101
|
Kaczor AA, Bartuzi D, Stępniewski TM, Matosiuk D, Selent J. Protein-Protein Docking in Drug Design and Discovery. Methods Mol Biol 2019; 1762:285-305. [PMID: 29594778 DOI: 10.1007/978-1-4939-7756-7_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Protein-protein interactions (PPIs) are responsible for a number of key physiological processes in the living cells and underlie the pathomechanism of many diseases. Nowadays, along with the concept of so-called "hot spots" in protein-protein interactions, which are well-defined interface regions responsible for most of the binding energy, these interfaces can be targeted with modulators. In order to apply structure-based design techniques to design PPIs modulators, a three-dimensional structure of protein complex has to be available. In this context in silico approaches, in particular protein-protein docking, are a valuable complement to experimental methods for elucidating 3D structure of protein complexes. Protein-protein docking is easy to use and does not require significant computer resources and time (in contrast to molecular dynamics) and it results in 3D structure of a protein complex (in contrast to sequence-based methods of predicting binding interfaces). However, protein-protein docking cannot address all the aspects of protein dynamics, in particular the global conformational changes during protein complex formation. In spite of this fact, protein-protein docking is widely used to model complexes of water-soluble proteins and less commonly to predict structures of transmembrane protein assemblies, including dimers and oligomers of G protein-coupled receptors (GPCRs). In this chapter we review the principles of protein-protein docking, available algorithms and software and discuss the recent examples, benefits, and drawbacks of protein-protein docking application to water-soluble proteins, membrane anchoring and transmembrane proteins, including GPCRs.
Collapse
Affiliation(s)
- Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Lublin, Poland. .,School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| | - Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Lublin, Poland
| | - Tomasz Maciej Stępniewski
- GPCR Drug Discovery Group, Research Programme on Biomedical Informatics (GRIB), Universitat Pompeu Fabra (UPF)-Hospital del Mar Medical Research Institute (IMIM), Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Lublin, Poland
| | - Jana Selent
- GPCR Drug Discovery Group, Research Programme on Biomedical Informatics (GRIB), Universitat Pompeu Fabra (UPF)-Hospital del Mar Medical Research Institute (IMIM), Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| |
Collapse
|
102
|
Jonas KC, Hanyaloglu AC. Analysis of Spatial Assembly of GPCRs Using Photoactivatable Dyes and Localization Microscopy. Methods Mol Biol 2019; 1947:337-348. [PMID: 30969426 DOI: 10.1007/978-1-4939-9121-1_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Super-resolution imaging has provided unprecedented insight in the molecular complexities of fundamental cell biological questions. For G protein-coupled receptors (GPCRs), its application to the study of receptor homomers and heteromers have unveiled the diversity of complexes these GPCRs can form at the plasma membrane at a structural and functional level. Here, we describe our methodological approach of photoactivated localization microscopy with photoactivatable dyes (PD-PALM) to visualize and quantify the spatial assembly of GPCR heteromers at the plasma membrane.
Collapse
Affiliation(s)
- Kim C Jonas
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK.
- Institute of Medical and Biomedical Education, St George's University of London, London, UK.
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK.
| | - Aylin C Hanyaloglu
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| |
Collapse
|
103
|
Gallo M, Defaus S, Andreu D. 1988-2018: Thirty years of drug smuggling at the nano scale. Challenges and opportunities of cell-penetrating peptides in biomedical research. Arch Biochem Biophys 2018; 661:74-86. [PMID: 30447207 DOI: 10.1016/j.abb.2018.11.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/22/2022]
Abstract
In 1988, two unrelated papers reported the discovery of peptide vectors with innate cell translocation properties, setting the ground for a new area of research that over the years has grown into considerable therapeutic potential. The vectors, named cell-penetrating peptides (CPPs), constitute a now large and diversified family, sharing the extraordinary ability to diffuse unaltered across cell membranes while ferrying diverse associated cargos. Such properties have made CPPs ideal tools for delivery of nucleic acids, proteins and other therapeutic/diagnostic molecules to cells and tissues via covalent conjugation or complexation. This year 2018 marks the 30th anniversary of a peptide research landmark opening new perspectives in drug delivery. Given its vastness, exhaustive coverage of the main features and accomplishments in the CPP field is virtually impossible. Hence this manuscript, after saluting the above 30th jubilee, focuses by necessity on the most recent contributions, providing a comprehensive list of recognized CPPs and their latest-reported applications over the last two years. In addition, it thoroughly reviews three areas of peptide vector research of particular interest to us, namely (i) efficient transport of low-bioavailability drugs into the brain; (ii) CPP-delivered disruptors of G protein-coupled receptor (GPCRs) heteromers related to several disorders, and (iii) CPP-mediated delivery of useful but poorly internalized drugs into parasites.
Collapse
Affiliation(s)
- Maria Gallo
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Sira Defaus
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
| | - David Andreu
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
| |
Collapse
|
104
|
Chicca A, Schafroth MA, Reynoso-Moreno I, Erni R, Petrucci V, Carreira EM, Gertsch J. Uncovering the psychoactivity of a cannabinoid from liverworts associated with a legal high. SCIENCE ADVANCES 2018; 4:eaat2166. [PMID: 30397641 PMCID: PMC6200358 DOI: 10.1126/sciadv.aat2166] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/19/2018] [Indexed: 05/25/2023]
Abstract
Phytochemical studies on the liverwort Radula genus have previously identified the bibenzyl (-)-cis-perrottetinene (cis-PET), which structurally resembles (-)-Δ9-trans-tetrahydrocannabinol (Δ9-trans-THC) from Cannabis sativa L. Radula preparations are sold as cannabinoid-like legal high on the internet, even though pharmacological data are lacking. Herein, we describe a versatile total synthesis of (-)-cis-PET and its (-)-trans diastereoisomer and demonstrate that both molecules readily penetrate the brain and induce hypothermia, catalepsy, hypolocomotion, and analgesia in a CB1 receptor-dependent manner in mice. The natural product (-)-cis-PET was profiled on major brain receptors, showing a selective cannabinoid pharmacology. This study also uncovers pharmacological differences between Δ9-THC and PET diastereoisomers. Most notably, (-)-cis-PET and (-)-trans-PET significantly reduced basal brain prostaglandin levels associated with Δ9-trans-THC side effects in a CB1 receptor-dependent manner, thus mimicking the action of the endocannabinoid 2-arachidonoyl glycerol. Therefore, the natural product (-)-cis-PET is a psychoactive cannabinoid from bryophytes, illustrating the existence of convergent evolution of bioactive cannabinoids in the plant kingdom. Our findings may have implications for bioprospecting and drug discovery and provide a molecular rationale for the reported effects upon consumption of certain Radula preparations as moderately active legal highs.
Collapse
Affiliation(s)
- A. Chicca
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - M. A. Schafroth
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - I. Reynoso-Moreno
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - R. Erni
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - V. Petrucci
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - E. M. Carreira
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - J. Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| |
Collapse
|
105
|
Derouiche L, Massotte D. G protein-coupled receptor heteromers are key players in substance use disorder. Neurosci Biobehav Rev 2018; 106:73-90. [PMID: 30278192 DOI: 10.1016/j.neubiorev.2018.09.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022]
Abstract
G protein-coupled receptors (GPCR) represent the largest family of membrane proteins in the human genome. Physical association between two different GPCRs is linked to functional interactions which generates a novel entity, called heteromer, with specific ligand binding and signaling properties. Heteromerization is increasingly recognized to take place in the mesocorticolimbic pathway and to contribute to various aspects related to substance use disorder. This review focuses on heteromers identified in brain areas relevant to drug addiction. We report changes at the molecular and cellular levels that establish specific functional impact and highlight behavioral outcome in preclinical models. Finally, we briefly discuss selective targeting of native heteromers as an innovative therapeutic option.
Collapse
Affiliation(s)
- Lyes Derouiche
- Institut des Neurosciences Cellulaires et Integratives, UPR 3212, 5 rue Blaise Pascal, F-67000 Strasbourg, France
| | - Dominique Massotte
- Institut des Neurosciences Cellulaires et Integratives, UPR 3212, 5 rue Blaise Pascal, F-67000 Strasbourg, France.
| |
Collapse
|
106
|
Marek GJ. Interactions of Hallucinogens with the Glutamatergic System: Permissive Network Effects Mediated Through Cortical Layer V Pyramidal Neurons. Curr Top Behav Neurosci 2018; 36:107-135. [PMID: 28831734 DOI: 10.1007/7854_2017_480] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recordings made from layer V (L5) pyramidal cells of the prefrontal cortex (PFC) and neocortex in rodent slice preparations have shown that serotonin (5-hydroxytryptamine, 5-HT) and serotonergic hallucinogens induce an increase in the frequency of spontaneous excitatory postsynaptic currents (EPSCs) in the apical dendritic field by activating 5-HT2A receptors. Serotonergic hallucinogens induce late EPSCs and increase recurrent network activity when subcortical or mid-cortical regions are stimulated at low frequencies (e.g., 0.1 Hz). A range of agonists or positive allosteric modulators (PAMs) for mostly Gi/o-coupled receptors, including metabotropic glutamate2 (mGlu2), adenosine A1, or μ-opioid receptors, suppress these effects of 5-HT2A receptor stimulation. Furthermore, a range of mostly Gq/11-coupled receptors (including orexin2 [OX2]; α1-adrenergic, and mGlu5 receptors) similarly induce glutamate (Glu) release onto L5 pyramidal cells. Evidence implicates a number of brain regions in mediating these effects of serotonergic hallucinogens and Gq/11-coupled receptors including the midline and intralaminar thalamic nuclei, claustrum, and neurons in deep PFC. These effects on 5-HT2A receptors and related GPCRs appear to play a major role in the behavioral effects of serotonergic hallucinogens, such as head twitches in rodents and higher order behaviors such as rodent lever pressing on the differential-reinforcement-of-low rate 72-s (DRL 72-s) schedule. This implies that the effects of 5-HT2A receptor activation on the activity of L5 pyramidal cells may be responsible for mediating a range of behaviors linked to limbic circuitry with connectivity between the PFC, striatum, thalamus, claustrum, striatum, amygdala, and the hippocampal formation.
