101
|
Abstract
Humans consume about 1 mg of copper daily, an amount thought adequate for most needs. Genetic, environmental, or physiological alterations can impose a higher copper set point, increasing risk for copper-limited pathophysiology. Humans express about a dozen proteins that require copper for function (cuproenzymes). Limitation in the activity of cuproenzymes can explain the pleiotropic effect of copper deficiency. However, for most of the salient features of human copper deficiency, the precise molecular mechanisms are unknown. This is true for the two most common clinical features, hypochromic anemia and adult onset peripheral neuropathy/ataxia, a condition described frequently in the last decade due to multiple etiologies. The challenge for future scientists will be to identify the mechanisms underlying the pathophysiology of copper deficiency so appropriate screening and treatment can occur. The need for a strong copper biomarker to aid in this screening is critical.
Collapse
Affiliation(s)
- Joseph R Prohaska
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota
| |
Collapse
|
102
|
Pfaender S, Grabrucker AM. Characterization of biometal profiles in neurological disorders. Metallomics 2014; 6:960-77. [DOI: 10.1039/c4mt00008k] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes the findings on dysregulation of metal ions in neurological diseases and tries to develop and predict specific biometal profiles.
Collapse
Affiliation(s)
| | - Andreas M. Grabrucker
- Institute for Anatomy and Cell Biology
- Ulm University
- Ulm, Germany
- WG Molecular Analysis of Synaptopathies
- Neurology Dept
| |
Collapse
|
103
|
Barnham KJ, Bush AI. Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem Soc Rev 2014; 43:6727-49. [DOI: 10.1039/c4cs00138a] [Citation(s) in RCA: 347] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metals are functionally essential, but redistribute in neurodegenerative disease where they induce protein aggregates, catalyze radical formation, and lose bioavailability.
Collapse
Affiliation(s)
- Kevin J. Barnham
- Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
- Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
| | - Ashley I. Bush
- Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
- Department of Pathology
- The University of Melbourne
| |
Collapse
|
104
|
Chen J, Marks E, Lai B, Zhang Z, Duce JA, Lam LQ, Volitakis I, Bush AI, Hersch S, Fox JH. Iron accumulates in Huntington's disease neurons: protection by deferoxamine. PLoS One 2013; 8:e77023. [PMID: 24146952 PMCID: PMC3795666 DOI: 10.1371/journal.pone.0077023] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/26/2013] [Indexed: 01/13/2023] Open
Abstract
Huntington’s disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine-encoding CAG expansion in the huntingtin gene. Iron accumulates in the brains of HD patients and mouse disease models. However, the cellular and subcellular sites of iron accumulation, as well as significance to disease progression are not well understood. We used independent approaches to investigate the location of brain iron accumulation. In R6/2 HD mouse brain, synchotron x-ray fluorescence analysis revealed iron accumulation as discrete puncta in the perinuclear cytoplasm of striatal neurons. Further, perfusion Turnbull’s staining for ferrous iron (II) combined with transmission electron microscope ultra-structural analysis revealed increased staining in membrane bound peri-nuclear vesicles in R6/2 HD striatal neurons. Analysis of iron homeostatic proteins in R6/2 HD mice revealed decreased levels of the iron response proteins (IRPs 1 and 2) and accordingly decreased expression of iron uptake transferrin receptor (TfR) and increased levels of neuronal iron export protein ferroportin (FPN). Finally, we show that intra-ventricular delivery of the iron chelator deferoxamine results in an improvement of the motor phenotype in R6/2 HD mice. Our data supports accumulation of redox-active ferrous iron in the endocytic / lysosomal compartment in mouse HD neurons. Expression changes of IRPs, TfR and FPN are consistent with a compensatory response to an increased intra-neuronal labile iron pool leading to increased susceptibility to iron-associated oxidative stress. These findings, together with protection by deferoxamine, support a potentiating role of neuronal iron accumulation in HD.
Collapse
Affiliation(s)
- Jianfang Chen
- Department of Veterinary Sciences and Neuroscience Graduate Program, University of Wyoming, Laramie, Wyoming, United States of America
| | - Eileen Marks
- Department of Veterinary Sciences and Neuroscience Graduate Program, University of Wyoming, Laramie, Wyoming, United States of America
| | - Barry Lai
- Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, United States of America
| | - James A. Duce
- Mental Health Research Institute, Parkville, Melbourne, Victoria, Australia
- School of Molecular and Cellular Biology, the Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Linh Q. Lam
- Mental Health Research Institute, Parkville, Melbourne, Victoria, Australia
| | - Irene Volitakis
- Mental Health Research Institute, Parkville, Melbourne, Victoria, Australia
| | - Ashley I. Bush
- Mental Health Research Institute, Parkville, Melbourne, Victoria, Australia
| | - Steven Hersch
- MassGeneral Institute for Neurodegenerative Disease, Charlestown, Massachusetts, United States of America
| | - Jonathan H. Fox
- Department of Veterinary Sciences and Neuroscience Graduate Program, University of Wyoming, Laramie, Wyoming, United States of America
- * E-mail:
| |
Collapse
|
105
|
Huntington disease arises from a combinatory toxicity of polyglutamine and copper binding. Proc Natl Acad Sci U S A 2013; 110:14995-5000. [PMID: 23980182 DOI: 10.1073/pnas.1308535110] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Huntington disease (HD) is a progressive neurodegenerative disorder caused by dominant polyglutamine (polyQ) expansion within the N terminus of huntingtin (Htt) protein. Abnormal metal accumulation in the striatum of HD patients has been reported for many years, but a causative relationship has not yet been established. Furthermore, if metal is indeed involved in HD, the underlying mechanism needs to be explored. Here using a Drosophila model of HD, wherein Htt exon1 with expanded polyQ (Htt exon1-polyQ) is introduced, we show that altered expression of genes involved in copper metabolism significantly modulates the HD progression. Intervention of dietary copper levels also modifies HD phenotypes in the fly. Copper reduction to a large extent decreases the level of oligomerized and aggregated Htt. Strikingly, substitution of two potential copper-binding residues of Htt, Met8 and His82, completely dissociates the copper-intensifying toxicity of Htt exon1-polyQ. Our results therefore indicate HD entails two levels of toxicity: the copper-facilitated protein aggregation as conferred by a direct copper binding in the exon1 and the copper-independent polyQ toxicity. The existence of these two parallel pathways converging into Htt toxicity also suggests that an ideal HD therapy would be a multipronged approach that takes both these actions into consideration.
