101
|
Zhang YJ, Hu Y, Li J, Chi YJ, Jiang WW, Zhang F, Liu YL. Roles of microRNAs in immunopathogenesis of non-alcoholic fatty liver disease revealed by integrated analysis of microRNA and mRNA expression profiles. Hepatobiliary Pancreat Dis Int 2017; 16:65-79. [PMID: 28119261 DOI: 10.1016/s1499-3872(16)60098-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The integrative analysis of microRNA and mRNA expression profiles can elucidate microRNA-targeted gene function. We used this technique to elucidate insights into the immunological pathology of non-alcoholic fatty liver disease (NAFLD). METHODS We analyzed differentially expressed microRNA and mRNA expression profiles of CD4+ T lymphocytes from the liver and mesenteric lymph nodes (MLNs) of mice with NAFLD using microarrays and RNA sequencing. Normal mice were used as controls. The target genes of microRNAs were predicted by TargetScan. Integrative analysis showed that the mRNAs were overlapped with microRNAs. Furthermore, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to predict the key genes and pathways. Then, 16 microRNAs and 10 mRNAs were validated by qRT-PCR. RESULTS Microarray analysis suggested that 170 microRNAs were significantly de-regulated in CD4+ T lymphocytes from the liver between the two groups. Eighty mRNAs corresponded with microRNA targeted genes. KEGG analysis indicated that the MAPK pathway was consistently augmented in the liver of NAFLD mice. miR-23b, let-7e, miR-128 and miR-130b possibly played significant parts in the MAPK pathways. Furthermore, between the two groups, 237 microRNAs were significantly de-regulated in CD4+ T lymphocytes from MLNs. 38 mRNAs coincided with microRNA target genes. The metabolic pathway was consistently enriched in the MLNs of NAFLD mice. miR-206-3p, miR-181a-5p, miR-29c-3p and miR-30d-5p likely play important roles in the regulation of metabolic pathways. CONCLUSION The results of this study presented a new perspective on the application of integrative analysis to identify complex regulation means involved in the immunological pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Yu-Jun Zhang
- Institute of Clinical Molecular Biology and Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China.
| | | | | | | | | | | | | |
Collapse
|
102
|
Abstract
Studies have shown that transforming growth factor-β (TGF-β) is one of the most important factors to promote hepatic fibrosis (HF), and the TGF-β/Smad pathway is a major signaling pathway involved in HF. Abnormal expression of microRNAs (miRNAs) has a key role in the development of HF. In recent years, studies suggest that regulating miRNAs may affect the TGF-β/Smad pathway. This paper discusses the TGF-β/Smad pathway and the related miRNAs that are associated with HF.
Collapse
|
103
|
Davoodian P, Ravanshad M, Hosseini SY, Khanizadeh S, Almasian M, Nejati Zadeh A, Esmaiili Lashgarian H. Effect of TGF-β/smad signaling pathway blocking on expression profiles of miR-335, miR-150, miR-194, miR-27a, and miR-199a of hepatic stellate cells (HSCs). GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2017; 10:112-117. [PMID: 28702135 PMCID: PMC5495898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
AIM The aim of this study was to determine the effect of inhibition of TGF-β/smad signaling on the expression profiles of miR-335, miR-150, miR-194, miR-27a, miR-199a of hepatic stellate cells (HSCs). BACKGROUND Liver fibrosis is excessive deposition of extracellular matrix proteins due to ongoing inflammation and HSC activation that occurs in most types of chronic liver diseases. Recent studies have shown the importance of microRNAs in the pathogenesis of chronic liver diseases. METHODS In this study, for inhibition of TGF-β smad-signaling pathway, expressing Smad4 shRNA plasmids were transfected into HSCs. Subsequently, using Real Time-PCR, we measured the expression levels of miR-335, miR-150, miR-194, miR-27a and miR-199a. RESULTS Gene expression analysis showed that downregulation of Smad4 by vector Smad4shRNA significantly increased the expression levels of miR-335 (P<0.01) and miR-150 (P<0.001) and decreased the expression level of miR-27a (P<0.05). CONCLUSION The results of this study suggest that blocking TGF-β smad-signaling can also differentially modulate microRNA expression in support of activation and fibrogenesis of HSCs.
Collapse
Affiliation(s)
- Parivash Davoodian
- Infectious and Tropical Diseases Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mehrdad Ravanshad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayyad Khanizadeh
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran,School of medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Almasian
- School of medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Azim Nejati Zadeh
- Research Center for Molecular Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | |
Collapse
|
104
|
Murakami Y, Kawada N. MicroRNAs in hepatic pathophysiology. Hepatol Res 2017; 47:60-69. [PMID: 27101519 DOI: 10.1111/hepr.12730] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/26/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that range in length from 20 to 25 nucleotides. MicroRNAs are specific for multiple cellular functions, including cell generation, differentiation, multiplication, carcinogenesis, and apoptosis. Many researchers have recently reported that the aberrant expression of miRNAs in hepatic tissue was related to the pathogenesis of liver disease, including viral hepatitis, hepatocellular carcinoma, and fatty liver disease. Multiple studies have proposed that an analysis of circulating miRNAs may be useful for diagnosing etiologies or staging the progression of liver disease, as well as for therapeutic purposes, for example, nucleic acid therapy. This review summarizes and discusses recent advances in the knowledge of miRNAs for chronic liver diseases, with special interest in viral hepatitis, liver fibrosis, and biomarkers.
Collapse
Affiliation(s)
- Yoshiki Murakami
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
105
|
Zhang CY, Yuan WG, He P, Lei JH, Wang CX. Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets. World J Gastroenterol 2016; 22:10512-10522. [PMID: 28082803 PMCID: PMC5192262 DOI: 10.3748/wjg.v22.i48.10512] [Citation(s) in RCA: 400] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/12/2016] [Accepted: 11/15/2016] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a reversible wound-healing process aimed at maintaining organ integrity, and presents as the critical pre-stage of liver cirrhosis, which will eventually progress to hepatocellular carcinoma in the absence of liver transplantation. Fibrosis generally results from chronic hepatic injury caused by various factors, mainly viral infection, schistosomiasis, and alcoholism; however, the exact pathological mechanisms are still unknown. Although numerous drugs have been shown to have antifibrotic activity in vitro and in animal models, none of these drugs have been shown to be efficacious in the clinic. Importantly, hepatic stellate cells (HSCs) play a key role in the initiation, progression, and regression of liver fibrosis by secreting fibrogenic factors that encourage portal fibrocytes, fibroblasts, and bone marrow-derived myofibroblasts to produce collagen and thereby propagate fibrosis. These cells are subject to intricate cross-talk with adjacent cells, resulting in scarring and subsequent liver damage. Thus, an understanding of the molecular mechanisms of liver fibrosis and their relationships with HSCs is essential for the discovery of new therapeutic targets. This comprehensive review outlines the role of HSCs in liver fibrosis and details novel strategies to suppress HSC activity, thereby providing new insights into potential treatments for liver fibrosis.
Collapse
|
106
|
Ran LJ, Liang J, Deng X. Latest advances in understanding of relationship between microRNAs and hepatic fibrosis. Shijie Huaren Xiaohua Zazhi 2016; 24:4813-4819. [DOI: 10.11569/wcjd.v24.i36.4813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Studies have shown the expression of microRNAs (miRNAs) in hepatic fibrosis. MiRNAs are important in regulating hepatic fibrosis, and have a close relationship with the occurrence, development, diagnosis and treatment of hepatic fibrosis. This article reviews the latest advances in the understanding of the relationship between miRNAs and hepatic fibrosis.
Collapse
|
107
|
Zhang CY, Yuan WG, He P, Lei JH, Wang CX. Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets. World J Gastroenterol 2016. [PMID: 28082803 DOI: 10.3748/wjg.v22.i48.10512.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2022] Open
Abstract
Liver fibrosis is a reversible wound-healing process aimed at maintaining organ integrity, and presents as the critical pre-stage of liver cirrhosis, which will eventually progress to hepatocellular carcinoma in the absence of liver transplantation. Fibrosis generally results from chronic hepatic injury caused by various factors, mainly viral infection, schistosomiasis, and alcoholism; however, the exact pathological mechanisms are still unknown. Although numerous drugs have been shown to have antifibrotic activity in vitro and in animal models, none of these drugs have been shown to be efficacious in the clinic. Importantly, hepatic stellate cells (HSCs) play a key role in the initiation, progression, and regression of liver fibrosis by secreting fibrogenic factors that encourage portal fibrocytes, fibroblasts, and bone marrow-derived myofibroblasts to produce collagen and thereby propagate fibrosis. These cells are subject to intricate cross-talk with adjacent cells, resulting in scarring and subsequent liver damage. Thus, an understanding of the molecular mechanisms of liver fibrosis and their relationships with HSCs is essential for the discovery of new therapeutic targets. This comprehensive review outlines the role of HSCs in liver fibrosis and details novel strategies to suppress HSC activity, thereby providing new insights into potential treatments for liver fibrosis.
Collapse
Affiliation(s)
- Chong-Yang Zhang
- Chong-Yang Zhang, Jia-Hui Lei, Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wei-Gang Yuan
- Chong-Yang Zhang, Jia-Hui Lei, Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Pei He
- Chong-Yang Zhang, Jia-Hui Lei, Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jia-Hui Lei
- Chong-Yang Zhang, Jia-Hui Lei, Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Chun-Xu Wang
- Chong-Yang Zhang, Jia-Hui Lei, Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
108
|
Bian EB, Wang YY, Yang Y, Wu BM, Xu T, Meng XM, Huang C, Zhang L, Lv XW, Xiong ZG, Li J. Hotair facilitates hepatic stellate cells activation and fibrogenesis in the liver. Biochim Biophys Acta Mol Basis Dis 2016; 1863:674-686. [PMID: 27979710 DOI: 10.1016/j.bbadis.2016.12.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/25/2016] [Accepted: 12/12/2016] [Indexed: 12/18/2022]
Abstract
Long non-coding RNAs (lncRNAs) are increasingly recognized as major players in regulating various biological processes. LncRNA HOX transcript antisense RNA (Hotair) has been extensively studied in cancer. However, the role of Hotair in liver fibrosis remains unknown. Here we observed that Hotair expression was significantly increased in CCl4-induced mouse liver fibrosis models, human fibrotic livers and activated hepatic stellate cells (HSCs) by TGF-β1 stimulation. Enforced expression of Hotair in LX-2 cells promoted cell proliferation and activation while inhibition of its expression had an opposite effect. Furthermore, we found that Hotair may act as an endogenous 'sponge' of miR-148b, which regulates expression of the DNMT1/MEG3/p53 pathways in HSCs. Intriguingly, Hotair enhanced polycomb repressive complex 2 (PRC2) occupancy and histone H3K27me3 repressive marks, specifically at the MEG3 promoter region. Finally, we found that Hotair forms an RNA/DNA hybrid and recruits PRC2 to MEG3 promoter. These data suggest that Hotair inhibition may represent a promising therapeutic option for suppressing liver fibrosis.