Collapse
Affiliation(s)
- Gerard J Marek
- Global Medical Science, CNS and Pain, Astellas Pharma Global Development, 1 Astellas Way, Northbrook, IL, 60062, USA.
| |
Collapse
|
107
|
Borroto-Escuela DO, Rodriguez D, Romero-Fernandez W, Kapla J, Jaiteh M, Ranganathan A, Lazarova T, Fuxe K, Carlsson J. Mapping the Interface of a GPCR Dimer: A Structural Model of the A 2A Adenosine and D 2 Dopamine Receptor Heteromer. Front Pharmacol 2018; 9:829. [PMID: 30214407 PMCID: PMC6125358 DOI: 10.3389/fphar.2018.00829] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022] Open
Abstract
The A2A adenosine (A2AR) and D2 dopamine (D2R) receptors form oligomers in the cell membrane and allosteric interactions across the A2AR–D2R heteromer represent a target for development of drugs against central nervous system disorders. However, understanding of the molecular determinants of A2AR–D2R heteromerization and the allosteric antagonistic interactions between the receptor protomers is still limited. In this work, a structural model of the A2AR–D2R heterodimer was generated using a combined experimental and computational approach. Regions involved in the heteromer interface were modeled based on the effects of peptides derived from the transmembrane (TM) helices on A2AR–D2R receptor–receptor interactions in bioluminescence resonance energy transfer (BRET) and proximity ligation assays. Peptides corresponding to TM-IV and TM-V of the A2AR blocked heterodimer interactions and disrupted the allosteric effect of A2AR activation on D2R agonist binding. Protein–protein docking was used to construct a model of the A2AR–D2R heterodimer with a TM-IV/V interface, which was refined using molecular dynamics simulations. Mutations in the predicted interface reduced A2AR–D2R interactions in BRET experiments and altered the allosteric modulation. The heterodimer model provided insights into the structural basis of allosteric modulation and the technique developed to characterize the A2AR–D2R interface can be extended to study the many other G protein-coupled receptors that engage in heteroreceptor complexes.
Collapse
Affiliation(s)
| | - David Rodriguez
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Wilber Romero-Fernandez
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Jon Kapla
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Mariama Jaiteh
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Anirudh Ranganathan
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Tzvetana Lazarova
- Department of Biochemistry and Molecular Biology, Institute of Neuroscience, Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
108
|
Felsing DE, Anastasio NC, Miszkiel JM, Gilbertson SR, Allen JA, Cunningham KA. Biophysical validation of serotonin 5-HT2A and 5-HT2C receptor interaction. PLoS One 2018; 13:e0203137. [PMID: 30157263 PMCID: PMC6114921 DOI: 10.1371/journal.pone.0203137] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/15/2018] [Indexed: 01/02/2023] Open
Abstract
The serotonin (5-HT) 5-HT2A receptor (5-HT2AR) and 5-HT2C receptor (5-HT2CR) in the central nervous system are implicated in a range of normal behaviors (e.g., appetite, sleep) and physiological functions (e.g., endocrine secretion) while dysfunctional 5-HT2AR and/or 5-HT2CR are implicated in neuropsychiatric disorders (e.g., addiction, obesity, schizophrenia). Preclinical studies suggest that the 5-HT2AR and 5-HT2CR may act in concert to regulate the neural bases for behavior. Here, we utilize three distinct biophysical and immunocytochemistry-based approaches to identify and study this receptor complex in cultured cells. Employing a split luciferase complementation assay (LCA), we demonstrated that formation of the 5-HT2AR:5-HT2CR complex exists within 50 nm, increases proportionally to the 5-HT2CR:5-HT2AR protein expression ratio, and is specific to the receptor interaction and not due to random complementation of the luciferase fragments. Using a proximity ligation assay (PLA), we found that cells stably expressing both the 5-HT2AR and 5-HT2CR exhibit 5-HT2AR:5-HT2CR heteroreceptor complexes within 40 nm of each other. Lastly, bioluminescence resonance energy transfer (BRET) analyses indicates the formation of a specific and saturable 5-HT2AR:5-HT2CR interaction, suggesting that the 5-HT2AR and 5-HT2CR form a close interaction within 10 nm of each other in intact live cells. The bioengineered receptors generated for the LCA and the BRET exhibit 5-HT-mediated intracellular calcium signaling as seen for the native receptors. Taken together, this study validates a very close 5-HT2AR:5-HT2CR interaction in cultured cells.
Collapse
Affiliation(s)
- Daniel E. Felsing
- Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Noelle C. Anastasio
- Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Joanna M. Miszkiel
- Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Scott R. Gilbertson
- Department of Chemistry, University of Houston, Houston, Texas, United States of America
| | - John A. Allen
- Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kathryn A. Cunningham
- Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
109
|
Möller M, Fourie J, Harvey BH. Efavirenz exposure, alone and in combination with known drugs of abuse, engenders addictive-like bio-behavioural changes in rats. Sci Rep 2018; 8:12837. [PMID: 30150782 PMCID: PMC6110861 DOI: 10.1038/s41598-018-29978-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/20/2018] [Indexed: 01/09/2023] Open
Abstract
Efavirenz is abused in a cannabis-containing mixture known as Nyaope. The addictive-like effects of efavirenz (5, 10 and 20 mg/kg) was explored using conditioned place preference (CPP) in rats following sub-acute exposure vs. methamphetamine (MA; 1 mg/kg) and Δ9-tetrahydrocannabinol (THC; 0.75 mg/kg). The most addictive dose of efavirenz was then compared to THC alone and THC plus efavirenz following sub-chronic exposure using multiple behavioural measures, viz. CPP, sucrose preference test (SPT) and locomotor activity. Peripheral superoxide dismutase (SOD), regional brain lipid peroxidation and monoamines were also determined. Sub-acute efavirenz (5 mg/kg) had a significant rewarding effect in the CPP comparable to MA and THC. Sub-chronic efavirenz (5 mg/kg) and THC + efavirenz were equally rewarding using CPP, with increased cortico-striatal dopamine (DA), and increased lipid peroxidation and SOD. Sub-chronic THC did not produce CPP but significantly increased SOD and decreased hippocampal DA. Sub-chronic THC + efavirenz was hedonic in the SPT and superior to THC alone regarding cortico-striatal lipid peroxidation and sucrose preference. THC + efavirenz increased cortico-striatal DA and decreased serotonin (5-HT). Concluding, efavirenz has dose-dependent rewarding effects, increases oxidative stress and alters regional brain monoamines. Efavirenz is hedonic when combined with THC, highlighting its abuse potential when combined with THC.
Collapse
Affiliation(s)
- Marisa Möller
- Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa.
| | - Jaco Fourie
- Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| | - Brian H Harvey
- Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| |
Collapse
|
110
|
Kubilius RA, Kaplick PM, Wotjak CT. Highway to hell or magic smoke? The dose-dependence of Δ 9-THC in place conditioning paradigms. ACTA ACUST UNITED AC 2018; 25:446-454. [PMID: 30115766 PMCID: PMC6097764 DOI: 10.1101/lm.046870.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/09/2018] [Indexed: 02/06/2023]
Abstract
The prerequisites for responsible cannabis use are at the heart of current inquiries into cannabis decriminalization by policy makers as well as academic and nonacademic stakeholders at a global scale. Δ9-tetrahydrocannabinol (Δ9-THC), the prime psychoactive compound of the cannabis sativa, as well as cannabimimetics that resemble the pharmacological properties and psychological effects of Δ9-THC, lend themselves handsomely to the preclinical scrutiny of reward-related behavior because they carry marked translational value. Although a functional dichotomy of the psychological effects of Δ9-THC (rewarding versus aversive) has been abundantly reported in place conditioning (PC) paradigms, and might be best attributed to a dose-dependence of Δ9-THC, most PC studies with Δ9-THC feature no significant effects at all. Therefore, after decades of rigorous research, it still remains undetermined whether Δ9-THC generally exerts rewarding or aversive effects in rodents. Here, we set out to extrapolate the commonly alleged dose-dependence of the rewarding and aversive effects of Δ9-THC from the existing literature, at the behavioral pharmacological level of analysis. Specifically, our meta-analysis investigated: (i) the alleged bidirectional effects and dose-dependence of Δ9-THC in the PC test; (ii) methodological inconsistencies between PC studies; and (iii) other pharmacological studies on cannabinoids (i.e., dopamine release, anxiety, stress, conditioned taste aversion, catalepsy) to substantiate the validity of PC findings. Our findings suggest that: (i) Δ9-THC dose-dependently generates rewarding (1 mg/kg) and aversive (5 mg/kg) effects in PC; (ii) an inconsistent use of priming injections hampers a clear establishment of the rewarding effects of Δ9-THC in PC tests and might explain the seemingly contradictory plethora of nonsignificant THC studies in the PC test; and (iii) other pharmacological studies on Δ9-THC substantiate the dose-dependent biphasic effects of Δ9-THC in PC. A standardized experimental design would advance evidence-based practice in future PC studies with Δ9-THC and facilitate the pointed establishment of rewarding and aversive effects of the substance.
