101
|
Sharma P, Tang S, Mayer GD, Patiño R. Effects of thyroid endocrine manipulation on sex-related gene expression and population sex ratios in Zebrafish. Gen Comp Endocrinol 2016; 235:38-47. [PMID: 27255368 DOI: 10.1016/j.ygcen.2016.05.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/25/2016] [Accepted: 05/29/2016] [Indexed: 10/21/2022]
Abstract
Thyroid hormone reportedly induces masculinization of genetic females and goitrogen treatment delays testicular differentiation (ovary-to-testis transformation) in genetic males of Zebrafish. This study explored potential molecular mechanisms of these phenomena. Zebrafish were treated with thyroxine (T4, 2nM), goitrogen [methimazole (MZ), 0.15mM], MZ (0.15mM) and T4 (2nM) (rescue treatment), or reconstituted water (control) from 3 to 33days postfertilization (dpf) and maintained in control water until 45dpf. Whole fish were collected during early (25dpf) and late (45dpf) testicular differentiation for transcript abundance analysis of selected male (dmrt1, amh, ar) and female (cyp19a1a, esr1, esr2a, esr2b) sex-related genes by quantitative RT-PCR, and fold-changes relative to control values were determined. Additional fish were sampled at 45dpf for histological assessment of gonadal sex. The T4 and rescue treatments caused male-biased populations, and T4 alone induced precocious puberty in ∼50% of males. Male-biased sex ratios were accompanied by increased expression of amh and ar and reduced expression of cyp19a1a, esr1, esr2a, and esr2b at 25 and 45dpf and, unexpectedly, reduced expression of dmrt1 at 45dpf. Goitrogen exposure increased the proportion of individuals with ovaries (per previous studies interpreted as delay in testicular differentiation of genetic males), and at 25 and 45dpf reduced the expression of amh and ar and increased the expression of esr1 (only at 25dpf), esr2a, and esr2b. Notably, cyp19a1a transcript was reduced but via non-thyroidal pathways (not restored by rescue treatment). In conclusion, the masculinizing activity of T4 at the population level may be due to its ability to inhibit female and stimulate male sex-related genes in larvae, while the inability of MZ to induce cyp19a1a, which is necessary for ovarian differentiation, may explain why its "feminizing" activity on gonadal sex is not permanent.
Collapse
Affiliation(s)
- Prakash Sharma
- Department of Biological Sciences and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX 79409-2120, USA
| | - Song Tang
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79409-1163, USA
| | - Gregory D Mayer
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79409-1163, USA
| | - Reynaldo Patiño
- U.S. Geological Survey, Texas Cooperative Fish and Wildlife Research Unit, and Departments of Natural Resources Management and Biological Sciences, Texas Tech University, Lubbock, TX 79409-2120, USA.
| |
Collapse
|
102
|
Luzio A, Matos M, Santos D, Fontaínhas-Fernandes AA, Monteiro SM, Coimbra AM. Disruption of apoptosis pathways involved in zebrafish gonad differentiation by 17α-ethinylestradiol and fadrozole exposures. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:269-284. [PMID: 27337697 DOI: 10.1016/j.aquatox.2016.05.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/24/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
Zebrafish (Danio rerio) sex determination seems to involve genetic factors (GSD) but also environmental factors (ESD), such as endocrine disrupting chemicals (EDCs) that are known to mimic endogenous hormones and disrupt gonad differentiation. Apoptosis has also been proposed to play a crucial role in zebrafish gonad differentiation. Nevertheless, the interactions between EDCs and apoptosis have received little attention. Thus, this study aimed to assess if and which apoptotic pathways are involved in zebrafish gonad differentiation and how EDCs may interfere with this process. With these purposes, zebrafish were exposed to 17α-ethinylestradiol (EE2, 4ng/L) and fadrozole (Fad, 50μg/L) from 2h to 35days post-fertilization (dpf). Afterwards, a gene expression analysis by qRT-PCR and a stereological analysis, based on systematic sampling and protein immunohistochemistry, were performed. The death receptors (FAS; TRADD), anti-apoptotic (BCL-2; MDM2), pro-apoptotic (CASP-2 and -6) and cell proliferation (BIRC5/survivin; JUN) genes and proteins were evaluated. In general, apoptosis was inhibited in females through the involvement of anti-apoptotic pathways, while in males apoptosis seemed to be crucial to the failure of the "juvenile ovary" development and the induction of testes transformation. The JUN protein was shown to be necessary in juvenile ovaries, while the BIRC5 protein seemed to be involved in zebrafish spermatogenesis. Both EDCs, EE2 and Fad, increased the apoptosis stimulus in zebrafish gonad. It was noticed that the few females that were resistant to Fad-induced sex reversal had increased anti-apoptotic factor levels, while males exposed to EE2 showed increased pro-apoptotic genes/proteins and were more advanced in gonad differentiation. Overall, our findings show that apoptosis pathways are involved in zebrafish gonad differentiation and that EDCs can disrupt this process.
Collapse
Affiliation(s)
- Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal; Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal.
| | - Manuela Matos
- University of Lisbon, Faculty of Sciences, BioISI- Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisbon, Portugal; Department of Genetics and Biotechnology, Life Sciences and Environment School (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal
| | - Dércia Santos
- Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal
| | - António A Fontaínhas-Fernandes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal; Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal; Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal; Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal.
| |
Collapse
|
103
|
Hoo JY, Kumari Y, Shaikh MF, Hue SM, Goh BH. Zebrafish: A Versatile Animal Model for Fertility Research. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9732780. [PMID: 27556045 PMCID: PMC4983327 DOI: 10.1155/2016/9732780] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/20/2016] [Indexed: 02/06/2023]
Abstract
The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research.
Collapse
Affiliation(s)
- Jing Ying Hoo
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Sunway College, Jalan Universiti, Bandar Sunway, 46150 Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Seow Mun Hue
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Bey Hing Goh
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
104
|
Petersen AM, Earp NC, Redmond ME, Postlethwait JH, von Hippel FA, Buck CL, Cresko WA. Perchlorate Exposure Reduces Primordial Germ Cell Number in Female Threespine Stickleback. PLoS One 2016; 11:e0157792. [PMID: 27383240 PMCID: PMC4934864 DOI: 10.1371/journal.pone.0157792] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/03/2016] [Indexed: 11/18/2022] Open
Abstract
Perchlorate is a common aquatic contaminant that has long been known to affect thyroid function in vertebrates, including humans. More recently perchlorate has been shown to affect primordial sexual differentiation in the aquatic model fishes zebrafish and threespine stickleback, but the mechanism has been unclear. Stickleback exposed to perchlorate from fertilization have increased androgen levels in the embryo and disrupted reproductive morphologies as adults, suggesting that perchlorate could disrupt the earliest stages of primordial sexual differentiation when primordial germ cells (PGCs) begin to form the gonad. Female stickleback have three to four times the number of PGCs as males during the first weeks of development. We hypothesized that perchlorate exposure affects primordial sexual differentiation by reducing the number of germ cells in the gonad during an important window of stickleback sex determination at 14-18 days post fertilization (dpf). We tested this hypothesis by quantifying the number of PGCs at 16 dpf in control and 100 mg/L perchlorate-treated male and female stickleback. Perchlorate exposure from the time of fertilization resulted in significantly reduced PGC number only in genotypic females, suggesting that the masculinizing effects of perchlorate observed in adult stickleback may result from early changes to the number of PGCs at a time critical for sex determination. To our knowledge, this is the first evidence of a connection between an endocrine disruptor and reduction in PGC number prior to the first meiosis during sex determination. These findings suggest that a mode of action of perchlorate on adult reproductive phenotypes in vertebrates, including humans, such as altered fecundity and sex reversal or intersex gonads, may stem from early changes to germ cell development.
Collapse
Affiliation(s)
- Ann M. Petersen
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, Oregon, 97403, United States of America
- Department of Integrative Biology, Oregon State University Cascades, Bend, Oregon 97703, United States of America
| | - Nathanial C. Earp
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - Mandy E. Redmond
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - John H. Postlethwait
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - Frank A. von Hippel
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86001, United States of America
| | - C. Loren Buck
- Department of Biological Sciences & Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, Arizona, 86001, United States of America
| | - William A. Cresko
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, Oregon, 97403, United States of America
| |
Collapse
|
105
|
Pan Q, Anderson J, Bertho S, Herpin A, Wilson C, Postlethwait JH, Schartl M, Guiguen Y. Vertebrate sex-determining genes play musical chairs. C R Biol 2016; 339:258-62. [PMID: 27291506 PMCID: PMC5393452 DOI: 10.1016/j.crvi.2016.05.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/19/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022]
Abstract
Sexual reproduction is one of the most highly conserved processes in evolution. However, the genetic and cellular mechanisms making the decision of whether the undifferentiated gonad of animal embryos develops either towards male or female are manifold and quite diverse. In vertebrates, sex-determining mechanisms range from environmental to simple or complex genetic mechanisms and different mechanisms have evolved repeatedly and independently. In species with simple genetic sex-determination, master sex-determining genes lying on sex chromosomes drive the gonadal differentiation process by switching on a developmental program, which ultimately leads to testicular or ovarian differentiation. So far, very few sex-determining genes have been identified in vertebrates and apart from mammals and birds, these genes are apparently not conserved over a larger number of related orders, families, genera, or even species. To fill this knowledge gap and to better explore genetic sex-determination, we propose a strategy (RAD-Sex) that makes use of next-generation sequencing technology to identify genetic markers that define sex-specific segments of the male or female genome.