Collapse
|
106
|
Abstract
Copper is an essential trace metal that is required for the catalysis of several important cellular enzymes. However, since an excess of copper can also harm cells due to its potential to catalyze the generation of toxic reactive oxygen species, transport of copper and the cellular copper content are tightly regulated. This chapter summarizes the current knowledge on the importance of copper for cellular processes and on the mechanisms involved in cellular copper uptake, storage and export. In addition, we will give an overview on disturbances of copper homeostasis that are characterized by copper overload or copper deficiency or have been connected with neurodegenerative disorders.
Collapse
Affiliation(s)
- Ivo Scheiber
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | | |
Collapse
|
107
|
Rosas HD, Chen YI, Doros G, Salat DH, Chen NK, Kwong KK, Bush A, Fox J, Hersch SM. Alterations in brain transition metals in Huntington disease: an evolving and intricate story. ACTA ACUST UNITED AC 2012; 69:887-93. [PMID: 22393169 DOI: 10.1001/archneurol.2011.2945] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Aberrant accumulation of transition metals in the brain may have an early and important role in the pathogenesis of several neurodegenerative disorders, including Huntington disease (HD). OBJECTIVE To comprehensively evaluate and validate the distribution of metal deposition in the brain using advanced magnetic resonance imaging methods from the premanifest through symptomatic stages of HD. DESIGN Observational study. SETTING University imaging center. PARTICIPANTS Twenty-eight HD expanded gene carriers, 34 patients with symptomatic HD, and 56 age- and sex-matched healthy control subjects were included in the study. INTERVENTIONS Participants underwent magnetic resonance imaging for the quantification of the phase evolution of susceptibility-weighted images. MAIN OUTCOME MEASURES To verify the identity of the metals responsible for the changes in the phase evolution of the susceptibility signal in the brain and to assess correlations with systemic levels. Inductively coupled plasma mass spectrometry was used to measure transition metal concentrations in postmortem brains. RESULTS In the basal ganglia, progressive increases in the phase evolution were found in HD, beginning in premanifest individuals who were far from expected onset and increasing with proximity to expected onset and thereafter. Increases in the cerebral cortex were regionally selective and present only in symptomatic HD. Increases were verified by excessive deposition of brain iron, but a complex alteration in other transition metals was found. CONCLUSION An important and early role of altered metal homeostasis is suggested in the pathogenesis of HD.
Collapse
Affiliation(s)
- H Diana Rosas
- Department of Neurology, Center for Neuroimaging of Aging and Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, 02129, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Jayabharathi J, Thanikachalam V, Jayamoorthy K, Sathishkumar R. Selective quenching of benzimidazole derivatives by Cu²+ metal ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 97:384-387. [PMID: 22813989 DOI: 10.1016/j.saa.2012.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 06/01/2023]
Abstract
It is a very big challenge to develop a Cu(2+) selective fluorescent sensor with the ability to exclude the interference of some metal ions such as Fe(3+), Mg(2+), Ag(+), K(+) and Na(+). Herein, we report a fluorescence quenching of some benzimidazole derivatives (1-6) with Cu(2+) metal ion. These benzimidazole derivatives have been shown to bind copper ions resulting in quenching of its fluorescence. The response to Cu(2+) is rapid, selective and reversible upon addition of a copper chelator. These benzimidazole derivatives were characterized by (1)H, (13)C NMR mass and elemental analysis. XRD analysis was carried out for 1-(4-methylbenzyl)-2-p-tolyl-1H-benzo[d]imidazole.
Collapse
Affiliation(s)
- J Jayabharathi
- Department of Chemistry, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India.
| | | | | | | |
Collapse
|
109
|
Torres-Vega A, Pliego-Rivero BF, Otero-Ojeda GA, Gómez-Oliván LM, Vieyra-Reyes P. Limbic system pathologies associated with deficiencies and excesses of the trace elements iron, zinc, copper, and selenium. Nutr Rev 2012. [PMID: 23206282 DOI: 10.1111/j.1753-4887.2012.00521.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Deficiencies of nutrients such as amino acids, vitamins, lipids, and trace elements during gestation and early infanthood have strong deleterious effects on the development of the limbic system; these effects may be irreversible, even when adequate supplementation is provided at later developmental stages. Recent advances in the neurochemistry of biometals are increasingly establishing the roles of the trace elements iron, copper, zinc, and selenium in a variety of cell functions and are providing insight into the repercussions of deficiencies and excesses of these elements on the development of the central nervous system, especially the limbic system. The limbic system comprises diverse areas with high metabolic demands and differential storage of iron, copper, zinc, and selenium. This review summarizes available evidence suggesting the involvement of these trace elements in pathological disorders of the limbic system.
Collapse
Affiliation(s)
- Adriana Torres-Vega
- Neurofisiología de la Conducta, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | | | | | | | | |
Collapse
|
110
|
Arrigo AP. Pathology-dependent effects linked to small heat shock proteins expression: an update. SCIENTIFICA 2012; 2012:185641. [PMID: 24278676 PMCID: PMC3820616 DOI: 10.6064/2012/185641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 09/17/2012] [Indexed: 06/02/2023]
Abstract
Small heat shock proteins (small Hsps) are stress-induced molecular chaperones that act as holdases towards polypeptides that have lost their folding in stress conditions or consequently of mutations in their coding sequence. A cellular protection against the deleterious effects mediated by damaged proteins is thus provided to cells. These chaperones are also highly expressed in response to protein conformational and inflammatory diseases and cancer pathologies. Through specific and reversible modifications in their phospho-oligomeric organization, small Hsps can chaperone appropriate client proteins in order to provide cells with resistance to different types of injuries or pathological conditions. By helping cells to better cope with their pathological status, their expression can be either beneficial, such as in diseases characterized by pathological cell degeneration, or deleterious when they are required for tumor cell survival. Moreover, small Hsps are actively released by cells and can act as immunogenic molecules that have dual effects depending on the pathology. The cellular consequences linked to their expression levels and relationships with other Hsps as well as therapeutic strategies are discussed in view of their dynamic structural organization required to interact with specific client polypeptides.
Collapse
Affiliation(s)
- A.-P. Arrigo
- Apoptosis Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Claude Bernard University Lyon1, 28 Rue Laennec, 69008 Lyon, France
| |
Collapse
|
111
|
Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimer's, Parkinson's and prion diseases. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.05.003] [Citation(s) in RCA: 293] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
112
|
|
113
|
Mitomi Y, Nomura T, Kurosawa M, Nukina N, Furukawa Y. Post-aggregation oxidation of mutant huntingtin controls the interactions between aggregates. J Biol Chem 2012; 287:34764-75. [PMID: 22891249 DOI: 10.1074/jbc.m112.387035] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aggregation of protein molecules is a pathological hallmark of many neurodegenerative diseases. Abnormal modifications have often been observed in the aggregated proteins, supporting the aggregation mechanism regulated by post-translational modifications on proteins. Modifications are in general assumed to occur in soluble proteins before aggregation, but actually it remains quite obscure when proteins are modified in the course of the aggregation. Here we focus upon aggregation of huntingtin (HTT), which causes a neurodegenerative disorder, Huntington disease, and we show that oxidation of a methionine residue in HTT occurs in vitro and also in vivo. Copper ions as well as added hydrogen peroxide are found to oxidize the methionine residue, but notably, this oxidative modification occurs only in the aggregated HTT but not in the soluble state. Furthermore, the methionine oxidation creates additional interactions among HTT aggregates and alters overall morphologies of the aggregates. We thus reveal that protein aggregates can be a target of oxidative modifications and propose that such a "post-aggregation" modification is a relevant factor to regulate properties of protein aggregates.