Collapse
Affiliation(s)
- Rimas A Kubilius
- Neuronal Plasticity Research Group, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany.,Faculty of Biology, Ludwig Maximilian University of Munich, 82152 Planegg-Martinsried, Germany
| | - Paul M Kaplick
- Neuronal Plasticity Research Group, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany.,Structural and Functional Plasticity of the Nervous System Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.,Institute for Interdisciplinary Studies, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Carsten T Wotjak
- Neuronal Plasticity Research Group, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
111
|
Aringhieri S, Carli M, Kolachalam S, Verdesca V, Cini E, Rossi M, McCormick PJ, Corsini GU, Maggio R, Scarselli M. Molecular targets of atypical antipsychotics: From mechanism of action to clinical differences. Pharmacol Ther 2018; 192:20-41. [PMID: 29953902 DOI: 10.1016/j.pharmthera.2018.06.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The introduction of atypical antipsychotics (AAPs) since the discovery of its prototypical drug clozapine has been a revolutionary pharmacological step for treating psychotic patients as these allow a significant recovery not only in terms of hospitalization and reduction in symptoms severity, but also in terms of safety, socialization and better rehabilitation in the society. Regarding the mechanism of action, AAPs are weak D2 receptor antagonists and they act beyond D2 antagonism, involving other receptor targets which regulate dopamine and other neurotransmitters. Consequently, AAPs present a significant reduction of deleterious side effects like parkinsonism, hyperprolactinemia, apathy and anhedonia, which are all linked to the strong blockade of D2 receptors. This review revisits previous and current findings within the class of AAPs and highlights the differences in terms of receptor properties and clinical activities among them. Furthermore, we propose a continuum spectrum of "atypia" that begins with risperidone (the least atypical) to clozapine (the most atypical), while all the other AAPs fall within the extremes of this spectrum. Clozapine is still considered the gold standard in refractory schizophrenia and in psychoses present in Parkinson's disease, though it has been associated with adverse effects like agranulocytosis (0.7%) and weight gain, pushing the scientific community to find new drugs as effective as clozapine, but devoid of its side effects. To achieve this, it is therefore imperative to characterize and compare in depth the very complex molecular profile of AAPs. We also introduce relatively new concepts like biased agonism, receptor dimerization and neurogenesis to identify better the old and new hallmarks of "atypia". Finally, a detailed confrontation of clinical differences among the AAPs is presented, especially in relation to their molecular targets, and new means like therapeutic drug monitoring are also proposed to improve the effectiveness of AAPs in clinical practice.
Collapse
Affiliation(s)
- Stefano Aringhieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Marco Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Shivakumar Kolachalam
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Valeria Verdesca
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Enrico Cini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Mario Rossi
- Institute of Molecular Cell and Systems Biology, University of Glasgow, UK
| | - Peter J McCormick
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Giovanni U Corsini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Roberto Maggio
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy.
| |
Collapse
|
112
|
Moreno E, Chiarlone A, Medrano M, Puigdellívol M, Bibic L, Howell LA, Resel E, Puente N, Casarejos MJ, Perucho J, Botta J, Suelves N, Ciruela F, Ginés S, Galve-Roperh I, Casadó V, Grandes P, Lutz B, Monory K, Canela EI, Lluís C, McCormick PJ, Guzmán M. Singular Location and Signaling Profile of Adenosine A 2A-Cannabinoid CB 1 Receptor Heteromers in the Dorsal Striatum. Neuropsychopharmacology 2018; 43:964-977. [PMID: 28102227 PMCID: PMC5854787 DOI: 10.1038/npp.2017.12] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 01/13/2017] [Accepted: 01/14/2017] [Indexed: 12/16/2022]
Abstract
The dorsal striatum is a key node for many neurobiological processes such as motor activity, cognitive functions, and affective processes. The proper functioning of striatal neurons relies critically on metabotropic receptors. Specifically, the main adenosine and endocannabinoid receptors present in the striatum, ie, adenosine A2A receptor (A2AR) and cannabinoid CB1 receptor (CB1R), are of pivotal importance in the control of neuronal excitability. Facilitatory and inhibitory functional interactions between striatal A2AR and CB1R have been reported, and evidence supports that this cross-talk may rely, at least in part, on the formation of A2AR-CB1R heteromeric complexes. However, the specific location and properties of these heteromers have remained largely unknown. Here, by using techniques that allowed a precise visualization of the heteromers in situ in combination with sophisticated genetically modified animal models, together with biochemical and pharmacological approaches, we provide a high-resolution expression map and a detailed functional characterization of A2AR-CB1R heteromers in the dorsal striatum. Specifically, our data unveil that the A2AR-CB1R heteromer (i) is essentially absent from corticostriatal projections and striatonigral neurons, and, instead, is largely present in striatopallidal neurons, (ii) displays a striking G protein-coupled signaling profile, where co-stimulation of both receptors leads to strongly reduced downstream signaling, and (iii) undergoes an unprecedented dysfunction in Huntington's disease, an archetypal disease that affects striatal neurons. Altogether, our findings may open a new conceptual framework to understand the role of coordinated adenosine-endocannabinoid signaling in the indirect striatal pathway, which may be relevant in motor function and neurodegenerative diseases.
Collapse
Affiliation(s)
- Estefanía Moreno
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain,Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | - Anna Chiarlone
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain,Instituto Universitario de Investigación Neuroquímica and Department of Biochemistry and Molecular Biology I, Complutense University, Madrid, Spain,Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Mireia Medrano
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain,Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | - Mar Puigdellívol
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Lucka Bibic
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Lesley A Howell
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK,School of Biological and Chemical Sciences, Queen Mary, University of London, London, UK
| | - Eva Resel
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain,Instituto Universitario de Investigación Neuroquímica and Department of Biochemistry and Molecular Biology I, Complutense University, Madrid, Spain,Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Nagore Puente
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain,Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
| | | | - Juan Perucho
- Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Joaquín Botta
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Nuria Suelves
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain,Biomedical Science Department, School of Medicine; Institut d’Investigacions Biomèdiques August Pi i Sunyer, and Neuroscience Institute, Barcelona University, Barcelona, Spain
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, IDIBELL, and Neuroscience Institute, Barcelona University, Barcelona, Spain
| | - Silvia Ginés
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain,Biomedical Science Department, School of Medicine; Institut d’Investigacions Biomèdiques August Pi i Sunyer, and Neuroscience Institute, Barcelona University, Barcelona, Spain
| | - Ismael Galve-Roperh
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain,Instituto Universitario de Investigación Neuroquímica and Department of Biochemistry and Molecular Biology I, Complutense University, Madrid, Spain,Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Vicent Casadó
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain,Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | - Pedro Grandes
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain,Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Krisztina Monory
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Enric I Canela
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain,Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | - Carmen Lluís
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain,Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain,Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona 08028, Spain, Tel: +34 93 4021208, Fax: +34 93 4021559, E-mail:
| | - Peter J McCormick
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain,Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain,School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK,Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK,School of Veterinary Medicine Faculty of Health & Medical Sciences, University of Surrey, Daphne Jackson Road, Guildford, Surrey, GU2 7AL, UK, Tel: +44 (0)1483 684399, Fax: +44 (0)1483 684399, E-mail:
| | - Manuel Guzmán
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain,Instituto Universitario de Investigación Neuroquímica and Department of Biochemistry and Molecular Biology I, Complutense University, Madrid, Spain,Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain,Instituto Universitario de Investigación Neuroquímica (IUIN) and Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Madrid 28040, Spain, Tel: +34 91 3944668, Fax: +34 91 3944672, E-mail:
| |
Collapse
|
113
|
Moreno E, Canet J, Gracia E, Lluís C, Mallol J, Canela EI, Cortés A, Casadó V. Molecular Evidence of Adenosine Deaminase Linking Adenosine A 2A Receptor and CD26 Proteins. Front Pharmacol 2018; 9:106. [PMID: 29497379 PMCID: PMC5818423 DOI: 10.3389/fphar.2018.00106] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/30/2018] [Indexed: 01/05/2023] Open
Abstract
Adenosine is an endogenous purine nucleoside that acts in all living systems as a homeostatic network regulator through many pathways, which are adenosine receptor (AR)-dependent and -independent. From a metabolic point of view, adenosine deaminase (ADA) is an essential protein in the regulation of the total intracellular and extracellular adenosine in a tissue. In addition to its cytosolic localization, ADA is also expressed as an ecto-enzyme on the surface of different cells. Dipeptidyl peptidase IV (CD26) and some ARs act as binding proteins for extracellular ADA in humans. Since CD26 and ARs interact with ADA at opposite sites, we have investigated if ADA can function as a cell-to-cell communication molecule by bridging the anchoring molecules CD26 and A2AR present on the surfaces of the interacting cells. By combining site-directed mutagenesis of ADA amino acids involved in binding to A2AR and a modification of the bioluminescence resonance energy transfer (BRET) technique that allows detection of interactions between two proteins expressed in different cell populations with low steric hindrance (NanoBRET), we show direct evidence of the specific formation of trimeric complexes CD26-ADA-A2AR involving two cells. By dynamic mass redistribution assays and ligand binding experiments, we also demonstrate that A2AR-NanoLuc fusion proteins are functional. The existence of this ternary complex is in good agreement with the hypothesis that ADA could bridge T-cells (expressing CD26) and dendritic cells (expressing A2AR). This is a new metabolic function for ecto-ADA that, being a single chain protein, it has been considered as an example of moonlighting protein, because it performs more than one functional role (as a catalyst, a costimulator, an allosteric modulator and a cell-to-cell connector) without partitioning these functions in different subunits.