Collapse
Affiliation(s)
- Er-Bao Bian
- School of pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), Hefei 230032, China
| | - Yuan-Yuan Wang
- School of pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), Hefei 230032, China
| | - Yang Yang
- School of pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), Hefei 230032, China
| | - Bao-Ming Wu
- School of pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), Hefei 230032, China
| | - Tao Xu
- School of pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), Hefei 230032, China
| | - Xiao-Ming Meng
- School of pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), Hefei 230032, China
| | - Cheng Huang
- School of pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), Hefei 230032, China
| | - Lei Zhang
- School of pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), Hefei 230032, China
| | - Xiong-Wen Lv
- School of pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), Hefei 230032, China
| | - Zhi-Gang Xiong
- School of pharmacy, Anhui Medical University, Hefei 230032, China; Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310-1945, USA.
| | - Jun Li
- School of pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), Hefei 230032, China.
| |
Collapse
|
109
|
Raitoharju E, Seppälä I, Lyytikäinen LP, Viikari J, Ala-Korpela M, Soininen P, Kangas AJ, Waldenberger M, Klopp N, Illig T, Leiviskä J, Loo BM, Oksala N, Kähönen M, Hutri-Kähönen N, Laaksonen R, Raitakari O, Lehtimäki T. Blood hsa-miR-122-5p and hsa-miR-885-5p levels associate with fatty liver and related lipoprotein metabolism-The Young Finns Study. Sci Rep 2016; 6:38262. [PMID: 27917915 PMCID: PMC5137183 DOI: 10.1038/srep38262] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/08/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are involved in disease development and may be utilized as biomarkers. We investigated the association of blood miRNA levels and a) fatty liver (FL), b) lipoprotein and lipid pathways involved in liver lipid accumulation and c) levels of predicted mRNA targets in general population based cohort. Blood microRNA profiling (TaqMan OpenArray), genome-wide gene expression arrays and nuclear magnetic resonance metabolomics were performed for Young Finns Study participants aged 34–49 years (n = 871). Liver fat status was assessed ultrasonographically. Levels of hsa-miR-122-5p and -885-5p were up-regulated in individuals with FL (fold change (FC) = 1.55, p = 1.36 * 10−14 and FC = 1.25, p = 4.86 * 10−4, respectively). In regression model adjusted with age, sex and BMI, hsa-miR-122-5p and -885-5p predicted FL (OR = 2.07, p = 1.29 * 10−8 and OR = 1.41, p = 0.002, respectively). Together hsa-miR-122-5p and -885-5p slightly improved the detection of FL beyond established risk factors. These miRNAs may be associated with FL formation through the regulation of lipoprotein metabolism as hsa-miR-122-5p levels associated with small VLDL, IDL, and large LDL lipoprotein subclass components, while hsa-miR-885-5p levels associated inversely with XL HDL cholesterol levels. Hsa-miR-885-5p levels correlated inversely with oxysterol-binding protein 2 (OSBPL2) expression (r = −0.143, p = 1.00 * 10−4) and suppressing the expression of this lipid receptor and sterol transporter could link hsa-miR-885-5p with HDL cholesterol levels.
Collapse
Affiliation(s)
- Emma Raitoharju
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland
| | - Jorma Viikari
- Division of Medicine Turku University Hospital and Department of Medicine, University of Turku, Turku, Finland
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,Computational Medicine, School of Social and Community Medicine and the Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Pasi Soininen
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Antti J Kangas
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum, German Research Center for Environmental Health, Munich, Germany
| | - Norman Klopp
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany.,Institute for Human Genetics, Hannover Medical School, Hanover, Germany
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum, German Research Center for Environmental Health, Munich, Germany.,Hannover Unified Biobank, Hannover Medical School, Hannover, Germany.,Institute for Human Genetics, Hannover Medical School, Hanover, Germany
| | - Jaana Leiviskä
- Department of Health, National Institute for Health and Welfare, Helsinki and Turku, Finland
| | - Britt-Marie Loo
- Department of Health, National Institute for Health and Welfare, Helsinki and Turku, Finland
| | - Niku Oksala
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland.,Division of Vascular Surgery, Department of Surgery, Tampere University Hospital, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and School of Medicine, University of Tampere, Tampere, Finland
| | - Nina Hutri-Kähönen
- Department of Pediatrics, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Reijo Laaksonen
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland
| | - Olli Raitakari
- Research Centre for Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland
| |
Collapse
|
110
|
Zou XZ, Liu T, Gong ZC, Hu CP, Zhang Z. MicroRNAs-mediated epithelial-mesenchymal transition in fibrotic diseases. Eur J Pharmacol 2016; 796:190-206. [PMID: 27916556 DOI: 10.1016/j.ejphar.2016.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/24/2016] [Accepted: 12/01/2016] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs), a large family of small and highly conserved non-coding RNAs, regulate gene expression through translational repression or mRNA degradation. Aberrant expression of miRNAs underlies a spectrum of diseases including organ fibrosis. Recent evidence suggests that miRNAs contribute to organ fibrosis through mediating epithelial-mesenchymal transition (EMT). Alleviation of EMT has been proposed as a promising strategy against fibrotic diseases given the key role of EMT in fibrosis. miRNAs impact the expression of specific ligands, receptors, and signaling pathways, thus modulating EMT and consequently influencing fibrosis. This review summarizes the current knowledge concerning how miRNAs regulate EMT and highlights the specific roles that miRNAs-regulated EMT plays in fibrotic diseases as diverse as pulmonary fibrosis, hepatic fibrosis, renal fibrosis and cardiac fibrosis. It is desirable that a more comprehensive understanding of the functions of miRNAs-regulated EMT will facilitate the development of novel diagnostic and therapeutic strategies for various debilitating organ fibrosis.
Collapse
Affiliation(s)
- Xiao-Zhou Zou
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Ting Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Zhi-Cheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chang-Ping Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| | - Zheng Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
111
|
Knockout of microRNA-21 reduces biliary hyperplasia and liver fibrosis in cholestatic bile duct ligated mice. J Transl Med 2016; 96:1256-1267. [PMID: 27775690 PMCID: PMC5121007 DOI: 10.1038/labinvest.2016.112] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022] Open
Abstract
Cholestasis is a condition that leads to chronic hepatobiliary inflammation, fibrosis, and eventually cirrhosis. Many microRNAs (miRs) are known to have a role in fibrosis progression; however, the role of miR-21 during cholestasis remains unknown. Therefore, the aim of this study was to elucidate the role of miR-21 during cholestasis-induced biliary hyperplasia and hepatic fibrosis. Wild-type (WT) and miR-21-/- mice underwent Sham or bile duct ligation (BDL) for 1 week, before evaluating liver histology, biliary proliferation, hepatic stellate cell (HSC) activation, fibrotic response, and small mothers against decapentaplegic 7 (Smad-7) expression. In vitro, immortalized murine biliary cell lines (IMCLs) and human hepatic stellate cell line (hHSC) were treated with either miR-21 inhibitor or control before analyzing proliferation, apoptosis, and fibrotic responses. In vivo, the levels of miR-21 were increased in total liver and cholangiocytes after BDL, and loss of miR-21 decreased the amount of BDL-induced biliary proliferation and intrahepatic biliary mass. In addition, loss of miR-21 decreased BDL-induced HSC activation, collagen deposition, and expression of the fibrotic markers transforming growth factor-β1 and α-smooth muscle actin. In vitro, IMCL and hHSCs treated with miR-21 inhibitor displayed decreased proliferation and expression of fibrotic markers and enhanced apoptosis when compared with control treated cells. Furthermore, mice lacking miR-21 show increased Smad-7 expression, which may be driving the decrease in biliary hyperplasia and hepatic fibrosis. During cholestatic injury, miR-21 is increased and leads to increased biliary proliferation and hepatic fibrosis. Local modulation of miR-21 may be a therapeutic option for patients with cholestasis.
Collapse
|
112
|
Abstract
OBJECTIVES Biliary atresia (BA) is an idiopathic neonatal liver disease, characterized by inflammatory and fibrotic obliteration of extrahepatic bile ducts. Therefore, reliable methods for noninvasive diagnosis are needed. The present study aimed to analyze circulating microRNAs (miRNAs) in patients with BA using next-generation sequencing for identifying novel diagnostic biomarkers. METHODS An initial screening of miRNAs in plasma from patients with BA and healthy controls (HCs) was performed on an Illumina next-generation sequencing platform. Differential miRNAs were validated by quantitative real-time polymerase chain reaction (qPCR). Target genes and related signal transduction pathways of differential miRNAs were predicted by online software. RESULTS In total, 146 differential miRNAs were identified by deep sequencing. Fifteen miRNAs with read counts >1000, that included 7 upregulated and 8 downregulated miRNAs, were predicted to be associated with liver fibrosis, biliary differentiation, and bile duct development. Of these, 6 miRNAs with read counts >5000 were analyzed by qPCR on an independent sample set comprising 44 patients with BA, 20 cholestatic disease controls, and 20 HCs. Two upregulated miRNAs (miR-122-5p, miR-100-5p) and 2 downregulated miRNAs (miR-140-3p, miR-126-3p) were confirmed by individual qPCR. Only miR-140-3p was significantly different from controls (P < 0.05), yielding an area under receiver operating characteristic curve of 0.75 with sensitivity of 66.7% and specificity of 79.1% at optimal threshold. CONCLUSIONS Our findings indicate that patients with BA exhibit a distinct profile of circulating miRNAs and that plasma miR-140-3p may be a promising diagnostic biomarker for this disease.
Collapse
|
113
|
Keßler J, Rot S, Bache M, Kappler M, Würl P, Vordermark D, Taubert H, Greither T. miR-199a-5p regulates HIF-1α and OSGIN2 and its expression is correlated to soft-tissue sarcoma patients' outcome. Oncol Lett 2016; 12:5281-5288. [PMID: 28101243 DOI: 10.3892/ol.2016.5320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 08/10/2016] [Indexed: 12/18/2022] Open
Abstract
Soft tissue sarcomas are a heterogeneous group of malignant neoplasms of mesenchymal origin. Partly due to hypoxia, an aggressive and radioresistant phenotype frequently develops, resulting in poorer patient outcome. microRNAs (miRNAs) are tiny, non-coding regulators of gene expression and in situations of cellular stress situations may predict clinical progression and patient outcome. In the present study, hypoxia-associated miR-199a-5p expression in 96 soft tissue sarcoma samples was analysed by reverse transcription-quantitative polymerase chain reaction and associations between miR-199a-5p expression and patient clinicopathological characteristics and survival were measured. Additionally, luciferase reporter assays analyzed the post-transcriptional regulation of hypoxia-associated genes hypoxia-inducible factor 1α (HIF-1α), oxidative stress induced growth inhibitor 2 (OSGIN2) and vascular endothelial growth factor (VEGF) by miR-199a-5p. Survival analyses indicated that low expression of miR-199a-5p was significantly correlated with poorer tumor-specific survival (univariate Cox's-Regression analyses; relative risk=1.92, P=0.029). Furthermore, it was demonstrated that the 3'UTR of HIF-1α and OSGIN2 genes were regulated by miR-199a-5p in-vitro, although the 3'UTR of VEGF was not. To the best of our knowledge, this is the first report demonstrating the regulation of the 3'untranslated region of the OSGIN2 gene by miR-199a-5p and a significant correlation between low miR-199a-5p expression and a poor outcome of patients with soft tissue sarcoma.
