101
|
Nguyen MC, Saurel O, Carivenc C, Gavalda S, Saitta S, Tran MP, Milon A, Chalut C, Guilhot C, Mourey L, Pedelacq JD. Conformational flexibility of coenzyme A and its impact on the post-translational modification of acyl carrier proteins by 4'-phosphopantetheinyl transferases. FEBS J 2020; 287:4729-4746. [PMID: 32128972 DOI: 10.1111/febs.15273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 01/20/2020] [Accepted: 02/29/2020] [Indexed: 12/01/2022]
Abstract
One central question surrounding the biosynthesis of fatty acids and polyketide-derived natural products is how the 4'-phosphopantetheinyl transferase (PPTase) interrogates the essential acyl carrier protein (ACP) domain to fulfill the initial activation step. The triggering factor of this study was the lack of structural information on PPTases at physiological pH, which could bias our comprehension of the mechanism of action of these important enzymes. Structural and functional studies on the family II PPTase PptAb of Mycobacterium abscessus show that pH has a profound effect on the coordination of metal ions and on the conformation of endogenously bound coenzyme A (CoA). The observed conformational flexibility of CoA at physiological pH is accompanied by a disordered 4'-phosphopantetheine (Ppant) moiety. Finally, structural and dynamical information on an isolated mycobacterial ACP domain, in its apo form and in complex with the activator PptAb, suggests an alternate mechanism for the post-translational modification of modular megasynthases.
Collapse
Affiliation(s)
- Minh Chau Nguyen
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Saurel
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Coralie Carivenc
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sabine Gavalda
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Stéphane Saitta
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Mai Phuong Tran
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alain Milon
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Denis Pedelacq
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
102
|
Johansen MD, Herrmann JL, Kremer L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat Rev Microbiol 2020; 18:392-407. [PMID: 32086501 DOI: 10.1038/s41579-020-0331-1] [Citation(s) in RCA: 455] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2020] [Indexed: 12/17/2022]
Abstract
Infections caused by non-tuberculous mycobacteria (NTM) are increasing globally and are notoriously difficult to treat due to intrinsic resistance of these bacteria to many common antibiotics. NTM are diverse and ubiquitous in the environment, with only a few species causing serious and often opportunistic infections in humans, including Mycobacterium abscessus. This rapidly growing mycobacterium is one of the most commonly identified NTM species responsible for severe respiratory, skin and mucosal infections in humans. It is often regarded as one of the most antibiotic-resistant mycobacteria, leaving us with few therapeutic options. In this Review, we cover the proposed infection process of M. abscessus, its virulence factors and host interactions and highlight the commonalities and differences of M. abscessus with other NTM species. Finally, we discuss drug resistance mechanisms and future therapeutic options. Taken together, this knowledge is essential to further our understanding of this overlooked and neglected global threat.
Collapse
Affiliation(s)
- Matt D Johansen
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-Le-Bretonneux, France.,AP-HP. GHU Paris Saclay, Hôpital Raymond Poincaré, Garches, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier, France. .,Inserm, Institut de Recherche en Infectiologie de Montpellier, Montpellier, France.
| |
Collapse
|
103
|
Effect of Amoxicillin in combination with Imipenem-Relebactam against Mycobacterium abscessus. Sci Rep 2020; 10:928. [PMID: 31988293 PMCID: PMC6985242 DOI: 10.1038/s41598-020-57844-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/06/2020] [Indexed: 11/08/2022] Open
Abstract
Infections caused by Mycobacterium abscessus are increasing in prevalence in cystic fibrosis patients. This opportunistic pathogen's intrinsic resistance to most antibiotics has perpetuated an urgent demand for new, more effective therapeutic interventions. Here we report a prospective advance in the treatment of M. abscessus infection; increasing the susceptibility of the organism to amoxicillin, by repurposing the β-lactamase inhibitor, relebactam, in combination with the front line M. abscessus drug imipenem. We establish by multiple in vitro methods that this combination works synergistically to inhibit M. abscessus. We also show the direct competitive inhibition of the M. abscessus β-lactamase, BlaMab, using a novel assay, which is validated kinetically using the nitrocefin reporter assay and in silico binding studies. Furthermore, we reverse the susceptibility by overexpressing BlaMab in M. abscessus, demonstrating relebactam-BlaMab target engagement. Finally, we highlight the in vitro efficacy of this combination against a panel of M. abscessus clinical isolates, revealing the therapeutic potential of the amoxicillin-imipenem-relebactam combination.
Collapse
|
104
|
Comparative Analysis of Whole-Genome and Methylome Profiles of a Smooth and a Rough Mycobacterium abscessus Clinical Strain. G3-GENES GENOMES GENETICS 2020; 10:13-22. [PMID: 31719113 PMCID: PMC6945021 DOI: 10.1534/g3.119.400737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mycobacterium abscessus is a fast growing Mycobacterium species mainly causing skin and respiratory infections in human. M. abscessus is resistant to numerous drugs, which is a major challenge for the treatment. In this study, we have sequenced the genomes of two clinical M. abscessus strains having rough and smooth morphology, using the single molecule real-time and Illumina HiSeq sequencing technology. In addition, we reported the first comparative methylome profiles of a rough and a smooth M. abscessus clinical strains. The number of N4-methylcytosine (4mC) and N6-methyladenine (6mA) modified bases obtained from smooth phenotype were two-fold and 1.6 fold respectively higher than that of rough phenotype. We have also identified 4 distinct novel motifs in two clinical strains and genes encoding antibiotic-modifying/targeting enzymes and genes associated with intracellular survivability having different methylation patterns. To our knowledge, this is the first report about genome-wide methylation profiles of M. abscessus strains and identification of a natural linear plasmid (15 kb) in this critical pathogen harboring methylated bases. The pan-genome analysis of 25 M. abscessus strains including two clinical strains revealed an open pan genome comprises of 7596 gene clusters. Likewise, structural variation analysis revealed that the genome of rough phenotype strain contains more insertions and deletions than the smooth phenotype and that of the reference strain. A total of 391 single nucleotide variations responsible for the non-synonymous mutations were detected in clinical strains compared to the reference genome. The comparative genomic analysis elucidates the genome plasticity in this emerging pathogen. Furthermore, the detection of genome-wide methylation profiles of M. abscessus clinical strains may provide insight into the significant role of DNA methylation in pathogenicity and drug resistance in this opportunistic pathogen.
Collapse
|
105
|
Sardiña LA, Kaw U, Jour G, Knabel D, Dyck RM, Procop GW, Bergfeld WF, Harrington S, Demkowicz R, Piliang MP. Diagnosis of Mycobacterium abscessus/chelonae complex cutaneous infection: Correlation of tissue culture and skin biopsy. J Cutan Pathol 2019; 47:321-327. [PMID: 31804711 DOI: 10.1111/cup.13623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/06/2019] [Accepted: 11/15/2019] [Indexed: 01/05/2023]
Abstract
Mycobacterium abscessus and M. chelonae belong to the rapid-growing nontuberculous mycobacteria (NTM) group, which are defined by their ability to form visible colonies on agar within 7 days of subculture. Cutaneous infections by this complex show a heterogeneous clinical presentation with varied histopathologic findings. However, the presence of vacuoles in many specimens has been reported as a specific histologic finding. Herein, we correlate the histopathology of patients with tissue-culture positive M. abscessus/M. chelonae complex in order to identify features that may prompt a rapid categorization of the infectious etiology. The cohort includes 33 skin punch biopsy specimens from 28 patients who had associated positive tissue cultures. The most frequent clinical presentation was a single or multiple nodule. Twenty-seven specimens (81.81%) were found to have vacuoles. The observation of certain histologic features (ie, polymorphonuclear microabscesses and epithelioid granuloma formation) should raise the possibility of infection by NTM. In addition to these findings, we believe the presence of vacuoles in the dermal and subcutaneous inflammation should raise suspicion for NTM.
Collapse
Affiliation(s)
- Luis A Sardiña
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Dermatology, Cleveland Clinic, Cleveland, Ohio
| | - Urvashi Kaw
- Department of Dermatology, Cleveland Clinic, Cleveland, Ohio
| | - George Jour
- Department of Pathology and Dermatology, New York Langone Medical Center, New York, New York
| | - Daniel Knabel
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Dermatology, Cleveland Clinic, Cleveland, Ohio
| | - Rayna M Dyck
- Department of Dermatology, Cleveland Clinic, Cleveland, Ohio.,Skin Wellness Center Of Alabama, Birmingham, Alabama
| | - Gary W Procop
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Wilma F Bergfeld
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Dermatology, Cleveland Clinic, Cleveland, Ohio
| | - Susan Harrington
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ryan Demkowicz
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Melissa P Piliang
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Dermatology, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
106
|
Sorayah R, Manimekalai MSS, Shin SJ, Koh WJ, Grüber G, Pethe K. Naturally-Occurring Polymorphisms in QcrB Are Responsible for Resistance to Telacebec in Mycobacterium abscessus. ACS Infect Dis 2019; 5:2055-2060. [PMID: 31599569 DOI: 10.1021/acsinfecdis.9b00322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacterium abscessus (M. abscessus) is a rapidly growing nontuberculous mycobacteria that is quickly emerging as a global health concern. M. abscessus pulmonary infections are frequently intractable due to the high intrinsic resistance to most antibiotics. Therefore, there is an urgent need to discover effective pharmacological options for M. abscessus infections. In this study, the potency of the antituberculosis drug Telacebec (Q203) was evaluated against M. abscessus. Q203 is a clinical-stage drug candidate targeting the subunit QcrB of the cytochrome bc1:aa3 terminal oxidase. We demonstrated that the presence of four naturally-occurring polymorphisms in the M. abscessus QcrB is responsible for the high resistance of the bacterium to Q203. Genetics reversion of the four polymorphisms sensitized M. abscessus to Q203. While this study highlights the limitation of a direct drug repurposing approach of Q203 and related drugs for M. abscessus infections, it reveals that the M. abscessus cytochrome bc1:aa3 respiratory branch is sensitive to chemical inhibition.
Collapse
Affiliation(s)
- Ria Sorayah
- NTU Institute for Health Technologies (HealthTech NTU), Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore 637553, Singapore
| | | | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 16419, South Korea
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Kevin Pethe
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
107
|
Alex A, Antunes A. Comparative Genomics Reveals Metabolic Specificity of Endozoicomonas Isolated from a Marine Sponge and the Genomic Repertoire for Host-Bacteria Symbioses. Microorganisms 2019; 7:microorganisms7120635. [PMID: 31801294 PMCID: PMC6955870 DOI: 10.3390/microorganisms7120635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 11/29/2022] Open
Abstract
The most recently described bacterial members of the genus Endozoicomonas have been found in association with a wide variety of marine invertebrates. Despite their ubiquity in the host holobiont, limited information is available on the molecular genomic signatures of the symbiotic association of Endozoicomonas with marine sponges. Here, we generated a draft genome of Endozoicomonas sp. OPT23 isolated from the intertidal marine sponge Ophlitaspongia papilla and performed comprehensive comparative genomics analyses. Genome-specific analysis and metabolic pathway comparison of the members of the genus Endozoicomonas revealed the presence of gene clusters encoding for unique metabolic features, such as the utilization of carbon sources through lactate, L-rhamnose metabolism, and a phenylacetic acid degradation pathway in Endozoicomonas sp. OPT23. Moreover, the genome harbors genes encoding for eukaryotic-like proteins, such as ankyrin repeats, tetratricopeptide repeats, and Sel1 repeats, which likely facilitate sponge-bacterium attachment. The genome also encodes major secretion systems and homologs of effector molecules that seem to enable the sponge-associated bacterium to interact with the sponge and deliver the virulence factors for successful colonization. In conclusion, the genome analysis of Endozoicomonas sp. OPT23 revealed the presence of adaptive genomic signatures that might favor their symbiotic lifestyle within the sponge host.