Collapse
Affiliation(s)
- Yasushi Mitomi
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | | | | | | | | |
Collapse
|
114
|
Sorolla MA, Rodríguez-Colman MJ, Vall-llaura N, Tamarit J, Ros J, Cabiscol E. Protein oxidation in Huntington disease. Biofactors 2012; 38:173-85. [PMID: 22473822 DOI: 10.1002/biof.1013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/08/2012] [Indexed: 12/20/2022]
Abstract
Huntington disease (HD) is an inherited neurodegenerative disorder caused by expansion of CAG repeats in the huntingtin gene, affecting initially the striatum and progressively the cortex. Oxidative stress, and consequent protein oxidation, has been described as important to disease progression. This review focuses on recent advances in the field, with a particular emphasis on the identified target proteins and the role that their oxidation has or might have in the pathophysiology of HD. Oxidation and the resulting inactivation and/or degradation of important proteins can explain the impairment of several metabolic pathways in HD. Oxidation of enzymes involved in ATP synthesis can account for the energy deficiency observed. Impairment of protein folding and degradation can be due to oxidation of several heat shock proteins and Valosin-containing protein. Oxidation of two enzymes involved in the vitamin B6 metabolism could result in decreased availability of pyridoxal phosphate, which is a necessary cofactor in transaminations, the kynurenine pathway and the synthesis of glutathione, GABA, dopamine and serotonin, all of which have a key role in HD pathology. In addition, protein oxidation often contributes to oxidative stress, aggravating the molecular damage inside the cell.
Collapse
Affiliation(s)
- M Alba Sorolla
- Department of Basic Medical Sciences, IRBLleida, Universitat de Lleida, Spain
| | | | | | | | | | | |
Collapse
|
115
|
Stys PK, You H, Zamponi GW. Copper-dependent regulation of NMDA receptors by cellular prion protein: implications for neurodegenerative disorders. J Physiol 2012; 590:1357-68. [PMID: 22310309 PMCID: PMC3382327 DOI: 10.1113/jphysiol.2011.225276] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 02/03/2012] [Indexed: 12/22/2022] Open
Abstract
N-Methyl-D-aspartate (NMDA) receptors mediate a wide range of important nervous system functions. Conversely, excessive NMDA receptor activity leads to cytotoxic calcium overload and neuronal damage in a wide variety of CNS disorders. It is well established that NMDA receptors are tightly regulated by a number of cell signalling pathways. Recently, it has been shown that NMDA receptor activity is modulated by cellular prion protein (PrP(C)) in a copper-dependent manner. Here we give an overview of the current state of knowledge concerning the novel concept of potent modulation of this receptor's kinetics by copper ions, and the interplay between NMDA receptors and PrP(C) in the context of neurological diseases such as Alzheimer's disease, epilepsy, pain and depression.
Collapse
Affiliation(s)
- Peter K Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | | | | |
Collapse
|
116
|
Abstract
The importance of transition metals in biological processes has been well established. Copper (Cu) is a transition metal that can exist in oxidised and reduced states. This allows it to participate in redox and catalytic chemistry, making it a suitable cofactor for a diverse range of enzymes and molecules. Cu deficiency or toxicity is implicated in a variety of pathological conditions; therefore inorganic complexes of Cu have been investigated for their therapeutic and diagnostic potential. These Cu complexes have been shown to be effective in cancer treatment due to their cytotoxic action on tumour cells. Alternatively, Cu complexes can also modulate Cu homeostasis in the brain, resulting in protective effects in several models of neurodegeneration. In other diseases such as coronary heart disease and skin disease, the success of Cu complexes as potential therapeutics will most likely be due to their ability to increase SOD activity, leading to relief of oxidative stress. This review seeks to provide a broad insight into some of the diverse actions of Cu complexes and demonstrate the strong future for these compounds as potential therapeutic agents.
Collapse
Affiliation(s)
- Clare Duncan
- Centre for Neuroscience & Department of Pathology, The University of Melbourne, Victoria, 3010, Australia
| | | |
Collapse
|
117
|
Tardiff DF, Tucci ML, Caldwell KA, Caldwell GA, Lindquist S. Different 8-hydroxyquinolines protect models of TDP-43 protein, α-synuclein, and polyglutamine proteotoxicity through distinct mechanisms. J Biol Chem 2011; 287:4107-20. [PMID: 22147697 PMCID: PMC3281691 DOI: 10.1074/jbc.m111.308668] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
No current therapies target the underlying cellular pathologies of age-related neurodegenerative diseases. Model organisms provide a platform for discovering compounds that protect against the toxic, misfolded proteins that initiate these diseases. One such protein, TDP-43, is implicated in multiple neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. In yeast, TDP-43 expression is toxic, and genetic modifiers first discovered in yeast have proven to modulate TDP-43 toxicity in both neurons and humans. Here, we describe a phenotypic screen for small molecules that reverse TDP-43 toxicity in yeast. One group of hit compounds was 8-hydroxyquinolines (8-OHQ), a class of clinically relevant bioactive metal chelators related to clioquinol. Surprisingly, in otherwise wild-type yeast cells, different 8-OHQs had selectivity for rescuing the distinct toxicities caused by the expression of TDP-43, α-synuclein, or polyglutamine proteins. In fact, each 8-OHQ synergized with the other, clearly establishing that they function in different ways. Comparative growth and molecular analyses also revealed that 8-OHQs have distinct metal chelation and ionophore activities. The diverse bioactivity of 8-OHQs indicates that altering different aspects of metal homeostasis and/or metalloprotein activity elicits distinct protective mechanisms against several neurotoxic proteins. Indeed, phase II clinical trials of an 8-OHQ has produced encouraging results in modifying Alzheimer disease. Our unbiased identification of 8-OHQs in a yeast TDP-43 toxicity model suggests that tailoring 8-OHQ activity to a particular neurodegenerative disease may be a viable therapeutic strategy.
