geriatrics, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Martha J. Somerman
- Currently, Department of Periodontics, School of Dentistry, University of Washington; previously, Center for Craniofacial Regeneration and Department of Periodontics/Prevention/Geriatrics, University of Michigan
| |
Collapse
|
134
|
Smid JR, Rowland JE, Young WG, Daley TJ, Coschigano KT, Kopchick JJ, Waters MJ. Mouse cellular cementum is highly dependent on growth hormone status. J Dent Res 2004; 83:35-9. [PMID: 14691110 DOI: 10.1177/154405910408300107] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cementum is known to be growth-hormone (GH)-responsive, but to what extent is unclear. This study examines the effects of extremes of GH status on cementogenesis in three lines of genetically modified mice; GH excess (giant), GH antagonist excess (dwarf), and GH receptor-deleted (GHR-KO) (dwarf). Age-matched mandibular molar tissues were processed for light microscope histology. Digital images of sections of first molar teeth were captured for morphometric analysis of lingual root cementum. Cross-sectional area of the cellular cementum was a sensitive guide to GH status, being reduced nearly 10-fold in GHR-KO mice, three-fold in GH antagonist mice, and increased almost two-fold in giant mice (p < 0.001). Cellular cementum length was similarly influenced by GH status, but to a lesser extent. Acellular cementum was generally unaffected. This study reveals cellular cementum to be a highly responsive GH target tissue, which may have therapeutic applications in assisting regeneration of the periodontium.
Collapse
Affiliation(s)
- J R Smid
- School of Dentistry, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.
| | | | | | | | | | | | | |
Collapse
|
135
|
Pan B, To LB, Farrugia AN, Findlay DM, Green J, Gronthos S, Evdokiou A, Lynch K, Atkins GJ, Zannettino ACW. The nitrogen-containing bisphosphonate, zoledronic acid, increases mineralisation of human bone-derived cells in vitro. Bone 2004; 34:112-23. [PMID: 14751568 DOI: 10.1016/j.bone.2003.08.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies have attributed the increase in bone mass observed following bisphophonate (BP) therapy to their effects on bone-resorbing osteoclasts (OCs). However, recent evidence suggests that BPs can also act directly on bone forming osteoblasts (OBs) to increase their anabolic activity. Using an established model of in vitro OB differentiation, we found that the potent nitrogen-containing BP, zoledronic acid (ZOL), may enhance the bone forming potential of human adult OB-like cells in vitro by inducing their differentiation. ZOL dose dependently induced both cytostasis and cell death in OB-like cells at concentrations of 0.5 microM or greater. Cells expressing high levels of the osteoprogenitor antigen, STRO-1, exhibited a greater proliferative potential than STRO-1negative/dim cells, and were more susceptible to the cytostatic and apoptotic effects of ZOL. ZOL was also found to promote bone cell differentiation, as evidenced by an increase in the number of cells exhibiting a more differentiated (STRO-1(-)/AP+ and STRO-1(-)/AP-) phenotype. Analysis of gene expression, using semi-quantitative RT-PCR, demonstrated that ZOL treatment resulted in a significant upregulation of osteocalcin (OCN) and bone morphogenetic protein-2 (BMP-2) gene expression. Furthermore, in vitro mineralisation studies revealed that ZOL enhanced mineralised matrix formation at concentrations between 5 and 25 microM. These results show that, in addition to its direct effects on OCs, ZOL also directly affects the proliferation and differentiation of human OB-like cells in vitro and may enhance bone formation in vivo.
Collapse
Affiliation(s)
- Beiqing Pan
- Myeloma and Mesenchymal Research Group, Matthew Roberts Foundation Laboratory, Division of Haematology, Institute of Medical and Veterinary Science, Adelaide 5000, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Jin QM, Zhao M, Economides AN, Somerman MJ, Giannobile WV. Noggin gene delivery inhibits cementoblast-induced mineralization. Connect Tissue Res 2004; 45:50-9. [PMID: 15203940 PMCID: PMC2613802 DOI: 10.1080/03008200490278142] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bone morphogenetic proteins (BMPs) are known to promote periodontal tissue regeneration, while noggin inhibits the biological activities of BMP-2, -4, and -7. To investigate the effect of BMPs and noggin gene transfer on cementogenesis, we used cloned murine cementoblasts (OCCM). Cells were transduced using adenoviruses encoding BMP-7 (Ad-BMP-7), noggin devoid of the heparin binding site (Ad-NOGDeltaB2), or a control adenovirus encoding green fluorescent protein (Ad-GFP). Cells were seeded into 3D polymer scaffolds and implanted into SCID mice to determine the in vivo mineral-inducing ability of the cells. Cells transduced with Ad-NOGDeltaB2 at 3 and 6 weeks postimplantation exhibited reduced mineral formation compared with all other groups. Although gene expression of osteocalcin and bone sialoprotein increased after Ad-BMP-7 transduction in vitro, following BMP-7 gene transfer in vivo, transcripts for OCN and BSP were not significantly different from controls, and mineral density was not significantly increased compared with Ad-GFP and NT groups. These results indicate that in mature cementoblast populations, gene transfer of noggin inhibits biomineralization induced by cementoblasts, whereas exogenous BMP has minimal effects on mineralization.