Collapse
Affiliation(s)
- Anoop Alex
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Correspondence: (A.Al.); (A.An.); Tel.: +351-22-340-1813 (A.Al.); +351-22-340-1813 (A.An.)
| | - Agostino Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Correspondence: (A.Al.); (A.An.); Tel.: +351-22-340-1813 (A.Al.); +351-22-340-1813 (A.An.)
| |
Collapse
|
108
|
Skwark MJ, Torres PHM, Copoiu L, Bannerman B, Floto RA, Blundell TL. Mabellini: a genome-wide database for understanding the structural proteome and evaluating prospective antimicrobial targets of the emerging pathogen Mycobacterium abscessus. Database (Oxford) 2019; 2019:5611286. [PMID: 31681953 PMCID: PMC6853642 DOI: 10.1093/database/baz113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/31/2019] [Accepted: 08/28/2019] [Indexed: 02/02/2023]
Abstract
Mycobacterium abscessus, a rapid growing, multidrug resistant, nontuberculous mycobacteria, can cause a wide range of opportunistic infections, particularly in immunocompromised individuals. M. abscessus has emerged as a growing threat to patients with cystic fibrosis, where it causes accelerated inflammatory lung damage, is difficult and sometimes impossible to treat and can prevent safe transplantation. There is therefore an urgent unmet need to develop new therapeutic strategies. The elucidation of the M. abscessus genome in 2009 opened a wide range of research possibilities in the field of drug discovery that can be more effectively exploited upon the characterization of the structural proteome. Where there are no experimental structures, we have used the available amino acid sequences to create 3D models of the majority of the remaining proteins that constitute the M. abscessus proteome (3394 proteins and over 13 000 models) using a range of up-to-date computational tools, many developed by our own group. The models are freely available for download in an on-line database, together with quality data and functional annotation. Furthermore, we have developed an intuitive and user-friendly web interface (http://www.mabellinidb.science) that enables easy browsing, querying and retrieval of the proteins of interest. We believe that this resource will be of use in evaluating the prospective targets for design of antimicrobial agents and will serve as a cornerstone to support the development of new molecules to treat M. abscessus infections.
Collapse
Affiliation(s)
- Marcin J Skwark
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Pedro H M Torres
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Liviu Copoiu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Bridget Bannerman
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - R Andres Floto
- Molecular Immunity Unit, Department of Medicine University of Cambridge, MRC-Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
and,Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge CB23 3RE, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK,Corresponding author: Tel: +44 1223 333628; Fax: +44 1223 766002;
| |
Collapse
|
109
|
Dubois V, Pawlik A, Bories A, Le Moigne V, Sismeiro O, Legendre R, Varet H, Rodríguez-Ordóñez MDP, Gaillard JL, Coppée JY, Brosch R, Herrmann JL, Girard-Misguich F. Mycobacterium abscessus virulence traits unraveled by transcriptomic profiling in amoeba and macrophages. PLoS Pathog 2019; 15:e1008069. [PMID: 31703112 PMCID: PMC6839843 DOI: 10.1371/journal.ppat.1008069] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/04/2019] [Indexed: 01/04/2023] Open
Abstract
Free-living amoebae are thought to represent an environmental niche in which amoeba-resistant bacteria may evolve towards pathogenicity. To get more insights into factors playing a role for adaptation to intracellular life, we characterized the transcriptomic activities of the emerging pathogen Mycobacterium abscessus in amoeba and murine macrophages (Mϕ) and compared them with the intra-amoebal transcriptome of the closely related, but less pathogenic Mycobacterium chelonae. Data on up-regulated genes in amoeba point to proteins that allow M. abscessus to resist environmental stress and induce defense mechanisms, as well as showing a switch from carbohydrate carbon sources to fatty acid metabolism. For eleven of the most upregulated genes in amoeba and/or Mϕ, we generated individual gene knock-out M. abscessus mutant strains, from which ten were found to be attenuated in amoeba and/or Mϕ in subsequence virulence analyses. Moreover, transfer of two of these genes into the genome of M. chelonae increased the intra-Mϕ survival of the recombinant strain. One knock-out mutant that had the gene encoding Eis N-acetyl transferase protein (MAB_4532c) deleted, was particularly strongly attenuated in Mϕ. Taken together, M. abscessus intra-amoeba and intra-Mϕ transcriptomes revealed the capacity of M. abscessus to adapt to an intracellular lifestyle, with amoeba largely contributing to the enhancement of M. abscessus intra-Mϕ survival.
Collapse
Affiliation(s)
- Violaine Dubois
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Alexandre Pawlik
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne intégrée, UMR3525 CNRS, Paris, France
| | - Anouchka Bories
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Vincent Le Moigne
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Odile Sismeiro
- Institut Pasteur—Bioinformatics and Biostatistics Hub—C3BI, USR 3756 IP CNRS, Paris, France
| | - Rachel Legendre
- Institut Pasteur—Bioinformatics and Biostatistics Hub—C3BI, USR 3756 IP CNRS, Paris, France
- Institut Pasteur—Transcriptome and Epigenome Platform—Biomics Pole—CITECH, Paris, France
| | - Hugo Varet
- Institut Pasteur—Bioinformatics and Biostatistics Hub—C3BI, USR 3756 IP CNRS, Paris, France
- Institut Pasteur—Transcriptome and Epigenome Platform—Biomics Pole—CITECH, Paris, France
| | | | - Jean-Louis Gaillard
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
- AP-HP. GHU Paris Saclay, Hôpital Ambroise Paré, Boulogne Billancourt, France
| | - Jean-Yves Coppée
- Institut Pasteur—Bioinformatics and Biostatistics Hub—C3BI, USR 3756 IP CNRS, Paris, France
| | - Roland Brosch
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne intégrée, UMR3525 CNRS, Paris, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
- AP-HP. GHU Paris Saclay, Hôpital Raymond Poincaré, Garches, France
| | - Fabienne Girard-Misguich
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| |
Collapse
|
110
|
Antimicrobial Treatment Provides a Competitive Advantage to Mycobacterium abscessus in a Dual-Species Biofilm with Pseudomonas aeruginosa. Antimicrob Agents Chemother 2019; 63:AAC.01547-19. [PMID: 31451500 DOI: 10.1128/aac.01547-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
The physiological factors that contribute to Mycobacterium abscessus lung infections remain unclear. We determined whether antibiotic treatment targeting a major cystic fibrosis pathogen (i.e., Pseudomonas aeruginosa) could provide the ideal conditions for the establishment of M. abscessus infection. Our data showed that P. aeruginosa inhibited M. abscessus biofilm formation under control conditions and that antimicrobial therapy selectively targeting P. aeruginosa diminished this competitive interaction, thereby increasing M. abscessus survival.
Collapse
|
111
|
The TetR Family Transcription Factor MAB_2299c Regulates the Expression of Two Distinct MmpS-MmpL Efflux Pumps Involved in Cross-Resistance to Clofazimine and Bedaquiline in Mycobacterium abscessus. Antimicrob Agents Chemother 2019; 63:AAC.01000-19. [PMID: 31332077 DOI: 10.1128/aac.01000-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/19/2019] [Indexed: 01/24/2023] Open
Abstract
Mycobacterium abscessus is a human pathogen responsible for severe respiratory infections, particularly in patients with underlying lung disorders. Notorious for being highly resistant to most antimicrobials, new therapeutic approaches are needed to successfully treat M. abscessus-infected patients. Clofazimine (CFZ) and bedaquiline (BDQ) are two antibiotics used for the treatment of multidrug-resistant tuberculosis and are considered alternatives for the treatment of M. abscessus pulmonary disease. To get insights into their mechanisms of resistance in M. abscessus, we previously characterized the TetR transcriptional regulator MAB_2299c, which controls expression of the MAB_2300-MAB_2301 genes, encoding an MmpS-MmpL efflux pump. Here, in silico studies identified a second mmpS-mmpL (MAB_1135c-MAB_1134c) target of MAB_2299c. A palindromic DNA sequence upstream of MAB_1135c, sharing strong homology with the one located upstream of MAB_2300, was found to form a complex with the MAB_2299c regulator in electrophoretic mobility shift assays. Deletion of MAB_1135c-1134c in a wild-type strain led to increased susceptibility to both CFZ and BDQ. In addition, deletion of these genes in a CFZ/BDQ-susceptible mutant lacking MAB_2299c as well as MAB_2300-MAB_2301 further exacerbated the sensitivity of this strain to both drugs in vitro and inside macrophages. Overall, these results indicate that MAB_1135c-1134c encodes a new MmpS-MmpL efflux pump system involved in the intrinsic resistance to CFZ and BDQ. They also support the view that MAB_2299c controls the expression of two separate MmpS-MmpL efflux pumps, substantiating the importance of MAB_2299c as a marker of resistance to be considered when assessing drug susceptibility in clinical isolates.
Collapse
|
112
|
Madani A, Ridenour JN, Martin BP, Paudel RR, Abdul Basir A, Le Moigne V, Herrmann JL, Audebert S, Camoin L, Kremer L, Spilling CD, Canaan S, Cavalier JF. Cyclipostins and Cyclophostin Analogues as Multitarget Inhibitors That Impair Growth of Mycobacterium abscessus. ACS Infect Dis 2019; 5:1597-1608. [PMID: 31299146 DOI: 10.1021/acsinfecdis.9b00172] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Twelve new Cyclophostin and Cyclipostins analogues (CyC19-30) were synthesized, thus extending our series to 38 CyCs. Their antibacterial activities were evaluated against four pathogenic mycobacteria (Mycobacterium abscessus, Mycobacterium marinum, Mycobacterium bovis BCG, and Mycobacterium tuberculosis) and two Gram negative bacteria. The CyCs displayed very low toxicity toward host cells and were only active against mycobacteria. Importantly, several CyCs were active against extracellular M. abscessus (CyC17/CyC18β/CyC25/CyC26) or intramacrophage residing mycobacteria (CyC7(α,β)/CyC8(α,β)) with minimal inhibitory concentrations (MIC50) values comparable to or better than those of amikacin or imipenem, respectively. An activity-based protein profiling combined with mass spectrometry allowed identification of the potential target enzymes of CyC17/CyC26, mostly being involved in lipid metabolism and/or in cell wall biosynthesis. Overall, these results strengthen the selective activity of the CyCs against mycobacteria, including the most drug-resistant M. abscessus, through the cumulative inhibition of a large number of Ser- and Cys-enzymes participating in key physiological processes.