Collapse
Affiliation(s)
- Daniel F Tardiff
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | |
Collapse
|
118
|
Bowman AB, Kwakye GF, Herrero Hernández E, Aschner M. Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol 2011; 25:191-203. [PMID: 21963226 PMCID: PMC3230726 DOI: 10.1016/j.jtemb.2011.08.144] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/16/2011] [Indexed: 12/17/2022]
Abstract
Manganese (Mn) is an essential ubiquitous trace element that is required for normal growth, development and cellular homeostasis. Exposure to high Mn levels causes a clinical disease characterized by extrapyramidal symptom resembling idiopathic Parkinson's disease (IPD). The present review focuses on the role of various transporters in maintaining brain Mn homeostasis along with recent methodological advances in real-time measurements of intracellular Mn levels. We also provide an overview on the role for Mn in IPD, discussing the similarities (and differences) between manganism and IPD, and the relationship between α-synuclein and Mn-related protein aggregation, as well as mitochondrial dysfunction, Mn and PD. Additional sections of the review discuss the link between Mn and Huntington's disease (HD), with emphasis on huntingtin function and the potential role for altered Mn homeostasis and toxicity in HD. We conclude with a brief survey on the potential role of Mn in the etiologies of Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and prion disease. Where possible, we discuss the mechanistic commonalities inherent to Mn-induced neurotoxicity and neurodegenerative disorders.
Collapse
Affiliation(s)
- Aaron B Bowman
- Department of Neurology, Vanderbilt Kennedy Center, Center for Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN 37232-8552, United States
| | | | | | | |
Collapse
|
119
|
Hands S, Sajjad MU, Newton MJ, Wyttenbach A. In vitro and in vivo aggregation of a fragment of huntingtin protein directly causes free radical production. J Biol Chem 2011; 286:44512-20. [PMID: 21984825 DOI: 10.1074/jbc.m111.307587] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurodegenerative diseases are characterized by intra- and/or extracellular protein aggregation and oxidative stress. Intense attention has been paid to whether protein aggregation itself contributes to abnormal production of free radicals and ensuing cellular oxidative damage. Although this question has been investigated in the context of extracellular protein aggregation, it remains unclear whether protein aggregation inside cells alters the redox homeostasis. To address this, we have used in vitro and in vivo (cellular) models of Huntington disease, one of nine polyglutamine (poly(Q)) disorders, and examined the causal relationship among intracellular protein aggregation, reactive oxygen species (ROS) production, and toxicity. Live imaging of cells expressing a fragment of huntingtin (httExon1) with a poly(Q) expansion shows increased ROS production preceding cell death. ROS production is poly(Q) length-dependent and not due to the httExon 1 flanking sequence. Aggregation inhibition by the MW7 intrabody and Pgl-135 treatment abolishes ROS production, showing that increased ROS is caused by poly(Q) aggregation itself. To examine this hypothesis further, we determined whether aggregation of poly(Q) peptides in vitro generated free radicals. Monitoring poly(Q) protein aggregation using atomic force microscopy and hydrogen peroxide (H(2)O(2)) production over time in parallel we show that oligomerization of httEx1Q53 results in early generation of H(2)O(2). Inhibition of poly(Q) oligomerization by the single chain antibody MW7 abrogates H(2)O(2) formation. These results demonstrate that intracellular protein aggregation directly causes free radical production, and targeting potentially toxic poly(Q) oligomers may constitute a therapeutic target to counteract oxidative stress in poly(Q) diseases.
Collapse
Affiliation(s)
- Sarah Hands
- Southampton Neuroscience Group, School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | | | | | | |
Collapse
|
120
|
MacGregor HJ, Kato Y, Marshall LJ, Nevell TG, Shute JK. A copper-hydrogen peroxide redox system induces dityrosine cross-links and chemokine oligomerisation. Cytokine 2011; 56:669-75. [PMID: 21963154 DOI: 10.1016/j.cyto.2011.08.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/13/2011] [Accepted: 08/13/2011] [Indexed: 02/07/2023]
Abstract
The activity of the chemoattractant cytokines, the chemokines, in vivo is enhanced by oligomerisation and aggregation on glycosaminoglycan (GAG), particularly heparan sulphate, side chains of proteoglycans. The chemokine RANTES (CCL5) is a T-lymphocyte and monocyte chemoattractant, which has a minimum tetrameric structure for in vivo activity and a propensity to form higher order oligomers. RANTES is unusual among the chemokines in having five tyrosine residues, an amino acid susceptible to oxidative cross-linking. Using fluorescence emission spectroscopy, Western blot analysis and LCMS-MS, we show that a copper/H2O2 redox system induces the formation of covalent dityrosine cross-links and RANTES oligomerisation with the formation of tetramers, as well as higher order oligomers. Amongst the transition metals tested, namely copper, nickel, mercury, iron and zinc, copper appeared unique in this respect. At high (400 μM) concentrations of H2O2, RANTES monomers, dimers and oligomers are destroyed, but heparan sulphate protects the chemokine from oxidative damage, promoting dityrosine cross-links and multimer formation under oxidative conditions. Low levels of dityrosine cross-links were detected in copper/H2O2-treated IL-8 (CXCL8), which has one tyrosine residue, and none were detected in ENA-78 (CXCL5), which has none. Redox-treated RANTES was fully functional in Boyden chamber assays of T-cell migration and receptor usage on activated T-cells following RANTES oligomerisation was not altered. Our results point to a protective, anti-oxidant, role for heparan sulphate and a previously unrecognised role for copper in chemokine oligomerisation that may offer an explanation for the known anti-inflammatory effect of copper-chelators such as penicillamine and tobramycin.
Collapse
Affiliation(s)
- Helen J MacGregor
- The Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, UK
| | | | | | | | | |
Collapse
|
121
|
Breydo L, Uversky VN. Role of metal ions in aggregation of intrinsically disordered proteins in neurodegenerative diseases. Metallomics 2011; 3:1163-80. [PMID: 21869995 DOI: 10.1039/c1mt00106j] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neurodegenerative diseases constitute a set of pathological conditions originating from the slow, irreversible, and systematic cell loss within the various regions of the brain and/or the spinal cord. Depending on the affected region, the outcomes of the neurodegeneration are very broad and diverse, ranging from the problems with movements to dementia. Some neurodegenerative diseases are associated with protein misfolding and aggregation. Many proteins that misfold in human neurodegenerative diseases are intrinsically disordered; i.e., they lack a stable tertiary and/or secondary structure under physiological conditions in vitro. These intrinsically disordered proteins (IDPs) functionally complement ordered proteins, being typically involved in regulation and signaling. There is accumulating evidence that altered metal homeostasis may be related to the progression of neurodegenerative diseases. This review examines the effects of metal ion binding on the aggregation pathways of IDPs found in neurodegenerative diseases.