Collapse
Affiliation(s)
- Jacqueline Keßler
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Swetlana Rot
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Matthias Bache
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Matthias Kappler
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Peter Würl
- Department of General and Visceral Surgery, Diakonie Hospital, D-06114 Halle (Saale), Germany
| | - Dirk Vordermark
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Helge Taubert
- Clinic of Urology, FA University Hospital Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| |
Collapse
|
114
|
Chen L, Chen R, Velazquez VM, Brigstock DR. Fibrogenic Signaling Is Suppressed in Hepatic Stellate Cells through Targeting of Connective Tissue Growth Factor (CCN2) by Cellular or Exosomal MicroRNA-199a-5p. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2921-2933. [PMID: 27662798 DOI: 10.1016/j.ajpath.2016.07.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/27/2016] [Accepted: 07/14/2016] [Indexed: 12/18/2022]
Abstract
Pathways of liver fibrosis are controlled by connective tissue growth factor (CCN2). In this study, CCN2 was identified as a target of miR-199a-5p, which was principally expressed in quiescent mouse hepatic stellate cells (HSCs) and directly suppressed production of CCN2. Up-regulated CCN2 expression in fibrotic mouse livers or in activated primary mouse HSCs was associated with miR-199a-5p down-regulation. MiR-199a-5p in quiescent mouse HSCs inhibited the activity of a wild-type CCN2 3' untranslated region (3'-UTR) but not of a mutant CCN2 3'-UTR lacking the miR-199a-5p-binding site. In activated mouse HSCs, CCN2, α-smooth muscle actin, and collagen 1(α1) were suppressed by a miR-199a-5p mimic, whereas in quiescent mouse HSCs, the inhibited CCN2 3'-UTR activity was blocked by a miR-199a-5p antagomir. CCN2 3'-UTR activity in human HSCs was reduced by a miR-199a-5p mimic. MiR-199a-5p was present at higher levels in exosomes from quiescent versus activated HSCs. MiR-199a-5p-containing exosomes were shuttled from quiescent mouse HSCs to activated mouse HSCs in which CCN2 3'-UTR activity was then suppressed. Exosomes from quiescent HSCs caused miR-199a-5p-dependent inhibition of CCN2, α-smooth muscle actin, or collagen 1(α1) in activated HSCs in vitro and bound to activated HSCs in vivo. Thus, CCN2 suppression by miR-199a-5p accounts, in part, for low-level fibrogenic gene expression in quiescent HSCs and causes dampened gene expression in activated HSCs after horizontal transfer of miR-199a-5p in exosomes from quiescent HSCs.
Collapse
Affiliation(s)
- Li Chen
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ruju Chen
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Victoria M Velazquez
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - David R Brigstock
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Surgery, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
115
|
Niu X, Fu N, Du J, Wang R, Wang Y, Zhao S, Du H, Wang B, Zhang Y, Sun D, Nan Y. miR-1273g-3p modulates activation and apoptosis of hepatic stellate cells by directly targeting PTEN in HCV-related liver fibrosis. FEBS Lett 2016; 590:2709-24. [PMID: 27423040 DOI: 10.1002/1873-3468.12309] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/13/2016] [Accepted: 06/30/2016] [Indexed: 12/15/2022]
Abstract
MicroRNA (miRNA) play a pivotal role in the development of liver fibrosis. However, the functions of miRNA in hepatitis C virus (HCV)-related liver fibrosis remain unclear. In this study, we systematically analyzed the microarray data of the serum miRNA in patients with HCV-induced hepatic fibrosis. Among 41 dysregulated miRNA, miR-1273g-3p was the most significantly upregulated miRNA and correlated with the stage of liver fibrosis. Overexpression of miR-1273g-3p could inhibit translation of PTEN, increase the expression of α-SMA, Col1A1, and reduce apoptosis in HSCs. Hence, we conclude that miR-1273g-3p might affect the activation and apoptosis of HSCs by directly targeting PTEN in HCV-related liver fibrosis.
Collapse
Affiliation(s)
- Xuemin Niu
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Na Fu
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinghua Du
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rongqi Wang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Wang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Suxian Zhao
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huijuan Du
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baoyu Wang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuguo Zhang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dianxing Sun
- Department of Liver Disease, Bethune International Peace Hospital, Shijiazhuang, China
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
116
|
Ramesh V, Ganesan K. Integrative analysis of transcriptome and miRNome unveils the key regulatory connections involved in different stages of hepatocellular carcinoma. Genes Cells 2016; 21:949-65. [PMID: 27465470 DOI: 10.1111/gtc.12396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/21/2016] [Indexed: 12/14/2022]
Abstract
Dysregulated molecular processes are the major factors that drive and feed the signaling processes involved in carcinogenesis. In recent years, regulation of mRNAs by microRNAs (miRNAs) has been found to play a vital role in many cancers including hepatocellular carcinoma (HCC). However, genomewide studies defining molecular regulatory circuits at both mRNA and miRNA levels are just emerging. To uncover the molecular and functional processes involved in liver tumorigenesis at mRNA and miRNA level, a co-expression-based network of miRNAs was constructed from multiple miRNA profiles. The applicability of the network approach to microRNA expression profiles was assessed. Although the clustering consistency of miRNAs across the profiles was found moderate, miRNA networking has been found informative. Furthermore, microRNA network modules were integrated with the functionally defined mRNA modules derived from an mRNA co-expression network of an earlier study. Three highly clustered regulatory circuits of mRNA-miRNA modules have been identified as involved in hepatocyte, inflammatory-stress and proliferative process activated subcategories of HCC. A subset of the proliferative miRNA module was found clustered in the 14q32.31 chromosomal region. The current integrative network analysis of mRNA-miRNA modules shows the intricate miRNA-mRNA functional circuits and signaling interactions involved in liver tumorigenesis.
Collapse
Affiliation(s)
- Vignesh Ramesh
- Unit of Excellence in Cancer Genetics, Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | - Kumaresan Ganesan
- Unit of Excellence in Cancer Genetics, Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India.
| |
Collapse
|
117
|
Activation of the miR-34a/SIRT1/p53 Signaling Pathway Contributes to the Progress of Liver Fibrosis via Inducing Apoptosis in Hepatocytes but Not in HSCs. PLoS One 2016; 11:e0158657. [PMID: 27387128 PMCID: PMC4936740 DOI: 10.1371/journal.pone.0158657] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/20/2016] [Indexed: 12/30/2022] Open
Abstract
Liver fibrosis results from a sustained wound healing response to chronic liver injury, and the activation of nonparenchymal hepatic stellate cells (HSCs) is the pivotal process. MicroRNA-34a (miR-34a) is the direct target gene of p53 and activates p53 through sirtuin 1 (SIRT1) simultaneously. The miR-34a/SIRT1/p53 signaling pathway thus forms a positive feedback loop wherein p53 induces miR-34a and miR-34a activates p53 by inhibiting SIRT1, playing an important role in cell proliferation and apoptosis. miR-34a expression has been found to be increased in animal models or in human patients with different liver diseases, including liver fibrosis. However, the exact role of this classical miR-34a/SIRT1/p53 signaling pathway in liver fibrosis remains unclear. In the present study, using a CCl4-induced rat liver fibrosis model, we found that the miR-34a/SIRT1/p53 signaling pathway was activated and could be inhibited by SIRT1 activator SRT1720. Further studies showed that the miR-34a/SIRT1/p53 signaling pathway was activated in hepatocytes but not in HSCs. The activation of this pathway in hepatocytes resulted in the apoptosis of hepatocytes and thus activated HSCs. Our data indicate that the miR-34a/SIRT1/p53 signaling pathway might be a promising therapeutic target for liver fibrosis.
Collapse
|
118
|
Matsumoto Y, Itami S, Kuroda M, Yoshizato K, Kawada N, Murakami Y. MiR-29a Assists in Preventing the Activation of Human Stellate Cells and Promotes Recovery From Liver Fibrosis in Mice. Mol Ther 2016; 24:1848-1859. [PMID: 27480597 DOI: 10.1038/mt.2016.127] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/02/2016] [Indexed: 12/22/2022] Open
Abstract
The microRNA-29 (miR-29) family is known to suppress the activation of hepatic stellate cells (HSCs) and reversibly control liver fibrosis; however, the mechanism of how miR-29a controls liver fibrosis remains largely unknown. This study was conducted to clarify the mechanism of anti-fibrotic effect of miR-29a and to explore if miR-29a is a promising candidate for nucleic acid medicine against liver fibrosis. Two liver fibrosis murine models (carbon tetrachloride or thioacetamide) were used. MiR-29a mixed with atelocollagen was systemically administered. Hepatic fibrosis was evaluated by histological analysis and the expression levels of fibrosis-related genes. We observed that miR-29a treatment dramatically accelerated the reversion of liver fibrosis in vivo. Additionally, miR-29a regulated the mRNA expression of collagen type I alpha 1 (COL1A1) and platelet-derived growth factor C (PDGFC). We also noted that miR-29a significantly suppressed COL1A1 mRNA expression and cell viability and significantly increased caspase-9 activity (P < 0.05) in LX-2 cells. Pretreatment of miR-29a inhibited activation of LX-2 cell by transforming growth factor beta treatment. MiR-29a exhibited anti-fibrotic effect without cell toxicity in vivo and directly suppressed the expression of PDGF-related genes as well as COL1A1 and induced apoptosis of LX-2 cells. MiR-29a is a promising nucleic acid inhibitor to target liver fibrosis.
Collapse
Affiliation(s)
- Yoshinari Matsumoto
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan.,Department of Medical Nutrition, Graduate School of Human Life Science, Osaka City University, Osaka, Japan.,Current address: Department of Nutrition Management, Osaka University Medical Hospital, Osaka, Japan
| | - Saori Itami
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | | | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Yoshiki Murakami
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
119
|
Ge S, Xie J, Liu F, He J, He J. MicroRNA-19b reduces hepatic stellate cell proliferation by targeting GRB2 in hepatic fibrosis models in vivo and in vitro as part of the inhibitory effect of estradiol. J Cell Biochem 2016; 116:2455-64. [PMID: 25650006 DOI: 10.1002/jcb.25116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 01/23/2015] [Indexed: 01/09/2023]
Abstract
Estradiol (E2) is a major determinant of gender-based differences in the development of hepatic fibrosis. MicroRNAs (miRNAs) are endogenous 19-25 nucleotide, noncoding, single-stranded RNAs that regulate gene expression by blocking the translation or decreasing the stability of mRNAs and play an important role in liver fibrosis. The mechanisms underlying the regulation of miRNAs by E2 remain largely unknown. In this study, miR-19b levels were higher and were associated with lower GRB2 mRNA and protein levels in female rats more than in male rats. We also showed that miR-19b levels were down-regulated, were associated with the up-regulation of GRB2 mRNA and protein levels in PS (porcine serum-induced hepatic fibrosis) versus NS (normal control) groups and were up-regulated when associated with the down-regulation of GRB2 mRNA and protein levels in PS + E2 versus PS and in aHSC + E2 (estradiol treated aHSC) versus aHSC groups. MiR-19b expression inhibited cell proliferation in aHSCs, and also down-regulated GRB2 protein expression. The overexpression of miR-19b inhibited cell growth and suppressed COL1A1 protein levels by decreasing the levels of GRB2. However, the forced expression of GRB2 partly rescued the effect of miR-19b in the cells, attenuated cell proliferation, and suppressed the GRB2 protein level by up-regulating the levels of GRB2. Taken together, these findings will shed light on the role of miR-19b in regulating aHSC proliferation via the miR-19b/GRB2 axis. This newly identified miR-19b/GRB2 interaction provided novel insights into the suppressive effect of E2 on HSC proliferation and might facilitate the development of therapies targeting hepatic fibrosis.
Collapse
Affiliation(s)
- Shanfei Ge
- Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianping Xie
- Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fei Liu
- Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinni He
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jinwen He
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
120
|
Angileri F, Morrow G, Scoazec JY, Gadot N, Roy V, Huang S, Wu T, Tanguay RM. Identification of circulating microRNAs during the liver neoplastic process in a murine model of hereditary tyrosinemia type 1. Sci Rep 2016; 6:27464. [PMID: 27282650 PMCID: PMC4901289 DOI: 10.1038/srep27464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 05/17/2016] [Indexed: 12/21/2022] Open
Abstract
Hereditary tyrosinemia type 1 (HT1) is a severe inborn error of metabolism, impacting the tyrosine catabolic pathway with a high incidence of hepatocellular carcinoma (HCC). Using a HT1 murine model, we investigated the changes in profiles of circulating and hepatic miRNAs. The aim was to determine if plasma miRNAs could be used as non-invasive markers of liver damage in HT1 progression. Plasma and liver miRNAome was determined by deep sequencing after HT1 phenotype was induced. Sequencing analysis revealed deregulation of several miRNAs including let-7/miR-98 family, miR-21 and miR-148a, during manifestation of liver pathology. Three miRNAs (miR-98, miR-200b, miR-409) presenting the highest plasmatic variations among miRNAs found in both plasma and liver and with >1000 reads in at least one plasma sample, were further validated by RT-qPCR. Two of these miRNAs have protein targets involved in HT1 and significant changes in their circulating levels are detectable prior an increase in protein expression of alpha-fetoprotein, the current biomarker for HCC diagnosis. Future assessment of these miRNAs in HT1 patients and their association with liver neoplastic lesions might designate these molecules as potential biomarkers for monitoring HT1 damage progression, improving diagnosis for early HCC detection and the design of novel therapeutic targets.