Collapse
Affiliation(s)
- Abdeldjalil Madani
- Aix-Marseille Université, CNRS, LISM, Institut de Microbiologie de la Méditerranée, Marseille, France 13402 Cedex 20
| | - Jeremy N. Ridenour
- Department of Chemistry and Biochemistry, University of Missouri−St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Benjamin P. Martin
- Department of Chemistry and Biochemistry, University of Missouri−St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Rishi R. Paudel
- Department of Chemistry and Biochemistry, University of Missouri−St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Anosha Abdul Basir
- Department of Chemistry and Biochemistry, University of Missouri−St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Vincent Le Moigne
- APHP, GHU PIFO, Hôpital Raymond-Poincaré−Hôpital Ambroise-Paré, 92100 Boulogne-Billancourt, France
| | - Jean-Louis Herrmann
- APHP, GHU PIFO, Hôpital Raymond-Poincaré−Hôpital Ambroise-Paré, 92100 Boulogne-Billancourt, France
- 2I, UVSQ, INSERM UMR 1173, Université Paris-Saclay, 78035 Versailles, France
| | - Stéphane Audebert
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, 13273 Marseille Cedex 09, France
| | - Luc Camoin
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, 13273 Marseille Cedex 09, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 34293 Montpellier, France
- IRIM, INSERM, 34293 Montpellier, France
| | - Christopher D. Spilling
- Department of Chemistry and Biochemistry, University of Missouri−St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Stéphane Canaan
- Aix-Marseille Université, CNRS, LISM, Institut de Microbiologie de la Méditerranée, Marseille, France 13402 Cedex 20
| | - Jean-François Cavalier
- Aix-Marseille Université, CNRS, LISM, Institut de Microbiologie de la Méditerranée, Marseille, France 13402 Cedex 20
| |
Collapse
|
113
|
Cowman S, van Ingen J, Griffith DE, Loebinger MR. Non-tuberculous mycobacterial pulmonary disease. Eur Respir J 2019; 54:13993003.00250-2019. [PMID: 31221809 DOI: 10.1183/13993003.00250-2019] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/31/2019] [Indexed: 02/03/2023]
Abstract
Nontuberculous mycobacterial pulmonary disease (NTM-PD) is a challenging infection which is becoming increasingly prevalent, particularly in the elderly, for reasons which are unknown. While underlying lung disease is a well-established risk factor for NTM-PD, it may also occur in apparently healthy individuals. No single common genetic or immunological defect has been identified in this group, and it is likely that multiple pathways contribute towards host susceptibility to NTM-PD which further interact with environmental and microbiological factors leading to the development of disease.The diagnosis of NTM-PD relies on the integration of clinical, radiological and microbiological results. The clinical course of NTM-PD is heterogeneous, with some patients remaining stable without the need for treatment and others developing refractory disease associated with considerable mortality and morbidity. Treatment regimens are based on the identity of the isolated species, drug sensitivity testing (for some agents) and the severity of disease. Multiple antibiotics are typically required for prolonged periods of time and treatment is frequently poorly tolerated. Surgery may be beneficial in selected cases. In some circumstances cure may not be attainable and there is a pressing need for better regimens to treat refractory and drug-resistant NTM-PD.This review summarises current knowledge on the epidemiology, aetiology and diagnosis of NTM-PD and discusses the treatment of two of the most clinically significant species, the M. avium and M. abscessus complexes, with a focus on refractory disease and novel therapies.
Collapse
Affiliation(s)
- Steven Cowman
- Host Defence Unit, Royal Brompton Hospital, London, UK.,Imperial College, London, UK
| | - Jakko van Ingen
- Dept of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - David E Griffith
- Dept of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Michael R Loebinger
- Host Defence Unit, Royal Brompton Hospital, London, UK .,Imperial College, London, UK
| |
Collapse
|
114
|
Ganapathy US, Dartois V, Dick T. Repositioning rifamycins for Mycobacterium abscessus lung disease. Expert Opin Drug Discov 2019; 14:867-878. [PMID: 31195849 DOI: 10.1080/17460441.2019.1629414] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: The treatment of Mycobacterium abscessus lung disease faces significant challenges due to intrinsic antibiotic resistance. New drugs are needed to cure this incurable disease. The key anti-tubercular rifamycin, rifampicin, suffers from low potency against M. abscessus and is not used clinically. Recently, another member of the rifamycin class, rifabutin, was shown to be active against the opportunistic pathogen. Areas covered: In this review, the authors discuss the rifamycins as a reemerging drug class for treating M. abscessus infections. The authors focus on the differential potency of rifampicin and rifabutin against M. abscessus in the context of intrinsic antibiotic resistance and bacterial uptake and metabolism. Reports of rifamycin-based drug synergies and rifamycin potentiation by host-directed therapy are evaluated. Expert opinion: While repurposing rifabutin for M. abscessus lung disease may provide some immediate relief, the repositioning (chemical optimization) of rifamycins offers long-term potential for improving clinical outcomes. Repositioning will require a multifaceted approach involving renewed screening of rifamycin libraries, medicinal chemistry to improve 'bacterial cell pharmacokinetics', better models of bacterial pathophysiology and infection, and harnessing of drug synergies and host-directed therapy towards the development of a better drug regimen.
Collapse
Affiliation(s)
- Uday S Ganapathy
- a Center for Discovery and Innovation, Hackensack Meridian Health , Nutley , NJ , USA
| | - Véronique Dartois
- a Center for Discovery and Innovation, Hackensack Meridian Health , Nutley , NJ , USA
| | - Thomas Dick
- a Center for Discovery and Innovation, Hackensack Meridian Health , Nutley , NJ , USA
| |
Collapse
|
115
|
Liu H, Dong F, Liu J, Liu J, Pang Y, Zhao S, Lu J, Li H. Successful management of Mycobacterium abscessus complex lung disease in an otherwise healthy infant. Infect Drug Resist 2019; 12:1277-1283. [PMID: 31190915 PMCID: PMC6529672 DOI: 10.2147/idr.s198461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/10/2019] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium abscessus complex (MABC) is an uncommon but increasingly important cause of invasive pulmonary disease, a condition associated with diagnostic and management challenges. MABC has mainly been reported in children with certain medical conditions, such as preexisting structural lung disorders and immunocompromised status. In this article, we describe a rare case of MABC pulmonary disease in an otherwise healthy infant. A 4-month-old female presented with cough and fever for 4 days. Computed tomography showed multiple masses and small nodules across both lungs. Isolated mycobacteria from her bronchoalveolar lavage fluid and gastric aspirate were identified as MABC by using matrix-assisted laser desorption ionization time-of-flight mass spectrometry and M. abscessus subsp. massiliense was ultimately identified by DNA sequence analysis. Prolonged treatment with a combination of azithromycin, cefoxitin, and moxifloxacin achieved a successful treatment outcome.
Collapse
Affiliation(s)
- Hui Liu
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Fang Dong
- Department of Laboratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Jinrong Liu
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Jianhua Liu
- Department of Pediatrics, Maternal and Child Health Care Hospital of Shunyi District, Beijing, People's Republic of China
| | - Yu Pang
- Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shunying Zhao
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Huimin Li
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| |
Collapse
|
116
|
Le Moigne V, Bernut A, Cortès M, Viljoen A, Dupont C, Pawlik A, Gaillard JL, Misguich F, Crémazy F, Kremer L, Herrmann JL. Lsr2 Is an Important Determinant of Intracellular Growth and Virulence in Mycobacterium abscessus. Front Microbiol 2019; 10:905. [PMID: 31114557 PMCID: PMC6503116 DOI: 10.3389/fmicb.2019.00905] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022] Open
Abstract
Mycobacterium abscessus, a pathogen responsible for severe lung infections in cystic fibrosis patients, exhibits either smooth (S) or rough (R) morphotypes. The S-to-R transition correlates with inhibition of the synthesis and/or transport of glycopeptidolipids (GPLs) and is associated with an increase of pathogenicity in animal and human hosts. Lsr2 is a small nucleoid-associated protein highly conserved in mycobacteria, including M. abscessus, and is a functional homolog of the heat-stable nucleoid-structuring protein (H-NS). It is essential in Mycobacterium tuberculosis but not in the non-pathogenic model organism Mycobacterium smegmatis. It acts as a master transcriptional regulator of multiple genes involved in virulence and immunogenicity through binding to AT-rich genomic regions. Previous transcriptomic studies, confirmed here by quantitative PCR, showed increased expression of lsr2 (MAB_0545) in R morphotypes when compared to their S counterparts, suggesting a possible role of this protein in the virulence of the R form. This was addressed by generating lsr2 knock-out mutants in both S (Δlsr2-S) and R (Δlsr2-R) variants, demonstrating that this gene is dispensable for M. abscessus growth. We show that the wild-type S variant, Δlsr2-S and Δlsr2-R strains were more sensitive to H2O2 as compared to the wild-type R variant of M. abscessus. Importantly, virulence of the Lsr2 mutants was considerably diminished in cellular models (macrophage and amoeba) as well as in infected animals (mouse and zebrafish). Collectively, these results emphasize the importance of Lsr2 in M. abscessus virulence.
Collapse
Affiliation(s)
| | - Audrey Bernut
- UMR 9004, Centre National de la Recherche Scientifique, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier, France
| | | | - Albertus Viljoen
- UMR 9004, Centre National de la Recherche Scientifique, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier, France
| | - Christian Dupont
- UMR 9004, Centre National de la Recherche Scientifique, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier, France
| | - Alexandre Pawlik
- Unité de Pathogénomique Mycobactérienne, Institut Pasteur, Paris, France
| | - Jean-Louis Gaillard
- 2I, UVSQ, INSERM, Université Paris-Saclay, Versailles, France.,APHP, GHU PIFO, Hôpital Raymond-Poincaré - Hôpital Ambroise-Paré, Boulogne-Billancourt, France
| | | | | | - Laurent Kremer
- UMR 9004, Centre National de la Recherche Scientifique, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier, France.,INSERM, Institut de Recherche en Infectiologie de Montpellier, Montpellier, France
| | - Jean-Louis Herrmann
- 2I, UVSQ, INSERM, Université Paris-Saclay, Versailles, France.,APHP, GHU PIFO, Hôpital Raymond-Poincaré - Hôpital Ambroise-Paré, Boulogne-Billancourt, France
| |
Collapse
|
117
|
Story-Roller E, Maggioncalda EC, Lamichhane G. Select β-Lactam Combinations Exhibit Synergy against Mycobacterium abscessus In Vitro. Antimicrob Agents Chemother 2019; 63:e02613-18. [PMID: 30745389 PMCID: PMC6437493 DOI: 10.1128/aac.02613-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/02/2019] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium abscessus is a nontuberculous mycobacterium that causes invasive pulmonary infections in patients with structural lung disease. M. abscessus is intrinsically resistant to several classes of antibiotics, and an increasing number of strains isolated from patients exhibit resistance to most antibiotics considered for treatment of infections by this mycobacterium. Therefore, there is an unmet need for new regimens with improved efficacy to treat this disease. Synthesis of the essential cell wall peptidoglycan in M. abscessus is achieved via two enzyme classes, l,d- and d,d-transpeptidases, with each class preferentially inhibited by different subclasses of β-lactam antibiotics. We hypothesized that a combination of two β-lactams that comprehensively inhibit the two enzyme classes will exhibit synergy in killing M. abscessus Paired combinations of antibiotics tested for in vitro synergy against M. abscessus included dual β-lactams, a β-lactam and a β-lactamase inhibitor, and a β-lactam and a rifamycin. Of the initial 206 combinations screened, 24 pairs exhibited synergy. A total of 13/24 pairs were combinations of two β-lactams, and 12/24 pairs brought the MICs of both drugs to within the therapeutic range. Additionally, synergistic drug pairs significantly reduced the frequency of selection of spontaneous resistant mutants. These novel combinations of currently available antibiotics may offer viable immediate treatment options against highly-resistant M. abscessus infections.