Collapse
Affiliation(s)
- Qiaowei Pan
- Inra, Fish Physiology and Genomics Laboratory, 35042 Rennes, France
| | | | - Sylvain Bertho
- Inra, Fish Physiology and Genomics Laboratory, 35042 Rennes, France; University of Wuerzburg, Physiological Chemistry, Biocenter, 97074 Würzburg, Germany
| | - Amaury Herpin
- Inra, Fish Physiology and Genomics Laboratory, 35042 Rennes, France
| | - Catherine Wilson
- University of Oregon, Institute of Neuroscience, Eugene, OR 97403, USA
| | | | - Manfred Schartl
- University of Wuerzburg, Physiological Chemistry, Biocenter, 97074 Würzburg, Germany; Comprehensive Cancer Center Mainfranken, University Hospital, 97080 Würzburg, Germany; Texas Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Yann Guiguen
- Inra, Fish Physiology and Genomics Laboratory, 35042 Rennes, France.
| |
Collapse
|
106
|
Patterns of Genome-Wide Variation in Glossina fuscipes fuscipes Tsetse Flies from Uganda. G3-GENES GENOMES GENETICS 2016; 6:1573-84. [PMID: 27172181 PMCID: PMC4889654 DOI: 10.1534/g3.116.027235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The tsetse fly Glossina fuscipes fuscipes (Gff) is the insect vector of the two forms of Human African Trypanosomiasis (HAT) that exist in Uganda. Understanding Gff population dynamics, and the underlying genetics of epidemiologically relevant phenotypes is key to reducing disease transmission. Using ddRAD sequence technology, complemented with whole-genome sequencing, we developed a panel of ∼73,000 single-nucleotide polymorphisms (SNPs) distributed across the Gff genome that can be used for population genomics and to perform genome-wide-association studies. We used these markers to estimate genomic patterns of linkage disequilibrium (LD) in Gff, and used the information, in combination with outlier-locus detection tests, to identify candidate regions of the genome under selection. LD in individual populations decays to half of its maximum value (r(2) max/2) between 1359 and 2429 bp. The overall LD estimated for the species reaches r(2) max/2 at 708 bp, an order of magnitude slower than in Drosophila Using 53 infected (Trypanosoma spp.) and uninfected flies from four genetically distinct Ugandan populations adapted to different environmental conditions, we were able to identify SNPs associated with the infection status of the fly and local environmental adaptation. The extent of LD in Gff likely facilitated the detection of loci under selection, despite the small sample size. Furthermore, it is probable that LD in the regions identified is much higher than the average genomic LD due to strong selection. Our results show that even modest sample sizes can reveal significant genetic associations in this species, which has implications for future studies given the difficulties of collecting field specimens with contrasting phenotypes for association analysis.
Collapse
|
107
|
Luzio A, Monteiro SM, Rocha E, Fontaínhas-Fernandes AA, Coimbra AM. Development and recovery of histopathological alterations in the gonads of zebrafish (Danio rerio) after single and combined exposure to endocrine disruptors (17α-ethinylestradiol and fadrozole). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:90-105. [PMID: 27002526 DOI: 10.1016/j.aquatox.2016.03.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/08/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
Exposure of wildlife to endocrine disrupting chemicals (EDCs) is not necessarily continuous. Due to seasonal changes and variable industrial and agricultural activities it often occurs intermittently. Thus, it is possible that aquatic organisms may be more affected by periodic peak exposure than by chronic exposure. Therefore, an experimental scenario including an exposure from 2h to 90 days post-fertilization (dpf) and a subsequent recovery period until 150 dpf was chosen to assess the potential reversibility of the effects of sex steroids on sexual and gonad development of zebrafish (Danio rerio). The aim of this study was to investigate the persistence of the endocrine effects of an estrogen (EE2-17α-ethinylestradiol, 4ng/L), an inhibitor of estrogen synthesis (Fad-fadrozole, 50μg/L) or their binary mixture (Mix-EE2+ Fad, 4ng/L+50μg/L). Afterwards, a semi-quantitative histological assessment was used to investigate histopathological changes on gonad differentiation and development. The data showed that fadrozole, alone or in combination with EE2, permanently disrupts the sexual development, inducing masculinization and causing severe pathological alterations in testis, such as intersex associated to the enlargement of sperm ducts, interstitial changes, asynchronous development and detachment of basal membrane. After exposures to both EDCs and their mixture, the gonad histopathology revealed interstitial proteinaceous fluid deposits and, in ovaries, there were atretic oocytes, and presumably degenerative mineralization. On the other hand, the gonadal changes induced by EE2 alone seem to be partially reversible when the exposure regime changed to a recovery period. In addition, EE2 enhanced zebrafish growth in both genders, with male fish presenting signs of early obesity such as the presence of adipocytes in testis. Moreover, sex ratio was slightly skewed toward females, at 90 and 105 dpf, in zebrafish exposed to EE2. The data further indicate that long-term studies on impacts of single EDCs and their mixtures with recovery periods are crucial to reveal the possibility of sex reversal and pathological changes of gonads that can adversely affect breeding.
Collapse
Affiliation(s)
- Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal.
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Eduardo Rocha
- Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U. Porto), Portugal; Histomorphology, Physiopathology, and Applied Toxicology Group, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Portugal
| | - António A Fontaínhas-Fernandes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal.
| |
Collapse
|
108
|
Schroeder AL, Metzger KJ, Miller A, Rhen T. A Novel Candidate Gene for Temperature-Dependent Sex Determination in the Common Snapping Turtle. Genetics 2016; 203:557-71. [PMID: 26936926 PMCID: PMC4858799 DOI: 10.1534/genetics.115.182840] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/18/2016] [Indexed: 12/26/2022] Open
Abstract
Temperature-dependent sex determination (TSD) was described nearly 50 years ago. Researchers have since identified many genes that display differential expression at male- vs. female-producing temperatures. Yet, it is unclear whether these genes (1) are involved in sex determination per se, (2) are downstream effectors involved in differentiation of ovaries and testes, or (3) are thermo-sensitive but unrelated to gonad development. Here we present multiple lines of evidence linking CIRBP to sex determination in the snapping turtle, Chelydra serpentina We demonstrate significant associations between a single nucleotide polymorphism (SNP) (c63A > C) in CIRBP, transcript levels in embryonic gonads during specification of gonad fate, and sex in hatchlings from a thermal regime that produces mixed sex ratios. The A allele was induced in embryos exposed to a female-producing temperature, while expression of the C allele did not differ between female- and male-producing temperatures. In accord with this pattern of temperature-dependent, allele-specific expression, AA homozygotes were more likely to develop ovaries than AC heterozygotes, which, in turn, were more likely to develop ovaries than CC homozygotes. Multiple regression using SNPs in CIRBP and adjacent loci suggests that c63A > C may be the causal variant or closely linked to it. Differences in CIRBP allele frequencies among turtles from northern Minnesota, southern Minnesota, and Texas reflect small and large-scale latitudinal differences in TSD pattern. Finally, analysis of CIRBP protein localization reveals that CIRBP is in a position to mediate temperature effects on the developing gonads. Together, these studies strongly suggest that CIRBP is involved in determining the fate of the bipotential gonad.
Collapse
Affiliation(s)
- Anthony L Schroeder
- Department of Biology, University of North Dakota, Grand Forks, North Dakota 58202
| | - Kelsey J Metzger
- Center for Learning Innovation, University of Minnesota, Rochester, Minnesota 55904
| | - Alexandra Miller
- Department of Biology, University of North Dakota, Grand Forks, North Dakota 58202
| | - Turk Rhen
- Department of Biology, University of North Dakota, Grand Forks, North Dakota 58202
| |
Collapse
|
109
|
Luzio A, Santos D, Fontaínhas-Fernandes AA, Monteiro SM, Coimbra AM. Effects of 17α-ethinylestradiol at different water temperatures on zebrafish sex differentiation and gonad development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:22-35. [PMID: 26897088 DOI: 10.1016/j.aquatox.2016.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/03/2016] [Accepted: 02/12/2016] [Indexed: 05/15/2023]
Abstract
In the current climate change scenario, studies combining effects of water contaminants with environmental parameters, such as temperature, are essential to predict potentially harmful impacts on aquatic organisms. In zebrafish (Danio rerio), sex determination seems to have a polygenic genetic basis, which can be secondarily influenced by environmental factors, such as temperature and endocrine disrupting chemicals (EDCs). The present study aimed to evaluate the effects of the EDC 17α-ethinylestradiol (EE2), a potent synthetic estrogen, on zebrafish sex differentiation and gonad development at different water temperatures. Therefore, zebrafish raised at three distinct water temperatures (23, 28 or 33±0.5°C), were exposed to 4ng/L of EE2, from 2hours to 60days post-fertilization (dpf). Subsequently, a quantitative (stereological) assessment of zebrafish gonads was performed, at 35 and 60dpf, to identify alterations on gonadal development and differentiation. The results show that low temperature delayed general growth of zebrafish, as well as gonad differentiation and maturation, while high temperature induced an opposite effect. Moreover, sex ratio was skewed toward males when zebrafish were exposed to the high temperature. In general, EE2 exposure promoted gonad maturation in both genders, independently of the temperature. However, at the high temperature condition, exposure to EE2 induced a delay in the male gonad development, with some individuals still showing differentiating gonads at 60dpf. The findings of this study support the notion that zebrafish has a genetic sex determination mechanism highly sensitive to environmental factors and show that it is essential to study the effects of water contaminants at different climate scenarios in order to understand potential future impacts on organisms.
Collapse
Affiliation(s)
- Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal.
| | - Dércia Santos
- Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - António A Fontaínhas-Fernandes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal.
| |
Collapse
|
110
|
Howe K, Schiffer PH, Zielinski J, Wiehe T, Laird GK, Marioni JC, Soylemez O, Kondrashov F, Leptin M. Structure and evolutionary history of a large family of NLR proteins in the zebrafish. Open Biol 2016; 6:160009. [PMID: 27248802 PMCID: PMC4852459 DOI: 10.1098/rsob.160009] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/05/2016] [Indexed: 12/14/2022] Open
Abstract
Multicellular eukaryotes have evolved a range of mechanisms for immune recognition. A widespread family involved in innate immunity are the NACHT-domain and leucine-rich-repeat-containing (NLR) proteins. Mammals have small numbers of NLR proteins, whereas in some species, mostly those without adaptive immune systems, NLRs have expanded into very large families. We describe a family of nearly 400 NLR proteins encoded in the zebrafish genome. The proteins share a defining overall structure, which arose in fishes after a fusion of the core NLR domains with a B30.2 domain, but can be subdivided into four groups based on their NACHT domains. Gene conversion acting differentially on the NACHT and B30.2 domains has shaped the family and created the groups. Evidence of positive selection in the B30.2 domain indicates that this domain rather than the leucine-rich repeats acts as the pathogen recognition module. In an unusual chromosomal organization, the majority of the genes are located on one chromosome arm, interspersed with other large multigene families, including a new family encoding zinc-finger proteins. The NLR-B30.2 proteins represent a new family with diversity in the specific recognition module that is present in fishes in spite of the parallel existence of an adaptive immune system.