Collapse
Affiliation(s)
- Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Júlia Canet
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Eduard Gracia
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Carme Lluís
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Josefa Mallol
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Enric I. Canela
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Antoni Cortés
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
114
|
Galindo L, Moreno E, López-Armenta F, Guinart D, Cuenca-Royo A, Izquierdo-Serra M, Xicota L, Fernandez C, Menoyo E, Fernández-Fernández JM, Benítez-King G, Canela EI, Casadó V, Pérez V, de la Torre R, Robledo P. Cannabis Users Show Enhanced Expression of CB1-5HT2A Receptor Heteromers in Olfactory Neuroepithelium Cells. Mol Neurobiol 2018; 55:6347-6361. [DOI: 10.1007/s12035-017-0833-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
|
115
|
Chesworth R, Long LE, Weickert CS, Karl T. The Endocannabinoid System across Postnatal Development in Transmembrane Domain Neuregulin 1 Mutant Mice. Front Psychiatry 2018; 9:11. [PMID: 29467679 PMCID: PMC5808294 DOI: 10.3389/fpsyt.2018.00011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/15/2018] [Indexed: 12/18/2022] Open
Abstract
The use of cannabis is a well-established component risk factor for schizophrenia, particularly in adolescent individuals with genetic predisposition for the disorder. Alterations to the endocannabinoid system have been found in the prefrontal cortex of patients with schizophrenia. Thus, we assessed whether molecular alterations exist in the endocannabinoid signalling pathway during brain development in a mouse model for the schizophrenia risk gene neuregulin 1 (Nrg1). We analysed transcripts encoding key molecules of the endocannabinoid system in heterozygous transmembrane domain Nrg1 mutant mice (Nrg1 TM HET), which is known to have increased sensitivity to cannabis exposure. Tissue from the prelimbic cortex and hippocampus of male and female Nrg1 TM HET mice and wild type-like littermates was collected at postnatal days (PNDs) 7, 10, 14, 21, 28, 35, 49, and 161. Quantitative polymerase chain reaction was conducted to assess mRNA levels of cannabinoid receptor 1 (CB1R) and enzymes for the synthesis and breakdown of the endocannabinoid 2-arachidonoylglycerol [i.e., diacylglycerol lipase alpha (DAGLα), monoglyceride lipase (MGLL), and α/β-hydrolase domain-containing 6 (ABHD6)]. No sex differences were found for any transcripts in either brain region; thus, male and female data were pooled. Hippocampal and cortical mRNA expression of DAGLα, MGLL, and ABHD6 increased until PND 21-35 and then decreased and stabilised for the rest of postnatal development. Hippocampal CB1R mRNA expression increased until PND 21 and decreased after this age. Expression levels of these endocannabinoid markers did not differ in Nrg1 TM HET compared to control mice at any time point. Here, we demonstrate dynamic changes in the developmental trajectory of several key endocannabinoid system transcripts in the mouse brain, which may correspond with periods of endocannabinoid system maturation. Nrg1 TM HET mutation did not alter the developmental trajectory of the endocannabinoid markers assessed, suggesting that other mechanisms may be responsible for the exaggerated cannabinoid susceptibility in these mice.
Collapse
Affiliation(s)
- Rose Chesworth
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Leonora E Long
- Schizophrenia Research Institute, Sydney, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Institute, Sydney, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia.,School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.,Schizophrenia Research Institute, Sydney, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| |
Collapse
|
116
|
Busquets-Garcia A, Bains J, Marsicano G. CB 1 Receptor Signaling in the Brain: Extracting Specificity from Ubiquity. Neuropsychopharmacology 2018; 43:4-20. [PMID: 28862250 PMCID: PMC5719111 DOI: 10.1038/npp.2017.206] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/22/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Endocannabinoids (eCBs) are amongst the most ubiquitous signaling molecules in the nervous system. Over the past few decades, observations based on a large volume of work, first examining the pharmacological effects of exogenous cannabinoids, and then the physiological functions of eCBs, have directly challenged long-held and dogmatic views about communication, plasticity and behavior in the central nervous system (CNS). The eCBs and their cognate cannabinoid receptors exhibit a number of unique properties that distinguish them from the widely studied classical amino-acid transmitters, neuropeptides, and catecholamines. Although we now have a loose set of mechanistic rules based on experimental findings, new studies continue to reveal that our understanding of the eCB system (ECS) is continuously evolving and challenging long-held conventions. Here we will briefly summarize findings on the current canonical view of the 'ECS' and will address novel aspects that reveal how a nearly ubiquitous system can determine highly specific functions in the brain. In particular, we will focus on findings that push for an expansion of our ideas around long-held beliefs about eCB signaling that, while clearly true, may be contributing to an oversimplified perspective on how cannabinoid signaling at the microscopic level impacts behavior at the macroscopic level.
Collapse
Affiliation(s)
- Arnau Busquets-Garcia
- INSERM U1215, NeuroCentre Magendie, Team ‘Endocannabinoids and Neuroadaptation’, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Jaideep Bains
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Giovanni Marsicano
- INSERM U1215, NeuroCentre Magendie, Team ‘Endocannabinoids and Neuroadaptation’, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| |
Collapse
|
117
|
Elmore JS, Baumann MH. Repeated Exposure to the "Spice" Cannabinoid JWH-018 Induces Tolerance and Enhances Responsiveness to 5-HT 1A Receptor Stimulation in Male Rats. Front Psychiatry 2018; 9:55. [PMID: 29535650 PMCID: PMC5835089 DOI: 10.3389/fpsyt.2018.00055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) is a synthetic compound found in psychoactive "spice" products that activates cannabinoid receptors. Preclinical evidence suggests that exposure to synthetic cannabinoids increases 5-HT2A/2C receptor function in the brain, an effect which might contribute to psychotic symptoms. Here, we hypothesized that repeated exposures to JWH-018 would enhance behavioral responsiveness to the 5-HT2A/2C receptor agonist DOI. Male Sprague-Dawley rats fitted with subcutaneously (sc) temperature transponders received daily injections of JWH-018 (1.0 mg/kg, sc) or its vehicle for seven consecutive days. Body temperature and catalepsy scores were determined at 1, 2, and 4 h post-injection each day. At 1 and 7 days after the final repeated treatment, rats received a challenge injection of either DOI (0.1 mg/kg, sc) or the 5-HT1A receptor agonist 8-OH-DPAT (0.3 mg/kg, sc), then temperature and behavioral responses were assessed. Behaviors induced by DOI included wet dog shakes and back muscle contractions (i.e., skin jerks), while behaviors induced by 8-OH-DPAT included ambulation, forepaw treading, and flat body posture. On the first day of repeated treatment, JWH-018 produced robust hypothermia and catalepsy which lasted up to 4 h, and these effects were significantly blunted by day 7 of treatment. Repeated exposure to JWH-018 did not affect behaviors induced by DOI, but behavioral and hypothermic responses induced by 8-OH-DPAT were significantly augmented 1 day after cessation of JWH-018 treatment. Collectively, our findings show that repeated treatment with JWH-018 produces tolerance to its hypothermic and cataleptic effects, which is accompanied by transient enhancement of 5-HT1A receptor sensitivity in vivo.
Collapse
Affiliation(s)
- Joshua S Elmore
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Michael H Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
118
|
Dutta SM, Hadley MM, Peterman S, Jewell JS, Duncan VD, Britten RA. Quantitative Proteomic Analysis of the Hippocampus of Rats with GCR-Induced Spatial Memory Impairment. Radiat Res 2017; 189:136-145. [PMID: 29206597 DOI: 10.1667/rr14822.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
NASA is planning future missions to Mars, which will result in astronauts being exposed to ∼13 cGy/year of galactic cosmic radiation (GCR). Previous ground-based experiments have demonstrated that low (15 cGy) doses of 1 GeV/n 56Fe ions impair hippocampus-dependent spatial memory in rats. However, some irradiated rats maintain a spatial memory performance comparable to that seen in the sham-irradiated rats, suggesting that some of these animals are able to ameliorate the deleterious effects of the GCR, while others are not. This rat model provides a unique opportunity to increase our understanding of how GCR affects neurophysiology, what adaptive responses can be invoked to prevent the emergence of GCR-induced spatial memory impairment, as well as the pathways that are altered when spatial memory impairment occurs. A label-free, unbiased proteomic profiling approach involving quantitative protein/peptide profiling followed by Cytoscape analysis has established the composition of the hippocampal proteome in male Wistar rats after exposure to 15 cGy of 1 GeV/n 56Fe, and identified proteins whose expression is altered with respect to: 1. radiation exposure and 2. impaired spatial memory performance. We identified 30 proteins that were classified as "GCR exposure marker" (GEM) proteins (expressed solely or at higher levels in the irradiated rats but not related to spatial memory performance), most notably CD98, Cadps and GMFB. Conversely, there were 252 proteins that were detected only in the sham-irradiated samples, i.e., they were not detected in either of the irradiated cohorts; of these 10% have well-documented roles in neurotransmission. The second aspect of our data mining was to identify proteins whose expression was associated with either impaired or functional spatial memory. While there are multiple changes in the hippocampal proteome in the irradiated rats that have impaired spatial memory performance, with 203 proteins being detected (or upregulated) only in these rats, it would appear that spatial memory impairment may also arise from an inability of these rats to express "good spatial memory" (GSM) proteins, many of which play an important role in neuronal homeostasis and function, axonogenesis, presynaptic membrane organization and G-protein coupled receptor (GCPR) signaling. It may be possible to use this knowledge to develop two alternative countermeasure strategies, one that preserves critical pathways prophylactically and one that invokes restorative pathways after GCR exposure.