Collapse
Affiliation(s)
- Francesca Angileri
- Laboratoire de génétique cellulaire et développementale, IBIS and PROTEO, Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de médecine, 1030 avenue de la Médecine, Université Laval, Québec, Canada, G1V 0A6.,Dept of Occupational and Environmental Health and Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Geneviève Morrow
- Laboratoire de génétique cellulaire et développementale, IBIS and PROTEO, Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de médecine, 1030 avenue de la Médecine, Université Laval, Québec, Canada, G1V 0A6
| | - Jean-Yves Scoazec
- Anipath, Faculté Laennec, rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Nicolas Gadot
- Anipath, Faculté Laennec, rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Vincent Roy
- Laboratoire de génétique cellulaire et développementale, IBIS and PROTEO, Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de médecine, 1030 avenue de la Médecine, Université Laval, Québec, Canada, G1V 0A6
| | - Suli Huang
- Dept of Occupational and Environmental Health and Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Molecular Biology of Shenzhen, Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Tangchun Wu
- Dept of Occupational and Environmental Health and Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Robert M Tanguay
- Laboratoire de génétique cellulaire et développementale, IBIS and PROTEO, Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de médecine, 1030 avenue de la Médecine, Université Laval, Québec, Canada, G1V 0A6
| |
Collapse
|
121
|
El-Guendy NM, Helwa R, El-Halawany MS, Abdel Rahman Ali S, Tantawy Aly M, Hasan Alieldin N, Fouad SAH, Saeid H, Abdel-Wahab AHA. The Liver MicroRNA Expression Profiles Associated With Chronic Hepatitis C Virus (HCV) Genotype-4 Infection: A Preliminary Study. HEPATITIS MONTHLY 2016; 16:e33881. [PMID: 27275163 PMCID: PMC4893413 DOI: 10.5812/hepatmon.33881] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/12/2016] [Accepted: 02/23/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) have been repeatedly shown to play important roles in liver pathologies, including hepatitis, liver cirrhosis, and liver cancer. Egypt has the highest hepatitis C virus (HCV) infection rate worldwide, predominantly involving genotype-4. OBJECTIVES In this study, we attempted to characterize the miRNA profile of the poorly studied genotype 4 of HCV in chronically infected Egyptian patients to obtain a better understanding of the disease and its complications and help in the design of better management protocols. PATIENTS AND METHODS We analyzed the expression levels of a selected panel of 94 miRNAs in fresh liver biopsies collected from 50 Egyptian patients diagnosed with chronic HCV infection using quantitative real-time polymerase chain reaction (PCR) assay. Non-parametric tests were used to analyze the expression level of each miRNA and association with the clinicopathological features of enrolled patients in this study. RESULTS Our results revealed differential expression levels of the analyzed miRNAs compared to the normal controls. Twenty-seven miRNAs (including miR-105, miR-147, miR-149-3p, and miR-196b) showed up-regulation, while 17 miRNAs (including miR-21, miR-122, miR-199a-3p, and miR-223) showed down-regulation. An inverse correlation was observed between levels of miR-95, miR-130a, and miR-142-5p with the blood albumin level. Increased expression levels of seven miRNAs (miR-29c, miR-30c, miR-126, miR-145, miR-199a, miR-199a-3p, and miR-222) were observed with severe chronic hepatic inflammation. Several deregulated miRNAs found in this study have been previously linked to chronic liver inflammation and the risk of hepatocellular carcinoma (HCC) development. CONCLUSIONS The identified expression profiles of some examined miRNAs might offer important points to consider for the treatment of naive patients and the management of chronically infected HCV patients in Egypt and around the world.
Collapse
Affiliation(s)
| | - Reham Helwa
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | | | | | - Nelly Hasan Alieldin
- Department of Biostatistics and Cancer Epidemiology, National Cancer Institute, Cairo University, Cairo, Egypt
| | | | - Hany Saeid
- Department of General Surgery, Ain Shams University, Cairo, Egypt
| | - Abdel-Hady Ali Abdel-Wahab
- Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
- Corresponding Author: Abdel-Hady Ali Abdel-Wahab, PhD, Department of Cancer Biology, National Cancer Institute, Cairo University, P. O. Box: 11796, Cairo, Egypt. Tel: +20-21005849055, Fax: +20-223644720, E-mail:
| |
Collapse
|
122
|
Hepatic Stellate Cells and microRNAs in Pathogenesis of Liver Fibrosis. J Clin Med 2016; 5:jcm5030038. [PMID: 26999230 PMCID: PMC4810109 DOI: 10.3390/jcm5030038] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/23/2016] [Accepted: 03/07/2016] [Indexed: 12/18/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by either blocking translation or inducing degradation of target mRNA. miRNAs play essential roles in diverse biological and pathological processes, including development of hepatic fibrosis. Hepatic stellate cells (HSCs) play a central role in development of hepatic fibrosis and there are intricate regulatory effects of miRNAs on their activation, proliferation, collagen production, migration, and apoptosis. There are multiple differentially expressed miRNAs in activated HSCs, and in this review we aim to summarize current data on miRNAs that participate in the development of hepatic fibrosis. Based on this review, miRNAs may serve as biomarkers for diagnosis of liver disease, as well as markers of disease progression. Most importantly, dysregulated miRNAs may potentially be targeted by novel therapies to treat and reverse progression of hepatic fibrosis.
Collapse
|
123
|
Tamori A, Murakami Y, Kubo S, Itami S, Uchida-Kobayashi S, Morikawa H, Enomoto M, Takemura S, Tanahashi T, Taguchi YH, Kawada N. MicroRNA expression in hepatocellular carcinoma after the eradication of chronic hepatitis virus C infection using interferon therapy. Hepatol Res 2016; 46:E26-35. [PMID: 25788219 DOI: 10.1111/hepr.12518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/18/2015] [Accepted: 03/11/2015] [Indexed: 02/06/2023]
Abstract
AIM Hepatocellular carcinoma (HCC) develops in up to 5% of patients after the successful treatment of chronic hepatitis C virus (HCV) infection using interferon therapy. The aim of this study was to characterize miRNA expression in liver tissues from patients who achieved a sustained viral response (SVR). METHODS Seventy-one patients with resected HCC were enrolled into the present study: 61 HCC from patients with continuously infected HCV (HCV-HCC) and 10 from patients who had achieved SVR (SVR-HCC). We also included non-tumor tissues (SVR-NT) from four patients with SVR-HCC, and liver tissue (SVR-CH) from four SVR patients without HCC. Total RNA was extracted from liver samples. The miRNA expression patterns were analyzed using microarrays. In addition, target gene expression was quantified after miRNA overexpression in HEK293 cells. RESULTS We could discriminate between SVR-HCC and HCV-HCC with 75.36% accuracy using the expression pattern of six specific miRNA. The expression levels of 37 miRNA were significantly lower in HCV-HCC than in SVR-HCC, whereas the expression of 25 miRNA was significantly higher in HCV-HCC than SVR-HCC (P < 1.0E-05). The expression of thrombospondin 1 was regulated in an opposing manner by miR-30a-3p in SVR-HCC and HCV-HCC. In non-tumor tissues, the expression pattern of seven miRNA could distinguish between SVR-CH and SVR-NT with 87.50% accuracy. CONCLUSION Comprehensive miRNA expression analyses could not only differentiate between SVR-HCC and HCV-HCC but also forecast hepatocarcinogenesis after achieving SVR.
Collapse
Affiliation(s)
- Akihiro Tamori
- Department of Hepatology, Osaka City University Graduate School of Medicine
| | - Yoshiki Murakami
- Department of Hepatology, Osaka City University Graduate School of Medicine
| | - Shoji Kubo
- Department of Hepatobiliary Surgery, Osaka City University Graduate School of Medicine, Osaka
| | - Saori Itami
- Department of Hepatology, Osaka City University Graduate School of Medicine
| | | | - Hiroyasu Morikawa
- Department of Hepatology, Osaka City University Graduate School of Medicine
| | - Masaru Enomoto
- Department of Hepatology, Osaka City University Graduate School of Medicine
| | - Shigekazu Takemura
- Department of Hepatobiliary Surgery, Osaka City University Graduate School of Medicine, Osaka
| | | | - Y-H Taguchi
- Department of Physics, Chuo University, Tokyo, Japan
| | - Norifumi Kawada
- Department of Hepatology, Osaka City University Graduate School of Medicine
| |
Collapse
|
124
|
Van Keuren‐Jensen KR, Malenica I, Courtright AL, Ghaffari LT, Starr AP, Metpally RP, Beecroft TA, Carlson EW, Kiefer JA, Pockros PJ, Rakela J. microRNA changes in liver tissue associated with fibrosis progression in patients with hepatitis C. Liver Int 2016; 36:334-43. [PMID: 26189820 PMCID: PMC5049661 DOI: 10.1111/liv.12919] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/12/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Accumulating evidence indicates that microRNAs play a role in a number of disease processes including the pathogenesis of liver fibrosis in hepatitis C infection. Our goal is to add to the accruing information regarding microRNA deregulation in liver fibrosis to increase our understanding of the underlying mechanisms of pathology and progression. METHODS We used next generation sequencing to profile all detectable microRNAs in liver tissue and serum from patients with hepatitis C, stages F1-F4 of fibrosis. RESULTS We found altered expression of several microRNAs, in particular, miR-182, miR199a-5p, miR-200a-5p and miR-183 were found to be significantly upregulated in tissue from liver biopsies of hepatitis C patients with advanced fibrosis, stage F3 and F4, when compared with liver biopsies from patients with early fibrosis, stages F1 and F2. We also found miR-148-5p, miR-1260b, miR-122-3p and miR-378i among the microRNAs most significantly down-regulated from early to advanced fibrosis of the liver. We also sequenced the serum microRNAs; however, we were not able to detect significant changes in circulating microRNAs associated with fibrosis stage after adjusting for multiple tests. CONCLUSIONS Adding measurements of tissue microRNAs acquired during routine biopsies will continue to increase our knowledge of underlying mechanisms of fibrosis. Our goal is that these data, in combination with studies from other researchers and future long-term studies, could be used to enhance the staging accuracy of liver biopsies and expand the surveillance of patients at increased risk for cancer and progression to advanced fibrosis.