Collapse
Affiliation(s)
| | - Philipp H Schiffer
- Institut für Genetik, Universität zu Köln, Köln, Germany The European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Thomas Wiehe
- Institut für Genetik, Universität zu Köln, Köln, Germany
| | | | - John C Marioni
- Wellcome Trust Sanger Institute, Cambridge, UK The European Molecular Biology Laboratory, The European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Onuralp Soylemez
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG) 88 Dr. Aiguader, 08003 Barcelona, Spain Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Fyodor Kondrashov
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG) 88 Dr. Aiguader, 08003 Barcelona, Spain Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), 23 Pg. Lluís Companys, 08010 Barcelona, Spain
| | - Maria Leptin
- Institut für Genetik, Universität zu Köln, Köln, Germany The European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
111
|
Faber-Hammond JJ, Brown KH. Pseudo-De Novo Assembly and Analysis of Unmapped Genome Sequence Reads in Wild Zebrafish Reveal Novel Gene Content. Zebrafish 2016; 13:95-102. [PMID: 26886859 DOI: 10.1089/zeb.2015.1154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Zebrafish represents the third vertebrate with an officially completed genome, yet it remains incomplete with additions and corrections continuing with the current release, GRCz10, having 13% of zebrafish cDNA sequences unmapped. This disparity may result from population differences, given that the genome reference was generated from clonal individuals with limited genetic diversity. This is supported by the recent analysis of a single wild zebrafish, which identified over 5.2 million SNPs and 1.6 million in/dels in the previous genome build, zv9. Re-examination of this sequence data set indicated that 13.8% of quality sequence reads failed to align to GRCz10. Using a novel bioinformatics de novo assembly pipeline on these unmappable reads, we identified 1,514,491 novel contigs covering ∼224 Mb of genomic sequence. Among these, 1083 contigs were found to contain a potential gene coding sequence. RNA-seq data comparison confirmed that 362 contigs contained a transcribed DNA sequence, suggesting that a large amount of functional genomic sequence remains unannotated in the zebrafish reference genome. By utilizing the bioinformatics pipeline developed in this study, the zebrafish genome will be bolstered as a model for human disease research. Adaptation of the pipeline described here also offers a cost-efficient and effective method to identify and map novel genetic content across any genome and will ultimately aid in the completion of additional genomes for a broad range of species.
Collapse
Affiliation(s)
| | - Kim H Brown
- Department of Biology, Portland State University , Portland, Oregon
| |
Collapse
|
112
|
|
113
|
Örn S, Holbech H, Norrgren L. Sexual disruption in zebrafish (Danio rerio) exposed to mixtures of 17α-ethinylestradiol and 17β-trenbolone. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:225-231. [PMID: 26734721 DOI: 10.1016/j.etap.2015.12.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
Environmental estrogens and androgens can be present simultaneously in aquatic environments and thereby interact to disturb multiple physiological systems in organisms. Studies on interaction effects in fish of androgenic and estrogenic chemicals are limited. Therefore, the aim of the present study was to evaluate feminization and masculinization effects in zebrafish (Danio rerio) exposed to combinations of two synthetic steroid hormones detected in environmental waters: the androgen 17β-trenbolone (Tb) and the oestrogen 17α-ethinylestradiol (EE2). Juvenile zebrafish were exposed between days 20 and 60 post-hatch to different binary mixtures of Tb (1, 10, and 50 ng/L) and EE2 (2 and 5 ng/L). The endpoints studied were whole-body homogenate vitellogenin concentration at 40 days post-hatch, and sex ratio including gonad maturation at 60 days post-hatch. The feminizing potency of 5 ng/L of EE2, alone as well as in combination with Tb, was clear in the present study, with exposures resulting in almost all-female populations and females being sexually immature. Masculinization effects with male-biased sex ratios were observed when fish were exposed to 2 ng/L of EE2 in combination with Tb concentrations. Intersex fish were observed after exposure to mixtures of 2 ng/L EE2 with 50 ng/L Tb. Sexual maturity generally increased among males at increasing concentrations of Tb. The results of the present study show that exposure to environmentally relevant mixtures of an oestrogen and androgen affects the process of gonad differentiation in zebrafish and lead to sexual disruption.
Collapse
Affiliation(s)
- Stefan Örn
- Department of Biomedical Sciences & Veterinary Public Health, Swedish University of Agricultural Sciences, P.O. Box 7028, SE-75007 Uppsala, Sweden.
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Leif Norrgren
- Department of Biomedical Sciences & Veterinary Public Health, Swedish University of Agricultural Sciences, P.O. Box 7028, SE-75007 Uppsala, Sweden
| |
Collapse
|
114
|
Heitman J. Evolution of sexual reproduction: a view from the Fungal Kingdom supports an evolutionary epoch with sex before sexes. FUNGAL BIOL REV 2015; 29:108-117. [PMID: 26834823 DOI: 10.1016/j.fbr.2015.08.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sexual reproduction is conserved throughout each supergroup within the eukaryotic tree of life, and therefore thought to have evolved once and to have been present in the last eukaryotic common ancestor (LECA). Given the antiquity of sex, there are features of sexual reproduction that are ancient and ancestral, and thus shared in diverse extant organisms. On the other hand, the vast evolutionary distance that separates any given extant species from the LECA necessarily implies that other features of sex will be derived. While most types of sex we are familiar with involve two opposite sexes or mating types, recent studies in the fungal kingdom have revealed novel and unusual patterns of sexual reproduction, including unisexual reproduction. In this mode of reproduction a single mating type can on its own undergo self-fertile/homothallic reproduction, either with itself or with other members of the population of the same mating type. Unisexual reproduction has arisen independently as a derived feature in several different lineages. That a myriad of different types of sex determination and sex determinants abound in animals, plants, protists, and fungi suggests that sex specification itself may not be ancestral and instead may be a derived trait. If so, then the original form of sexual reproduction may have been unisexual, onto which sexes were superimposed as a later feature. In this model, unisexual reproduction is both an ancestral and a derived trait. In this review, we consider what is new and what is old about sexual reproduction from the unique vantage point of the fungal kingdom.
Collapse
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
115
|
Baumann L, Knörr S, Keiter S, Nagel T, Segner H, Braunbeck T. Prochloraz causes irreversible masculinization of zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16417-16422. [PMID: 25163568 DOI: 10.1007/s11356-014-3486-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/18/2014] [Indexed: 06/03/2023]
Abstract
The aim of the present study was to investigate the persistence of endocrine effects by prochloraz, a fungicide known to have multiple effects on the endocrine system of vertebrates. Since discontinuous exposure is particularly relevant in aquatic ecosystems, an exposure scenario with an exposure phase and a subsequent recovery period was chosen to assess the potential for reversibility of effects by prochloraz on the sexual development of zebrafish (Danio rerio). Zebrafish were exposed to different concentrations of prochloraz (10-300 μg/L) until 60 days post hatch (dph), which includes the period of sexual differentiation. For the subsequent 40 days, fish were either held in clean water for depuration or under further continuous exposure. Histological investigations of the gonads revealed persistent effects on sexual differentiation. The sex ratio was skewed towards males and significantly more intersex individuals were found after exposure to prochloraz at 60 dph. No intersex fish, but masculinized sex ratios were still present after the depuration period, documenting that prochloraz irreversibly affects the sexual development of zebrafish.
Collapse
Affiliation(s)
- Lisa Baumann
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, PO Box 8466, CH-3001, Bern, Switzerland.
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| | - Susanne Knörr
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| | - Susanne Keiter
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| | - Tina Nagel
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| | - Helmut Segner
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, PO Box 8466, CH-3001, Bern, Switzerland.
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| |
Collapse
|
116
|
Alexander HJ, Richardson JML, Edmands S, Anholt BR. Sex without sex chromosomes: genetic architecture of multiple loci independently segregating to determine sex ratios in the copepod Tigriopus californicus. J Evol Biol 2015; 28:2196-207. [DOI: 10.1111/jeb.12743] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 11/27/2022]
Affiliation(s)
- H. J. Alexander
- Bamfield Marine Sciences Centre; Bamfield BC Canada
- Department of Biology; University of Victoria; Victoria BC Canada
| | - J. M. L. Richardson
- Bamfield Marine Sciences Centre; Bamfield BC Canada
- Department of Biology; University of Victoria; Victoria BC Canada
| | - S. Edmands
- Department of Biological Sciences; University of Southern California; Los Angeles CA USA
| | - B. R. Anholt
- Bamfield Marine Sciences Centre; Bamfield BC Canada
- Department of Biology; University of Victoria; Victoria BC Canada
| |
Collapse
|
117
|
Palaiokostas C, Bekaert M, Taggart JB, Gharbi K, McAndrew BJ, Chatain B, Penman DJ, Vandeputte M. A new SNP-based vision of the genetics of sex determination in European sea bass (Dicentrarchus labrax). Genet Sel Evol 2015; 47:68. [PMID: 26337592 PMCID: PMC4558911 DOI: 10.1186/s12711-015-0148-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 08/21/2015] [Indexed: 11/21/2022] Open
Abstract
Background European sea bass (Dicentrarchus labrax) is one of the most important farmed species in Mediterranean aquaculture. The observed sexual growth and maturity dimorphism in favour of females adds value towards deciphering the sex determination system of this species. Current knowledge indicates the existence of a polygenic sex determining determination system that interacts with temperature. This was explored by restriction-site associated DNA (RAD) marker analysis in a test panel of 175 offspring that originated from a factorial cross between two dams and four sires from a single full-sib family. Results The first high-density single nucleotide polymorphism (SNP) based linkage map for sea bass was constructed, consisting of 6706 SNPs on 24 linkage groups. Indications for putative sex-determining QTL (quantitative trait loci) that were significant at the genome-wide threshold were detected on linkage groups 6, 11 and 18 to 21, although a genome-wide association study (GWAS) did not identify individual significant SNPs at a genome-wide threshold. A preliminary genomic prediction approach that tested the efficiency of SNP-based selection for female sea bass showed a slight advantage compared to traditional pedigree-based selection. However, when the same models were tested on the same animals for selection for greater length, a clear advantage of the SNP-based selection was observed. Conclusions Overall, the results of this study provide additional support to the polygenic sex determination hypothesis in sea bass. In addition, identification of sex-ratio QTL may provide new opportunities for sex-ratio control in sea bass. Electronic supplementary material The online version of this article (doi:10.1186/s12711-015-0148-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christos Palaiokostas
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK. .,The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK.
| | - Michaël Bekaert
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK.