Collapse
Affiliation(s)
- Leonid Breydo
- Department of Molecular Medicine, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC07, Tampa, Florida 33612, USA.
| | | |
Collapse
|
122
|
Fox JH, Connor T, Stiles M, Kama J, Lu Z, Dorsey K, Lieberman G, Liebermann G, Sapp E, Cherny RA, Banks M, Volitakis I, DiFiglia M, Berezovska O, Bush AI, Hersch SM. Cysteine oxidation within N-terminal mutant huntingtin promotes oligomerization and delays clearance of soluble protein. J Biol Chem 2011; 286:18320-30. [PMID: 21454633 PMCID: PMC3093904 DOI: 10.1074/jbc.m110.199448] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 03/13/2011] [Indexed: 02/01/2023] Open
Abstract
Huntington disease (HD) is a progressive neurodegenerative disorder caused by expression of polyglutamine-expanded mutant huntingtin protein (mhtt). Most evidence indicates that soluble mhtt species, rather than insoluble aggregates, are the important mediators of HD pathogenesis. However, the differential roles of soluble monomeric and oligomeric mhtt species in HD and the mechanisms of oligomer formation are not yet understood. We have shown previously that copper interacts with and oxidizes the polyglutamine-containing N171 fragment of huntingtin. In this study we report that oxidation-dependent oligomers of huntingtin form spontaneously in cell and mouse HD models. Levels of these species are modulated by copper, hydrogen peroxide, and glutathione. Mutagenesis of all cysteine residues within N171 blocks the formation of these oligomers. In cells, levels of oligomerization-blocked mutant N171 were decreased compared with native N171. We further show that a subset of the oligomerization-blocked form of glutamine-expanded N171 huntingtin is rapidly depleted from the soluble pool compared with "native " mutant N171. Taken together, our data indicate that huntingtin is subject to specific oxidations that are involved in the formation of stable oligomers and that also delay removal from the soluble pool. These findings show that inhibiting formation of oxidation-dependent huntingtin oligomers, or promoting their dissolution, may have protective effects in HD by decreasing the burden of soluble mutant huntingtin.
Collapse
Affiliation(s)
- Jonathan H Fox
- Department of Veterinary Science and Neuroscience Graduate Program, University of Wyoming, Laramie, Wyoming 82070, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Bleackley MR, Macgillivray RTA. Transition metal homeostasis: from yeast to human disease. Biometals 2011; 24:785-809. [PMID: 21479832 DOI: 10.1007/s10534-011-9451-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 03/28/2011] [Indexed: 12/16/2022]
Abstract
Transition metal ions are essential nutrients to all forms of life. Iron, copper, zinc, manganese, cobalt and nickel all have unique chemical and physical properties that make them attractive molecules for use in biological systems. Many of these same properties that allow these metals to provide essential biochemical activities and structural motifs to a multitude of proteins including enzymes and other cellular constituents also lead to a potential for cytotoxicity. Organisms have been required to evolve a number of systems for the efficient uptake, intracellular transport, protein loading and storage of metal ions to ensure that the needs of the cells can be met while minimizing the associated toxic effects. Disruptions in the cellular systems for handling transition metals are observed as a number of diseases ranging from hemochromatosis and anemias to neurodegenerative disorders including Alzheimer's and Parkinson's disease. The yeast Saccharomyces cerevisiae has proved useful as a model organism for the investigation of these processes and many of the genes and biological systems that function in yeast metal homeostasis are conserved throughout eukaryotes to humans. This review focuses on the biological roles of iron, copper, zinc, manganese, nickel and cobalt, the homeostatic mechanisms that function in S. cerevisiae and the human diseases in which these metals have been implicated.
Collapse
Affiliation(s)
- Mark R Bleackley
- Department of Biochemistry and Molecular Biology, Centre for Blood Research, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | | |
Collapse
|
124
|
Ha Y, Tsay OG, Churchill DG. A tutorial and mini-review of the ICP-MS technique for determinations of transition metal ion and main group element concentration in the neurodegenerative and brain sciences. MONATSHEFTE FUR CHEMIE 2011. [DOI: 10.1007/s00706-010-0438-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
125
|
Hands SL, Wyttenbach A. Neurotoxic protein oligomerisation associated with polyglutamine diseases. Acta Neuropathol 2010; 120:419-37. [PMID: 20514488 DOI: 10.1007/s00401-010-0703-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 05/20/2010] [Accepted: 05/23/2010] [Indexed: 02/07/2023]
Abstract
Polyglutamine (polyQ) diseases are associated with a CAG/polyQ expansion mutation in unrelated proteins. Upon elongation of the glutamine tract, disease proteins aggregate within cells, mainly in the central nervous system (CNS) and this aggregation process is associated with neurotoxicity. However, it remains unclear to what extent and how this aggregation causes neuronal dysfunction in the CNS. Aiming at preventing neuronal dysfunction, it will be crucial to determine the links between aggregation and cellular dysfunction, understand the folding pathway of polyQ proteins and discover the relative neurotoxicity of polyQ protein species formed along the aggregation pathway. Here, we review what is known about conformations of polyQ peptides and proteins in their monomeric state from experimental and modelling data, how conformational changes of polyQ proteins relate to their oligomerisation and morphology of aggregates and which cellular function are impaired by oligomers, in vitro and in vivo. We also summarise the key modulatory cellular mechanisms and co-factors, which could affect the folding pathway and kinetics of polyQ aggregation. Although many studies have investigated the relationship between polyQ aggregation and toxicity, these have mainly focussed on investigating changes in the formation of the classical hallmark of polyQ diseases, i.e. microscopically visible inclusion bodies. However, recent studies in which oligomeric species have been considered start to shed light on the identity of neurotoxic oligomeric species. Initial evidence suggests that conformational changes induced by polyQ expansions and their surrounding sequence lead to the formation of particular oligomeric intermediates that may differentially affect neurotoxicity.