Collapse
Affiliation(s)
| | - Ivana Malenica
- NeurogenomicsTranslational Genomics Research InstitutePhoenixAZUSA
| | | | | | - Alex P. Starr
- NeurogenomicsTranslational Genomics Research InstitutePhoenixAZUSA
| | | | | | | | | | | | - Jorge Rakela
- Gastroenterology and HepatologyMayo ClinicScottsdaleAZUSA
| |
Collapse
|
125
|
Schon HT, Bartneck M, Borkham-Kamphorst E, Nattermann J, Lammers T, Tacke F, Weiskirchen R. Pharmacological Intervention in Hepatic Stellate Cell Activation and Hepatic Fibrosis. Front Pharmacol 2016; 7:33. [PMID: 26941644 PMCID: PMC4764688 DOI: 10.3389/fphar.2016.00033] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/08/2016] [Indexed: 12/17/2022] Open
Abstract
The activation and transdifferentiation of hepatic stellate cells (HSCs) into contractile, matrix-producing myofibroblasts (MFBs) are central events in hepatic fibrogenesis. These processes are driven by autocrine- and paracrine-acting soluble factors (i.e., cytokines and chemokines). Proof-of-concept studies of the last decades have shown that both the deactivation and removal of hepatic MFBs as well as antagonizing profibrogenic factors are in principle suitable to attenuate ongoing hepatic fibrosis. Although several drugs show potent antifibrotic activities in experimental models of hepatic fibrosis, there is presently no effective pharmaceutical intervention specifically approved for the treatment of liver fibrosis. Pharmaceutical interventions are generally hampered by insufficient supply of drugs to the diseased liver tissue and/or by adverse effects as a result of affecting non-target cells. Therefore, targeted delivery systems that bind specifically to receptors solely expressed on activated HSCs or transdifferentiated MFBs and delivery systems that can improve drug distribution to the liver in general are urgently needed. In this review, we summarize current strategies for targeted delivery of drugs to the liver and in particular to pro-fibrogenic liver cells. The applicability and efficacy of sequestering molecules, selective protein carriers, lipid-based drug vehicles, viral vectors, transcriptional targeting approaches, therapeutic liver- and HSC-specific nanoparticles, and miRNA-based strategies are discussed. Some of these delivery systems that had already been successfully tested in experimental animal models of ongoing hepatic fibrogenesis are expected to translate into clinically useful therapeutics specifically targeting HSCs.
Collapse
Affiliation(s)
- Hans-Theo Schon
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| | - Matthias Bartneck
- Department of Medicine III, University Hospital RWTH Aachen Aachen, Germany
| | - Erawan Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University of Bonn Bonn, Germany
| | - Twan Lammers
- Department for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, University Hospital RWTH Aachen Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| |
Collapse
|
126
|
Louten J, Beach M, Palermino K, Weeks M, Holenstein G. MicroRNAs Expressed during Viral Infection: Biomarker Potential and Therapeutic Considerations. Biomark Insights 2016; 10:25-52. [PMID: 26819546 PMCID: PMC4718089 DOI: 10.4137/bmi.s29512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are short sequences of noncoding single-stranded RNAs that exhibit inhibitory effects on complementary target mRNAs. Recently, it has been discovered that certain viruses express their own miRNAs, while other viruses activate the transcription of cellular miRNAs for their own benefit. This review summarizes the viral and/or cellular miRNAs that are transcribed during infection, with a focus on the biomarker and therapeutic potential of miRNAs (or their antagomirs). Several human viruses of clinical importance are discussed, namely, herpesviruses, polyomaviruses, hepatitis B virus, hepatitis C virus, human papillomavirus, and human immunodeficiency virus.
Collapse
Affiliation(s)
- Jennifer Louten
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Michael Beach
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Kristina Palermino
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Maria Weeks
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Gabrielle Holenstein
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| |
Collapse
|
127
|
El-Ahwany E, Nagy F, Zoheiry M, Shemis M, Nosseir M, Taleb HA, El Ghannam M, Atta R, Zada S. Circulating miRNAs as Predictor Markers for Activation of Hepatic Stellate Cells and Progression of HCV-Induced Liver Fibrosis. Electron Physician 2016; 8:1804-10. [PMID: 26955452 PMCID: PMC4768932 DOI: 10.19082/1804] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/28/2015] [Indexed: 12/17/2022] Open
Abstract
Introduction Liver fibrosis is the excessive accumulation of extracellular matrix that occurs by activation of hepatic stellate cells (HSCs), which has been identified as the major driver of liver fibrosis. Several studies confirmed that miRNAs have regulatory effects on the activation of HSCs by affecting the signaling pathways. The aim of this study was to develop non-invasive diagnostic markers by measuring different circulating miRNAs in serum as predictor markers for early diagnosis of liver fibrosis and its progression. Methods In this case-control study, we enrolled 66 subjects with chronic hepatitis C (CHC) with early stage of fibrosis and 65 subjects with CHC with late-stage fibrosis. Also, 40 subjects were included as normal controls. The six main miRNAs, i.e., miR-138, miR-140, miR-143, miR-325, miR-328, and miR-349, were measured using the reverse transcription-polymerase chain reaction. Results In the cases of CHC both with early and late stage of fibrosis, the circulating levels of the six main miRNAs were significantly higher than the levels in the control group. ROC analysis indicated that the sensitivity and specificity of miR-138 were 89.3% and 71.43%, respectively, in the early stage of fibrosis. In the late stage, the sensitivity and specificity of miR-138 were 89.3 and 93.02%, respectively, whereas, for miR-143, they were 75.0 and 88.4%, respectively. Conclusions Circulating miR-138 could serve as a non-invasive biomarker for the detection of early fibrosis. Also, miR-138 and miR-143 could be specific biomarkers for indicating the late stage of liver fibrosis.
Collapse
Affiliation(s)
- Eman El-Ahwany
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Faten Nagy
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mona Zoheiry
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohamed Shemis
- Biochemistry Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mona Nosseir
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Hoda Abu Taleb
- Environmental Research Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Maged El Ghannam
- Gastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Rafaat Atta
- Gastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Suher Zada
- Biology Department, American University in Cairo, Cairo, Egypt
| |
Collapse
|
128
|
Xu F, Liu C, Zhou D, Zhang L. TGF-β/SMAD Pathway and Its Regulation in Hepatic Fibrosis. J Histochem Cytochem 2016; 64:157-67. [PMID: 26747705 DOI: 10.1369/0022155415627681] [Citation(s) in RCA: 508] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-beta1 (TGF-β1), a key member in the TGF-β superfamily, plays a critical role in the development of hepatic fibrosis. Its expression is consistently elevated in affected organs, which correlates with increased extracellular matrix deposition. SMAD proteins have been studied extensively as pivotal intracellular effectors of TGF-β1, acting as transcription factors. In the context of hepatic fibrosis, SMAD3 and SMAD4 are pro-fibrotic, whereas SMAD2 and SMAD7 are protective. Deletion of SMAD3 inhibits type I collagen expression and blocks epithelial-myofibroblast transition. In contrast, disruption of SMAD2 upregulates type I collagen expression. SMAD4 plays an essential role in fibrosis disease by enhancing SMAD3 responsive promoter activity, whereas SMAD7 negatively mediates SMAD3-induced fibrogenesis. Accumulating evidence suggests that divergent miRNAs participate in the liver fibrotic process, which partially regulates members of the TGF-β/SMAD signaling pathway. In this review, we focus on the TGF-β/SMAD and other relative signaling pathways, and discussed the role and molecular mechanisms of TGF-β/SMAD in the pathogenesis of hepatic fibrosis. Moreover, we address the possibility of novel therapeutic approaches to hepatic fibrosis by targeting to TGF-β/SMAD signaling.
Collapse
Affiliation(s)
- Fengyun Xu
- School of Pharmacy (FX, DZ, LZ),Anhui Medical University, Hefei 230022, ChinaInstitute for Liver Diseases (FX, DZ, LZ)
| | - Changwei Liu
- Anhui Medical University, Hefei 230022, ChinaDepartment of Pharmacy, The First Affiliated Hospital of Anhui Medical University (CL)
| | - Dandan Zhou
- School of Pharmacy (FX, DZ, LZ),Anhui Medical University, Hefei 230022, ChinaInstitute for Liver Diseases (FX, DZ, LZ)
| | - Lei Zhang
- School of Pharmacy (FX, DZ, LZ),Anhui Medical University, Hefei 230022, ChinaInstitute for Liver Diseases (FX, DZ, LZ)
| |
Collapse
|
129
|
Dong H, Curran I, Williams A, Bondy G, Yauk CL, Wade MG. Hepatic miRNA profiles and thyroid hormone homeostasis in rats exposed to dietary potassium perfluorooctanesulfonate (PFOS). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:201-210. [PMID: 26724606 DOI: 10.1016/j.etap.2015.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/30/2015] [Accepted: 12/17/2015] [Indexed: 06/05/2023]
Abstract
Perfluorooctanesulfonate (PFOS) has been widely used in a variety of industrial and commercial applications as a surfactant and stain repellent. PFOS causes liver damage (including liver tumors) in experimental animals, primarily via interaction with PPARα and CAR/PXR. We investigated the involvement of microRNAs (miRNAs) in PFOS-induced hepatotoxicity, and mechanisms involved in abnormal thyroid hormone (TH) homeostasis, in the livers of adult male rats exposed in feed to 50mg PFOS/kg diet for 28 days. PFOS-treated rats exhibited expected histopathological and clinical chemistry changes, and global gene expression changes consistent with the involvement of PPARα and CAR/PXR. Thirty-eight miRNAs were significantly altered. Three members of the miR-200 family were the most increased, while miR-122-5p and miR-21-5p were the most decreased, in PFOS-treated rats. Expression of the miR-23b-3p/27b-3p/24-3p cluster also decreased in PFOS-treated animals. Pathway analysis of miRNAs and associated gene expression changes suggests involvement of epithelial to mesenchymal transition (EMT), which is a primary process of tumor cell motility and cancer metastasis. Our analysis also revealed transcripts that may mediate PFOS-induced effects on TH homeostasis including: activation of the CAR/PXR pathway, phase II/III enzymes, and deiodinase. These changes are consistent with low serum TH due to enhanced metabolic clearance of TH. However, most TH hepatic target genes were not altered in a manner consistent with reduced TH signaling, suggesting that PFOS exposure did not induce functional hypothyroidism. Collectively, the study suggests an important role for miRNAs in PFOS-induced hepatotoxicity and provides insight into the effects of PFOS on TH homeostasis.
Collapse
Affiliation(s)
- Hongyan Dong
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Ottawa, ON, Canada K1A 0K9
| | - Ivan Curran
- Bureau of Chemical Safety, Health Canada, Ottawa, ON, Canada K1A 0K9
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Ottawa, ON, Canada K1A 0K9
| | - Genevieve Bondy
- Bureau of Chemical Safety, Health Canada, Ottawa, ON, Canada K1A 0K9
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Ottawa, ON, Canada K1A 0K9
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Ottawa, ON, Canada K1A 0K9.
| |
Collapse
|
130
|
Xu T, Ni MM, Xing-Li, Li XF, Meng XM, Huang C, Li J. NLRC5 regulates TGF-β1-induced proliferation and activation of hepatic stellate cells during hepatic fibrosis. Int J Biochem Cell Biol 2015; 70:92-104. [PMID: 26592197 DOI: 10.1016/j.biocel.2015.11.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/18/2015] [Accepted: 11/12/2015] [Indexed: 02/07/2023]
Abstract
Therapeutic management of liver fibrosis remains an unsolved clinical problem. Hepatic accumulation of extracellular matrix, mainly collagen, is mediated by the production of transforming growth factor-β1 (TGF-β1) in hepatic stellate cells (HSCs). NLRC5, the largest member of the NLR protein family, has recently been identified as a critical regulator of immune responses. Novel evidence shows that NLRC5 is an important negative modulator of inflammatory pathways. Herein, we determined the regulation of NLRC5 in liver fibrogenesis and its underlying mechanisms. We have shown that NLRC5 was upregulated in human liver fibrotic tissues. Overexpression of NLRC5 resulted in an upregulation of collagen 1 and α-smooth muscle actin expression in HSC LX-2 cells, which was inhibited by NLRC5 knockdown with its siRNA. Furthermore, NLRC5 deficiency significantly suppressed TGF-β1-induced proliferation but increased apoptosis (i.e., increased caspases-3, DR4 and DR5) in LX-2 cells. In addition, knockdown of NLRC5 promoted the activation of NF-κB signaling pathways but abrogated phosphorylation of Smad2 and Smad3 proteins in response to TGF-β1. These results indicate that NLRC5 is a potent pro-fibrogenic molecule for HSC activation through TGF-β1/Smad and NF-κB signaling pathways. NLRC5 inhibition would be a promising therapeutic avenue for treating hepatic fibrosis.