Collapse
Affiliation(s)
- Sucharita M Dutta
- a Leroy T. Canoles Jr. Cancer Research Center and.,b Departments of Microbiology and Molecular Cell Biology and
| | - Melissa M Hadley
- c Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507; and
| | - Scott Peterman
- d BRIMS, Thermo Fisher Scientific, Cambridge, Massachusetts 02139
| | - Jessica S Jewell
- c Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507; and
| | - Vania D Duncan
- c Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507; and
| | - Richard A Britten
- a Leroy T. Canoles Jr. Cancer Research Center and.,b Departments of Microbiology and Molecular Cell Biology and.,c Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507; and
| |
Collapse
|
119
|
Morales P, Reggio PH. An Update on Non-CB 1, Non-CB 2 Cannabinoid Related G-Protein-Coupled Receptors. Cannabis Cannabinoid Res 2017; 2:265-273. [PMID: 29098189 PMCID: PMC5665501 DOI: 10.1089/can.2017.0036] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) has been shown to be of great importance in the regulation of numerous physiological and pathological processes. To date, two Class A G-protein-coupled receptors (GPCRs) have been discovered and validated as the main therapeutic targets of this system: the cannabinoid receptor type 1 (CB1), which is the most abundant neuromodulatory receptor in the brain, and the cannabinoid receptor type 2 (CB2), predominantly found in the immune system among other organs and tissues. Endogenous cannabinoid receptor ligands (endocannabinoids) and the enzymes involved in their synthesis, cell uptake, and degradation have also been identified as part of the ECS. However, its complex pharmacology suggests that other GPCRs may also play physiologically relevant roles in this therapeutically promising system. In the last years, GPCRs such as GPR18 and GPR55 have emerged as possible missing members of the cannabinoid family. This categorization still stimulates strong debate due to the lack of pharmacological tools to validate it. Because of their close phylogenetic relationship, the Class A orphan GPCRs, GPR3, GPR6, and GPR12, have also been associated with the cannabinoids. Moreover, certain endo-, phyto-, and synthetic cannabinoid ligands have displayed activity at other well-established GPCRs, including the opioid, adenosine, serotonin, and dopamine receptor families. In addition, the cannabinoid receptors have also been shown to form dimers with other GPCRs triggering cross-talk signaling under specific conditions. In this mini review, we aim to provide insight into the non-CB1, non-CB2 cannabinoid-related GPCRs that have been reported thus far. We consider the physiological relevance of these molecular targets in modulating the ECS.
Collapse
Affiliation(s)
- Paula Morales
- Chemistry and Biochemistry Department, UNC Greensboro, Greensboro, North Carolina
| | - Patricia H. Reggio
- Chemistry and Biochemistry Department, UNC Greensboro, Greensboro, North Carolina
| |
Collapse
|
120
|
Zhou B, Giraldo J. Quantifying the allosteric interactions within a G-protein-coupled receptor heterodimer. Drug Discov Today 2017; 23:7-11. [PMID: 28756203 DOI: 10.1016/j.drudis.2017.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/26/2017] [Accepted: 07/21/2017] [Indexed: 10/19/2022]
Abstract
G-protein-coupled receptors are central to signal transduction and cell communication. The possibility that cells use receptor heteromerization to modulate individual receptor pathways is a surmise that cannot be precluded. Given the complexity of these processes, mathematical models contribute to understanding how receptors and their respective ligands regulate signaling. Here, a mathematical model is presented that quantifies the allosteric interactions within a receptor heterodimer. The model is based on the operational model of allosterism including constitutive receptor activity, which provides the pharmacological analysis of heteromerization with well-established and widely used modeling and fitting procedures.
Collapse
Affiliation(s)
- Bin Zhou
- Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jesús Giraldo
- Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Network Biomedical Research Center on Mental Health (CIBERSAM), Spain.
| |
Collapse
|
121
|
Frameworking memory and serotonergic markers. Rev Neurosci 2017; 28:455-497. [DOI: 10.1515/revneuro-2016-0079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/16/2017] [Indexed: 12/29/2022]
Abstract
Abstract:The evidence for neural markers and memory is continuously being revised, and as evidence continues to accumulate, herein, we frame earlier and new evidence. Hence, in this work, the aim is to provide an appropriate conceptual framework of serotonergic markers associated with neural activity and memory. Serotonin (5-hydroxytryptamine [5-HT]) has multiple pharmacological tools, well-characterized downstream signaling in mammals’ species, and established 5-HT neural markers showing new insights about memory functions and dysfunctions, including receptors (5-HT1A/1B/1D, 5-HT2A/2B/2C, and 5-HT3-7), transporter (serotonin transporter [SERT]) and volume transmission present in brain areas involved in memory. Bidirectional influence occurs between 5-HT markers and memory/amnesia. A growing number of researchers report that memory, amnesia, or forgetting modifies neural markers. Diverse approaches support the translatability of using neural markers and cerebral functions/dysfunctions, including memory formation and amnesia. At least, 5-HT1A, 5-HT4, 5-HT6, and 5-HT7receptors and SERT seem to be useful neural markers and therapeutic targets. Hence, several mechanisms cooperate to achieve synaptic plasticity or memory, including changes in the expression of neurotransmitter receptors and transporters.
Collapse
|
122
|
Bécamel C, Berthoux C, Barre A, Marin P. Growing Evidence for Heterogeneous Synaptic Localization of 5-HT2A Receptors. ACS Chem Neurosci 2017; 8:897-899. [PMID: 28459524 DOI: 10.1021/acschemneuro.6b00409] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The serotonin 2A (5-HT2A) receptor subtype continues to attract attention as a target for numerous psychoactive drugs including psychedelic hallucinogens, antidepressants, anxiolytics, and atypical antipsychotics. 5-HT2A receptors are a principal G protein-coupled receptor subtype mediating the excitatory effects of serotonin. Nonetheless, pre- vs postsynaptic localization of 5HT2A receptors, relative to glutamatergic synapses, has remained controversial. Here, we discuss recent findings highlighting the existence and roles of presynaptic 5-HT2A receptors in regulating glutamatergic transmission and cognition.
Collapse
Affiliation(s)
- Carine Bécamel
- Centre National
de la Recherche Scientifique, UMR-5203, Institut de Génomique
Fonctionnelle, F-34094 Montpellier, France
- Institut National de la Santé et de la Recherche Médicale, U1191, F-34094 Montpellier, France
- Université de Montpellier, F-34094 Montpellier, France
| | - Coralie Berthoux
- Centre National
de la Recherche Scientifique, UMR-5203, Institut de Génomique
Fonctionnelle, F-34094 Montpellier, France
- Institut National de la Santé et de la Recherche Médicale, U1191, F-34094 Montpellier, France
- Université de Montpellier, F-34094 Montpellier, France
| | - Alexander Barre
- Centre National
de la Recherche Scientifique, UMR-5203, Institut de Génomique
Fonctionnelle, F-34094 Montpellier, France
- Institut National de la Santé et de la Recherche Médicale, U1191, F-34094 Montpellier, France
- Université de Montpellier, F-34094 Montpellier, France
| | - Philippe Marin
- Centre National
de la Recherche Scientifique, UMR-5203, Institut de Génomique
Fonctionnelle, F-34094 Montpellier, France
- Institut National de la Santé et de la Recherche Médicale, U1191, F-34094 Montpellier, France
- Université de Montpellier, F-34094 Montpellier, France
| |
Collapse
|
123
|
Moutkine I, Quentin E, Guiard BP, Maroteaux L, Doly S. Heterodimers of serotonin receptor subtypes 2 are driven by 5-HT 2C protomers. J Biol Chem 2017; 292:6352-6368. [PMID: 28258217 DOI: 10.1074/jbc.m117.779041] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/02/2017] [Indexed: 11/06/2022] Open
Abstract
The serotonin receptor subtypes 2 comprise 5-HT2A, 5-HT2B, and 5-HT2C, which are Gαq-coupled receptors and display distinct pharmacological properties. Although co-expressed in some brain regions and involved in various neurological disorders, their functional interactions have not yet been studied. We report that 5-HT2 receptors can form homo- and heterodimers when expressed alone or co-expressed in transfected cells. Co-immunoprecipitation and bioluminescence resonance energy transfer studies confirmed that 5-HT2C receptors interact with either 5-HT2A or 5-HT2B receptors. Although heterodimerization with 5-HT2C receptors does not alter 5-HT2C Gαq-dependent inositol phosphate signaling, 5-HT2A or 5-HT2B receptor-mediated signaling was totally blunted. This feature can be explained by a dominance of 5-HT2C on 5-HT2A and 5-HT2B receptor binding; in 5-HT2C-containing heterodimers, ligands bind and activate the 5-HT2C protomer exclusively. This dominant effect on the associated protomer was also observed in neurons, supporting the physiological relevance of 5-HT2 receptor heterodimerization in vivo Accordingly, exogenous expression of an inactive form of the 5-HT2C receptor in the locus ceruleus is associated with decreased 5-HT2A-dependent noradrenergic transmission. These data demonstrate that 5-HT2 receptors can form functionally asymmetric heterodimers in vitro and in vivo that must be considered when analyzing the physiological or pathophysiological roles of serotonin in tissues where 5-HT2 receptors are co-expressed.