| | - John B Taggart
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK.
| | - Karim Gharbi
- Edinburgh Genomics, Ashworth Laboratories, King's Buildings, University of Edinburgh, Edinburgh, EH9 3JT, Scotland, UK.
| | - Brendan J McAndrew
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK.
| | - Béatrice Chatain
- Ifremer, Chemin de Maguelone, F-34250, Palavas-les-Flots, France.
| | - David J Penman
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK.
| | - Marc Vandeputte
- Ifremer, Chemin de Maguelone, F-34250, Palavas-les-Flots, France. .,INRA, UMR1313 Génétique animale et Biologie intégrative, F-78350, Jouy-en-Josas, France.
| |
Collapse
|
118
|
Luzio A, Monteiro SM, Garcia-Santos S, Rocha E, Fontaínhas-Fernandes AA, Coimbra AM. Zebrafish sex differentiation and gonad development after exposure to 17α-ethinylestradiol, fadrozole and their binary mixture: A stereological study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 166:83-95. [PMID: 26240953 DOI: 10.1016/j.aquatox.2015.07.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 06/04/2023]
Abstract
Current knowledge on zebrafish (Danio rerio) sex determination suggests that this trait has a polygenic genetic basis, although environmental factors, such as endocrine disrupting chemicals (EDC), may also be involved in modeling or disturbing the species sex differentiation and development. This study aimed to assess how sex steroids imbalance triggers impact on sex differentiation and gonad development in zebrafish. Fish where exposed to an estrogen (EE2, i.e. 17α-ethinylestradiol, 4ng/L), to an inhibitor of estrogen synthesis (Fad, i.e. fadrozole, 50μg/L) or to their binary mixture (Mix-EE2+ Fad, 4ng/L+50μg/L), from 2h to 60 days post-fertilization (dpf). Afterwards, a quantitative (stereological) analysis using light microscopy, based on systematic sampling, was made at 35 and 60dpf, to identify alterations on gonad differentiation and development. During the sex differentiation period, our histological data showed that not all zebrafish males develop a "juvenile ovary", contrarily to what is currently taken for granted. Furthermore, the stereological analysis suggests that EE2 alone enhanced both zebrafish growth and gonad development. On the other hand, exposure to Fad affected the sexual development in zebrafish, inducing masculinization of the specimens, with some degree of intersex observed in males. In addition, the binary mixture allowed identifying sex-dependent roles of steroid hormones in the general growth and gonad development of zebrafish, with estrogens acting as growth promoters in females and being essential for ovary development. Data further support that sex-specific and single EDC impact studies are important, but clearly not sufficient to understand what may occur in the environment.
Collapse
Affiliation(s)
- Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal(1).
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal(1)
| | - Sofia Garcia-Santos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal(1)
| | - Eduardo Rocha
- Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U. Porto), Portugal; Histomorphology, Physiopathology and Applied Toxicology Group, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), CIMAR Associated Laboratory (CIMAR LA), University of Porto (U. Porto), Portugal
| | - António A Fontaínhas-Fernandes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal(1)
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal(1).
| |
Collapse
|
119
|
Generation of clonal zebrafish line by androgenesis without egg irradiation. Sci Rep 2015; 5:13346. [PMID: 26289165 PMCID: PMC4542340 DOI: 10.1038/srep13346] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/22/2015] [Indexed: 12/02/2022] Open
Abstract
Generation of clonal zebrafish will facilitate large-scale genetic screening and help us to overcome other biological and biotechnological challenges due to their isogenecity. However, protocols for the development of clonal lines have not been optimized. Here, we sought to develop a novel method for generation of clonal zebrafish by androgenesis induced by cold shock. Androgenetic zebrafish doubled haploids (DHs) were induced by cold shock of just-fertilized eggs, and the eggs were then heat shocked to double the chromosome set. The yield rate of putative DHs relative to the total number of eggs used was 1.10% ± 0.19%. Microsatellite genotyping of the putative DHs using 30 loci that covered all 25 linkage groups detected no heterozygous loci, confirming the homozygosity of the DHs. Thus, a clonal line was established from sperm of a DH through a second cycle of cold-shock androgenesis and heat-shock chromosome doubling, followed by genetic verification of the isogenic rate confirming the presence of identical DNA fingerprints by using amplified fragment length polymorphism markers. In addition, our data provided important insights into the cytological mechanisms of cold-shock–induced androgenesis.
Collapse
|
120
|
Qiu S, Bergero R, Guirao-Rico S, Campos JL, Cezard T, Gharbi K, Charlesworth D. RAD mapping reveals an evolving, polymorphic and fuzzy boundary of a plant pseudoautosomal region. Mol Ecol 2015; 25:414-30. [PMID: 26139514 DOI: 10.1111/mec.13297] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 01/10/2023]
Abstract
How loss of genetic exchanges (recombination) evolves between sex chromosomes is a long-standing question. Suppressed recombination may evolve when a sexually antagonistic (SA) polymorphism occurs in a partially sex-linked 'pseudoautosomal' region (or 'PAR'), maintaining allele frequency differences between the two sexes, and creating selection for closer linkage with the fully sex-linked region of the Y chromosome in XY systems, or the W in ZW sex chromosome systems. Most evidence consistent with the SA polymorphism hypothesis is currently indirect, and more studies of the genetics and population genetics of PAR genes are clearly needed. The sex chromosomes of the plant Silene latifolia are suitable for such studies, as they evolved recently and the loss of recombination could still be ongoing. Here, we used RAD sequencing to genetically map sequences in this plant, which has a large genome (c. 3 gigabases) and no available whole-genome sequence. We mapped 83 genes on the sex chromosomes, and comparative mapping in the related species S. vulgaris supports previous evidence for additions to an ancestral PAR and identified at least 12 PAR genes. We describe evidence that recombination rates have been reduced in meiosis of both sexes, and differences in recombination between S. latifolia families suggest ongoing recombination suppression. Large allele frequency differences between the sexes were found at several loci closely linked to the PAR boundary, and genes in different regions of the PAR showed striking sequence diversity patterns that help illuminate the evolution of the PAR.
Collapse
Affiliation(s)
- S Qiu
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - R Bergero
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - S Guirao-Rico
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - J L Campos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - T Cezard
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - K Gharbi
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - D Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
121
|
Kottler VA, Künstner A, Koch I, Flötenmeyer M, Langenecker T, Hoffmann M, Sharma E, Weigel D, Dreyer C. Adenylate cyclase 5
is required for melanophore and male pattern development in the guppy (Poecilia reticulata
). Pigment Cell Melanoma Res 2015; 28:545-58. [DOI: 10.1111/pcmr.12386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/27/2015] [Indexed: 11/30/2022]
Affiliation(s)
| | - Axel Künstner
- Max Planck Institute for Developmental Biology; Tübingen Germany
| | - Iris Koch
- Max Planck Institute for Developmental Biology; Tübingen Germany
| | | | | | | | - Eshita Sharma
- Max Planck Institute for Developmental Biology; Tübingen Germany
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology; Tübingen Germany
| | - Christine Dreyer
- Max Planck Institute for Developmental Biology; Tübingen Germany
| |
Collapse
|
122
|
Luzio A, Coimbra AM, Benito C, Fontaínhas-Fernandes AA, Matos M. Screening and identification of potential sex-associated sequences in Danio rerio. Mol Reprod Dev 2015; 82:756-64. [PMID: 26013562 DOI: 10.1002/mrd.22508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/18/2015] [Indexed: 02/02/2023]
Abstract
Current knowledge on zebrafish (Danio rerio) suggests that sex determination has a polygenic genetic basis in this species, although environmental factors may also be involved. This study aimed to identify sex-associated genomic regions using two different marker systems: inter-simple sequence repeats (ISSRs) and random-amplified polymorphic DNA (RAPDs). Two bulks were constructed: one with DNA from zebrafish females and the other from males; then, a total of 100 ISSR and 280 RAPD primers were tested. Three DNA fragments presenting sexual dimorphism (female-linked: OPA17436 and OPQ191027 ; male-linked: OPQ19951 ) were determined from sequential analysis of the bulks followed by assessment in individuals. These fragments were cloned and convert into the following sequenced characterized amplified regions (SCAR): DrSM_F1, DrSM_F2, and DrSM_M, which share identities with sequences located in chromosomes 2, 3, and 11 (Zv9), respectively. Using these potential markers in zebrafish samples it was possible to correctly identify 80% of the males (DrSM_M) and 100% of the females (DrSM_F1 + DrSM_F2) in the analyzed population.
Collapse
Affiliation(s)
- Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - César Benito
- Departamento de Genética, Facultad de Biologia, Universidad Complutense, Madrid, Spain
| | - António A Fontaínhas-Fernandes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Manuela Matos
- Departamento de Genética e Biotecnologia (DGB), Escola de Ciências da Vida e do Ambiente (ECVA), Universidade de Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
123
|
Böhne A, Sengstag T, Salzburger W. Comparative transcriptomics in East African cichlids reveals sex- and species-specific expression and new candidates for sex differentiation in fishes. Genome Biol Evol 2015; 6:2567-85. [PMID: 25364805 PMCID: PMC4202336 DOI: 10.1093/gbe/evu200] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Males and females of the same species differ largely in gene expression, which accounts for most of the morphological and physiological differences and sex-specific phenotypes. Here, we analyzed sex-specific gene expression in the brain and the gonads of cichlid fishes from Lake Tanganyika belonging to four different lineages, so-called tribes (Eretmodini, Ectodini, Haplochromini, and Lamprologini), using the outgroup Nile tilapia (Oreochromis niloticus) as reference. The comparison between male and female brains revealed few differences between the sexes, consistent in all investigated species. The gonads, on the other hand, showed a large fraction of differentially expressed transcripts with the majority of them showing the same direction of expression in all four species. All here-studied cichlids, especially the three investigated mouth-breeding species, showed a trend toward more male- than female biased transcripts. Transcripts, which were female-biased in expression in all four species, were overrepresented on linkage group (LG)1 in the reference genome and common male-biased transcripts showed accumulation on LG23, the presumable sex chromosomes of the Nile tilapia. Sex-specific transcripts contained candidate genes for sex determination and differentiation in fishes,especially members of the transforming growth factor-b-superfamily and the Wnt-pathway and also prominent members of the sox-, dm-domain-, and high mobility group-box families. We further confirmed our previous finding on species/lineage-specific gene expression shifts in the sex steroid pathway, including synthesizing enzymes as the aromatase cyp19a1 and estrogen and androgen receptors.