Collapse
Affiliation(s)
- Tao Xu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Ming-ming Ni
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Xing-Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Xiao-feng Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Xiao-ming Meng
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
131
|
Matrix Metalloproteinases and Their Inhibitors in Chronic Obstructive Pulmonary Disease. Arch Immunol Ther Exp (Warsz) 2015; 64:177-93. [DOI: 10.1007/s00005-015-0375-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 09/25/2015] [Indexed: 01/04/2023]
|
132
|
Fierro-Fernández M, Miguel V, Lamas S. Role of redoximiRs in fibrogenesis. Redox Biol 2015; 7:58-67. [PMID: 26654978 PMCID: PMC4683389 DOI: 10.1016/j.redox.2015.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 02/06/2023] Open
Abstract
Fibrosis can be defined as an excessive accumulation of extracellular matrix (ECM) components, ultimately leading to stiffness, scarring and devitalized tissue. MicroRNAs (miRNAs) are short, 19-25 nucleotides (nt), non-coding RNAs involved in the post-transcriptional regulation of gene expression. Recently, miRNAs have also emerged as powerful regulators of fibrotic processes and have been termed "fibromiRs". Oxidative stress represents a self-perpetuating mechanism in fibrogenesis. MiRNAs can also influence the expression of genes responsible for the generation of reactive oxygen species (ROS) and antioxidant defence and are termed "redoximiRs". Here, we review the current knowledge of mechanisms by which "redoximiRs" regulate fibrogenesis. This new set of miRNAs may be called "redoxifibromiRs".
Collapse
Affiliation(s)
- Marta Fierro-Fernández
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - Verónica Miguel
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Santiago Lamas
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
133
|
Du J, Niu X, Wang Y, Kong L, Wang R, Zhang Y, Zhao S, Nan Y. MiR-146a-5p suppresses activation and proliferation of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis through directly targeting Wnt1 and Wnt5a. Sci Rep 2015; 5:16163. [PMID: 26537990 PMCID: PMC4633641 DOI: 10.1038/srep16163] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/07/2015] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fibrosing steatohepatitis is a uniform process throughout nonalcoholic fatty liver disease (NAFLD). MicroRNAs (miRNAs) have been suggested to modulate cellular processes in liver diseases. However, the functional role of miRNAs in nonalcoholic fibrosing steatohepatitis is largely unclear. In this study, we systematically analyzed the hepatic miRNAs by microarray analysis in nonalcoholic fibrosing steatohepatitis in C57BL/6J mice induced by methionine-choline deficient (MCD) diet. We identified 19 up-regulated and 18 down-regulated miRNAs in liver with fibrosis. Among these dysregulated miRNAs, miR-146a-5p was the most significant down-regulated miRNA. Luciferase activity assay confirmed that Wnt1 and Wnt5a were both the target genes of miR-146a-5p. Hepatic miR-146a-5p was down-regulated in fibrosing steatohepatitis, but its target genes Wnt1 and Wnt5a and their consequent effectors α-SMA and Col-1 were significantly up-regulated. In addition, miR-146a-5p was downregulated, whilst Wnt1 and Wnt5a were up-regulated in the activated primary hepatic stellate cells (HSCs) compared to the quiescent primary HSCs. Overexpression of miR-146a-5p in HSCs inhibited HSC activation and proliferation, which concomitant with the decreased expressions of Wnt1, Wnt5a, α-SMA and Col-1. In conclusion, miR-146a-5p suppresses activation and proliferation of HSCs in the progress of nonalcoholic fibrosing steatohepatitis through targeting Wnt1 and Wnt5a and consequent effectors α-SMA and Col-1.
Collapse
Affiliation(s)
- Jinghua Du
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuemin Niu
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Wang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lingbo Kong
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rongqi Wang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuguo Zhang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Suxian Zhao
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
134
|
Kumar V, Mondal G, Dutta R, Mahato RI. Co-delivery of small molecule hedgehog inhibitor and miRNA for treating liver fibrosis. Biomaterials 2015; 76:144-56. [PMID: 26524535 DOI: 10.1016/j.biomaterials.2015.10.047] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 01/18/2023]
Abstract
In liver fibrosis, secretion of growth factors and hedgehog (Hh) ligands by hepatic parenchyma upon repeated insults results in transdifferentiation of quiescent hepatic stellate cells (HSCs) into active myofibroblasts which secrete excessive amounts of extracellular matrix (ECM) proteins. An Hh inhibitor GDC-0449 and miR-29b1 can play an important role in treating liver fibrosis by inhibiting several pro-fibrotic genes. Our in-silico analysis indicate that miR-29b1 targets several profibrotic genes like collagen type I & IV, c-MYC, PDGF-β and PI3K/AKT which are upregulated in liver fibrosis. Common bile duct ligation (CBDL) resulted in an increase in Ptch-1, Shh and Gli-1 expression. miR-29b1 and GDC-0449 were co-formulated into micelles using methoxy poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate-graft-dodecanol-graft-tetraethylenepentamine) (mPEG-b-PCC-g-DC-g-TEPA) copolymer, and injected systemically into CBDL mice. High concentrations of GDC-0449 and miR-29b1 were delivered to liver cells as determined by in situ liver perfusion at 30 min post systemic administration of their micelle formulation. There was a significant decrease in collagen deposition in the liver and serum injury markers, leading to improvement in liver morphology. Combination therapy was more effective in providing hepatoprotection, lowering liver injury related serum enzyme levels, reducing fibrotic protein markers such as collagen, α-SMA, FN-1 and p-AKT compared to monotherapy. In conclusion, inhibition of Hh pathway and restoration of miR-29b1 have the potential to act synergistically in treating CBDL-induced liver fibrosis in mice.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Goutam Mondal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rinku Dutta
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
135
|
Tsuchiya N, Sawada Y, Endo I, Saito K, Uemura Y, Nakatsura T. Biomarkers for the early diagnosis of hepatocellular carcinoma. World J Gastroenterol 2015; 21:10573-10583. [PMID: 26457017 PMCID: PMC4588079 DOI: 10.3748/wjg.v21.i37.10573] [Citation(s) in RCA: 354] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/21/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the second leading cause of cancer-related deaths worldwide. Although the prognosis of patients with HCC is generally poor, the 5-year survival rate is > 70% if patients are diagnosed at an early stage. However, early diagnosis of HCC is complicated by the coexistence of inflammation and cirrhosis. Thus, novel biomarkers for the early diagnosis of HCC are required. Currently, the diagnosis of HCC without pathological correlation is achieved by analyzing serum α-fetoprotein levels combined with imaging techniques. Advances in genomics and proteomics platforms and biomarker assay techniques over the last decade have resulted in the identification of numerous novel biomarkers and have improved the diagnosis of HCC. The most promising biomarkers, such as glypican-3, osteopontin, Golgi protein-73 and nucleic acids including microRNAs, are most likely to become clinically validated in the near future. These biomarkers are not only useful for early diagnosis of HCC, but also provide insight into the mechanisms driving oncogenesis. In addition, such molecular insight creates the basis for the development of potentially more effective treatment strategies. In this article, we provide an overview of the biomarkers that are currently used for the early diagnosis of HCC.
Collapse
|
136
|
Serum microRNA-210 levels in different groups of chronic hepatitis B patients. Clin Chim Acta 2015; 450:203-9. [DOI: 10.1016/j.cca.2015.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/31/2015] [Accepted: 08/25/2015] [Indexed: 12/27/2022]
|
137
|
Gissen P, Arias IM. Structural and functional hepatocyte polarity and liver disease. J Hepatol 2015; 63:1023-37. [PMID: 26116792 PMCID: PMC4582071 DOI: 10.1016/j.jhep.2015.06.015] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 02/08/2023]
Abstract
Hepatocytes form a crucially important cell layer that separates sinusoidal blood from the canalicular bile. They have a uniquely organized polarity with a basal membrane facing liver sinusoidal endothelial cells, while one or more apical poles can contribute to several bile canaliculi jointly with the directly opposing hepatocytes. Establishment and maintenance of hepatocyte polarity is essential for many functions of hepatocytes and requires carefully orchestrated cooperation between cell adhesion molecules, cell junctions, cytoskeleton, extracellular matrix and intracellular trafficking machinery. The process of hepatocyte polarization requires energy and, if abnormal, may result in severe liver disease. A number of inherited disorders affecting tight junction and intracellular trafficking proteins have been described and demonstrate clinical and pathophysiological features overlapping those of the genetic cholestatic liver diseases caused by defects in canalicular ABC transporters. Thus both structural and functional components contribute to the final hepatocyte polarity phenotype. Many acquired liver diseases target factors that determine hepatocyte polarity, such as junctional proteins. Hepatocyte depolarization frequently occurs but is rarely recognized because hematoxylin-eosin staining does not identify the bile canaliculus. However, the molecular mechanisms underlying these defects are not well understood. Here we aim to provide an update on the key factors determining hepatocyte polarity and how it is affected in inherited and acquired diseases.
Collapse
Affiliation(s)
- Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; UCL Institute of Child Health, London, UK; Great Ormond Street Hospital, London, UK.
| | - Irwin M Arias
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States
| |
Collapse
|
138
|
Sarkar N, Chakravarty R. Hepatitis B Virus Infection, MicroRNAs and Liver Disease. Int J Mol Sci 2015; 16:17746-62. [PMID: 26247932 PMCID: PMC4581219 DOI: 10.3390/ijms160817746] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) attacks the liver and can cause both acute as well as chronic liver diseases which might lead to liver cirrhosis and hepatocellular carcinoma. Regardless of the availability of a vaccine and numerous treatment options, HBV is a major cause of morbidity and mortality across the world. Recently, microRNAs (miRNAs) have emerged as important modulators of gene function. Studies on the role of miRNA in the regulation of hepatitis B virus gene expression have been the focus of modern antiviral research. miRNAs can regulate viral replication and pathogenesis in a number of different ways, which includefacilitation, direct or indirect inhibition, activation of immune response, epigenetic modulation, etc. Nevertheless, these mechanisms can appropriately be used with a diagnosticand/or therapeutic approach. The present review is an attempt to classify specific miRNAs that are reported to be associated with various aspects of hepatitis B biology, in order to precisely present the participation of individual miRNAs in multiple aspects relating to HBV.
Collapse
Affiliation(s)
- Neelakshi Sarkar
- ICMR Virus Unit, Kolkata, ID & BG Hospital Campus, Kolkata-700010, India.
| | - Runu Chakravarty
- ICMR Virus Unit, Kolkata, ID & BG Hospital Campus, Kolkata-700010, India.
| |
Collapse
|
139
|
Izawa T, Horiuchi T, Atarashi M, Kuwamura M, Yamate J. Anti-fibrotic Role of miR-214 in Thioacetamide-induced Liver Cirrhosis in Rats. Toxicol Pathol 2015; 43:844-51. [PMID: 25755099 DOI: 10.1177/0192623315573587] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An increasing number of studies have focused on the role of microRNAs in liver fibrosis/cirrhosis. miR-214 has recently attracted more attention as a fibrosis-related factor; however, the molecular mechanisms in hepatic fibrogenesis remain largely unknown. Here, we investigate the pathological role of miR-214 during progression of liver cirrhosis in rats. Rats were injected intraperitoneally with thioacetamide at a dose of 100 mg/kg body weight, twice a week. The liver was collected at post first injection weeks 5, 10, 15, and 20. Hepatic expression of miR-214 was analyzed by real-time polymerase chain reaction, in situ hybridization, and laser microdissection. The effects of miR-214 overexpression were investigated by in vitro transfection using fibroblastic MT-9 cells. miR-214 was highly upregulated in the fibrotic area in parallel with the cirrhosis progression. miR-214 overexpression in MT-9 cells under transforming growth factor-β1 stimulation resulted in decreased cell number and increased expression of cleaved caspase 3 and decreased expression of α-smooth muscle actin, suggesting that miR-214 induces apoptosis and inhibits myofibroblast differentiation in fibroblastic cells under stimulation of fibrogenic factors. These data indicate an anti-fibrotic role of miR-214 in chemically induced liver fibrosis/cirrhosis.