Collapse
Affiliation(s)
- Imane Moutkine
- From the INSERM UMR-S839, Paris 75005.,the Université Pierre et Marie Curie, Paris 75005.,the Institut du Fer à Moulin, Paris 75005
| | - Emily Quentin
- From the INSERM UMR-S839, Paris 75005.,the Université Pierre et Marie Curie, Paris 75005.,the Institut du Fer à Moulin, Paris 75005
| | - Bruno P Guiard
- the Research Center on Animal Cognition, Center for Integrative Biology, Université Paul Sabatier, UMR5169 CNRS, 118, Route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Luc Maroteaux
- From the INSERM UMR-S839, Paris 75005, .,the Université Pierre et Marie Curie, Paris 75005.,the Institut du Fer à Moulin, Paris 75005
| | - Stephane Doly
- the Institut Cochin, INSERM U1016, CNRS UMR8104, Paris 75014, .,the Université Paris Descartes, Sorbonne Paris Cité, Paris 75014.,the Université Clermont Auvergne, INSERM, NEURO-DOL, F-63000 Clermont-Ferrand, and
| |
Collapse
|
124
|
Abstract
BACKGROUND A growing body of literature suggests that migraineurs, particularly those with aura, have an increased risk for ischemic stroke, but not via enhanced atherosclerosis. The theory that micro-emboli induced ischemia provokes cortical spreading depression (ie, symptomatic aura) in migraineurs but transient ischemic attacks in others highlights a potential role for hypercoagulability as a link between migraine (with aura) and stroke. AIM Our objective is to summarize the literature evaluating the association of migraine with various acquired or inheritable thrombophilic states, including those related to elevated estrogen levels, endothelial activation and dysfunction, antiphospholipid antibodies (aPL), deficiency of coagulation inhibitors, and presence of certain genetic polymorphisms. FINDINGS Although definitive studies are lacking, a preponderance of available evidence links migraine, and especially aura, to increased levels of estradiol (eg, oral contraceptive pill [OCP] use, pregnancy), thrombo- and erythrocytosis, von Willebrand factor (vWF) antigen, fibrinogen, tissue plasminogen activator (tPA) antigen, and endothelial microparticles. Studies of a link to migraine are conflicting for aPL, homocysteine, Protein S, and the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism. No association with migraine was found in meta-analyses of Factor V Leiden, and of prothrombin gene mutation. Within a large, young ischemic stroke sample, migraine with aura was associated with a thrombophilic state and with patent foramen ovale (PFO). In the non-stroke population, meta-analyses show an association of PFO and migraine with aura (MA), but two population-based studies do not support the link. RECOMMENDATIONS For persons with MA and (1) a personal history or family history of thrombosis, or (2) MRI evidence of micro-vascular ischemia or of stroke, an evaluation for hypercoagulability is warranted. In cases of MA alone, consider screening for markers of endothelial activation (eg, vWF, high sensitivity c-reactive protein [hs CRP], and fibrinogen). Rigorous management of other stroke risk factors is paramount, but efficacy of anti-thrombotic agents in the treatment of migraine is unproven. Closure of PFO is not routinely recommended based on negative randomized trials.
Collapse
Affiliation(s)
- Gretchen E Tietjen
- Department of Neurology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Stuart A Collins
- Department of Neurology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
125
|
|
126
|
Farran B. An update on the physiological and therapeutic relevance of GPCR oligomers. Pharmacol Res 2017; 117:303-327. [PMID: 28087443 DOI: 10.1016/j.phrs.2017.01.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/17/2023]
Abstract
The traditional view on GPCRs held that they function as single monomeric units composed of identical subunits. This notion was overturned by the discovery that GPCRs can form homo- and hetero-oligomers, some of which are obligatory, and can further assemble into receptor mosaics consisting of three or more protomers. Oligomerisation exerts significant impacts on receptor function and physiology, offering a platform for the diversification of receptor signalling, pharmacology, regulation, crosstalk, internalization and trafficking. Given their involvement in the modulation of crucial physiological processes, heteromers could constitute important therapeutic targets for a wide range of diseases, including schizophrenia, Parkinson's disease, substance abuse or obesity. This review aims at depicting the current developments in GPCR oligomerisation research, documenting various class A, B and C GPCR heteromers detected in vitro and in vivo using biochemical and biophysical approaches, as well as recently identified higher-order oligomeric complexes. It explores the current understanding of dimerization dynamics and the possible interaction interfaces that drive oligomerisation. Most importantly, it provides an inventory of the wide range of physiological processes and pathophysiological conditions to which GPCR oligomers contribute, surveying some of the oligomers that constitute potential drug targets. Finally, it delineates the efforts to develop novel classes of ligands that specifically target and tether to receptor oligomers instead of a single monomeric entity, thus ameliorating their ability to modulate GPCR function.
Collapse
Affiliation(s)
- Batoul Farran
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
127
|
Evidence for the heterotetrameric structure of the adenosine A2A-dopamine D2 receptor complex. Biochem Soc Trans 2016; 44:595-600. [PMID: 27068975 DOI: 10.1042/bst20150276] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 11/17/2022]
Abstract
Heteromers of G-protein-coupled receptors (GPCRs) have emerged as potential novel targets for drug development. Accumulating evidence indicates that GPCRs can form homodimers and heteromers, with homodimers being the predominant species and oligomeric receptors being formed as multiples of dimers. Recently, heterotetrameric structures have been proposed for dopamine D1receptor (D1R)-dopamine D3receptor (D3R) and adenosine A2Areceptor (A2AR)-dopamine D2receptor (D2R) heteromers. The structural model proposed for these complexes is a heteromer constituted by two receptor homodimers. The existence of GPCR homodimers and heteromers provides a structural basis for inter-protomer allosteric mechanisms that might account for a multiplicity of unique pharmacological properties. In this review, we focus on the A2AR-D2R heterotetramer as an example of an oligomeric structure that is key in the modulation of striatal neuronal function. We also review the interfaces involved in this and other recently reported heteromers of GPCRs. Furthermore, we discuss several published studies showing theex vivoexpression of A2AR-D2R heteromers. The ability of A2AR agonists to decrease the affinity of D2R agonists has been reported and, on the basis of this interaction, A2AR antagonists have been proposed as potential drugs for the treatment of Parkinson's disease. The heterotetrameric structure of the A2AR-D2R complex offers a novel model that can provide new clues about how to adjust the drug dosage to the expected levels of endogenous adenosine.
Collapse
|
128
|
Functional μ-Opioid-Galanin Receptor Heteromers in the Ventral Tegmental Area. J Neurosci 2016; 37:1176-1186. [PMID: 28007761 DOI: 10.1523/jneurosci.2442-16.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/15/2016] [Accepted: 12/14/2016] [Indexed: 11/21/2022] Open
Abstract
The neuropeptide galanin has been shown to interact with the opioid system. More specifically, galanin counteracts the behavioral effects of the systemic administration of μ-opioid receptor (MOR) agonists. Yet the mechanism responsible for this galanin-opioid interaction has remained elusive. Using biophysical techniques in mammalian transfected cells, we found evidence for selective heteromerization of MOR and the galanin receptor subtype Gal1 (Gal1R). Also in transfected cells, a synthetic peptide selectively disrupted MOR-Gal1R heteromerization as well as specific interactions between MOR and Gal1R ligands: a negative cross talk, by which galanin counteracted MAPK activation induced by the endogenous MOR agonist endomorphin-1, and a cross-antagonism, by which a MOR antagonist counteracted MAPK activation induced by galanin. These specific interactions, which represented biochemical properties of the MOR-Gal1R heteromer, could then be identified in situ in slices of rat ventral tegmental area (VTA) with MAPK activation and two additional cell signaling pathways, AKT and CREB phosphorylation. Furthermore, in vivo microdialysis experiments showed that the disruptive peptide selectively counteracted the ability of galanin to block the dendritic dopamine release in the rat VTA induced by local infusion of endomorphin-1, demonstrating a key role of MOR-Gal1R heteromers localized in the VTA in the direct control of dopamine cell function and their ability to mediate antagonistic interactions between MOR and Gal1R ligands. The results also indicate that MOR-Gal1R heteromers should be viewed as targets for the treatment of opioid use disorders. SIGNIFICANCE STATEMENT The μ-opioid receptor (MOR) localized in the ventral tegmental area (VTA) plays a key role in the reinforcing and addictive properties of opioids. With parallel in vitro experiments in mammalian transfected cells and in situ and in vivo experiments in rat VTA, we demonstrate that a significant population of these MORs form functional heteromers with the galanin receptor subtype Gal1 (Gal1R), which modulate the activity of the VTA dopaminergic neurons. The MOR-Gal1R heteromer can explain previous results showing antagonistic galanin-opioid interactions and offers a new therapeutic target for the treatment of opioid use disorder.
Collapse
|
129
|
Ligresti A, De Petrocellis L, Di Marzo V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol Rev 2016; 96:1593-659. [DOI: 10.1152/physrev.00002.2016] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.
Collapse
Affiliation(s)
- Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| |
Collapse
|
130
|
Tian MK, Schmidt EF, Lambe EK. Serotonergic Suppression of Mouse Prefrontal Circuits Implicated in Task Attention. eNeuro 2016; 3:ENEURO.0269-16.2016. [PMID: 27844060 PMCID: PMC5099606 DOI: 10.1523/eneuro.0269-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 02/08/2023] Open
Abstract
Serotonin (5-HT) regulates attention by neurobiological mechanisms that are not well understood. Layer 6 (L6) pyramidal neurons of prefrontal cortex play an important role in attention and express 5-HT receptors, but the serotonergic modulation of this layer and its excitatory output is not known. Here, we performed whole-cell recordings and pharmacological manipulations in acute brain slices from wild-type and transgenic mice expressing either eGFP or eGFP-channelrhodopsin in prefrontal L6 pyramidal neurons. Excitatory circuits between L6 pyramidal neurons and L5 GABAergic interneurons, including a population of interneurons essential for task attention, were investigated using optogenetic techniques. Our experiments show that prefrontal L6 pyramidal neurons are subject to strong serotonergic inhibition and demonstrate direct 5-HT-sensitive connections between prefrontal L6 pyramidal neurons and two classes of L5 interneurons. This work helps to build a neurobiological framework to appreciate serotonergic disruption of task attention and yields insight into the disruptions of attention observed in psychiatric disorders with altered 5-HT receptors and signaling.