Collapse
Affiliation(s)
- Elizabeth Story-Roller
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Emily C Maggioncalda
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
118
|
Lopeman RC, Harrison J, Desai M, Cox JAG. Mycobacterium abscessus: Environmental Bacterium Turned Clinical Nightmare. Microorganisms 2019; 7:microorganisms7030090. [PMID: 30909391 PMCID: PMC6463083 DOI: 10.3390/microorganisms7030090] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
Mycobacteria are a large family of over 100 species, most of which do not cause diseases in humans. The majority of the mycobacterial species are referred to as nontuberculous mycobacteria (NTM), meaning they are not the causative agent of tuberculous (TB) or leprosy, i.e., Mycobacterium tuberculous complex and Mycobacterium leprae, respectively. The latter group is undoubtedly the most infamous, with TB infecting an estimated 10 million people and causing over 1.2 million deaths in 2017 alone TB and leprosy also differ from NTM in that they are only transmitted from person to person and have no environmental reservoir, whereas NTM infections are commonly acquired from the environment. It took until the 1950′s for NTM to be recognised as a potential lung pathogen in people with underlying pulmonary disease and another three decades for NTM to be widely regarded by the medical community when Mycobacterium avium complex was identified as the most common group of opportunistic pathogens in AIDS patients. This review focuses on an emerging NTM called Mycobacterium abscessus (M. abs). M. abs is a rapidly growing NTM that is responsible for opportunistic pulmonary infections in patients with structural lung disorders such as cystic fibrosis and bronchiectasis, as well as a wide range of skin and soft tissue infections in humans. In this review, we discuss how we came to understand the pathogen, how it is currently treated and examine drug resistance mechanisms and novel treatments currently in development. We highlight the urgent need for new and effective treatments for M. abs infection as well as improved in vivo methods of efficacy testing.
Collapse
Affiliation(s)
- Rose C Lopeman
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - James Harrison
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Maya Desai
- Birmingham Children's Hospital, Birmingham Women's and Children's NHS Foundation Trust, Steelhouse Lane, Birmingham B4 6NH, UK.
| | - Jonathan A G Cox
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
119
|
van Wyk R, van Wyk M, Mashele SS, Nelson DR, Syed K. Comprehensive Comparative Analysis of Cholesterol Catabolic Genes/Proteins in Mycobacterial Species. Int J Mol Sci 2019; 20:ijms20051032. [PMID: 30818787 PMCID: PMC6429209 DOI: 10.3390/ijms20051032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
In dealing with Mycobacterium tuberculosis, the causative agent of the deadliest human disease—tuberculosis (TB)—utilization of cholesterol as a carbon source indicates the possibility of using cholesterol catabolic genes/proteins as novel drug targets. However, studies on cholesterol catabolism in mycobacterial species are scarce, and the number of mycobacterial species utilizing cholesterol as a carbon source is unknown. The availability of a large number of mycobacterial species’ genomic data affords an opportunity to explore and predict mycobacterial species’ ability to utilize cholesterol employing in silico methods. In this study, comprehensive comparative analysis of cholesterol catabolic genes/proteins in 93 mycobacterial species was achieved by deducing a comprehensive cholesterol catabolic pathway, developing a software tool for extracting homologous protein data and using protein structure and functional data. Based on the presence of cholesterol catabolic homologous proteins proven or predicted to be either essential or specifically required for the growth of M. tuberculosis H37Rv on cholesterol, we predict that among 93 mycobacterial species, 51 species will be able to utilize cholesterol as a carbon source. This study’s predictions need further experimental validation and the results should be taken as a source of information on cholesterol catabolism and genes/proteins involved in this process among mycobacterial species.
Collapse
Affiliation(s)
- Rochelle van Wyk
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa.
| | - Mari van Wyk
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa.
| | - Samson Sitheni Mashele
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa.
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
120
|
In Vitro Activity of the New β-Lactamase Inhibitors Relebactam and Vaborbactam in Combination with β-Lactams against Mycobacterium abscessus Complex Clinical Isolates. Antimicrob Agents Chemother 2019; 63:AAC.02623-18. [PMID: 30642943 DOI: 10.1128/aac.02623-18] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 01/04/2019] [Indexed: 12/22/2022] Open
Abstract
Pulmonary disease due to infection with Mycobacterium abscessus complex (MABC) is notoriously difficult to treat, in large part due to the intrinsic resistance of MABC strains to most antibiotics, including β-lactams. MABC organisms express a broad-spectrum β-lactamase that is resistant to traditional β-lactam-based β-lactamase inhibitors but inhibited by a newer non-β-lactam-based β-lactamase inhibitor, avibactam. Consequently, the susceptibility of MABC members to some β-lactams is increased in the presence of avibactam. Therefore, we hypothesized that two new non-β-lactam-based β-lactamase inhibitors, relebactam and vaborbactam, would also increase the susceptibility of MABC organisms to β-lactams. The objective of the present study was to evaluate the in vitro activity of various marketed β-lactams alone and in combination with either relebactam or vaborbactam against multidrug-resistant MABC clinical isolates. Our data demonstrate that both β-lactamase inhibitors significantly improved the anti-MABC activity of many carbapenems (including imipenem and meropenem) and cephalosporins (including cefepime, ceftaroline, and cefuroxime). As a meropenem-vaborbactam combination is now marketed and an imipenem-relebactam combination is currently in phase III trials, these fixed combinations may become the β-lactams of choice for the treatment of MABC infections. Furthermore, given the evolving interest in dual β-lactam regimens, our results identify select cephalosporins, such as cefuroxime, with superior activity in the presence of a β-lactamase inhibitor that are deserving of further evaluation in combination with these carbapenem-β-lactamase inhibitor products.
Collapse
|
121
|
Kim BR, Kim BJ, Kook YH, Kim BJ. Phagosome Escape of Rough Mycobacterium abscessus Strains in Murine Macrophage via Phagosomal Rupture Can Lead to Type I Interferon Production and Their Cell-To-Cell Spread. Front Immunol 2019; 10:125. [PMID: 30766538 PMCID: PMC6365470 DOI: 10.3389/fimmu.2019.00125] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/15/2019] [Indexed: 12/27/2022] Open
Abstract
Mycobacterium abscessus complex (MAB) is a rapidly growing mycobacterium(RGM) whose clinical significance as an emerging human pathogen has been increasing worldwide. It has two types of colony morphology, a smooth (S) type, producing high glycopeptidolipid (GPL) content, and a rough (R) type, which produces low levels of GPLs and is associated with increased virulence. However, the mechanism responsible for their difference in virulence is poorly known. By ultrastructural examination of murine macrophages infected, we found that MAB-R strains could replicate more actively in the macrophage phagosome than the S variants and that they could escape into cytosol via phagosomal rupture. The cytosolic access of MAB-R strains via phagosomal rupture led to enhanced Type I interferon (IFN) production and cell death, which resulted in their cell-to-cell spreading. This behavior can provide an additional niche for the survival of MAB-R strains. In addition, we found that their enhancement of cell death mediated cell spreading are dependent on Type I IFN signaling via comparison of wild-type and IFNAR1 knockout mice. In conclusion, our data indicated that a transition of MAB-S strains into MAB-R variants increased their virulence via enhanced Type I IFN production, which led to enhanced survival in infected macrophage via cell death mediated cell-to-cell spreading. This result provides not only a novel insight into the difference in virulence between MAB-R and -S variants but also hints to their treatment strategy.
Collapse
Affiliation(s)
- Bo-Ram Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
| | - Byoung-Jun Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
| | - Yoon-Hoh Kook
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
122
|
Sanz-García F, Anoz-Carbonell E, Pérez-Herrán E, Martín C, Lucía A, Rodrigues L, Aínsa JA. Mycobacterial Aminoglycoside Acetyltransferases: A Little of Drug Resistance, and a Lot of Other Roles. Front Microbiol 2019; 10:46. [PMID: 30761098 PMCID: PMC6363676 DOI: 10.3389/fmicb.2019.00046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Abstract
Aminoglycoside acetyltransferases are important determinants of resistance to aminoglycoside antibiotics in most bacterial genera. In mycobacteria, however, aminoglycoside acetyltransferases contribute only partially to aminoglycoside susceptibility since they are related with low level resistance to these antibiotics (while high level aminoglycoside resistance is due to mutations in the ribosome). Instead, aminoglycoside acetyltransferases contribute to other bacterial functions, and this can explain its widespread presence along species of genus Mycobacterium. This review is focused on two mycobacterial aminoglycoside acetyltransferase enzymes. First, the aminoglycoside 2'-N-acetyltransferase [AAC(2')], which was identified as a determinant of weak aminoglycoside resistance in M. fortuitum, and later found to be widespread in most mycobacterial species; AAC(2') enzymes have been associated with resistance to cell wall degradative enzymes, and bactericidal mode of action of aminoglycosides. Second, the Eis aminoglycoside acetyltransferase, which was identified originally as a virulence determinant in M. tuberculosis (enhanced intracellular survival); Eis protein in fact controls production of pro-inflammatory cytokines and other pathways. The relation of Eis with aminoglycoside susceptibility was found after the years, and reaches clinical significance only in M. tuberculosis isolates resistant to the second-line drug kanamycin. Given the role of AAC(2') and Eis proteins in mycobacterial biology, inhibitory molecules have been identified, more abundantly in case of Eis. In conclusion, AAC(2') and Eis have evolved from a marginal role as potential drug resistance mechanisms into a promising future as drug targets.
Collapse
Affiliation(s)
- Fernando Sanz-García
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Ernesto Anoz-Carbonell
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Zaragoza, Spain
| | - Esther Pérez-Herrán
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Carlos Martín
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Ainhoa Lucía
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Liliana Rodrigues
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Fundación Agencia Aragonesa para la Investigación y el Desarrollo, Zaragoza, Spain
| | - José A Aínsa
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
123
|
In Vitro Susceptibility Testing of Bedaquiline against Mycobacterium abscessus Complex. Antimicrob Agents Chemother 2019; 63:AAC.01919-18. [PMID: 30509936 DOI: 10.1128/aac.01919-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/23/2018] [Indexed: 02/02/2023] Open
Abstract
We performed bedaquiline broth microdilution susceptibility testing using Clinical and Laboratory Standards Institute (CLSI) guidelines on 104 nonduplicate isolates of Mycobacterium abscessus complex [M. abscessus subsp. abscessus (76); M. abscessus subsp. massiliense (10); M. abscessus subsp. bolletii (2); and M. abscessus subsp. abscessus-M. abscessus subsp. massiliense hybrid, i.e., M. abscessus subsp. abscessus by rpoB gene and M. abscessus subsp. massiliense by erm(41) gene (16)]. All isolates from patients not known to have been on bedaquiline prior had MIC values of ≤0.25 μg/ml. The bedaquiline MIC50 value for all 76 isolates of M. abscessus subsp. abscessus and 16 isolates of M. abscessus subsp. abscessus-M. abscessus subsp. massiliense hybrid was 0.06 μg/ml. The MIC50 and MIC90 values for 10 isolates of M. abscessus subsp. massiliense were 0.12 μg/ml. Only two isolates of M. abscessus subsp. bolletii were tested with bedaquiline MICs of 0.06 μg/ml. Our study suggests that oral bedaquiline may have potential use in the treatment of disease caused by the M. abscessus complex. Combination therapy with other agents (imipenem, cefoxitin, amikacin, and/or tigecycline) is recommended.