Collapse
Affiliation(s)
- Astrid Böhne
- Zoological Institute, University of Basel, Switzerland
- *Corresponding author: E-mail:
| | - Thierry Sengstag
- SIB Swiss Institute of Bioinformatics and sciCORE Computing Center, University of Basel, Switzerland
| | | |
Collapse
|
124
|
Parichy DM. Advancing biology through a deeper understanding of zebrafish ecology and evolution. eLife 2015; 4:e05635. [PMID: 25807087 PMCID: PMC4373672 DOI: 10.7554/elife.05635] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/06/2015] [Indexed: 01/02/2023] Open
Abstract
Over the last two decades, the zebrafish has joined the ranks of premier model organisms for biomedical research, with a full suite of tools and genomic resources. Yet we still know comparatively little about its natural history. Here I review what is known about the natural history of the zebrafish, where significant gaps in our knowledge remain, and how a fuller appreciation of this organism's ecology and behavior, population genetics, and phylogeny can inform a variety of research endeavors.
Collapse
Affiliation(s)
- David M Parichy
- Department of Biology, University of Washington, Seattle, United States
| |
Collapse
|
125
|
Zhang N, Zhang L, Tao Y, Guo L, Sun J, Li X, Zhao N, Peng J, Li X, Zeng L, Chen J, Yang G. Construction of a high density SNP linkage map of kelp (Saccharina japonica) by sequencing Taq I site associated DNA and mapping of a sex determining locus. BMC Genomics 2015; 16:189. [PMID: 25887315 PMCID: PMC4369078 DOI: 10.1186/s12864-015-1371-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/20/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Kelp (Saccharina japonica) has been intensively cultured in China for almost a century. Its genetic improvement is comparable with that of rice. However, the development of its molecular tools is extremely limited, thus its genes, genetics and genomics. Kelp performs an alternative life cycle during which sporophyte generation alternates with gametophyte generation. The gametophytes of kelp can be cloned and crossed. Due to these characteristics, kelp may serve as a reference for the biological and genetic studies of Volvox, mosses and ferns. RESULTS We constructed a high density single nucleotide polymorphism (SNP) linkage map for kelp by restriction site associated DNA (RAD) sequencing. In total, 4,994 SNP-containing physical (tag-defined) RAD loci were mapped on 31 linkage groups. The map expanded a total genetic distance of 1,782.75 cM, covering 98.66% of the expected (1,806.94 cM). The length of RAD tags (85 bp) was extended to 400-500 bp with Miseq method, offering us an easiness of developing SNP chips and shifting SNP genotyping to a high throughput track. The number of linkage groups was in accordance with the documented with cytological methods. In addition, we identified a set of microsatellites (99 in total) from the extended RAD tags. A gametophyte sex determining locus was mapped on linkage group 2 in a window about 9.0 cM in width, which was 2.66 cM up to marker_40567 and 6.42 cM down to marker_23595. CONCLUSIONS A high density SNP linkage map was constructed for kelp, an intensively cultured brown alga in China. The RAD tags were also extended so that a SNP chip could be developed. In addition, a set of microsatellites were identified among mapped loci, and a gametophyte sex determining locus was mapped. This map will facilitate the genetic studies of kelp including for example the evaluation of germplasm and the decipherment of the genetic bases of economic traits.
Collapse
Affiliation(s)
- Ning Zhang
- Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Linan Zhang
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China; Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-tech Co., Ltd, Yantai, Shandong, 264003, China.
| | - Ye Tao
- Majorbio Pharm Technology Co., Ltd, Shanghai, 201203, China.
| | - Li Guo
- Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Juan Sun
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China; Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-tech Co., Ltd, Yantai, Shandong, 264003, China.
| | - Xia Li
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China; Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-tech Co., Ltd, Yantai, Shandong, 264003, China.
| | - Nan Zhao
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China; Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-tech Co., Ltd, Yantai, Shandong, 264003, China.
| | - Jie Peng
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China; Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-tech Co., Ltd, Yantai, Shandong, 264003, China.
| | - Xiaojie Li
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China; Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-tech Co., Ltd, Yantai, Shandong, 264003, China.
| | - Liang Zeng
- Majorbio Pharm Technology Co., Ltd, Shanghai, 201203, China.
| | - Jinsa Chen
- Majorbio Pharm Technology Co., Ltd, Shanghai, 201203, China.
| | - Guanpin Yang
- Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
126
|
Transition in sexual system and sex chromosome evolution in the tadpole shrimp Triops cancriformis. Heredity (Edinb) 2015; 115:37-46. [PMID: 25757406 PMCID: PMC4815504 DOI: 10.1038/hdy.2015.10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 12/19/2022] Open
Abstract
Transitions in sexual system and reproductive mode may affect the course of sex chromosome evolution, for instance by altering the strength of sexually antagonistic selection. However, there have been few studies of sex chromosomes in systems where such transitions have been documented. The European tadpole shrimp, Triops cancriformis, has undergone a transition from dioecy to androdioecy (a sexual system where hermaphrodites and males coexist), offering an excellent opportunity to test the impact of this transition on the evolution of sex chromosomes. To identify sex-linked markers, to understand mechanisms of sex determination and to investigate differences between sexual systems, we carried out a genome-wide association study using restriction site-associated DNA sequencing (RAD-seq) of 47 males, females and hermaphrodites from one dioecious and one androdioecious population. We analysed 22.9 Gb of paired-end sequences and identified and scored >3000 high coverage novel genomic RAD markers. Presence–absence of markers, single-nucleotide polymorphism association and read depth identified 52 candidate sex-linked markers. We show that sex is genetically determined in T. cancriformis, with a ZW system conserved across dioecious and androdioecious populations and that hermaphrodites have likely evolved from females. We also show that the structure of the sex chromosomes differs strikingly, with a larger sex-linked region in the dioecious population compared with the androdioecious population.
Collapse
|
127
|
Abstract
Endocrine disrupting chemicals (EDCs) are potent environmental contaminants, and their effects on wildlife populations could be exacerbated by climate change, especially in species with environmental sex determination. Endangered species may be particularly at risk because inbreeding depression and stochastic fluctuations in male and female numbers are often observed in the small populations that typify these taxa. Here, we assessed the interactive effects of water temperature and EDC exposure on sexual development and population viability of inbred and outbred zebrafish (Danio rerio). Water temperatures adopted were 28 °C (current ambient mean spawning temperature) and 33 °C (projected for the year 2100). The EDC selected was clotrimazole (at 2 μg/L and 10 μg/L), a widely used antifungal chemical that inhibits a key steroidogenic enzyme [cytochrome P450(CYP19) aromatase] required for estrogen synthesis in vertebrates. Elevated water temperature and clotrimazole exposure independently induced male-skewed sex ratios, and the effects of clotrimazole were greater at the higher temperature. Male sex ratio skews also occurred for the lower clotrimazole exposure concentration at the higher water temperature in inbred fish but not in outbred fish. Population viability analysis showed that population growth rates declined sharply in response to male skews and declines for inbred populations occurred at lower male skews than for outbred populations. These results indicate that elevated temperature associated with climate change can amplify the effects of EDCs and these effects are likely to be most acute in small, inbred populations exhibiting environmental sex determination and/or differentiation.
Collapse
|
128
|
Gamble T, Coryell J, Ezaz T, Lynch J, Scantlebury DP, Zarkower D. Restriction Site-Associated DNA Sequencing (RAD-seq) Reveals an Extraordinary Number of Transitions among Gecko Sex-Determining Systems. Mol Biol Evol 2015; 32:1296-309. [DOI: 10.1093/molbev/msv023] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
129
|
Petersen AM, Dillon D, Bernhardt RR, Torunsky R, Postlethwait JH, von Hippel FA, Loren Buck C, Cresko WA. Perchlorate disrupts embryonic androgen synthesis and reproductive development in threespine stickleback without changing whole-body levels of thyroid hormone. Gen Comp Endocrinol 2015; 210:130-44. [PMID: 25448260 PMCID: PMC4280913 DOI: 10.1016/j.ygcen.2014.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/08/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
Perchlorate, an environmental contaminant, disrupts normal functioning of the thyroid. We previously showed that perchlorate disrupts behavior and gonad development, and induces external morphological changes in a vertebrate model organism, the threespine stickleback. Whether perchlorate alters these phenotypes via a thyroid-mediated mechanism, and the extent to which the effects depend on dose, are unknown. To address these questions, we chronically exposed stickleback to control conditions and to three concentrations of perchlorate (10, 30 and 100ppm) at various developmental stages from fertilization to reproductive maturity. Adults chronically exposed to perchlorate had increased numbers of thyroid follicles and decreased numbers of thyrocytes. Surprisingly, T4 and T3 levels in larval, juvenile, and adult whole fish chronically exposed to perchlorate did not differ from controls, except at the lowest perchlorate dose, suggesting a non-monotonic dose response curve. We found no detectable abnormalities in external phenotype at any dose of perchlorate, indicating that the increased number of thyroid follicles compensated for the disruptive effects of these doses. In contrast to external morphology, gonadal development was altered substantially, with the highest dose of perchlorate causing the largest effects. Perchlorate increased the number both of early stage ovarian follicles in females and of advanced spermatogenic stages in males. Perchlorate also disrupted embryonic androgen levels. We conclude that chronic perchlorate exposure may not result in lasting adult gross morphological changes but can produce lasting modifications to gonads when compensation of T3 and T4 levels occurs by thyroid follicle hyperplasia. Perchlorate may therefore affect vertebrate development via both thyroidal and non-thyroidal mechanisms.