Collapse
Affiliation(s)
- Q-M Jin
- Center for Craniofacial Regeneration and Department of Periodontics/Prevention/Geriatrics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | | | | | | | | |
Collapse
|
137
|
Maeda T, Kawane T, Horiuchi N. Statins augment vascular endothelial growth factor expression in osteoblastic cells via inhibition of protein prenylation. Endocrinology 2003; 144:681-92. [PMID: 12538631 DOI: 10.1210/en.2002-220682] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Statins such as simvastatin are 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors that inhibit cholesterol synthesis. We presently investigated statin effects on vascular endothelial growth factor (VEGF) expression in osteoblastic cells. Hydrophobic statins including simvastatin, atorvastatin, and cerivastatin-but not a hydrophilic statin, pravastatin-markedly increased VEGF mRNA abundance in nontransformed osteoblastic cells (MC3T3-E1). Simvastatin (10(-6) M) time-dependently augmented VEGF mRNA expression in MC3T3-E1 cells, mouse stromal cells (ST2), and rat osteosarcoma cells (UMR-106). According to heterogeneous nuclear RNA and Northern analyses, 10(-6) M simvastatin stimulated gene expression for VEGF in MC3T3-E1 cells without altering mRNA stability. Transcriptional activation of a VEGF promoter-luciferase construct (-1128 to +827), significantly increased by simvastatin administration. As demonstrated by gel mobility shift assay, simvastatin markedly enhanced the binding of hypoxia-responsive element-protein complexes. These results indicate that the stimulation of the VEGF gene by simvastatin in MC3T3-E1 cells is transcriptional in nature. VEGF secretion into medium was increased in MC3T3-E1 by 10(-6) M simvastatin. Pretreating MC3T3-E1 cells with mevalonate or geranylgeranyl pyrophosphate, a mevalonate metabolite, abolished simvastatin-induced VEGF mRNA expression; manumycin A, a protein prenylation inhibitor, mimicked statin effects on VEGF expression. The effect of simvastatin was blocked by pretreatment with wortmannin and LY294002, specific phosphatidylinositide-3 kinase inhibitors. Simvastatin enhanced mineralized nodule formation in culture, whereas coincubation with mevalonate, geranylgeranyl pyrophosphate, LY294002, or VEGF receptor 2 inhibitor (SU1498) abrogated statin-induced mineralization. Thus, statins stimulate VEGF expression in osteoblasts via reduced protein prenylation and the phosphatidylinositide-3 kinase pathway, promoting osteoblastic differentiation.
Collapse
Affiliation(s)
- Toyonobu Maeda
- Department of Biochemistry, Ohu University School of Dentistry, Koriyama 963-8611, Japan
| | | | | |
Collapse
|
138
|
Zhao M, Berry JE, Somerman MJ. Bone morphogenetic protein-2 inhibits differentiation and mineralization of cementoblasts in vitro. J Dent Res 2003; 82:23-7. [PMID: 12508040 DOI: 10.1177/154405910308200106] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
As an approach for improving the outcome and predictability of periodontal regenerative therapies, we have focused on determining the responses of cells within the local environment to putative regenerative factors. This study examined the effects of bone morphogenetic protein-2 (BMP-2) on murine cementoblasts in vitro. Northern blot analysis indicated that BMP-2 decreased mRNA levels of bone sialoprotein and type I collagen dose-dependently (10-300 ng/mL). At low doses, up to 100 ng/mL, BMP-2 had no effect on transcripts for osteocalcin and osteopontin, whereas at 300 ng/mL, BMP-2 greatly increased expression of these two genes. BMP-2 also inhibited cementoblast-mediated mineral nodule formation in a dose-dependent manner (inhibition was noted at 10 ng/mL). Noggin reversed the effects of BMP-2 on gene expression and on mineralization. These findings reflect the diverse responses of periodontal cells to BMP-2 and highlight the need to consider the complexity of factors involved in designing predictable regenerative therapies.
Collapse
Affiliation(s)
- M Zhao
- Department of Periodontics/Prevention/Geriatrics, University of Michigan School of Dentistry, 1011 N University Avenue, Ann Arbor, MI 48109-1078, USA
| | | | | |
Collapse
|