Collapse
|
124
|
Advani J, Verma R, Chatterjee O, Devasahayam Arokia Balaya R, Najar MA, Ravishankara N, Suresh S, Pachori PK, Gupta UD, Pinto SM, Chauhan DS, Tripathy SP, Gowda H, Prasad TK. Rise of Clinical Microbial Proteogenomics: A Multiomics Approach to Nontuberculous Mycobacterium—The Case ofMycobacterium abscessusUC22. ACTA ACUST UNITED AC 2019; 23:1-16. [DOI: 10.1089/omi.2018.0116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Jayshree Advani
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Renu Verma
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Oishi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Rex Devasahayam Arokia Balaya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Namitha Ravishankara
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - Sneha Suresh
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - Praveen Kumar Pachori
- Department of Microbiology and Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, India
| | - Umesh D. Gupta
- Department of Microbiology and Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, India
| | - Sneha M. Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Devendra S. Chauhan
- Department of Microbiology and Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, India
| | - Srikanth Prasad Tripathy
- Department of Microbiology and Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - T.S. Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
125
|
Waman VP, Vedithi SC, Thomas SE, Bannerman BP, Munir A, Skwark MJ, Malhotra S, Blundell TL. Mycobacterial genomics and structural bioinformatics: opportunities and challenges in drug discovery. Emerg Microbes Infect 2019; 8:109-118. [PMID: 30866765 PMCID: PMC6334779 DOI: 10.1080/22221751.2018.1561158] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/03/2018] [Accepted: 12/09/2018] [Indexed: 01/08/2023]
Abstract
Of the more than 190 distinct species of Mycobacterium genus, many are economically and clinically important pathogens of humans or animals. Among those mycobacteria that infect humans, three species namely Mycobacterium tuberculosis (causative agent of tuberculosis), Mycobacterium leprae (causative agent of leprosy) and Mycobacterium abscessus (causative agent of chronic pulmonary infections) pose concern to global public health. Although antibiotics have been successfully developed to combat each of these, the emergence of drug-resistant strains is an increasing challenge for treatment and drug discovery. Here we describe the impact of the rapid expansion of genome sequencing and genome/pathway annotations that have greatly improved the progress of structure-guided drug discovery. We focus on the applications of comparative genomics, metabolomics, evolutionary bioinformatics and structural proteomics to identify potential drug targets. The opportunities and challenges for the design of drugs for M. tuberculosis, M. leprae and M. abscessus to combat resistance are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Asma Munir
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Marcin J. Skwark
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Sony Malhotra
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, UK
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
126
|
Mutations in the MAB_2299c TetR Regulator Confer Cross-Resistance to Clofazimine and Bedaquiline in Mycobacterium abscessus. Antimicrob Agents Chemother 2018; 63:AAC.01316-18. [PMID: 30323043 DOI: 10.1128/aac.01316-18] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/09/2018] [Indexed: 11/20/2022] Open
Abstract
New therapeutic approaches are needed against Mycobacterium abscessus, a respiratory mycobacterial pathogen that evades efforts to successfully treat infected patients. Clofazimine and bedaquiline, two drugs used for the treatment of multidrug-resistant tuberculosis, are being considered as alternatives for the treatment of lung diseases caused by M. abscessus With the aim to understand the mechanism of action of these agents in M. abscessus, we sought herein to determine the means by which M. abscessus can develop resistance. Spontaneous resistant strains selected on clofazimine, followed by whole-genome sequencing, identified mutations in MAB_2299c, encoding a putative TetR transcriptional regulator. Unexpectedly, mutants with these mutations were also cross-resistant to bedaquiline. MAB_2299c was found to bind to its target DNA, located upstream of the divergently oriented MAB_2300-MAB_2301 gene cluster, encoding MmpS/MmpL membrane proteins. Point mutations or deletion of MAB_2299c was associated with the concomitant upregulation of the mmpS and mmpL transcripts and accounted for this cross-resistance. Strikingly, deletion of MAB_2300 and MAB_2301 in the MAB_2299c mutant strain restored susceptibility to bedaquiline and clofazimine. Overall, these results expand our knowledge with respect to the regulatory mechanisms of the MmpL family of proteins and a novel mechanism of drug resistance in this difficult-to-treat respiratory mycobacterial pathogen. Therefore, MAB_2299c may represent an important marker of resistance to be considered in the treatment of M. abscessus diseases with clofazimine and bedaquiline in clinical settings.
Collapse
|
127
|
Davidson RM. A Closer Look at the Genomic Variation of Geographically Diverse Mycobacterium abscessus Clones That Cause Human Infection and Disease. Front Microbiol 2018; 9:2988. [PMID: 30568642 PMCID: PMC6290055 DOI: 10.3389/fmicb.2018.02988] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/19/2018] [Indexed: 01/15/2023] Open
Abstract
Mycobacterium abscessus is a multidrug resistant bacterium that causes pulmonary and extrapulmonary disease. The reported prevalence of pulmonary M. abscessus infections appears to be increasing in the United States (US) and around the world. In the last five years, multiple studies have utilized whole genome sequencing to investigate the genetic epidemiology of two clinically relevant subspecies, M. abscessus subsp. abscessus (MAB) and M. abscessus subsp. massiliense (MMAS). Phylogenomic comparisons of clinical isolates revealed that substantial proportions of patients have MAB and MMAS isolates that belong to genetically similar clusters also known as ‘dominant clones’. Unlike the genetic lineages of Mycobacterium tuberculosis that tend to be geographically clustered, the MAB and MMAS clones have been found in clinical populations from the US, Europe, Australia and South America. Moreover, the clones have been associated with worse clinical outcomes and show increased pathogenicity in macrophage and mouse models. While some have suggested that they may have spread locally and then globally through ‘indirect transmission’ within cystic fibrosis (CF) clinics, isolates of these clones have also been associated with sporadic pulmonary infections in non-CF patients and unrelated hospital-acquired soft tissue infections. M. abscessus has long been thought to be acquired from the environment, but the prevalence, exposure risk and environmental reservoirs of the dominant clones are currently not known. This review summarizes the genomic studies of M. abscessus and synthesizes the current knowledge surrounding the geographically diverse dominant clones identified from patient samples. Furthermore, it discusses the limitations of core genome comparisons for studying these genetically similar isolates and explores the breadth of accessory genome variation that has been observed to date. The combination of both core and accessory genome variation among these isolates may be the key to elucidating the origin, spread and evolution of these frequent genotypes.
Collapse
Affiliation(s)
- Rebecca M Davidson
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States
| |
Collapse
|
128
|
Girard-Misguich F, Laencina L, Dubois V, Le Moigne V, Kremer L, Maljessi L, Brosch R, Herrmann JL. [The most ancestral mycobacterial ESX-4 secretion system is essential for intracellular growth of Mycobacterium abscessus within environmental and human phagocytes]. Med Sci (Paris) 2018; 34:795-797. [PMID: 30451667 DOI: 10.1051/medsci/2018196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Laura Laencina
- Université de Versailles Saint Quentin en Yvelines, Inserm UMR1173, 78000 Versailles, France
| | - Violaine Dubois
- Université de Versailles Saint Quentin en Yvelines, Inserm UMR1173, 78000 Versailles, France
| | - Vincent Le Moigne
- Université de Versailles Saint Quentin en Yvelines, Inserm UMR1173, 78000 Versailles, France
| | - Laurent Kremer
- Institut de recherche en infectiologie de Montpellier, Université de Montpellier, CNRS UMR 9004, 34293 Montpellier, France - Inserm, institut de recherche en infectiologie de Montpellier, 34293 Montpellier, France
| | - Laleh Maljessi
- Unité de pathogénomique mycobactérienne, institut Pasteur, 25, rue du Docteur Roux, 75015 Paris, France
| | - Roland Brosch
- Unité de pathogénomique mycobactérienne, institut Pasteur, 25, rue du Docteur Roux, 75015 Paris, France
| | - Jean-Louis Herrmann
- Université de Versailles Saint Quentin en Yvelines, Inserm UMR1173, 78000 Versailles, France - Hôpitaux universitaires Île de France Ouest, Ambroise Paré, Boulogne et Raymond Poincaré, 92380 Garches, France
| |
Collapse
|
129
|
Steindor M, Nkwouano V, Stefanski A, Stuehler K, Ioerger TR, Bogumil D, Jacobsen M, Mackenzie CR, Kalscheuer R. A proteomics approach for the identification of species-specific immunogenic proteins in the Mycobacterium abscessus complex. Microbes Infect 2018; 21:154-162. [PMID: 30445130 DOI: 10.1016/j.micinf.2018.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/15/2018] [Accepted: 10/30/2018] [Indexed: 11/24/2022]
Abstract
The Mycobacterium abscessus complex can cause fatal pulmonary disease, especially in cystic fibrosis patients. Diagnosing M. abscessus complex pulmonary disease is challenging. Immunologic assays specific for M. abscessus are not available. In this study seven clinical M. abscessus complex strains and the M. abscessus reference strain ATCC19977 were used to find species-specific proteins for their use in immune assays. Six strains showed rough and smooth colony morphotypes simultaneously, two strains only showed rough mophotypes, resulting in 14 separate isolates. Clinical isolates were submitted to whole genome sequencing. Proteomic analysis was performed on bacterial lysates and culture supernatant of all 14 isolates. Species-specificity for M. abscessus complex was determined by a BLAST search for proteins present in all supernatants. Species-specific proteins underwent in silico B- and T-cell epitope prediction. All clinical strains were found to be M. abscessus ssp. abscessus. Mutations in MAB_4099c as a likely genetic basis of the rough morphotype were found in six out of seven clinical isolates. 79 proteins were present in every supernatant, of which 12 are exclusively encoded by all members of M. abscessus complex plus Mycobacterium immunogenum. In silico analyses predicted B- and T-cell epitopes in all of these 12 species-specific proteins.
Collapse
Affiliation(s)
- Mathis Steindor
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225, Duesseldorf, Germany.
| | - Vanesa Nkwouano
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Heinrich Heine University, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Kai Stuehler
- Molecular Proteomics Laboratory, Heinrich Heine University, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Thomas Richard Ioerger
- Department of Computer Science and Engineering, Texas A&M University, 77843-3112, TX, USA
| | - David Bogumil
- The Department of Life Sciences & The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Marc Jacobsen
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Colin Rae Mackenzie
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| |
Collapse
|
130
|
Ryan K, Byrd TF. Mycobacterium abscessus: Shapeshifter of the Mycobacterial World. Front Microbiol 2018; 9:2642. [PMID: 30443245 PMCID: PMC6221961 DOI: 10.3389/fmicb.2018.02642] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/16/2018] [Indexed: 01/23/2023] Open
Abstract
In this review we will focus on unique aspects of Mycobacterium abscessus (MABS) which we feel earn it the designation of "shapeshifter of the mycobacterial world." We will review its emergence as a distinct species, the recognition and description of MABS subspecies which are only now being clearly defined in terms of pathogenicity, its ability to exist in different forms favoring a saprophytic lifestyle or one more suitable to invasion of mammalian hosts, as well as current challenges in terms of antimicrobial therapy and future directions for research. One can see in the various phases of MABS, a species transitioning from a free living saprophyte to a host-adapted pathogen.
Collapse
Affiliation(s)
- Keenan Ryan
- Department of Pharmacy, University of New Mexico Hospital, Albuquerque, NM, United States
| | - Thomas F. Byrd
- Department of Medicine, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|
131
|
Panda A, Drancourt M, Tuller T, Pontarotti P. Genome-wide analysis of horizontally acquired genes in the genus Mycobacterium. Sci Rep 2018; 8:14817. [PMID: 30287860 PMCID: PMC6172269 DOI: 10.1038/s41598-018-33261-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022] Open
Abstract
Horizontal gene transfer (HGT) was attributed as a major driving force for the innovation and evolution of prokaryotic genomes. Previously, multiple research endeavors were undertaken to decipher HGT in different bacterial lineages. The genus Mycobacterium houses some of the most deadly human pathogens; however, the impact of HGT in Mycobacterium has never been addressed in a systematic way. Previous initiatives to explore the genomic imprints of HGTs in Mycobacterium were focused on few selected species, specifically among the members of Mycobacterium tuberculosis complex. Considering the recent availability of a large number of genomes, the current study was initiated to decipher the probable events of HGTs among 109 completely sequenced Mycobacterium species. Our comprehensive phylogenetic analysis with more than 9,000 families of Mycobacterium proteins allowed us to list several instances of gene transfers spread across the Mycobacterium phylogeny. Moreover, by examining the topology of gene phylogenies here, we identified the species most likely to donate and receive these genes and provided a detailed overview of the putative functions these genes may be involved in. Our study suggested that horizontally acquired foreign genes had played an enduring role in the evolution of Mycobacterium genomes and have contributed to their metabolic versatility and pathogenicity.