Collapse
Affiliation(s)
- Ann M Petersen
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Danielle Dillon
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Richard R Bernhardt
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Roberta Torunsky
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - John H Postlethwait
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Frank A von Hippel
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - C Loren Buck
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - William A Cresko
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
130
|
Li Y, Liu S, Qin Z, Waldbieser G, Wang R, Sun L, Bao L, Danzmann RG, Dunham R, Liu Z. Construction of a high-density, high-resolution genetic map and its integration with BAC-based physical map in channel catfish. DNA Res 2014; 22:39-52. [PMID: 25428894 PMCID: PMC4379976 DOI: 10.1093/dnares/dsu038] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Construction of genetic linkage map is essential for genetic and genomic studies. Recent advances in sequencing and genotyping technologies made it possible to generate high-density and high-resolution genetic linkage maps, especially for the organisms lacking extensive genomic resources. In the present work, we constructed a high-density and high-resolution genetic map for channel catfish with three large resource families genotyped using the catfish 250K single-nucleotide polymorphism (SNP) array. A total of 54,342 SNPs were placed on the linkage map, which to our knowledge had the highest marker density among aquaculture species. The estimated genetic size was 3,505.4 cM with a resolution of 0.22 cM for sex-averaged genetic map. The sex-specific linkage maps spanned a total of 4,495.1 cM in females and 2,593.7 cM in males, presenting a ratio of 1.7 : 1 between female and male in recombination fraction. After integration with the previously established physical map, over 87% of physical map contigs were anchored to the linkage groups that covered a physical length of 867 Mb, accounting for ∼90% of the catfish genome. The integrated map provides a valuable tool for validating and improving the catfish whole-genome assembly and facilitates fine-scale QTL mapping and positional cloning of genes responsible for economically important traits.
Collapse
Affiliation(s)
- Yun Li
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Zhenkui Qin
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Geoff Waldbieser
- USDA-ARS Warmwater Aquaculture Research Unit, Stoneville, MS 38776, USA
| | - Ruijia Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Luyang Sun
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Roy G Danzmann
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
131
|
McCluskey BM, Postlethwait JH. Phylogeny of zebrafish, a "model species," within Danio, a "model genus". Mol Biol Evol 2014; 32:635-52. [PMID: 25415969 DOI: 10.1093/molbev/msu325] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Zebrafish (Danio rerio) is an important model for vertebrate development, genomics, physiology, behavior, toxicology, and disease. Additionally, work on numerous Danio species is elucidating evolutionary mechanisms for morphological development. Yet, the relationships of zebrafish and its closest relatives remain unclear possibly due to incomplete lineage sorting, speciation with gene flow, and interspecies hybridization. To clarify these relationships, we first constructed phylogenomic data sets from 30,801 restriction-associated DNA (RAD)-tag loci (483,026 variable positions) with clear orthology to a single location in the sequenced zebrafish genome. We then inferred a well-supported species tree for Danio and tested for gene flow during the diversification of the genus. An approach independent of the sequenced zebrafish genome verified all inferred relationships. Although identification of the sister taxon to zebrafish has been contentious, multiple RAD-tag data sets and several analytical methods provided strong evidence for Danio aesculapii as the most closely related extant zebrafish relative studied to date. Data also displayed patterns consistent with gene flow during speciation and postspeciation introgression in the lineage leading to zebrafish. The incorporation of biogeographic data with phylogenomic analyses put these relationships in a phylogeographic context and supplied additional support for D. aesculapii as the sister species to D. rerio. The clear resolution of this study establishes a framework for investigating the evolutionary biology of Danio and the heterogeneity of genome evolution in the recent history of a model organism within an emerging model genus for genetics, development, and evolution.
Collapse
|
132
|
Abstract
Teleost fishes are the most species-rich clade of vertebrates and feature an overwhelming diversity of sex-determining mechanisms, classically grouped into environmental and genetic systems. Here, we review the recent findings in the field of sex determination in fish. In the past few years, several new master regulators of sex determination and other factors involved in sexual development have been discovered in teleosts. These data point toward a greater genetic plasticity in generating the male and female sex than previously appreciated and implicate novel gene pathways in the initial regulation of the sexual fate. Overall, it seems that sex determination in fish does not resort to a single genetic cascade but is rather regulated along a continuum of environmental and heritable factors.
Collapse
|
133
|
Takahashi T, Nagata N, Sota T. Application of RAD-based phylogenetics to complex relationships among variously related taxa in a species flock. Mol Phylogenet Evol 2014; 80:137-44. [DOI: 10.1016/j.ympev.2014.07.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/30/2014] [Accepted: 07/24/2014] [Indexed: 11/17/2022]
|
134
|
Baumann L, Knörr S, Keiter S, Nagel T, Rehberger K, Volz S, Oberrauch S, Schiller V, Fenske M, Holbech H, Segner H, Braunbeck T. Persistence of endocrine disruption in zebrafish (Danio rerio) after discontinued exposure to the androgen 17β-trenbolone. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2488-2496. [PMID: 25070268 DOI: 10.1002/etc.2698] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/08/2014] [Accepted: 07/24/2014] [Indexed: 06/03/2023]
Abstract
The aim of the present study was to investigate the effects of the androgenic endocrine disruptor 17β-trenbolone on the sexual development of zebrafish (Danio rerio) with special emphasis on the question of whether adverse outcomes of developmental exposure are reversible or persistent. An exposure scenario including a recovery phase was chosen to assess the potential reversibility of androgenic effects. Zebrafish were exposed to environmentally relevant concentrations of 17β-trenbolone (1 ng/L-30 ng/L) from fertilization until completion of gonad sexual differentiation (60 d posthatch). Thereafter, exposure was either followed by 40 d of recovery in clean water or continued until 100 d posthatch, the age when zebrafish start being able to reproduce. Fish exposed for 100 d to 10 ng/L or 30 ng/L 17β-trenbolone were masculinized at different biological effect levels, as evidenced from a concentration-dependent shift of the sex ratio toward males as well as a significantly increased maturity of testes. Gonad morphological masculinization occurred in parallel with decreased vitellogenin concentrations in both sexes. Changes of brain aromatase (cyp19b) mRNA expression showed no consistent trend with respect to either exposure duration or concentration. Gonad morphological masculinization as well as the decrease of vitellogenin persisted after depuration over 40 d in clean water. This lack of recovery suggests that androgenic effects on sexual development of zebrafish are irreversible.
Collapse
Affiliation(s)
- Lisa Baumann
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland; Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Sex determination in Antarctic notothenioid fish: chromosomal clues and evolutionary hypotheses. Polar Biol 2014. [DOI: 10.1007/s00300-014-1601-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
136
|
Wong RY, McLeod MM, Godwin J. Limited sex-biased neural gene expression patterns across strains in Zebrafish (Danio rerio). BMC Genomics 2014; 15:905. [PMID: 25326170 PMCID: PMC4216363 DOI: 10.1186/1471-2164-15-905] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/24/2014] [Indexed: 12/13/2022] Open
Abstract
Background Male and female vertebrates typically differ in a range of characteristics, from morphology to physiology to behavior, which are influenced by factors such as the social environment and the internal hormonal and genetic milieu. However, sex differences in gene expression profiles in the brains of vertebrates are only beginning to be understood. Fishes provide a unique complement to studies of sex differences in mammals and birds given that fish show extreme plasticity and lability of sexually dimorphic characters and behaviors during development and even adulthood. Hence, teleost models can give additional insight into sexual differentiation. The goal of this study is to identify neurotranscriptomic mechanisms for sex differences in the brain. Results In this study we examined whole-brain sex-biased gene expression through RNA-sequencing across four strains of zebrafish. We subsequently conducted systems level analyses by examining gene network dynamics between the sexes using weighted gene coexpression network analysis. Surprisingly, only 61 genes (approximately 0.4% of genes analyzed) showed a significant sex effect across all four strains, and 48 of these differences were male-biased. Several of these genes are associated with steroid hormone biosynthesis. Despite sex differences in a display of stress-related behaviors, basal transcript levels did not predict the intensity of the behavioral display. WGCNA revealed only one module that was significantly associated with sex. Intriguingly, comparing intermodule dynamics between the sexes revealed only moderate preservation. Further we identify sex-specific gene modules. Conclusions Despite differences in morphology, physiology, and behavior, there is limited sex-biased neural gene expression in zebrafish. Further, genes found to be sex-biased are associated with hormone biosynthesis, suggesting that sex steroid hormones may be key contributors to sexual behavioral plasticity seen in teleosts. A possible mechanism is through regulating specific brain gene networks. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-905) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryan Y Wong
- Department of Biological Sciences, W,M, Keck Center for Behavioral Biology, Box 7617, North Carolina State University, Raleigh, NC 27695-7617, USA.
| | | | | |
Collapse
|
137
|
Martínez P, Viñas AM, Sánchez L, Díaz N, Ribas L, Piferrer F. Genetic architecture of sex determination in fish: applications to sex ratio control in aquaculture. Front Genet 2014; 5:340. [PMID: 25324858 PMCID: PMC4179683 DOI: 10.3389/fgene.2014.00340] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/10/2014] [Indexed: 01/05/2023] Open
Abstract
Controlling the sex ratio is essential in finfish farming. A balanced sex ratio is usually good for broodstock management, since it enables to develop appropriate breeding schemes. However, in some species the production of monosex populations is desirable because the existence of sexual dimorphism, primarily in growth or first time of sexual maturation, but also in color or shape, can render one sex more valuable. The knowledge of the genetic architecture of sex determination (SD) is convenient for controlling sex ratio and for the implementation of breeding programs. Unlike mammals and birds, which show highly conserved master genes that control a conserved genetic network responsible for gonad differentiation (GD), a huge diversity of SD mechanisms has been reported in fish. Despite theory predictions, more than one gene is in many cases involved in fish SD and genetic differences have been observed in the GD network. Environmental factors also play a relevant role and epigenetic mechanisms are becoming increasingly recognized for the establishment and maintenance of the GD pathways. Although major genetic factors are frequently involved in fish SD, these observations strongly suggest that SD in this group resembles a complex trait. Accordingly, the application of quantitative genetics combined with genomic tools is desirable to address its study and in fact, when applied, it has frequently demonstrated a multigene trait interacting with environmental factors in model and cultured fish species. This scenario has notable implications for aquaculture and, depending upon the species, from chromosome manipulation or environmental control techniques up to classical selection or marker assisted selection programs, are being applied. In this review, we selected four relevant species or fish groups to illustrate this diversity and hence the technologies that can be used by the industry for the control of sex ratio: turbot and European sea bass, two reference species of the European aquaculture, and salmonids and tilapia, representing the fish for which there are well established breeding programs.