Collapse
Affiliation(s)
- Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Prefecture University, Osaka, Japan Both Takeshi Izawa and Takashi Horiuchi contributed equally to the article.
| | - Takashi Horiuchi
- Laboratory of Veterinary Pathology, Osaka Prefecture University, Osaka, Japan Both Takeshi Izawa and Takashi Horiuchi contributed equally to the article
| | - Machi Atarashi
- Laboratory of Veterinary Pathology, Osaka Prefecture University, Osaka, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Prefecture University, Osaka, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
140
|
Lambrecht J, Mannaerts I, van Grunsven LA. The role of miRNAs in stress-responsive hepatic stellate cells during liver fibrosis. Front Physiol 2015; 6:209. [PMID: 26283969 PMCID: PMC4516870 DOI: 10.3389/fphys.2015.00209] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/13/2015] [Indexed: 12/12/2022] Open
Abstract
The progression of liver fibrosis and cirrhosis is associated with the persistence of an injury causing agent, leading to changes in the extracellular environment and a disruption of the cellular homeostasis of liver resident cells. Recruitment of inflammatory cells, apoptosis of hepatocytes, and changes in liver microvasculature are some examples of changing cellular environment that lead to the induction of stress responses in nearby cells. During liver fibrosis, the major stresses include hypoxia, oxidative stress, and endoplasmic reticulum stress. When hepatic stellate cells (HSCs) are subjected to such stress, they modulate fibrosis progression by induction of their activation toward a myofibroblastic phenotype, or by undergoing apoptosis, and thus helping fibrosis resolution. It is widely accepted that microRNAs are import regulators of gene expression, both during normal cellular homeostasis, as well as in pathologic conditions. MicroRNAs are short RNA sequences that regulate the gene expression by mRNA destabilization and inhibition of mRNA translation. Specific microRNAs have been identified to play a role in the activation process of HSCs on the one hand and in stress-responsive pathways on the other hand in other cell types (Table 2). However, so far there are no reports for the involvement of miRNAs in the different stress responses linked to HSC activation. Here, we review briefly the major stress response pathways and propose several miRNAs to be regulated by these stress responsive pathways in activating HSCs, and discuss their potential specific pro-or anti-fibrotic characteristics.
Collapse
Affiliation(s)
- Joeri Lambrecht
- Liver Cell Biology Lab, Department of Biomedical Sciences, Vrije Universiteit Brussel Brussels, Belgium
| | - Inge Mannaerts
- Liver Cell Biology Lab, Department of Biomedical Sciences, Vrije Universiteit Brussel Brussels, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Lab, Department of Biomedical Sciences, Vrije Universiteit Brussel Brussels, Belgium
| |
Collapse
|
141
|
Chen X, Zhang L, Su T, Li H, Huang Q, Wu D, Yang C, Han Z. Kinetics of plasma microRNA-499 expression in acute myocardial infarction. J Thorac Dis 2015; 7:890-6. [PMID: 26101645 DOI: 10.3978/j.issn.2072-1439.2014.11.32] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/09/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND MicroRNA (miRNA) is reported to be present in human plasma and has been increasingly suggested as a biomarker for diseases. Our study aimed to investigate the kinetics of cardiac-specific microR-499 (miR-499) in acute myocardial infarction (AMI). METHODS Circulating concentrations of cardiac enriched miR-499 were measured by quantitative PCR in 73 patients with acute coronary syndrome (ACS), including 53 with AMI and 20 with unstable angina (UA). Thirty healthy subjects were used as controls. Plasma samples in AMI group were obtained immediately after admission and at 12 h, 24 h, 3 d and 7 d after onset of symptoms. Plasma samples in UA and healthy control groups were collected immediately after admission. The severity and extent of coronary stenotic lesions were evaluated on the basis of coronary angiography using Gensini score. RESULTS miR-499 expression levels were significantly higher in the 53 AMI patients than in the 20 UA patients and 30 healthy controls immediately after admission (P<0.01). A measurable increase in miR-499 levels was observed in AMI patients within 24 h of the last onset of chest pain and the levels returned to the baseline after 7 d. Plasma miR-499 levels in the patients with AMI were positively-correlated with cTnI (r=0.384, P<0.01) and CK-MB (r=0.402, P<0.01). In addition, miR-499 levels in AMI patients with two- and three-vessel coronary artery disease (CAD) were significantly higher than those in patients with single-vessel CAD (P<0.05). Gensini scores were used to evaluate the severity of coronary stenosis. miR-499 were positively correlated with Gensini scores (r=0.52, P<0.01). miR-499 levels at admission were significantly higher than that those 24 h after percutaneous coronary intervention (PCI) in AMI patients (P<0.01) and were negatively correlated with LVEF (r=0.36, P=0.008). CONCLUSIONS Cardiac-specific miRNA-499 levels were found to be linearly proportional to myocardial damage. MiRNA-499 might prove to be a new biomarker for AMI and a predictor of the risk of myocardial ischemia.
Collapse
Affiliation(s)
- Xi Chen
- 1 Department of Cardiology, 2 Department of Laboratory Medicine, Wuxi Second People's Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Lizhu Zhang
- 1 Department of Cardiology, 2 Department of Laboratory Medicine, Wuxi Second People's Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Tong Su
- 1 Department of Cardiology, 2 Department of Laboratory Medicine, Wuxi Second People's Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Heng Li
- 1 Department of Cardiology, 2 Department of Laboratory Medicine, Wuxi Second People's Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Qiang Huang
- 1 Department of Cardiology, 2 Department of Laboratory Medicine, Wuxi Second People's Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Dan Wu
- 1 Department of Cardiology, 2 Department of Laboratory Medicine, Wuxi Second People's Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Chengjian Yang
- 1 Department of Cardiology, 2 Department of Laboratory Medicine, Wuxi Second People's Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Zhijun Han
- 1 Department of Cardiology, 2 Department of Laboratory Medicine, Wuxi Second People's Hospital of Nanjing Medical University, Wuxi 214002, China
| |
Collapse
|
142
|
Integrative miRNA and Gene Expression Profiling Analysis of Human Quiescent Hepatic Stellate Cells. Sci Rep 2015; 5:11549. [PMID: 26096707 PMCID: PMC4476106 DOI: 10.1038/srep11549] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/22/2015] [Indexed: 12/13/2022] Open
Abstract
Unveiling the regulatory pathways maintaining hepatic stellate cells (HSC) in a quiescent (q) phenotype is essential to develop new therapeutic strategies to treat fibrogenic diseases. To uncover the miRNA-mRNA regulatory interactions in qHSCs, HSCs were FACS-sorted from healthy livers and activated HSCs (aHSCs) were generated in vitro. MiRNA Taqman array analysis showed HSCs expressed a low number of miRNAs (n = 259), from which 47 were down-regulated and 212 up-regulated upon activation. Computational integration of miRNA and gene expression profiles revealed that 66% of qHSC-associated miRNAs correlated with more than 6 altered target mRNAs (17,28 ± 10,7 targets/miRNA) whereas aHSC-associated miRNAs had an average of 1,49 targeted genes. Interestingly, interaction networks generated by miRNA-targeted genes in qHSCs were associated with key HSC activation processes. Next, selected miRNAs were validated in healthy and cirrhotic human livers and miR-192 was chosen for functional analysis. Down-regulation of miR-192 in HSCs was found to be an early event during fibrosis progression in mouse models of liver injury. Moreover, mimic assays for miR-192 in HSCs revealed its role in HSC activation, proliferation and migration. Together, these results uncover the importance of miRNAs in the maintenance of the qHSC phenotype and form the basis for understanding the regulatory networks in HSCs.
Collapse
|
143
|
Sombetzki M, Loebermann M, Reisinger EC. Vector-mediated microRNA-21 silencing ameliorates granulomatous liver fibrosis in Schistosoma japonicum infection. Hepatology 2015; 61:1787-9. [PMID: 25684616 DOI: 10.1002/hep.27748] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Martina Sombetzki
- Division of Tropical Medicine and Infectious Diseases, Department of Internal Medicine II, University of Rostock, Rostock, Germany
| | - Micha Loebermann
- Division of Tropical Medicine and Infectious Diseases, Department of Internal Medicine II, University of Rostock, Rostock, Germany
| | - Emil C Reisinger
- Division of Tropical Medicine and Infectious Diseases, Department of Internal Medicine II, University of Rostock, Rostock, Germany
| |
Collapse
|
144
|
Feng X, Tan W, Cheng S, Wang H, Ye S, Yu C, He Y, Zeng J, Cen J, Hu J, Zheng R, Zhou Y. Upregulation of microRNA-126 in hepatic stellate cells may affect pathogenesis of liver fibrosis through the NF-κB pathway. DNA Cell Biol 2015; 34:470-80. [PMID: 25974152 DOI: 10.1089/dna.2014.2760] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatic fibrosis, which results from chronic liver disease, currently lacks effective treatment. MicroRNAs, a group of small noncoding RNA molecules, have been observed to play an essential role in liver diseases, including hepatic fibrosis. In this study, we described the regulation of nuclear factor kappa B (NF-κB) inhibitor alpha (IκBα) and its possible signaling pathway by miR-126 in human hepatic stellate cell (HSC) line LX-2. The 3'-untranslated region (3'-UTR) of IκBα combined with miR-126 was analyzed by using a dual-luciferase reporter assay. Furthermore, the effects of miR-126 on IκBα mRNA and protein and NF-κB protein expression were assessed by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and western blot analysis in the human HSC LX-2 cell line transfected with miR-126 mimic or inhibitor. Moreover, to understand the molecular mechanism of miR-126 in promoting liver fibrosis through NF-κB signaling pathway, the NF-κB downstream signaling factors expression such as transforming growth factor (TGF)-β1 and collagen I mRNA were detected by real-time qRT-PCR. We identified that IκBα is a potential target gene of miR-126, by directly targeting its 3'-UTR. Endogenous miR-126 and exogenous miR-126 mimic inhibited IκBα expression. Moreover, overexpression of miR-126 reduced total and the cytoplasm IκBα protein expression and increased total and cytoblast NF-κB protein expression of LX-2. Conversely, knockdown of miR-126 could inhibit NF-κB activation by upregulation of IκBα protein expression. Further, miR-126 promoted TNF-a-induced TGF-β1 and collagen I mRNA expression in LX-2 cells. miR-126 may play an important role in hepatic fibrosis by downregulating the expression of IκBα partly through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiao Feng
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College , Zhanjiang, China
| | - Wenkai Tan
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College , Zhanjiang, China
| | - Si Cheng
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College , Zhanjiang, China
| | - Hao Wang
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College , Zhanjiang, China
| | - Shicai Ye
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College , Zhanjiang, China
| | - Caiyuan Yu
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College , Zhanjiang, China
| | - Yanting He
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College , Zhanjiang, China
| | - Juncheng Zeng
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College , Zhanjiang, China
| | - Junwei Cen
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College , Zhanjiang, China
| | - Juxiang Hu
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College , Zhanjiang, China
| | - Rong Zheng
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College , Zhanjiang, China
| | - Yu Zhou
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College , Zhanjiang, China
| |
Collapse
|
145
|
Strategies to prevent and reverse liver fibrosis in humans and laboratory animals. Arch Toxicol 2015; 89:1727-50. [PMID: 25963329 DOI: 10.1007/s00204-015-1525-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/28/2015] [Indexed: 02/07/2023]
Abstract
Liver fibrosis results from chronic damage to the liver in conjunction with various pathways and is mediated by a complex microenvironment. Based on clinical observations, it is now evident that fibrosis is a dynamic, bidirectional process with an inherent capacity for recovery and remodeling. The major mechanisms involved in liver fibrosis include the repetitive injury of hepatocytes, the activation of the inflammatory response after injury stimulation, and the activation and proliferation of hepatic stellate cells (HSCs), which represents the major extracellular matrix (ECM)-producing cells, stimulated by hepatocyte injury and inflammation. The microenvironment in the liver is synergistically regulated abnormal ECM deposition, scar formation, angiogenesis, and fibrogenesis. Moreover, recent studies have clarified novel mechanism in fibrosis such as epigenetic regulation of HSCs, the leptin and PPARγ pathways, the coagulation system, and even autophagy. Uncovering the mechanisms of liver fibrogenesis provides a basis to develop potential therapies to reverse and treat the fibrotic response, thereby improving the outcomes of patients with chronic liver disease. Although both scientific and clinical challenges remain, emerging studies attempt to reveal the ideal anti-fibrotic drug that could be easily delivered to the liver with high specificity and low toxicity. This review highlights the mechanisms, including novel pathways underlying fibrogenesis that may be translated into preventive and treatment strategies, reviews both current and novel agents that target specific pathways or multiple targets, and discusses novel drug delivery systems such as nanotechnology that can be applied in the treatment of liver fibrosis. In addition, we also discuss some current treatment strategies that are being applied in animal models and in clinical trials.