Collapse
Affiliation(s)
- Michael K Tian
- Department of Physiology, University of Toronto , Toronto, ON, Canada
| | - Eric F Schmidt
- Laboratory of Molecular Biology, Rockefeller University , New York, NY
| | - Evelyn K Lambe
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
131
|
More SV, Kumar H, Cho DY, Yun YS, Choi DK. Toxin-Induced Experimental Models of Learning and Memory Impairment. Int J Mol Sci 2016; 17:E1447. [PMID: 27598124 PMCID: PMC5037726 DOI: 10.3390/ijms17091447] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023] Open
Abstract
Animal models for learning and memory have significantly contributed to novel strategies for drug development and hence are an imperative part in the assessment of therapeutics. Learning and memory involve different stages including acquisition, consolidation, and retrieval and each stage can be characterized using specific toxin. Recent studies have postulated the molecular basis of these processes and have also demonstrated many signaling molecules that are involved in several stages of memory. Most insights into learning and memory impairment and to develop a novel compound stems from the investigations performed in experimental models, especially those produced by neurotoxins models. Several toxins have been utilized based on their mechanism of action for learning and memory impairment such as scopolamine, streptozotocin, quinolinic acid, and domoic acid. Further, some toxins like 6-hydroxy dopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amyloid-β are known to cause specific learning and memory impairment which imitate the disease pathology of Parkinson's disease dementia and Alzheimer's disease dementia. Apart from these toxins, several other toxins come under a miscellaneous category like an environmental pollutant, snake venoms, botulinum, and lipopolysaccharide. This review will focus on the various classes of neurotoxin models for learning and memory impairment with their specific mechanism of action that could assist the process of drug discovery and development for dementia and cognitive disorders.
Collapse
Affiliation(s)
- Sandeep Vasant More
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.
| | - Hemant Kumar
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.
| | - Duk-Yeon Cho
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.
| | - Yo-Sep Yun
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.
| |
Collapse
|
132
|
Busnelli M, Kleinau G, Muttenthaler M, Stoev S, Manning M, Bibic L, Howell LA, McCormick PJ, Di Lascio S, Braida D, Sala M, Rovati GE, Bellini T, Chini B. Design and Characterization of Superpotent Bivalent Ligands Targeting Oxytocin Receptor Dimers via a Channel-Like Structure. J Med Chem 2016; 59:7152-66. [PMID: 27420737 DOI: 10.1021/acs.jmedchem.6b00564] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Dimeric/oligomeric states of G-protein coupled receptors have been difficult to target. We report here bivalent ligands consisting of two identical oxytocin-mimetics that induce a three order magnitude boost in G-protein signaling of oxytocin receptors (OTRs) in vitro and a 100- and 40-fold gain in potency in vivo in the social behavior of mice and zebrafish. Through receptor mutagenesis and interference experiments with synthetic peptides mimicking transmembrane helices (TMH), we show that such superpotent behavior follows from the binding of the bivalent ligands to dimeric receptors based on a TMH1-TMH2 interface. Moreover, in this arrangement, only the analogues with a well-defined spacer length (∼25 Å) precisely fit inside a channel-like passage between the two protomers of the dimer. The newly discovered oxytocin bivalent ligands represent a powerful tool for targeting dimeric OTR in neurodevelopmental and psychiatric disorders and, in general, provide a framework to untangle specific arrangements of G-protein coupled receptor dimers.
Collapse
Affiliation(s)
- Marta Busnelli
- CNR, Institute of Neuroscience , Milan, Italy 20129.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano , Milan, Italy 20129
| | - Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin , Berlin, Germany 13353
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Australia 4072
| | - Stoytcho Stoev
- Department of Biochemistry and Cancer Biology, University of Toledo , Toledo, Ohio 43614, United States
| | - Maurice Manning
- Department of Biochemistry and Cancer Biology, University of Toledo , Toledo, Ohio 43614, United States
| | - Lucka Bibic
- School of Pharmacy, University of East Anglia , Norwich Research Park, Norwich, U.K. NR4 7TJ
| | - Lesley A Howell
- School of Pharmacy, University of East Anglia , Norwich Research Park, Norwich, U.K. NR4 7TJ
| | - Peter J McCormick
- School of Pharmacy, University of East Anglia , Norwich Research Park, Norwich, U.K. NR4 7TJ
| | - Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano , Milan, Italy 20129
| | - Daniela Braida
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano , Milan, Italy 20129
| | - Mariaelvina Sala
- CNR, Institute of Neuroscience , Milan, Italy 20129.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano , Milan, Italy 20129
| | - G Enrico Rovati
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano , Milan, Italy 20133
| | - Tommaso Bellini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano , Milan, Italy 20129
| | - Bice Chini
- CNR, Institute of Neuroscience , Milan, Italy 20129
| |
Collapse
|
133
|
Reis Rodrigues P, Kaul TK, Ho JH, Lucanic M, Burkewitz K, Mair WB, Held JM, Bohn LM, Gill MS. Synthetic Ligands of Cannabinoid Receptors Affect Dauer Formation in the Nematode Caenorhabditis elegans. G3 (BETHESDA, MD.) 2016; 6:1695-705. [PMID: 27172180 PMCID: PMC4889665 DOI: 10.1534/g3.116.026997] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/04/2016] [Indexed: 01/20/2023]
Abstract
Under adverse environmental conditions the nematode Caenorhabditis elegans can enter an alternate developmental stage called the dauer larva. To identify lipophilic signaling molecules that influence this process, we screened a library of bioactive lipids and found that AM251, an antagonist of the human cannabinoid (CB) receptor, suppresses dauer entry in daf-2 insulin receptor mutants. AM251 acted synergistically with glucose supplementation indicating that the metabolic status of the animal influenced the activity of this compound. Similarly, loss of function mutations in the energy-sensing AMP-activated kinase subunit, aak-2, enhanced the dauer-suppressing effects of AM251, while constitutive activation of aak-2 in neurons was sufficient to inhibit AM251 activity. Chemical epistasis experiments indicated that AM251 acts via G-protein signaling and requires the TGF-β ligand DAF-7, the insulin peptides DAF-28 and INS-6, and a functional ASI neuron to promote reproductive growth. AM251 also required the presence of the SER-5 serotonin receptor, but in vitro experiments suggest that this may not be via a direct interaction. Interestingly, we found that other antagonists of mammalian CB receptors also suppress dauer entry, while the nonselective CB receptor agonist, O-2545, not only inhibited the activity of AM251, but also was able to promote dauer entry when administered alone. Since worms do not have obvious orthologs of CB receptors, the effects of synthetic CBs on neuroendocrine signaling in C. elegans are likely to be mediated via another, as yet unknown, receptor mechanism. However, we cannot exclude the existence of a noncanonical CB receptor in C. elegans.
Collapse
Affiliation(s)
- Pedro Reis Rodrigues
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida 33458
| | - Tiffany K Kaul
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida 33458
| | - Jo-Hao Ho
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458
| | - Mark Lucanic
- The Buck Institute for Research on Aging, Novato, California 94945
| | - Kristopher Burkewitz
- Department of Genetics and Complex Diseases, School of Public Health, Harvard University, Boston, Massachusetts 02115
| | - William B Mair
- Department of Genetics and Complex Diseases, School of Public Health, Harvard University, Boston, Massachusetts 02115
| | - Jason M Held
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Laura M Bohn
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458
| | - Matthew S Gill
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida 33458
| |
Collapse
|
134
|
Abstract
The endocannabinoid system (ECS) is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids), and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB
1). In recent years, the development of new imaging and molecular tools has demonstrated that this receptor can be distributed in many cell types (e.g., neuronal or glial cells) and intracellular compartments (e.g., mitochondria). Interestingly, cellular and molecular effects are differentially mediated by CB
1 receptors according to their specific localization (e.g., glutamatergic or GABAergic neurons). Moreover, this receptor is expressed in the periphery, where it can modulate periphery-brain connections. Finally, the better understanding of the CB
1 receptor structure led researchers to propose interesting and new allosteric modulators. Thus, the advances and the new directions of the CB
1 receptor field will provide new insights and better approaches to profit from its interesting therapeutic profile.