Collapse
Affiliation(s)
- Sarah L Hands
- Southampton Neuroscience Group, School of Biological Sciences, University of Southampton, Southampton SO16 7PX, UK
| | | |
Collapse
|
126
|
Williams BB, Kwakye GF, Wegrzynowicz M, Li D, Aschner M, Erikson KM, Bowman AB. Altered manganese homeostasis and manganese toxicity in a Huntington's disease striatal cell model are not explained by defects in the iron transport system. Toxicol Sci 2010; 117:169-79. [PMID: 20547568 PMCID: PMC2923282 DOI: 10.1093/toxsci/kfq174] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 06/07/2010] [Indexed: 01/19/2023] Open
Abstract
Expansion of a polyglutamine tract in Huntingtin (Htt) leads to the degeneration of medium spiny neurons in Huntington's disease (HD). Furthermore, the HTT gene has been functionally linked to iron (Fe) metabolism, and HD patients show alterations in brain and peripheral Fe homeostasis. Recently, we discovered that expression of mutant HTT is associated with impaired manganese (Mn) uptake following overexposure in a striatal neuronal cell line and mouse model of HD. Here we test the hypothesis that the transferrin receptor (TfR)-mediated Fe uptake pathway is responsible for the HD-associated defects in Mn uptake. Western blot analysis showed that TfR levels are reduced in the mutant STHdh(Q111/Q111) striatal cell line, whereas levels of the Fe and Mn transporter, divalent metal transporter 1 (DMT1), are unchanged. To stress the Fe transport system, we exposed mutant and wild-type cells to elevated Fe(III), which revealed a subtle impairment in net Fe uptake only at the highest Fe exposures. In contrast, the HD mutant line exhibited substantial deficits in net Mn uptake, even under basal conditions. Finally, to functionally evaluate a role for Fe transporters in the Mn uptake deficit, we examined Mn toxicity in the presence of saturating Fe(III) levels. Although Fe(III) exposure decreased Mn neurotoxicity, it did so equally for wild-type and mutant cells. Therefore, although Fe transporters contribute to Mn uptake and toxicity in the striatal cell lines, functional alterations in this pathway are insufficient to explain the strong Mn resistance phenotype of this HD cell model.
Collapse
Affiliation(s)
- B. Blairanne Williams
- Neuroscience Graduate Program
- Department of Neurology
- Vanderbilt Kennedy Center for Research on Human Development
- Vanderbilt Brain Institute
- Center in Molecular Toxicology
| | - Gunnar F. Kwakye
- Neuroscience Graduate Program
- Department of Neurology
- Vanderbilt Kennedy Center for Research on Human Development
- Vanderbilt Brain Institute
- Center in Molecular Toxicology
| | | | - Daphne Li
- Department of Neurology
- Vanderbilt Kennedy Center for Research on Human Development
| | - Michael Aschner
- Vanderbilt Kennedy Center for Research on Human Development
- Vanderbilt Brain Institute
- Center in Molecular Toxicology
- Department of Pediatrics
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Keith M. Erikson
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, North Carolina 27402-6107
| | - Aaron B. Bowman
- Department of Neurology
- Vanderbilt Kennedy Center for Research on Human Development
- Vanderbilt Brain Institute
- Center in Molecular Toxicology
| |
Collapse
|
127
|
Rivera-Mancía S, Pérez-Neri I, Ríos C, Tristán-López L, Rivera-Espinosa L, Montes S. The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact 2010; 186:184-99. [DOI: 10.1016/j.cbi.2010.04.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 01/22/2010] [Accepted: 04/08/2010] [Indexed: 12/14/2022]
|
128
|
Metallothioneins and copper metabolism are candidate therapeutic targets in Huntington's disease. Biochem Soc Trans 2010; 38:552-8. [PMID: 20298220 DOI: 10.1042/bst0380552] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
HD (Huntington's disease) is caused by a polyQ (polyglutamine) expansion in the huntingtin protein, which leads to protein misfolding and aggregation of this protein. Abnormal copper accumulation in the HD brain was first reported more than 15 years ago. Recent findings show that copper-regulatory genes are induced during HD and copper binds to an N-terminal fragment of huntingtin, supporting the involvement of abnormal copper metabolism in HD. We have demonstrated that in vitro copper accelerates the fibrillization of an N-terminal fragment of huntingtin with an expanded polyQ stretch (httExon1). As we found that copper also increases polyQ aggregation and toxicity in mammalian cells expressing httExon1, we investigated further whether overexpression of genes involved in copper metabolism, notably MTs (metallothioneins) known to bind copper, protect against httExon1 toxicity. Using a yeast model of HD, we have shown that overexpression of several genes involved in copper metabolism reduces polyQ-mediated toxicity. Overexpression of MT-3 in mammalian cells significantly reduced polyQ aggregation and toxicity. We propose that copper-binding and/or -chaperoning proteins, especially MTs, are potential therapeutic targets for HD.
Collapse
|
129
|
Quamme GA. Molecular identification of ancient and modern mammalian magnesium transporters. Am J Physiol Cell Physiol 2010; 298:C407-29. [DOI: 10.1152/ajpcell.00124.2009] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A large number of mammalian Mg2+ transporters have been hypothesized on the basis of physiological data, but few have been investigated at the molecular level. The recent identification of a number of novel proteins that mediate Mg2+ transport has enhanced our understanding of how Mg2+ is translocated across mammalian membranes. Some of these transporters have some similarity to those found in prokaryocytes and yeast cells. Human Mrs2, a mitochondrial Mg2+ channel, shares many of the properties of the bacterial CorA and yeast Alr1 proteins. The SLC41 family of mammalian Mg2+ transporters has a similarity with some regions of the bacterial MgtE transporters. The mammalian ancient conserved domain protein (ACDP) Mg2+ transporters are found in prokaryotes, suggesting an ancient origin. However, other newly identified mammalian transporters, including TRPM6/7, MagT, NIPA, MMgT, and HIP14 families, are not represented in prokaryotic genomes, suggesting more recent development. MagT, NIPA, MMgT, and HIP14 transporters were identified by differential gene expression using microarray analysis. These proteins, which are found in many different tissues and subcellular organelles, demonstrate a diversity of structural properties and biophysical functions. The mammalian Mg2+ transporters have no obvious amino acid similarities, indicating that there are many ways to transport Mg2+ across membranes. Most of these proteins transport a number of divalent cations across membranes. Only MagT1 and NIPA2 are selective for Mg2+. Many of the identified mammalian Mg2+ transporters are associated with a number of congenital disorders encompassing a wide range of tissues, including intestine, kidney, brain, nervous system, and skin. It is anticipated that future research will identify other novel Mg2+ transporters and reveal other diseases.
Collapse
Affiliation(s)
- Gary A. Quamme
- Vancouver Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
130
|
Williams BB, Li D, Wegrzynowicz M, Vadodaria BK, Anderson JG, Kwakye GF, Aschner M, Erikson KM, Bowman AB. Disease-toxicant screen reveals a neuroprotective interaction between Huntington's disease and manganese exposure. J Neurochem 2010; 112:227-37. [PMID: 19845833 PMCID: PMC3083829 DOI: 10.1111/j.1471-4159.2009.06445.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recognizing the similarities between Huntington's disease (HD) pathophysiology and the neurotoxicology of various metals, we hypothesized that they may exhibit disease-toxicant interactions revealing cellular pathways underlying neurodegeneration. Here, we utilize metals and the STHdh mouse striatal cell line model of HD to perform a gene-environment interaction screen. We report that striatal cells expressing mutant Huntingtin exhibit elevated sensitivity to cadmium toxicity and resistance to manganese toxicity. This neuroprotective gene-environment interaction with manganese is highly specific, as it does not occur with iron, copper, zinc, cobalt, cadmium, lead, or nickel ions. Analysis of the Akt cell stress signaling pathway showed diminished activation with manganese exposure and elevated activation after cadmium exposure in the mutant cells. Direct examination of intracellular manganese levels found that mutant cells have a significant impairment in manganese accumulation. Furthermore, YAC128Q mice, a HD model, showed decreased total striatal manganese levels following manganese exposure relative to wild-type mice. Thus, this disease-toxicant interaction screen has revealed that expression of mutant Huntingtin results in heightened sensitivity to cadmium neurotoxicity and a selective impairment of manganese accumulation.