Collapse
|
146
|
Atta HM. Reversibility and heritability of liver fibrosis: Implications for research and therapy. World J Gastroenterol 2015; 21:5138-5148. [PMID: 25954087 PMCID: PMC4419054 DOI: 10.3748/wjg.v21.i17.5138] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 02/20/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis continues to be a major health problem worldwide due to lack of effective therapy. If the etiology cannot be eliminated, liver fibrosis progresses to cirrhosis and eventually to liver failure or malignancy; both are associated with a fatal outcome. Liver transplantation, the only curative therapy, is still mostly unavailable. Liver fibrosis was shown to be a reversible process; however, complete reversibility remains debatable. Recently, the molecular markers of liver fibrosis were shown to be transmitted across generations. Epigenetic mechanisms including DNA methylation, histone posttranslational modifications and noncoding RNA have emerged as major determinants of gene expression during liver fibrogenesis and carcinogenesis. Furthermore, epigenetic mechanisms have been shown to be transmitted through mitosis and meiosis to daughter cells and subsequent generations. However, the exact epigenetic regulation of complete liver fibrosis resolution and inheritance has not been fully elucidated. This communication will highlight the recent advances in the search for delineating the mechanisms governing resolution of liver fibrosis and the potential for multigenerational and transgenerational transmission of fibrosis markers. The fact that epigenetic changes, unlike genetic mutations, are reversible and can be modulated pharmacologically underscores the unique opportunity to develop effective therapy to completely reverse liver fibrosis, to prevent the development of malignancy and to regulate heritability of fibrosis phenotype.
Collapse
|
147
|
Sinigaglia A, Lavezzo E, Trevisan M, Sanavia T, Di Camillo B, Peta E, Scarpa M, Castagliuolo I, Guido M, Sarcognato S, Cappellesso R, Fassina A, Cardin R, Farinati F, Palù G, Barzon L. Changes in microRNA expression during disease progression in patients with chronic viral hepatitis. Liver Int 2015; 35:1324-33. [PMID: 25417901 DOI: 10.1111/liv.12737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 11/10/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS MicroRNAs (miRNAs) have been involved in hepatocarcinogenesis, but little is known on their role in the progression of chronic viral hepatitis. Aim of this study was to identify miRNA signatures associated with stages of disease progression in patients with chronic viral hepatitis. METHODS MiRNA expression profile was investigated in liver biopsies from patients with chronic viral hepatitis and correlated with clinical, virological and histopathological features. Relevant miRNAs were further investigated. RESULTS Most of the significant changes in miRNA expression were associated with liver fibrosis stages and included the significant up-regulation of a group of miRNAs that were demonstrated to target the master regulators of epithelial-mesenchymal transition ZEB1 and ZEB2 and involved in the preservation of epithelial cell differentiation, but also in cell proliferation and fibrogenesis. In agreement with miRNA data, immunostaining of liver biopsies showed that expression of the epithelial marker E-cadherin was maintained in severe fibrosis/cirrhosis while expression of ZEBs and other markers of epithelial-mesenchymal transition were low or absent. Severe liver fibrosis was also significantly associated with the down-regulation of miRNAs with antiproliferative and tumour suppressor activity. Similar changes in miRNA and target gene expression were demonstrated along with disease progression in a mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis, suggesting that they might represent a general response to liver injury. CONCLUSION Chronic viral hepatitis progression is associated with the activation of miRNA pathways that promote cell proliferation and fibrogenesis, but preserve the differentiated hepatocyte phenotype.
Collapse
Affiliation(s)
- Alessandro Sinigaglia
- Department of Molecular Medicine, University of Padova, Padova, Italy; IOV Istituto Oncologico Veneto, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Chang L, Guo F, Huo B, Lv Y, Wang Y, Liu W. Expression and clinical significance of the microRNA-200 family in gastric cancer. Oncol Lett 2015; 9:2317-2324. [PMID: 26137064 DOI: 10.3892/ol.2015.3028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 02/10/2015] [Indexed: 01/07/2023] Open
Abstract
Gastric cancer is one of the most common malignant tumors and one of the leading causes of cancer-related mortality. Recent studies have revealed that there is a difference in microRNA (miR/miRNA) profiles between cancerous and normal tissues. To find a potentially useful prognostic predictor and a promising therapeutic tool for gastric cancer, the present study investigated the expression and clinical significance of the miR-200 family in gastric cancer. The miR-200 family has five members: hsa-miR-200a, hsa-miR-200b, hsa-miR-200c, hsa-miR-141 and hsa-miR-429. In 46 clinical samples of gastric cancer and paired non-cancerous tissues, the present study observed that the expression levels of the miR-200 family in the cancer tissues were significantly lower than those in the non-cancerous tissues (P<0.001). Lower levels of the five family members were associated with histological grade and the presence of an intravascular cancer embolus (P<0.05). The results revealed that the miR-200 family is downregulated in gastric cancer, and that there are significant differences in the expression of the miR-200 family between normal and cancer tissues. The miR-200 family may therefore become a potentially useful prognostic predictor of the aggressiveness of gastric cancer and a possible therapeutic tool in affected patients.
Collapse
Affiliation(s)
- Liang Chang
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Fengjie Guo
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300000, P.R. China
| | - Bingjie Huo
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yalei Lv
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yudong Wang
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Wei Liu
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
149
|
Roy S, Benz F, Luedde T, Roderburg C. The role of miRNAs in the regulation of inflammatory processes during hepatofibrogenesis. Hepatobiliary Surg Nutr 2015; 4:24-33. [PMID: 25713802 DOI: 10.3978/j.issn.2304-3881.2015.01.05] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/16/2014] [Indexed: 12/12/2022]
Abstract
Liver cirrhosis represents the end stage of most chronic inflammatory liver diseases and is a major global health burden. Despite the enormous relevance of cirrhotic disease, pharmacological strategies for prevention or treatment of hepatic fibrosis are still limited, underlining the need to establish a better understanding of the molecular mechanisms underlying the pathogenesis of hepatic cirrhosis. Recently, miRNAs have emerged as a new class of RNAs that do not withhold the information to encode for proteins but regulate whole gene expression networks during different physiological and pathological processes. Various authors demonstrated that miRNA species are functionally involved in the regulation of chronic liver damage and development of liver cirrhosis in inflamed livers. Moreover, circulating miRNA patterns were suggested to serve as blood-based biomarkers indicating liver injury and progression to hepatic cirrhosis and cancer. Here we summarize current findings on a potential role of miRNAs in the cascade leading from liver inflammation to liver fibrosis and finally hepatocellular carcinoma. We compare data from animal models with findings on miRNAs dysregulated in human patients and finally highlight a potential use of miRNAs as biomarkers for liver injury, fibrosis and cancer.
Collapse
Affiliation(s)
- Sanchari Roy
- Department of Medicine III, University of Aachen (RWTH), Pauwelsstraße 30, 52074 Aachen, Germany
| | - Fabian Benz
- Department of Medicine III, University of Aachen (RWTH), Pauwelsstraße 30, 52074 Aachen, Germany
| | - Tom Luedde
- Department of Medicine III, University of Aachen (RWTH), Pauwelsstraße 30, 52074 Aachen, Germany
| | - Christoph Roderburg
- Department of Medicine III, University of Aachen (RWTH), Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
150
|
Integrated analyses to reconstruct microRNA-mediated regulatory networks in mouse liver using high-throughput profiling. BMC Genomics 2015; 16 Suppl 2:S12. [PMID: 25707768 PMCID: PMC4331712 DOI: 10.1186/1471-2164-16-s2-s12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) simultaneously target many transcripts through partial complementarity binding, and have emerged as a key type of post-transcriptional regulator for gene expression. How miRNA accomplishes its pleiotropic effects largely depends on its expression and its target repertoire. Previous studies discovered thousands of miRNAs and numerous miRNA target genes mainly through computation and prediction methods which produced high rates of false positive prediction. The development of Argonaute cross-linked immunoprecipitation coupled with high-throughput sequencing (CLIP-Seq) provides a system to effectively determine miRNA target genes. Likewise, the accuracy of dissecting the transcriptional regulation of miRNA genes has been greatly improved by chromatin immunoprecipitation of the transcription factors coupled with sequencing (ChIP-Seq). Elucidation of the miRNA target repertoire will provide an in-depth understanding of the functional roles of microRNA pathways. To reliably reconstruct a miRNA-mediated regulatory network, we established a computational framework using publicly available, sequence-based transcription factor-miRNA databases, including ChIPBase and TransmiR for the TF-miRNA interactions, along with miRNA-target databases, including miRTarBase, TarBase and starBase, for the miRNA-target interactions. We applied the computational framework to elucidate the miRNA-mediated regulatory network in the Mir122a⁻/⁻ mouse model, which has an altered transcriptome and progressive liver disease. RESULTS We applied our computational framework to the expression profiles of miRNA/mRNA of Mir122a⁻/⁻ mutant mice and wild-type mice. The miRNA-mediated network involves 40 curated TFs contributing to the aberrant expression of 65 miRNAs and 723 curated miRNA target genes, of which 56% was found in the differentially-expressed genes of Mir122a--mice. Hence, the regulatory network disclosed previously-known and also many previously-unidentified miRNA-mediated regulations in mutant mice. Moreover, we demonstrate that loss of imprinting at the chromosome 12qF1 region is associated with miRNA overexpression in human hepatocellular carcinoma and stem cells, suggesting initiation of precancerous changes in young mice deficient in miR-122. A group of 9 miRNAs was found to share miR-122 target genes, indicating synergy between miRNAs and target genes by way of multiplicity and cooperativity. CONCLUSIONS The study provides significant insight into miRNA-mediated regulatory networks. Based on experimentally verified data, this network is highly reliable and effective in revealing previously-undetermined disease-associated molecular mechanisms. This computational framework can be applied to explore the significant TF-miRNA-miRNA target interactions in any complex biological systems with high degrees of confidence.
Collapse
|