Collapse
Affiliation(s)
- Arup Panda
- Aix-Marseille-Univ., IRD, MEPHI, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France.,Department of Biomedical Engineering, Tel-Aviv University, Ramat Aviv, 69978, Israel
| | - Michel Drancourt
- Aix-Marseille-Univ., IRD, MEPHI, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France.
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel-Aviv University, Ramat Aviv, 69978, Israel
| | - Pierre Pontarotti
- Aix-Marseille-Univ., IRD, MEPHI, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France.,CNRS, Marseille, France
| |
Collapse
|
132
|
Dubois V, Laencina L, Bories A, Le Moigne V, Pawlik A, Herrmann JL, Girard-Misguich F. Identification of Virulence Markers of Mycobacterium abscessus for Intracellular Replication in Phagocytes. J Vis Exp 2018. [PMID: 30320743 DOI: 10.3791/57766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
What differentiates Mycobacterium abscessus from other saprophytic mycobacteria is the ability to resist phagocytosis by human macrophages and the ability to multiply inside such cells. These virulence traits render M. abscessus pathogenic, especially in vulnerable hosts with underlying structural lung disease, such as cystic fibrosis, bronchiectasis or tuberculosis. How patients become infected with M. abscessus remains unclear. Unlike many mycobacteria, M. abscessus is not found in the environment but might reside inside amoebae, environmental phagocytes that represent a potential reservoir for M. abscessus. Indeed, M. abscessus is resistant to amoebal phagocytosis and the intra-amoeba life seems to increase M. abscessus virulence in an experimental model of infection. However, little is known about M. abscessus virulence in itself. To decipher the genes conferring an advantage to M. abscessus intracellular life, a screening of a M. abscessus transposon mutant library was developed. In parallel, a method of RNA extraction from intracellular Mycobacteria after co-culture with amoebae was developed. This method was validated and allowed the sequencing of whole M. abscessus transcriptomes inside the cells; providing, for the first time, a global view on M. abscessus adaptation to intracellular life. Both approaches give us an insight into M. abscessus virulence factors that enable M. abscessus to colonize the airways in humans.
Collapse
|
133
|
Luthra S, Rominski A, Sander P. The Role of Antibiotic-Target-Modifying and Antibiotic-Modifying Enzymes in Mycobacterium abscessus Drug Resistance. Front Microbiol 2018; 9:2179. [PMID: 30258428 PMCID: PMC6143652 DOI: 10.3389/fmicb.2018.02179] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/24/2018] [Indexed: 11/21/2022] Open
Abstract
The incidence and prevalence of non-tuberculous mycobacterial (NTM) infections have been increasing worldwide and lately led to an emerging public health problem. Among rapidly growing NTM, Mycobacterium abscessus is the most pathogenic and drug resistant opportunistic germ, responsible for disease manifestations ranging from “curable” skin infections to only “manageable” pulmonary disease. Challenges in M. abscessus treatment stem from the bacteria’s high-level innate resistance and comprise long, costly and non-standardized administration of antimicrobial agents, poor treatment outcomes often related to adverse effects and drug toxicities, and high relapse rates. Drug resistance in M. abscessus is conferred by an assortment of mechanisms. Clinically acquired drug resistance is normally conferred by mutations in the target genes. Intrinsic resistance is attributed to low permeability of M. abscessus cell envelope as well as to (multi)drug export systems. However, expression of numerous enzymes by M. abscessus, which can modify either the drug-target or the drug itself, is the key factor for the pathogen’s phenomenal resistance to most classes of antibiotics used for treatment of other moderate to severe infectious diseases, like macrolides, aminoglycosides, rifamycins, β-lactams and tetracyclines. In 2009, when M. abscessus genome sequence became available, several research groups worldwide started studying M. abscessus antibiotic resistance mechanisms. At first, lack of tools for M. abscessus genetic manipulation severely delayed research endeavors. Nevertheless, the last 5 years, significant progress has been made towards the development of conditional expression and homologous recombination systems for M. abscessus. As a result of recent research efforts, an erythromycin ribosome methyltransferase, two aminoglycoside acetyltransferases, an aminoglycoside phosphotransferase, a rifamycin ADP-ribosyltransferase, a β-lactamase and a monooxygenase were identified to frame the complex and multifaceted intrinsic resistome of M. abscessus, which clearly contributes to complications in treatment of this highly resistant pathogen. Better knowledge of the underlying mechanisms of drug resistance in M. abscessus could improve selection of more effective chemotherapeutic regimen and promote development of novel antimicrobials which can overwhelm the existing resistance mechanisms. This article reviews the currently elucidated molecular mechanisms of antibiotic resistance in M. abscessus, with a focus on its drug-target-modifying and drug-modifying enzymes.
Collapse
Affiliation(s)
- Sakshi Luthra
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Anna Rominski
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,National Center for Mycobacteria, Zurich, Switzerland
| |
Collapse
|
134
|
Honda JR, Alper S, Bai X, Chan ED. Acquired and genetic host susceptibility factors and microbial pathogenic factors that predispose to nontuberculous mycobacterial infections. Curr Opin Immunol 2018; 54:66-73. [PMID: 29936307 DOI: 10.1016/j.coi.2018.06.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/30/2018] [Accepted: 06/02/2018] [Indexed: 12/16/2022]
Abstract
Nontuberculous mycobacteria (NTM) are ubiquitous in the environment and human exposure is likely to be pervasive; yet, the occurrence of NTM-related diseases is relatively infrequent. This discrepancy suggests that host risk factors play an integral role in vulnerability to NTM infections. Isolated NTM lung disease (NTM-LD) is often due to underlying anatomical pulmonary or immune disorders, either of which may be acquired or genetic. However, many cases of NTM-LD have no known underlying risk factors and may be multigenic and/or multicausative. In contrast, extrapulmonary visceral or disseminated NTM diseases almost always have an underlying severe immunodeficiency, which may also be acquired or genetic. NTM cell wall components play a key role in pathogenesis and as inducers of the host immune response.
Collapse
Affiliation(s)
- Jennifer R Honda
- Department of Biomedical Research, United States; Center for Genes, Environment, and Health, United States
| | - Scott Alper
- Department of Biomedical Research, United States; Center for Genes, Environment, and Health, United States; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Xiyuan Bai
- Medicine and Academic Affairs, National Jewish Health, Denver, CO, United States; Division of Pulmonary Sciences and Critical Care Medicine, United States
| | - Edward D Chan
- Medicine and Academic Affairs, National Jewish Health, Denver, CO, United States; Department of Medicine, Denver Veterans Affairs Medical Center, Denver, CO, United States; Division of Pulmonary Sciences and Critical Care Medicine, United States.
| |
Collapse
|
135
|
Pathogen Box screening for hit identification against Mycobacterium abscessus. PLoS One 2018; 13:e0195595. [PMID: 29698397 PMCID: PMC5919404 DOI: 10.1371/journal.pone.0195595] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 03/26/2018] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium abscessus is a rapidly growing life-threatening mycobacterium with multiple drug-resistance mechanisms. However, there is no official regimen for M. abscessus therapy. In this study, we screened the Pathogen Box, which contains 400 drug-like molecules active against neglected diseases, to identify active molecules targeting Mycobacterium abscessus using resazurin live/dead assays. In this screening assay, the Z-factor was 0.7, as an indicator of the statistical confidence of the assay. A cut-off of 80% growth inhibition in the screening resulted in the identification of four different compounds at a single concentration (20 μM). Dose-response curves identified three different hit candidates, i.e., MMV688508, MMV688844, and MMV688845, which generated good inhibitory curves. All hit candidates were expected to have different molecular targets. Among them, MMV688844 showed the best minimum inhibitory concentration value for not only wild-type M. abscessus but also for nine different R and S morphotype clinical isolates. Thus, we found that MMV688844, identified from the Pathogen Box screen, may be a promising candidate in the M. abscessus drug discovery pipeline.
Collapse
|
136
|
Salvator H, Berti E, Catherinot E, Rivaud E, Chabrol A, Nguyen S, Zemoura L, Cardot E, Tcherakian C, Couderc LJ. Pulmonary alveolar proteinosis and Mycobacterium abscessus lung infection related to ruxolitinib after allogeneic stem cell transplantation. Eur Respir J 2018; 51:13993003.01960-2017. [DOI: 10.1183/13993003.01960-2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/12/2018] [Indexed: 11/05/2022]
|
137
|
|
138
|
Viljoen A, Gutiérrez AV, Dupont C, Ghigo E, Kremer L. A Simple and Rapid Gene Disruption Strategy in Mycobacterium abscessus: On the Design and Application of Glycopeptidolipid Mutants. Front Cell Infect Microbiol 2018; 8:69. [PMID: 29594066 PMCID: PMC5861769 DOI: 10.3389/fcimb.2018.00069] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/27/2018] [Indexed: 12/12/2022] Open
Abstract
Little is known about the disease-causing genetic determinants that are used by Mycobacterium abscessus, increasingly acknowledged as an important emerging pathogen, notably in cystic fibrosis. The presence or absence of surface exposed glycopeptidolipids (GPL) conditions the smooth (S) or rough (R) M. abscessus subsp. abscessus (M. abscessus) variants, respectively, which are characterized by distinct infective programs. However, only a handful of successful gene knock-out and conditional mutants have been reported in M. abscessus, testifying that genetic manipulation of this mycobacterium is difficult. To facilitate gene disruption and generation of conditional mutants in M. abscessus, we have designed a one-step single cross-over system that allows the rapid and simple generation of such mutants. Cloning of as small as 300 bp of the target gene allows for efficient homologous recombination to occur without additional exogenous recombination-promoting factors. The presence of tdTomato on the plasmids allows easily sifting out the large background of mutants spontaneously resistant to antibiotics. Using this strategy in the S genetic background and the target gene mmpL4a, necessary for GPL synthesis and transport, nearly 100% of red fluorescent clones exhibited a rough morphotype and lost GPL on the surface, suggesting that most red fluorescent colonies obtained after transformation incorporated the plasmid through homologous recombination into the chromosome. This system was further exploited to generate another strain with reduced GPL levels to explore how the presence of these cell wall-associated glycolipids influences M. abscessus hydrophobicity as well as virulence in the zebrafish model of infection. This mutant exhibited a more pronounced killing phenotype in zebrafish embryos compared to its S progenitor and this effect correlated with the production of abscesses in the central nervous system. Overall, these results suggest that the near-complete absence of GPL on the bacterial surface is a necessary condition for optimal pathogenesis of this mycobacterium. They also suggest that GPL content affects hydrophobicity of M. abscessus, potentially altering the aerosol transmission, which is of particular importance from an epidemiological and clinical perspective.