Collapse
Affiliation(s)
- Arnau Busquets Garcia
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| | - Edgar Soria-Gomez
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| | - Luigi Bellocchio
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| | - Giovanni Marsicano
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| |
Collapse
|
135
|
Venzi M, David F, Bellet J, Cavaccini A, Bombardi C, Crunelli V, Di Giovanni G. Role for serotonin2A (5-HT2A) and 2C (5-HT2C) receptors in experimental absence seizures. Neuropharmacology 2016; 108:292-304. [PMID: 27085605 PMCID: PMC4920646 DOI: 10.1016/j.neuropharm.2016.04.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 03/10/2016] [Accepted: 04/12/2016] [Indexed: 01/25/2023]
Abstract
Absence seizures (ASs) are the hallmark of childhood/juvenile absence epilepsy. Monotherapy with first-line anti-absence drugs only controls ASs in 50% of patients, indicating the need for novel therapeutic targets. Since serotonin family-2 receptors (5-HT2Rs) are known to modulate neuronal activity in the cortico-thalamo-cortical loop, the main network involved in AS generation, we investigated the effect of selective 5-HT2AR and 5-HT2CR ligands on ASs in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a well established polygenic rat model of these non-convulsive seizures. GAERS rats were implanted with fronto-parietal EEG electrodes under general anesthesia, and their ASs were later recorded under freely moving conditions before and after intraperitoneal administration of various 5-HT2AR and 5-HT2CR ligands. The 5-HT2A agonist TCB-2 dose-dependently decreased the total time spent in ASs, an effect that was blocked by the selective 5-HT2A antagonist MDL11,939. Both MDL11,939 and another selective 5-HT2A antagonist (M100,907) increased the length of individual seizures when injected alone. The 5-HT2C agonists lorcaserin and CP-809,101 dose-dependently suppressed ASs, an effect blocked by the selective 5-HT2C antagonist SB 242984. In summary, 5-HT2ARs and 5-HT2CRs negatively control the expression of experimental ASs, indicating that selective agonists at these 5-HT2R subtypes might be potential novel anti-absence drugs. 5-HT2AR activation decreases absence seizures in GAERS. 5-HT2CR activation decreases absence seizures in GAERS. 5-HT2AR blockade increases absence seizures in GAERS. 5-HT2CR blockade does not affect absence seizures in GAERS.
Collapse
Affiliation(s)
- Marcello Venzi
- Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - François David
- Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Joachim Bellet
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen, Germany
| | - Anna Cavaccini
- Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Cristiano Bombardi
- University of Bologna, Department of Veterinary Medical Sciences, Bologna, Italy
| | - Vincenzo Crunelli
- Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; Department of Physiology and Biochemistry, University of Malta, Malta.
| | - Giuseppe Di Giovanni
- Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; Department of Physiology and Biochemistry, University of Malta, Malta.
| |
Collapse
|
136
|
Quaternary structure of a G-protein-coupled receptor heterotetramer in complex with Gi and Gs. BMC Biol 2016; 14:26. [PMID: 27048449 PMCID: PMC4822319 DOI: 10.1186/s12915-016-0247-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 03/16/2016] [Indexed: 12/04/2022] Open
Abstract
Background G-protein-coupled receptors (GPCRs), in the form of monomers or homodimers that bind heterotrimeric G proteins, are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways. Different GPCRs may also interact to form heteromers that are novel signaling units. Despite the exponential growth in the number of solved GPCR crystal structures, the structural properties of heteromers remain unknown. Results We used single-particle tracking experiments in cells expressing functional adenosine A1-A2A receptors fused to fluorescent proteins to show the loss of Brownian movement of the A1 receptor in the presence of the A2A receptor, and a preponderance of cell surface 2:2 receptor heteromers (dimer of dimers). Using computer modeling, aided by bioluminescence resonance energy transfer assays to monitor receptor homomerization and heteromerization and G-protein coupling, we predict the interacting interfaces and propose a quaternary structure of the GPCR tetramer in complex with two G proteins. Conclusions The combination of results points to a molecular architecture formed by a rhombus-shaped heterotetramer, which is bound to two different interacting heterotrimeric G proteins (Gi and Gs). These novel results constitute an important advance in understanding the molecular intricacies involved in GPCR function. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0247-4) contains supplementary material, which is available to authorized users.
Collapse
|
137
|
Flores Á, Julià-Hernández M, Maldonado R, Berrendero F. Involvement of the orexin/hypocretin system in the pharmacological effects induced by Δ(9) -tetrahydrocannabinol. Br J Pharmacol 2016; 173:1381-92. [PMID: 26799708 DOI: 10.1111/bph.13440] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 01/12/2016] [Accepted: 01/17/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Anatomical, biochemical and pharmacological evidence suggest the existence of a crosstalk between the orexinergic and endocannabinoid systems. While the orexin receptor 1 (OX1 receptor) modulates the reinforcing properties of cannabinoids, the participation of orexins in the acute pharmacological effects of Δ(9) -tetrahydrocannabinol (THC) remains unexplored. EXPERIMENTAL APPROACH We assessed the possible role of orexins in THC-induced hypolocomotion, hypothermia, antinociception, anxiolytic- and anxiogenic-like effects and memory impairment. Selective OX1 and OX2 receptor antagonists and OX1 knockout (KO) mice as well as prepro-orexin (PPO) KO mice were used as pharmacological and genetic approaches. CB1 receptor levels in control and PPO KO mice were evaluated by immunoblot analysis. The expression of c-Fos after THC treatment was analysed in several brain areas in wild-type mice and in mice lacking the PPO gene. KEY RESULTS The hypothermia, supraspinal antinociception and anxiolytic-like effects induced by THC were modulated by orexins through OX2 receptor signalling. OX1 receptors did not seem to be involved in these THC responses. No differences in CB1 receptor levels were found between wild-type and PPO KO mice. THC-induced increase in c-Fos expression was reduced in the central amygdala, medial preoptic area and lateral septum in these mutant mice. CONCLUSIONS AND IMPLICATIONS Our results provide new findings to further clarify the interaction between orexins and cannabinoids. OX1 and OX2 receptors are differently implicated in the pharmacological effects of cannabinoids.
Collapse
Affiliation(s)
- África Flores
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Marina Julià-Hernández
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Fernando Berrendero
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| |
Collapse
|
138
|
Lutz B, Marsicano G, Maldonado R, Hillard CJ. The endocannabinoid system in guarding against fear, anxiety and stress. Nat Rev Neurosci 2016; 16:705-18. [PMID: 26585799 DOI: 10.1038/nrn4036] [Citation(s) in RCA: 337] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endocannabinoid (eCB) system has emerged as a central integrator linking the perception of external and internal stimuli to distinct neurophysiological and behavioural outcomes (such as fear reaction, anxiety and stress-coping), thus allowing an organism to adapt to its changing environment. eCB signalling seems to determine the value of fear-evoking stimuli and to tune appropriate behavioural responses, which are essential for the organism's long-term viability, homeostasis and stress resilience; and dysregulation of eCB signalling can lead to psychiatric disorders. An understanding of the underlying neural cell populations and cellular processes enables the development of therapeutic strategies to mitigate behavioural maladaptation.
Collapse
Affiliation(s)
- Beat Lutz
- Institute of Physiological Chemistry, University Medical Center Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Giovanni Marsicano
- Institut national de la santé et de la recherche médicale (INSERM), U862 NeuroCentre Magendie, Group Endocannabinoids and Neuroadaptation, Bordeaux 33077, France.,University of Bordeaux, 146 rue Léo Saignat, Bordeaux 33077, France
| | - Rafael Maldonado
- Laboratori de Neurofarmacologia, Facultat de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
139
|
|
140
|
Zhang G, Stackman RW. The role of serotonin 5-HT2A receptors in memory and cognition. Front Pharmacol 2015; 6:225. [PMID: 26500553 PMCID: PMC4594018 DOI: 10.3389/fphar.2015.00225] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/22/2015] [Indexed: 01/31/2023] Open
Abstract
Serotonin 5-HT2A receptors (5-HT2ARs) are widely distributed in the central nervous system, especially in brain region essential for learning and cognition. In addition to endogenous 5-HT, several hallucinogens, antipsychotics, and antidepressants function by targeting 5-HT2ARs. Preclinical studies show that 5-HT2AR antagonists have antipsychotic and antidepressant properties, whereas agonist ligands possess cognition-enhancing and hallucinogenic properties. Abnormal 5-HT2AR activity is associated with a number of psychiatric disorders and conditions, including depression, schizophrenia, and drug addiction. In addition to its traditional activity as a G protein-coupled receptor (GPCR), recent studies have defined novel operations of 5-HT2ARs. Here we review progress in the (1) receptor anatomy and biology: distribution, signaling, polymerization and allosteric modulation; and (2) receptor functions: learning and memory, hallucination and spatial cognition, and mental disorders. Based on the recent progress in basic research on the 5-HT2AR, it appears that post-training 5-HT2AR activation enhances non-spatial memory consolidation, while pre-training 5-HT2AR activation facilitates fear extinction. Further, the potential influence that 5-HT2AR-elicited visual hallucinations may have on visual cue (i.e., landmark) guided spatial cognition is discussed. We conclude that the development of selective 5-HT2AR modulators to target distinct signaling pathways and neural circuits represents a new possibility for treating emotional, neuropsychiatric, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Gongliang Zhang
- College of Basic Medicine, Anhui Medical University Hefei, China ; Department of Biology, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter FL, USA ; Jupiter Life Science Initiative, Florida Atlantic University, Jupiter FL, USA
| | - Robert W Stackman
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter FL, USA ; Department of Psychology, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter FL, USA
| |
Collapse
|
141
|
|
142
|
Carr F. Pain relief without pairing up. Nat Rev Neurosci 2015. [DOI: 10.1038/nrn4007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
143
|
Robinson R. Selective Reduction of THC’s Unwanted Effects through Serotonin Receptor Inhibition. PLoS Biol 2015; 13:e1002193. [PMID: 26158526 PMCID: PMC4497641 DOI: 10.1371/journal.pbio.1002193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
How can we harness the beneficial effects of cannabis on pain without the harmful effects on memory? A new study shows that the harmful effects are specifically mediated by a partnership between cannabinoid and serotonin receptors, with pharmaceutical implications.
Collapse
Affiliation(s)
- Richard Robinson
- Freelance Science Writer, Sherborn, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
144
|
Marijuana's good without the bad. Nature 2015. [DOI: 10.1038/523504d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|