Collapse
Affiliation(s)
- B. Blairanne Williams
- Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
| | - Daphne Li
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
| | - Michal Wegrzynowicz
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
| | - Bhavin K. Vadodaria
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
| | - Joel G. Anderson
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA, 27402-6107
| | - Gunnar F. Kwakye
- Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
| | - Michael Aschner
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Departments of Pediatrics and Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
| | - Keith M. Erikson
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA, 27402-6107
| | - Aaron B. Bowman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
| |
Collapse
|
131
|
Affiliation(s)
- George J. Brewer
- Departments of Human Genetics and Internal Medicine, University of Michigan Medical School,Ann Arbor, Michigan
| |
Collapse
|
132
|
Navarra G, Tinti A, Leone M, Militello V, Torreggiani A. Influence of metal ions on thermal aggregation of bovine serum albumin: Aggregation kinetics and structural changes. J Inorg Biochem 2009; 103:1729-38. [DOI: 10.1016/j.jinorgbio.2009.09.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 09/24/2009] [Accepted: 09/25/2009] [Indexed: 11/15/2022]
|
133
|
Suhre MH, Hess S, Golser AV, Scheibel T. Influence of divalent copper, manganese and zinc ions on fibril nucleation and elongation of the amyloid-like yeast prion determinant Sup35p-NM. J Inorg Biochem 2009; 103:1711-20. [DOI: 10.1016/j.jinorgbio.2009.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 01/28/2023]
|
134
|
Grazul M, Budzisz E. Biological activity of metal ions complexes of chromones, coumarins and flavones. Coord Chem Rev 2009. [DOI: 10.1016/j.ccr.2009.06.015] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
135
|
Heterogeneity of nervous system mitochondria: Location, location, location! Exp Neurol 2009; 218:293-307. [DOI: 10.1016/j.expneurol.2009.05.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 04/30/2009] [Accepted: 05/08/2009] [Indexed: 01/03/2023]
|
136
|
Gardiner J, Barton D, Overall R, Marc J. Neurotrophic support and oxidative stress: converging effects in the normal and diseased nervous system. Neuroscientist 2009; 15:47-61. [PMID: 19218230 DOI: 10.1177/1073858408325269] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Oxidative stress and loss of neurotrophic support play major roles in the development of various diseases of the central and peripheral nervous systems. In disorders of the central nervous system such as Alzheimer's, Parkinson's, and Huntington's diseases, oxidative stress appears inextricably linked to the loss of neurotrophic support. A similar situation is seen in the peripheral nervous system in diseases of olfaction, hearing, and vision. Neurotrophic factors act to up-regulate antioxidant enzymes and promote the expression of antioxidant proteins. On the other hand, oxidative stress can cause down-regulation of neurotrophic factors. We propose that normal functioning of the nervous systems involves a positive feedback loop between antioxidant processes and neurotrophic support. Breakdown of this feedback loop in disease states leads to increased oxidative stress and reduced neurotrophic support.
Collapse
Affiliation(s)
- John Gardiner
- School of Biological Sciences, University of Sydney, Camperdown, Australia.
| | | | | | | |
Collapse
|
137
|
Vašák M, Meloni G. Metallothionein-3, Zinc, and Copper in the Central Nervous System. METALLOTHIONEINS AND RELATED CHELATORS 2009. [DOI: 10.1039/9781847559531-00319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metallothionein-3 (MT-3), also known as the neuronal growth inhibitory factor, has been discovered by Uchida and coworkers in 1991 in their search for a cellular component responsible for antagonizing aberrant neuritic sprouting and increased survival of cultured neurons stimulated by Alzheimer's disease (AD) brain extract. Since this initial discovery further studies showed that MT-3 possesses peculiar structural and functional properties not shared by other members of the mammalian MT family. Several lines of evidence suggest that the metal-binding protein MT-3 plays a vital role in zinc and copper homeostasis in the brain. Although far from being understood, the unusual structural properties of MT-3 are responsible for its neuronal growth inhibitory activity, involvement in trafficking of zinc vesicles in the central nervous system, protection against copper-mediated toxicity in AD and in controlling abnormal metal-protein interactions in other neurodegenerative disorders.
Collapse
Affiliation(s)
- Milan Vašák
- Institute of Biochemistry, University of Zürich Winterthurerstrasse 190 CH-8057 Zürich Switzerland
| | - Gabriele Meloni
- Institute of Biochemistry, University of Zürich Winterthurerstrasse 190 CH-8057 Zürich Switzerland
| |
Collapse
|
138
|
Abstract
PURPOSE OF REVIEW To review the toxicity and risks of free copper in Wilson's disease, Alzheimer's disease, other disease of neurodegeneration, and cognitive loss in the general population. We will also review the anticopper drugs and how lowering free copper levels with an anticopper drug inhibits fibrosis, inflammation, and autoimmunity. RECENT FINDINGS Some exciting recent work indicates that free copper levels are increased in Alzheimer's disease, and copper may be involved in disease pathogenesis, opening the way to possible therapy of Alzheimer's disease with anticopper drugs. Copper may also be involved in other diseases of neurodegeneration. A very exciting recent study indicts high intake of copper, mostly from copper supplements, in conjunction with a high-fat diet in more rapid cognitive decline in the general population. Other data indicate that even low levels of copper in drinking water, perhaps similar to copper supplements, bypasses the liver, enters the circulation, increases the blood-brain penetration of copper, and may cause damage. SUMMARY Some of the implications are that Alzheimer's disease and other diseases of neurodegeneration and fibrotic, inflammatory, and autoimmune diseases may be treatable by lowering the availability of free copper. People in the general population may wish to take steps to lower their free copper levels and, in particular, to abstain from taking copper supplements and ingesting significant amounts of copper in drinking water.