Collapse
Affiliation(s)
- Albertus Viljoen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier, France
| | - Ana Victoria Gutiérrez
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier, France
- Unité de Recherche Microbes, Evolution, Phylogeny and Infection (MEPHI), Institut Hospitalier Universitaire Méditerranée-Infection, Marseille, France
| | - Christian Dupont
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier, France
| | - Eric Ghigo
- Centre National de la Recherche Scientifique, Marseille, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier, France
- IRIM, 34293, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| |
Collapse
|
139
|
Mycobacterium abscessus Smooth and Rough Morphotypes Form Antimicrobial-Tolerant Biofilm Phenotypes but Are Killed by Acetic Acid. Antimicrob Agents Chemother 2018; 62:AAC.01782-17. [PMID: 29311080 PMCID: PMC5826145 DOI: 10.1128/aac.01782-17] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium abscessus has emerged as an important pathogen in people with chronic inflammatory lung diseases such as cystic fibrosis, and recent reports suggest that it may be transmissible by fomites. M. abscessus exhibits two major colony morphology variants: a smooth morphotype (MaSm ) and a rough morphotype (MaRg ). Biofilm formation, prolonged intracellular survival, and colony variant diversity can each contribute to the persistence of M. abscessus and other bacterial pathogens in chronic pulmonary diseases. A prevailing paradigm of chronic M. abscessus infection is that MaSm is a noninvasive, biofilm-forming, persistent phenotype and MaRg an invasive phenotype that is unable to form biofilms. We show that MaRg is hyperaggregative and forms biofilm-like aggregates, which, like MaSm biofilm aggregates, are significantly more tolerant than planktonic variants to acidic pHs, hydrogen peroxide (H2O2), and treatment with amikacin or azithromycin. We further show that both variants are recalcitrant to antibiotic treatment inside human macrophage-like cells and that MaRg is more refractory than MaSm to azithromycin. Our results indicate that biofilm-like aggregation and protracted intracellular survival may each contribute to the persistence of this problematic pathogen in the face of antimicrobial agents regardless of morphotype. Biofilms of each M. abscessus variant are rapidly killed, however, by acetic acid, which may help to prevent local fomite transmission.
Collapse
|
140
|
Aspergillus fumigatus Preexposure Worsens Pathology and Improves Control of Mycobacterium abscessus Pulmonary Infection in Mice. Infect Immun 2018; 86:IAI.00859-17. [PMID: 29263106 DOI: 10.1128/iai.00859-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/10/2017] [Indexed: 01/21/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Mutations in this chloride channel lead to mucus accumulation, subsequent recurrent pulmonary infections, and inflammation, which, in turn, cause chronic lung disease and respiratory failure. Recently, rates of nontuberculous mycobacterial (NTM) infections in CF patients have been increasing. Of particular relevance is infection with Mycobacterium abscessus, which causes a serious, life-threatening disease and constitutes one of the most antibiotic-resistant NTM species. Interestingly, an increased prevalence of NTM infections is associated with worsening lung function in CF patients who are also coinfected with Aspergillus fumigatus We established a new mouse model to investigate the relationship between A. fumigatus and M. abscessus pulmonary infections. In this model, animals exposed to A. fumigatus and coinfected with M. abscessus exhibited increased lung inflammation and decreased mycobacterial burden compared with those of mice infected with M. abscessus alone. This increased control of M. abscessus infection in coinfected mice was mucus independent but dependent on both transcription factors T-box 21 (Tbx21) and retinoic acid receptor (RAR)-related orphan receptor gamma t (RORγ-t), master regulators of type 1 and type 17 immune responses, respectively. These results implicate a role for both type 1 and type 17 responses in M. abscessus control in A. fumigatus-coinfected lungs. Our results demonstrate that A. fumigatus, an organism found commonly in CF patients with NTM infection, can worsen pulmonary inflammation and impact M. abscessus control in a mouse model.
Collapse
|
141
|
Gupta RS, Lo B, Son J. Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera. Front Microbiol 2018; 9:67. [PMID: 29497402 PMCID: PMC5819568 DOI: 10.3389/fmicb.2018.00067] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 01/11/2018] [Indexed: 01/08/2023] Open
Abstract
The genus Mycobacterium contains 188 species including several major human pathogens as well as numerous other environmental species. We report here comprehensive phylogenomics and comparative genomic analyses on 150 genomes of Mycobacterium species to understand their interrelationships. Phylogenetic trees were constructed for the 150 species based on 1941 core proteins for the genus Mycobacterium, 136 core proteins for the phylum Actinobacteria and 8 other conserved proteins. Additionally, the overall genome similarity amongst the Mycobacterium species was determined based on average amino acid identity of the conserved protein families. The results from these analyses consistently support the existence of five distinct monophyletic groups within the genus Mycobacterium at the highest level, which are designated as the "Tuberculosis-Simiae," "Terrae," "Triviale," "Fortuitum-Vaccae," and "Abscessus-Chelonae" clades. Some of these clades have also been observed in earlier phylogenetic studies. Of these clades, the "Abscessus-Chelonae" clade forms the deepest branching lineage and does not form a monophyletic grouping with the "Fortuitum-Vaccae" clade of fast-growing species. In parallel, our comparative analyses of proteins from mycobacterial genomes have identified 172 molecular signatures in the form of conserved signature indels and conserved signature proteins, which are uniquely shared by either all Mycobacterium species or by members of the five identified clades. The identified molecular signatures (or synapomorphies) provide strong independent evidence for the monophyly of the genus Mycobacterium and the five described clades and they provide reliable means for the demarcation of these clades and for their diagnostics. Based on the results of our comprehensive phylogenomic analyses and numerous identified molecular signatures, which consistently and strongly support the division of known mycobacterial species into the five described clades, we propose here division of the genus Mycobacterium into an emended genus Mycobacterium encompassing the "Tuberculosis-Simiae" clade, which includes all of the major human pathogens, and four novel genera viz. Mycolicibacterium gen. nov., Mycolicibacter gen. nov., Mycolicibacillus gen. nov. and Mycobacteroides gen. nov. corresponding to the "Fortuitum-Vaccae," "Terrae," "Triviale," and "Abscessus-Chelonae" clades, respectively. With the division of mycobacterial species into these five distinct groups, attention can now be focused on unique genetic and molecular characteristics that differentiate members of these groups.
Collapse
Affiliation(s)
- Radhey S. Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, CA, Canada
| | | | | |
Collapse
|
142
|
Complete Genome Sequence of a Type Strain of Mycobacterium abscessus subsp. bolletii, a Member of the Mycobacterium abscessus Complex. GENOME ANNOUNCEMENTS 2018; 6:6/5/e01530-17. [PMID: 29437099 PMCID: PMC5794946 DOI: 10.1128/genomea.01530-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycobacterium abscessus subsp. bolletii is a rapidly growing mycobacterial organism for which the taxonomy is unclear. Here, we report the complete genome sequence of a Mycobacterium abscessus subsp. bolletii type strain. This sequence will provide essential information for future taxonomic and comparative genome studies of these mycobacteria.
Collapse
|
143
|
Laencina L, Dubois V, Le Moigne V, Viljoen A, Majlessi L, Pritchard J, Bernut A, Piel L, Roux AL, Gaillard JL, Lombard B, Loew D, Rubin EJ, Brosch R, Kremer L, Herrmann JL, Girard-Misguich F. Identification of genes required for Mycobacterium abscessus growth in vivo with a prominent role of the ESX-4 locus. Proc Natl Acad Sci U S A 2018; 115:E1002-E1011. [PMID: 29343644 PMCID: PMC5798338 DOI: 10.1073/pnas.1713195115] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium abscessus, a rapidly growing mycobacterium (RGM) and an opportunistic human pathogen, is responsible for a wide spectrum of clinical manifestations ranging from pulmonary to skin and soft tissue infections. This intracellular organism can resist the bactericidal defense mechanisms of amoebae and macrophages, an ability that has not been observed in other RGM. M. abscessus can up-regulate several virulence factors during transient infection of amoebae, thereby becoming more virulent in subsequent respiratory infections in mice. Here, we sought to identify the M. abscessus genes required for replication within amoebae. To this end, we constructed and screened a transposon (Tn) insertion library of an M. abscessus subspecies massiliense clinical isolate for attenuated clones. This approach identified five genes within the ESX-4 locus, which in M. abscessus encodes an ESX-4 type VII secretion system that exceptionally also includes the ESX conserved EccE component. To confirm the screening results and to get further insight into the contribution of ESX-4 to M. abscessus growth and survival in amoebae and macrophages, we generated a deletion mutant of eccB4 that encodes a core structural element of ESX-4. This mutant was less efficient at blocking phagosomal acidification than its parental strain. Importantly, and in contrast to the wild-type strain, it also failed to damage phagosomes and showed reduced signs of phagosome-to-cytosol contact, as demonstrated by a combination of cellular and immunological assays. This study attributes an unexpected and genuine biological role to the underexplored mycobacterial ESX-4 system and its substrates.
Collapse
Affiliation(s)
- Laura Laencina
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
| | - Violaine Dubois
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
| | - Vincent Le Moigne
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
| | - Albertus Viljoen
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS UMR 9004, 34293 Montpellier, France
| | - Laleh Majlessi
- Unité de Pathogénomique Mycobactérienne, Institut Pasteur, 75015 Paris, France
| | - Justin Pritchard
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Audrey Bernut
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS UMR 9004, 34293 Montpellier, France
| | - Laura Piel
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
| | - Anne-Laure Roux
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile de France Ouest, Ambroise Paré, Boulogne and Raymond Poincaré, 92380 Garches, France
| | - Jean-Louis Gaillard
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile de France Ouest, Ambroise Paré, Boulogne and Raymond Poincaré, 92380 Garches, France
| | - Bérengère Lombard
- Laboratoire de spectrométrie de masse protéomique, Institut Curie, Paris Science and Letters Research University, 75248 Paris, France
| | - Damarys Loew
- Laboratoire de spectrométrie de masse protéomique, Institut Curie, Paris Science and Letters Research University, 75248 Paris, France
| | - Eric J Rubin
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Roland Brosch
- Unité de Pathogénomique Mycobactérienne, Institut Pasteur, 75015 Paris, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS UMR 9004, 34293 Montpellier, France
- INSERM, Institut de Recherche en Infectiologie de Montpellier, 34293 Montpellier, France
| | - Jean-Louis Herrmann
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France;
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile de France Ouest, Ambroise Paré, Boulogne and Raymond Poincaré, 92380 Garches, France
| | | |
Collapse
|
144
|
Rominski A, Selchow P, Becker K, Brülle JK, Dal Molin M, Sander P. Elucidation of Mycobacterium abscessus aminoglycoside and capreomycin resistance by targeted deletion of three putative resistance genes. J Antimicrob Chemother 2018; 72:2191-2200. [PMID: 28486671 DOI: 10.1093/jac/dkx125] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/03/2017] [Indexed: 12/20/2022] Open
Abstract
Objectives Mycobacterium abscessus is innately resistant to a variety of drugs thereby limiting therapeutic options. Bacterial resistance to aminoglycosides (AGs) is conferred mainly by AG-modifying enzymes, which often have overlapping activities. Several putative AG-modifying enzymes are encoded in the genome of M. abscessus . The aim of this study was to investigate the molecular basis underlying AG resistance in M. abscessus . Methods M. abscessus deletion mutants deficient in one of three genes potentially involved in AG resistance, aac(2 ' ) , eis1 and eis2 , were generated by targeted gene inactivation, as were combinatorial double and triple deletion mutants. MICs were determined to study susceptibility to a variety of AG drugs and to capreomycin. Results Deletion of aac(2 ' ) increased susceptibility of M. abscessus to kanamycin B, tobramycin, dibekacin and gentamicin C. Deletion of eis2 increased susceptibility to capreomycin, hygromycin B, amikacin and kanamycin B. Deletion of eis1 did not affect drug susceptibility. Equally low MICs of apramycin, arbekacin, isepamicin and kanamycin A for WT and mutant strains indicate that these drugs are not inactivated by either AAC(2 ' ) or Eis enzymes. Conclusions M. abscessus expresses two distinct AG resistance determinants, AAC(2 ' ) and Eis2, which confer clinically relevant drug resistance.