Collapse
Affiliation(s)
- Paulino Martínez
- Departamento de Genética, Facultad de Veterinaria, Universidad de Santiago de CompostelaLugo, Spain
| | - Ana M. Viñas
- Departamento de Genética, Facultad de Biología, Universidad de Santiago de CompostelaSantiago de Compostela, Spain
| | - Laura Sánchez
- Departamento de Genética, Facultad de Veterinaria, Universidad de Santiago de CompostelaLugo, Spain
| | - Noelia Díaz
- Institut de Ciències del Mar, Consejo Superior de Investigaciones CientíficasBarcelona, Spain
| | | | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones CientíficasBarcelona, Spain
| |
Collapse
|
138
|
Abstract
Sex determination can be robustly genetic, strongly environmental, or genetic subject to environmental perturbation. The genetic basis of sex determination is unknown for zebrafish (Danio rerio), a model for development and human health. We used RAD-tag population genomics to identify sex-linked polymorphisms. After verifying this "RAD-sex" method on medaka (Oryzias latipes), we studied two domesticated zebrafish strains (AB and TU), two natural laboratory strains (WIK and EKW), and two recent isolates from nature (NA and CB). All four natural strains had a single sex-linked region at the right tip of chromosome 4, enabling sex genotyping by PCR. Genotypes for the single nucleotide polymorphism (SNP) with the strongest statistical association to sex suggested that wild zebrafish have WZ/ZZ sex chromosomes. In natural strains, "male genotypes" became males and some "female genotypes" also became males, suggesting that the environment or genetic background can cause female-to-male sex reversal. Surprisingly, TU and AB lacked detectable sex-linked loci. Phylogenomics rooted on D. nigrofasciatus verified that all strains are monophyletic. Because AB and TU branched as a monophyletic clade, we could not rule out shared loss of the wild sex locus in a common ancestor despite their independent domestication. Mitochondrial DNA sequences showed that investigated strains represent only one of the three identified zebrafish haplogroups. Results suggest that zebrafish in nature possess a WZ/ZZ sex-determination mechanism with a major determinant lying near the right telomere of chromosome 4 that was modified during domestication. Strains providing the zebrafish reference genome lack key components of the natural sex-determination system but may have evolved variant sex-determining mechanisms during two decades in laboratory culture.
Collapse
|
139
|
Alexander HJ, Richardson JML, Anholt BR. Multigenerational response to artificial selection for biased clutch sex ratios in Tigriopus californicus
populations. J Evol Biol 2014; 27:1921-9. [DOI: 10.1111/jeb.12449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/16/2014] [Indexed: 01/02/2023]
Affiliation(s)
| | | | - B. R. Anholt
- Bamfield Marine Sciences Centre; Bamfield BC Canada
| |
Collapse
|
140
|
Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP, Ashman TL, Hahn MW, Kitano J, Mayrose I, Ming R, Perrin N, Ross L, Valenzuela N, Vamosi JC. Sex determination: why so many ways of doing it? PLoS Biol 2014; 12:e1001899. [PMID: 24983465 PMCID: PMC4077654 DOI: 10.1371/journal.pbio.1001899] [Citation(s) in RCA: 738] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sexual reproduction is an ancient feature of life on earth, and the familiar X and Y chromosomes in humans and other model species have led to the impression that sex determination mechanisms are old and conserved. In fact, males and females are determined by diverse mechanisms that evolve rapidly in many taxa. Yet this diversity in primary sex-determining signals is coupled with conserved molecular pathways that trigger male or female development. Conflicting selection on different parts of the genome and on the two sexes may drive many of these transitions, but few systems with rapid turnover of sex determination mechanisms have been rigorously studied. Here we survey our current understanding of how and why sex determination evolves in animals and plants and identify important gaps in our knowledge that present exciting research opportunities to characterize the evolutionary forces and molecular pathways underlying the evolution of sex determination.
Collapse
Affiliation(s)
- Doris Bachtrog
- University of California, Berkeley, Department of Integrative Biology, Berkeley, California, United States of America
| | - Judith E. Mank
- University College London, Department of Genetics, Evolution and Environment, London, United Kingdom
| | - Catherine L. Peichel
- Fred Hutchinson Cancer Research Center, Divisions of Human Biology and Basic Sciences, Seattle, Washington, United States of America
| | - Mark Kirkpatrick
- University of Texas, Department of Integrative Biology, Austin, Texas, United States of America
| | - Sarah P. Otto
- University of British Columbia, Department of Zoology, Vancouver, British Columbia, Canada
| | - Tia-Lynn Ashman
- University of Pittsburgh, Department of Biological Sciences, Pittsburgh, Pennsylvania, United States of America
| | - Matthew W. Hahn
- Indiana University, Department of Biology, Bloomington Indiana, United States of America
| | - Jun Kitano
- National Institute of Genetics, Ecological Genetics Laboratory, Mishima, Shizuoka, Japan
| | - Itay Mayrose
- Tel Aviv University, Department of Molecular Biology and Ecology of Plants, Tel Aviv, Israel
| | - Ray Ming
- University of Illinois, Department of Plant Biology, Urbana-Champaign, Illinois, United States of America
| | - Nicolas Perrin
- University of Lausanne, Department of Ecology and Evolution, Lausanne, Switzerland
| | - Laura Ross
- University of Oxford, Department of Zoology, Oxford, United Kingdom
| | - Nicole Valenzuela
- Iowa State University, Department of Ecology, Evolution and Organismal Biology, Ames, Iowa, United States of America
| | - Jana C. Vamosi
- University of Calgary, Department of Biological Sciences, Calgary, Alberta, Canada
| | | |
Collapse
|
141
|
Amores A, Catchen J, Nanda I, Warren W, Walter R, Schartl M, Postlethwait JH. A RAD-tag genetic map for the platyfish (Xiphophorus maculatus) reveals mechanisms of karyotype evolution among teleost fish. Genetics 2014; 197:625-41. [PMID: 24700104 PMCID: PMC4063920 DOI: 10.1534/genetics.114.164293] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 03/20/2014] [Indexed: 11/18/2022] Open
Abstract
Mammalian genomes can vary substantially in haploid chromosome number even within a small taxon (e.g., 3-40 among deer alone); in contrast, teleost fish genomes are stable (24-25 in 58% of teleosts), but we do not yet understand the mechanisms that account for differences in karyotype stability. Among perciform teleosts, platyfish (Xiphophorus maculatus) and medaka (Oryzias latipes) both have 24 chromosome pairs, but threespine stickleback (Gasterosteus aculeatus) and green pufferfish (Tetraodon nigroviridis) have just 21 pairs. To understand the evolution of teleost genomes, we made a platyfish meiotic map containing 16,114 mapped markers scored on 267 backcross fish. We tiled genomic contigs along the map to create chromosome-length genome assemblies. Genome-wide comparisons of conserved synteny showed that platyfish and medaka karyotypes remained remarkably similar with few interchromosomal translocations but with numerous intrachromosomal rearrangements (transpositions and inversions) since their lineages diverged ∼120 million years ago. Comparative genomics with platyfish shows how reduced chromosome numbers in stickleback and green pufferfish arose by fusion of pairs of ancestral chromosomes after their lineages diverged from platyfish ∼195 million years ago. Zebrafish and human genomes provide outgroups to root observed changes. These studies identify likely genome assembly errors, characterize chromosome fusion events, distinguish lineage-independent chromosome fusions, show that the teleost genome duplication does not appear to have accelerated the rate of translocations, and reveal the stability of syntenies and gene orders in teleost chromosomes over hundreds of millions of years.
Collapse
Affiliation(s)
- Angel Amores
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Julian Catchen
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| | - Indrajit Nanda
- Institute of Human Genetics, University of Würzburg, D-97074 Würzburg, Germany
| | - Wesley Warren
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108
| | - Ron Walter
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666
| | - Manfred Schartl
- Physiological Chemistry, University of Würzburg, Biozentrum, Am Hubland, and Comprehensive Cancer Center, University Clinic Würzburg, 97074 Würzburg, Germany
| | | |
Collapse
|
142
|
Gamble T, Zarkower D. Identification of sex-specific molecular markers using restriction site-associated DNA sequencing. Mol Ecol Resour 2014; 14:902-13. [DOI: 10.1111/1755-0998.12237] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/24/2014] [Accepted: 01/28/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Tony Gamble
- Department of Genetics, Cell Biology, and Development; University of Minnesota; Minneapolis MN USA
- Bell Museum of Natural History; University of Minnesota; Minneapolis MN USA
| | - David Zarkower
- Department of Genetics, Cell Biology, and Development; University of Minnesota; Minneapolis MN USA
| |
Collapse
|
143
|
Sreenivasan R, Jiang J, Wang X, Bártfai R, Kwan HY, Christoffels A, Orbán L. Gonad differentiation in zebrafish is regulated by the canonical Wnt signaling pathway. Biol Reprod 2014; 90:45. [PMID: 24174574 DOI: 10.1095/biolreprod.113.110874] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Zebrafish males undergo a "juvenile ovary-to-testis" gonadal transformation process. Several genes, including nuclear receptor subfamily 5, group A (nr5a) and anti-Müllerian hormone (amh), and pathways such as Tp53-mediated germ-cell apoptosis have been implicated in zebrafish testis formation. However, our knowledge of the regulation of this complex process is incomplete, and much remains to be investigated about the molecular pathways and network of genes that control it. Using a microarray-based analysis of transforming zebrafish male gonads, we demonstrated that their transcriptomes undergo transition from an ovary-like pattern to an ovotestis to a testis-like profile. Microarray results also validated the previous histological and immunohistochemical observation that there is high variation in the duration and extent of commitment to the juvenile ovary phase among individuals. Interestingly, global gene expression profiling of diverging zebrafish juvenile ovaries and transforming ovotestes revealed that some members of the canonical Wnt/beta-catenin signaling pathway were differentially expressed between these two phases. To investigate whether Wnt/beta-catenin signaling plays a role in zebrafish gonad differentiation, we used the Tg (hsp70l:dkk1b-GFP)w32 line to inhibit Wnt/beta-catenin signaling during gonad differentiation. Activation of dkk1b-GFP expression by heat shock resulted in an increased proportion of males and corresponding decrease in gonadal aromatase gene (cyp19a1a) expression. The Wnt target gene, lymphocyte enhancer binding factor 1 (lef1), was also down-regulated in the process. Together, these results provide the first functional evidence that, similarly to mammals, Wnt/beta-catenin signaling is a "pro-female" pathway that regulates gonad differentiation in zebrafish.