Collapse
Affiliation(s)
- George J Brewer
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109-5720, USA.
| |
Collapse
|
139
|
Abstract
Copper is a trace element present in all tissues and is required for cellular respiration, peptide amidation, neurotransmitter biosynthesis, pigment formation, and connective tissue strength. Copper is a cofactor for numerous enzymes and plays an important role in central nervous system development; low concentrations of copper may result in incomplete development, whereas excess copper maybe injurious. Copper may be involved in free radical production, via the Haber-Weiss reaction, that results in mitochondrial damage, DNA breakage, and neuronal injury. Evidence of abnormal copper transport and aberrant copper-protein interactions in numerous human neurological disorders supports the critical importance of this trace metal for proper neurodevelopment and neurological function. The biochemical phenotypes of human disorders that involve copper homeostasis suggest possible biomarkers of copper status that may be applicable to general populations.
Collapse
Affiliation(s)
- Vishal Desai
- Unit on Pediatric Genetics, Program in Molecular Medicine, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
140
|
Skalnikova H, Vodicka P, Gadher SJ, Kovarova H. Proteomics of neural stem cells. Expert Rev Proteomics 2008; 5:175-86. [PMID: 18466050 DOI: 10.1586/14789450.5.2.175] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The isolation of neural stem cells from fetal and adult mammalian CNS and the demonstration of functional neurogenesis in adult CNS have offered perspectives for treatment of many devastating hereditary and acquired neurological diseases. Due to this enormous potential, neural stem cells are a subject of extensive molecular profiling studies with a search for new markers and regulatory pathways governing their self-renewal as opposed to differentiation. Several in-depth proteomic studies have been conducted on primary or immortalized cultures of neural stem cells and neural progenitor cells, and yet more remains to be done. Additionally, neurons and glial cells have been obtained from embryonic stem cells and mesenchymal stem cells, and proteins associated with the differentiation process have been characterized to a certain degree with a view to further investigations. This review summarizes recent findings relevant to the proteomics of neural stem cells and discusses major proteins significantly regulated during neural stem cell differentiation with a view to their future use in cell-based regenerative and reparative therapy.
Collapse
Affiliation(s)
- Helena Skalnikova
- Institute of Animal Physiology & Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 277 21 Libechov, Czech Republic.
| | | | | | | |
Collapse
|
141
|
Bánhegyi G, Mandl J, Csala M. Redox-based endoplasmic reticulum dysfunction in neurological diseases. J Neurochem 2008; 107:20-34. [PMID: 18643792 DOI: 10.1111/j.1471-4159.2008.05571.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The redox homeostasis of the endoplasmic reticulum lumen is characteristically different from that of the other subcellular compartments. The concerted action of membrane transport processes and oxidoreductase enzymes maintain the oxidized state of the thiol-disulfide and the reducing state of the pyridine nucleotide redox systems, which are prerequisites for the normal functions of the organelle. The powerful thiol-oxidizing machinery allows oxidative protein folding but continuously challenges the local antioxidant defense. Alterations of the cellular redox environment either in oxidizing or reducing direction affect protein processing and may induce endoplasmic reticulum stress and unfolded protein response. The activated signaling pathways attempt to restore the balance between protein loading and processing and induce apoptosis if the attempt fails. Recent findings strongly support the involvement of this mechanism in brain ischemia, neuronal degenerative diseases and traumatic injury. The redox changes in the endoplasmic reticulum are integral parts of the pathomechanism of neurological diseases, either as causative agents, or as complications.
Collapse
Affiliation(s)
- Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|
142
|
Rahimi Y, Goulding A, Shrestha S, Mirpuri S, Deo SK. Mechanism of copper induced fluorescence quenching of red fluorescent protein, DsRed. Biochem Biophys Res Commun 2008; 370:57-61. [PMID: 18348863 PMCID: PMC2527065 DOI: 10.1016/j.bbrc.2008.03.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 03/04/2008] [Indexed: 01/28/2023]
Abstract
The red fluorescent protein, DsRed, and a few of its mutants have been shown to bind copper ions resulting in quenching of its fluorescence. The response to Cu(2+) is rapid, selective, and reversible upon addition of a copper chelator. DsRed has been employed as an in vitro probe for Cu(2+) determination by us and other groups. It is also envisioned that DsRed can serve as an intracellular genetically encoded indicator of Cu(2+) concentration, and can be targeted to desired subcellular locations for Cu(2+) determination. However, no information has been reported yet regarding the mechanism of the fluorescence quenching of DsRed in the presence of Cu(2+). In this work, we have performed spectroscopic investigations to determine the mechanism of quenching of DsRed fluorescence in the presence of Cu(2+). We have studied the effect of Cu(2+) addition on two representative mutants of DsRed, specifically, DsRed-Monomer and DsRed-Express. Both proteins bind Cu(2+) with micromolar affinities. Stern-Volmer plots generated at different temperatures indicate a static quenching process in the case of both proteins in the presence of Cu(2+). This mechanism was further studied using absorption spectroscopy. Stern-Volmer constants and quenching rate constants support the observation of static quenching in DsRed in the presence of Cu(2+). Circular dichroism (CD)-spectroscopic studies revealed no effect of Cu(2+)-binding on the secondary structure or conformation of the protein. The effect of pH changes on the quenching of DsRed fluorescence in the presence of copper resulted in pK(a) values indicative of histidine and cysteine residue involvement in Cu(2+)-binding.
Collapse
Affiliation(s)
- Yasmeen Rahimi
- Department of Chemistry & Chemical Biology Indiana University Purdue University Indianapolis Indianapolis, IN 46202
| | - Ann Goulding
- Department of Chemistry & Chemical Biology Indiana University Purdue University Indianapolis Indianapolis, IN 46202
| | - Suresh Shrestha
- Department of Chemistry & Chemical Biology Indiana University Purdue University Indianapolis Indianapolis, IN 46202
| | - Sweetie Mirpuri
- Department of Chemistry & Chemical Biology Indiana University Purdue University Indianapolis Indianapolis, IN 46202
| | - Sapna K. Deo
- Department of Chemistry & Chemical Biology Indiana University Purdue University Indianapolis Indianapolis, IN 46202
| |
Collapse
|
143
|
Twenty years of metallo-neurobiology: where to now? EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 37:241-5. [PMID: 17994233 DOI: 10.1007/s00249-007-0228-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 10/02/2007] [Accepted: 10/09/2007] [Indexed: 12/19/2022]
Abstract
The redox active transition metals Cu2+ and Fe3+ have been proposed as important factors in the neuropathology of Alzheimer's disease (AD) and other neurodegenerative diseases. The field that has been called metallo-neurobiology has expanded greatly in the last 20 years. Although there is much experimental evidence on various aspects of the interaction between these metals and the molecular and supramolecular components of the neuropil and the structural biology of metal binding, we are far from fully understanding the part this interaction plays in the normal CNS and in neurodegeneration. This understanding is needed if we are to move beyond the promising, but semi-empirical, approaches to therapies of these diseases based on metal attenuation.
Collapse
|