Collapse
Affiliation(s)
- Anna Rominski
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Petra Selchow
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Katja Becker
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Juliane K Brülle
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Michael Dal Molin
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Peter Sander
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland.,Nationales Zentrum für Mykobakterien, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| |
Collapse
|
145
|
Dal Molin M, Gut M, Rominski A, Haldimann K, Becker K, Sander P. Molecular Mechanisms of Intrinsic Streptomycin Resistance in Mycobacterium abscessus. Antimicrob Agents Chemother 2018; 62:e01427-17. [PMID: 29061744 PMCID: PMC5740355 DOI: 10.1128/aac.01427-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/17/2017] [Indexed: 12/29/2022] Open
Abstract
Streptomycin, the first drug used for the treatment of tuberculosis, shows limited activity against the highly resistant pathogen Mycobacterium abscessus We recently identified two aminoglycoside-acetylating genes [aac(2') and eis2] which, however, do not affect susceptibility to streptomycin. This suggests the existence of a discrete mechanism of streptomycin resistance. M. abscessus BLASTP analysis identified MAB_2385 as a close homologue of the 3″-O-phosphotransferase [APH(3″)] from the opportunistic pathogen Mycobacterium fortuitum as a putative streptomycin resistance determinant. Heterologous expression of MAB_2385 in Mycobacterium smegmatis increased the streptomycin MIC, while the gene deletion mutant M. abscessus ΔMAB_2385 showed increased streptomycin susceptibility. The MICs of other aminoglycosides were not altered in M. abscessus ΔMAB_2385. This demonstrates that MAB_2385 encodes a specific and prime innate streptomycin resistance determinant in M. abscessus We further explored the feasibility of applying rpsL-based streptomycin counterselection to generate gene deletion mutants in M. abscessus Spontaneous streptomycin-resistant mutants of M. abscessus ΔMAB_2385 were selected, and we demonstrated that the wild-type rpsL is dominant over the mutated rpsLK43R in merodiploid strains. In a proof of concept study, we exploited this phenotype for construction of a targeted deletion mutant, thereby establishing an rpsL-based counterselection method in M. abscessus.
Collapse
Affiliation(s)
- Michael Dal Molin
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Myriam Gut
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Anna Rominski
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Klara Haldimann
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Katja Becker
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Peter Sander
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
- Nationales Zentrum für Mykobakterien, Zürich, Switzerland
| |
Collapse
|
146
|
Becker K, Haldimann K, Selchow P, Reinau LM, Dal Molin M, Sander P. Lipoprotein Glycosylation by Protein- O-Mannosyltransferase (MAB_1122c) Contributes to Low Cell Envelope Permeability and Antibiotic Resistance of Mycobacterium abscessus. Front Microbiol 2017; 8:2123. [PMID: 29163413 PMCID: PMC5673659 DOI: 10.3389/fmicb.2017.02123] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022] Open
Abstract
Lipoproteins are important components of the mycobacterial cell envelope due to their function in cell wall homeostasis and bacterial virulence. They are post-translationally modified with lipid- and glycosyl-residues in various species and interference with acylation or glycosylation leads to reduced growth and attenuated virulence in Mycobacterium tuberculosis. Lipoproteins are also expressed in the emerging and highly drug resistant pathogen Mycobacterium abscessus which frequently affects the lungs of patients with chronic pulmonary disease or cystic fibrosis. We investigated post-translational modification, acylation and glycosylation, of heterologously expressed (M. tuberculosis LppX and Mpt83) and endogenous (SodC) lipoproteins at the molecular level in M. abscessus and identified MAB_1122c as protein O-mannosyltransferase (Pmt). Both, heterologous and endogenous lipoproteins carried a characteristic lipid anchor with palmitic acid (C16), palmitoleic acid (C16:1), oleic acid (C18), or tuberculostearic acid (C19) modifications. Multiple hexose-moieties were detected in the N-terminal region of the model lipoproteins expressed in M. abscessus. Conservation of lipoprotein glycosylation in M. tuberculosis and M. abscessus was revealed and points toward the existence of an O-glycosylation motif or other regulatory mechanisms regarding this post-translational modification. Deletion of MAB_1122c prevented glycosylation and affected susceptibility to specific antibiotics which are large or target peptidoglycan synthesis and to lysozyme. Cell envelope permeability of M. abscessus Δpmt was increased and mutant bacteria showed reduced survival inside macrophages. The results provide a link between post-translational modification of lipoproteins and the permeability of the mycobacterial cell envelope which stresses the importance of lipoproteins as components of this complex structure.
Collapse
Affiliation(s)
- Katja Becker
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Petra Selchow
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Lukas M Reinau
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Michael Dal Molin
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland.,National Center for Mycobacteria, Zürich, Switzerland
| |
Collapse
|
147
|
Fogelson SB, Fast MD, Leary J, Camus AC. Pathologic features of mycobacteriosis in naturally infected Syngnathidae and novel transcriptome assembly in association with disease. JOURNAL OF FISH DISEASES 2017; 40:1681-1694. [PMID: 28449243 DOI: 10.1111/jfd.12634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/11/2017] [Accepted: 02/12/2017] [Indexed: 06/07/2023]
Abstract
Syngnathidae (seahorses, seadragons and pipefish) suffer significant losses from non-tuberculous mycobacteria. However, they produce markedly different lesions in response to the disease compared to other teleost species, notably infrequent granuloma formation. This study evaluated 270 syngnathid fish, from which 92 were diagnosed with mycobacteriosis by histopathology, culture or both. Microscopic lesions variably consisted of random foci of coagulative necrosis in multiple organs, containing high numbers of free bacteria and large aggregates or sheets of macrophages with cytoplasm laden with acid-fast bacilli. Mycobacterial associated granulomas were identified in only six seahorses. Five fish had positive cultures with no observed microscopic changes. RNA-seq of the head kidney was performed to investigate the transcriptome of two infected and six non-infected lined seahorses Hippocampus erectus. Assembled and annotated putative transcripts serve to enrich the database for this species, as well as provide baseline data for understanding the pathogenesis of mycobacteriosis in seahorses. Putative components of the innate immune system (IL-1β, IL-6, TNF, NOS, Toll-like receptor 1, MHC Class I, NF-κβ, transforming growth factor beta, MyD88) were identified in the RNA-seq data set. However, a homolog for a key component in the TH1 adaptive immune response, interferon-gamma, was not identified and may underlie the unique pathologic presentation.
Collapse
Affiliation(s)
- S B Fogelson
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - M D Fast
- Department of Pathology and Microbiology, University of Prince Edward Island, Atlantic Veterinary College, Charlottetown, PE, Canada
| | - J Leary
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - A C Camus
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
148
|
Antagonism between Front-Line Antibiotics Clarithromycin and Amikacin in the Treatment of Mycobacterium abscessus Infections Is Mediated by the whiB7 Gene. Antimicrob Agents Chemother 2017; 61:AAC.01353-17. [PMID: 28874379 PMCID: PMC5655113 DOI: 10.1128/aac.01353-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/21/2017] [Indexed: 11/24/2022] Open
Abstract
Combinations of antibiotics, each individually effective against Mycobacterium abscessus, are routinely coadministered based on the concept that this minimizes the spread of antibiotic resistance. However, our in vitro data contradict this assumption and instead document antagonistic interactions between two antibiotics (clarithromycin and amikacin) used to treat M. abscessus infections. Clinically relevant concentrations of clarithromycin induced increased resistance to both amikacin and itself. The induction of resistance was dependent on whiB7, a transcriptional activator of intrinsic antibiotic resistance that is induced by exposure to many different antibiotics. In M. abscessus, the deletion of whiB7 (MAB_3508c) resulted in increased sensitivity to a broad range of antibiotics. WhiB7 was required for transcriptional activation of genes that confer resistance to three commonly used anti-M. abscessus drugs: clarithromycin, amikacin, and tigecycline. The whiB7-dependent gene that conferred macrolide resistance was identified as erm(41) (MAB_2297), which encodes a ribosomal methyltransferase. The whiB7-dependent gene contributing to amikacin resistance was eis2 (MAB_4532c), which encodes a Gcn5-related N-acetyltransferase (GNAT). Transcription of whiB7 and the resistance genes in its regulon was inducible by subinhibitory concentrations of clarithromycin but not by amikacin. Thus, exposure to clarithromycin, or likely any whiB7-inducing antibiotic, may antagonize the activities of amikacin and other drugs. This has important implications for the management of M. abscessus infections, both in cystic fibrosis (CF) and non-CF patients.
Collapse
|
149
|
da Silva JL, Nguyen J, Fennelly KP, Zelazny AM, Olivier KN. Survival of pathogenic Mycobacterium abscessus subsp. massiliense in Acanthamoeba castellanii. Res Microbiol 2017; 169:56-60. [PMID: 29056478 DOI: 10.1016/j.resmic.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022]
Abstract
We used an amoeba model to study the intracellular growth and cytotoxicity of clinical strains of Mycobacterium abscessus subsp. massiliense (Mabsm) isolated from 2 patients (one with cystic fibrosis, the other one with idiopathic bronchiectasis) during the early (smooth colonies) and late stage (rough colonies) of chronic pulmonary infection. Acanthamoeba castellanii were infected with Mabsm (MOI 100) and samples collected every 24 h for 72 h. Results showed Mabsm is able to survive in trophozoites and persist in cysts for at least 7 days. Late Mabsm demonstrated higher cytotoxicity toward A. castellanii when compared to early strains. A. castellanii is a useful in vitro host model to study infection of Mabsm clinical isolates.
Collapse
Affiliation(s)
- Joas L da Silva
- Pulmonary Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jan Nguyen
- Pulmonary Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kevin P Fennelly
- Pulmonary Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Adrian M Zelazny
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth N Olivier
- Pulmonary Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
150
|
Le Moigne V, Gaillard JL, Herrmann JL. Vaccine strategies against cystic fibrosis pathogens. Hum Vaccin Immunother 2017; 12:751-6. [PMID: 26618824 DOI: 10.1080/21645515.2015.1102810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
A great number of cystic fibrosis (CF) pathogens such as Pseudomonas aeruginosa, the Burkholderia cepacia and the Mycobacterium abscessus complex raised difficult therapeutic problems due to their intrinsic multi-resistance to numerous antibiotics. Vaccine strategies represent one of the key weapons against these multi-resistant bacteria in a number of clinical settings like CF. Different strategies are considered in order to develop such vaccines, linked either to priming the host response, or by exploiting genomic data derived from the bacterium. Interestingly, virulence factors synthesized by various pathogens might serve as targets for vaccine development and have been, for example, evaluated in the context of CF.
Collapse
Affiliation(s)
- Vincent Le Moigne
- a INSERM U1173, UFR Des Sciences de la Santé Simone Veil, Université de Versailles-Saint-Quentin , Saint-Quentin en Yvelines , France
| | - Jean-Louis Gaillard
- a INSERM U1173, UFR Des Sciences de la Santé Simone Veil, Université de Versailles-Saint-Quentin , Saint-Quentin en Yvelines , France.,b Service de Microbiologie, Groupe Hospitalier et Universitaire Paris Île-de-France Ouest, Assitance Publique Hôpitaux de Paris, (92) Boulogne-Billancourt and Garches , France
| | - Jean-Louis Herrmann
- a INSERM U1173, UFR Des Sciences de la Santé Simone Veil, Université de Versailles-Saint-Quentin , Saint-Quentin en Yvelines , France.,b Service de Microbiologie, Groupe Hospitalier et Universitaire Paris Île-de-France Ouest, Assitance Publique Hôpitaux de Paris, (92) Boulogne-Billancourt and Garches , France
| |
Collapse
|