Collapse
Affiliation(s)
- Rajini Sreenivasan
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
144
|
Mapping of the gynoecy in bitter gourd (Momordica charantia) using RAD-seq analysis. PLoS One 2014; 9:e87138. [PMID: 24498029 PMCID: PMC3907450 DOI: 10.1371/journal.pone.0087138] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/19/2013] [Indexed: 01/04/2023] Open
Abstract
Momordica charantia is a monoecious plant of the Cucurbitaceae family that has both male and female unisexual flowers. Its unique gynoecious line, OHB61-5, is essential as a maternal parent in the production of F1 cultivars. To identify the DNA markers for this gynoecy, a RAD-seq (restriction-associated DNA tag sequencing) analysis was employed to reveal genome-wide DNA polymorphisms and to genotype the F2 progeny from a cross between OHB61-5 and a monoecious line. Based on a RAD-seq analysis of F2 individuals, a linkage map was constructed using 552 co-dominant markers. In addition, after analyzing the pooled genomic DNA from monoecious or gynoecious F2 plants, several SNP loci that are genetically linked to gynoecy were identified. GTFL-1, the closest SNP locus to the putative gynoecious locus, was converted to a conventional DNA marker using invader assay technology, which is applicable to the marker-assisted selection of gynoecy in M. charantia breeding.
Collapse
|
145
|
Bewick AJ, Chain FJJ, Zimmerman LB, Sesay A, Gilchrist MJ, Owens NDL, Seifertova E, Krylov V, Macha J, Tlapakova T, Kubickova S, Cernohorska H, Zarsky V, Evans BJ. A large pseudoautosomal region on the sex chromosomes of the frog Silurana tropicalis. Genome Biol Evol 2013; 5:1087-98. [PMID: 23666865 PMCID: PMC3698919 DOI: 10.1093/gbe/evt073] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sex chromosome divergence has been documented across phylogenetically diverse species, with amphibians typically having cytologically nondiverged (“homomorphic”) sex chromosomes. With an aim of further characterizing sex chromosome divergence of an amphibian, we used “RAD-tags” and Sanger sequencing to examine sex specificity and heterozygosity in the Western clawed frog Silurana tropicalis (also known as Xenopus tropicalis). Our findings based on approximately 20 million genotype calls and approximately 200 polymerase chain reaction-amplified regions across multiple male and female genomes failed to identify a substantially sized genomic region with genotypic hallmarks of sex chromosome divergence, including in regions known to be tightly linked to the sex-determining region. We also found that expression and molecular evolution of genes linked to the sex-determining region did not differ substantially from genes in other parts of the genome. This suggests that the pseudoautosomal region, where recombination occurs, comprises a large portion of the sex chromosomes of S. tropicalis. These results may in part explain why African clawed frogs have such a high incidence of polyploidization, shed light on why amphibians have a high rate of sex chromosome turnover, and raise questions about why homomorphic sex chromosomes are so prevalent in amphibians.
Collapse
Affiliation(s)
- Adam J Bewick
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Sox9-related signaling controls zebrafish juvenile ovary-testis transformation. Cell Death Dis 2013; 4:e930. [PMID: 24263104 PMCID: PMC3847332 DOI: 10.1038/cddis.2013.456] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/19/2013] [Accepted: 10/21/2013] [Indexed: 01/25/2023]
Abstract
In almost all vertebrates, the downstream of the sox9 signaling axis is well conserved for testis differentiation. The upstream genes of this pathway vary from species to species during evolution. Yet, little is known about how these signaling cascades are regulated and what cellular processes are dominant in ovary–testis transformation in juvenile zebrafish. In this study, we find that the transforming gonads undergo activation of sox9a-expressing stromal cells with increased deposition of extracellular matrix and formation of degenerative compartments. This leads to follicle disassembly, oocyte degeneration, follicle cell-cyp19a1a-amh conversions, and, eventually, formation of the testis cord. In vitro primary culture of juvenile ovary tissue in gonadotropins increases cytoplasmic accumulation of sox9a and p-Erk1/2, and induces mesenchymal morphology. MAPK inhibitors (MKI), a mixture of PD98059 and U0216, eliminate the cytoplasmic distribution but do not eradicate nuclear localization of sox9a and p-Erk1/2. Nuclear p53 are relatively increased in MKI-treated cells that exhibit less spreading and reduced proliferation. Despite uniform nuclear condensation, only a fraction of cells displayed the apoptotic phenotype. These results suggest that high levels of cytoplasmic sox9a and p-Erk1/2 activity activate stromal cells and enhance the production of extracellular matrix required for testis cord formation, whereas deregulation and translocation of sox9a and p-Erk1/2 induce follicle disassembly and incomplete apoptosis associated with nuclear p53. Together with the established FSH/cAMP/MAPK/AMH pathway in mammalian granulosa and Sertoli cells, we demonstrated that the sox9 axis signaling that determines testis formation in mammals also induces zebrafish ovary–testis transition, and adds to its conserved role in sex reversal.
Collapse
|
147
|
Groh KJ, Schönenberger R, Eggen RIL, Segner H, Suter MJF. Analysis of protein expression in zebrafish during gonad differentiation by targeted proteomics. Gen Comp Endocrinol 2013; 193:210-20. [PMID: 23968773 DOI: 10.1016/j.ygcen.2013.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 06/07/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
Abstract
The molecular mechanisms governing sex determination and differentiation in the zebrafish (Danio rerio) are not fully understood. To gain more insights into the function of specific genes in these complex processes, the expression of multiple candidates needs to be assessed, preferably on the protein level. Here, we developed a targeted proteomics method based on selected reaction monitoring (SRM) to study the candidate sex-related proteins in zebrafish which were selected based on a global proteomics analysis of adult gonads and representational difference analysis of male and female DNA, as well as on published information on zebrafish and other vertebrates. We employed the developed SRM protocols to acquire time-resolved protein expression profiles during the gonad differentiation period in vas::EGFP transgenic zebrafish. Evidence on protein expression was obtained for the first time for several candidate genes previously studied only on the mRNA level or suggested by bioinformatic predictions. Tuba1b (tubulin alpha 1b), initially included in the study as one of the potential housekeeping proteins, was found to be preferentially expressed in the adult testis with nearly absent expression in the ovary. The revealed changes in protein expression patterns associated with gonad differentiation suggest that several of the examined proteins, especially Ilf2 and Ilf3 (interleukin enhancer-binding factors 2 and 3), Raldh3 (retinaldehyde dehydrogenase type 3), Zgc:195027 (low density lipoprotein-related receptor protein 3) and Sept5a (septin 5a), may play a specific role in the sexual differentiation in zebrafish.
Collapse
Affiliation(s)
- Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
| | | | | | | | | |
Collapse
|
148
|
Abstract
In this review, we provide a detailed overview of studies on the elusive sex determination (SD) and gonad differentiation mechanisms of zebrafish (Danio rerio). We show that the data obtained from most studies are compatible with polygenic sex determination (PSD), where the decision is made by the allelic combinations of several loci. These loci are typically dispersed throughout the genome, but in some teleost species a few of them might be located on a preferential pair of (sex) chromosomes. The PSD system has a much higher level of variation of SD genotypes both at the level of gametes and the sexual genotype of individuals, than that of the chromosomal sex determination systems. The early sexual development of zebrafish males is a complicated process, as they first develop a ‘juvenile ovary’, that later undergoes a transformation to give way to a testis. To date, three major developmental pathways were shown to be involved with gonad differentiation through the modulation of programmed cell death. In our opinion, there are more pathways participating in the regulation of zebrafish gonad differentiation/transformation. Introduction of additional powerful large-scale genomic approaches into the analysis of zebrafish reproduction will result in further deepening of our knowledge as well as identification of additional pathways and genes associated with these processes in the near future.
Collapse
Affiliation(s)
- Woei Chang Liew
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore.
| | | |
Collapse
|
149
|
|
150
|
Rodríguez-Marí A, Cañestro C, BreMiller RA, Catchen JM, Yan YL, Postlethwait JH. Retinoic acid metabolic genes, meiosis, and gonadal sex differentiation in zebrafish. PLoS One 2013; 8:e73951. [PMID: 24040125 PMCID: PMC3769385 DOI: 10.1371/journal.pone.0073951] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/24/2013] [Indexed: 11/18/2022] Open
Abstract
To help understand the elusive mechanisms of zebrafish sex determination, we studied the genetic machinery regulating production and breakdown of retinoic acid (RA) during the onset of meiosis in gonadogenesis. Results uncovered unexpected mechanistic differences between zebrafish and mammals. Conserved synteny and expression analyses revealed that cyp26a1 in zebrafish and its paralog Cyp26b1 in tetrapods independently became the primary genes encoding enzymes available for gonadal RA-degradation, showing lineage-specific subfunctionalization of vertebrate genome duplication (VGD) paralogs. Experiments showed that zebrafish express aldh1a2, which encodes an RA-synthesizing enzyme, in the gonad rather than in the mesonephros as in mouse. Germ cells in bipotential gonads of all zebrafish analyzed were labeled by the early meiotic marker sycp3, suggesting that in zebrafish, the onset of meiosis is not sexually dimorphic as it is in mouse and is independent of Stra8, which is required in mouse but was lost in teleosts. Analysis of dead-end knockdown zebrafish depleted of germ cells revealed the germ cell-independent onset and maintenance of gonadal aldh1a2 and cyp26a1 expression. After meiosis initiated, somatic cell expression of cyp26a1 became sexually dimorphic: up-regulated in testes but not ovaries. Meiotic germ cells expressing the synaptonemal complex gene sycp3 occupied islands of somatic cells that lacked cyp26a1 expression, as predicted by the hypothesis that Cyp26a1 acts as a meiosis-inhibiting factor. Consistent with this hypothesis, females up-regulated cyp26a1 in oocytes that entered prophase-I meiotic arrest, and down-regulated cyp26a1 in oocytes resuming meiosis. Co-expression of cyp26a1 and the pluripotent germ cell stem cell marker pou5f1(oct4) in meiotically arrested oocytes was consistent with roles in mouse to promote germ cell survival and to prevent apoptosis, mechanisms that are central for tipping the sexual fate of gonads towards the female pathway in zebrafish.
Collapse
Affiliation(s)
- Adriana Rodríguez-Marí
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
- Departament de Genètica, Universitat de Barcelona, Barcelona, Spain
| | - Cristian Cañestro
- Departament de Genètica, Universitat de Barcelona, Barcelona, Spain
- * E-mail: (JHP); (CC)
| | - Ruth A. BreMiller
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Julian M. Catchen
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Yi-Lin Yan
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - John H. Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
- * E-mail: (JHP); (CC)
| |
Collapse
|