101
|
Bagdonaite I, Vakhrushev SY, Joshi HJ, Wandall HH. Viral glycoproteomes: technologies for characterization and outlook for vaccine design. FEBS Lett 2018; 592:3898-3920. [PMID: 29961944 DOI: 10.1002/1873-3468.13177] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/13/2018] [Accepted: 06/26/2018] [Indexed: 12/27/2022]
Abstract
It has long been known that surface proteins of most enveloped viruses are covered with glycans. It has furthermore been demonstrated that glycosylation is essential for propagation and immune evasion for many viruses. The recent development of high-resolution mass spectrometry techniques has enabled identification not only of the precise structures but also the positions of such post-translational modifications on viruses, revealing substantial differences in extent of glycosylation and glycan maturation for different classes of viruses. In-depth characterization of glycosylation and other post-translational modifications of viral envelope glycoproteins is essential for rational design of vaccines and antivirals. In this Review, we provide an overview of techniques used to address viral glycosylation and summarize information on glycosylation of enveloped viruses representing ongoing public health challenges. Furthermore, we discuss how knowledge on glycosylation can be translated to means to prevent and combat viral infections.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Denmark
| | - Hiren J Joshi
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Denmark
| | - Hans H Wandall
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Denmark
| |
Collapse
|
102
|
Watanabe Y, Raghwani J, Allen JD, Seabright GE, Li S, Moser F, Huiskonen JT, Strecker T, Bowden TA, Crispin M. Structure of the Lassa virus glycan shield provides a model for immunological resistance. Proc Natl Acad Sci U S A 2018; 115:7320-7325. [PMID: 29941589 PMCID: PMC6048489 DOI: 10.1073/pnas.1803990115] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Lassa virus is an Old World arenavirus endemic to West Africa that causes severe hemorrhagic fever. Vaccine development has focused on the envelope glycoprotein complex (GPC) that extends from the virion envelope. The often inadequate antibody immune response elicited by both vaccine and natural infection has been, in part, attributed to the abundance of N-linked glycosylation on the GPC. Here, using a virus-like-particle system that presents Lassa virus GPC in a native-like context, we determine the composite population of each of the N-linked glycosylation sites presented on the trimeric GPC spike. Our analysis reveals the presence of underprocessed oligomannose-type glycans, which form punctuated clusters that obscure the proteinous surface of both the GP1 attachment and GP2 fusion glycoprotein subunits of the Lassa virus GPC. These oligomannose clusters are seemingly derived as a result of sterically reduced accessibility to glycan processing enzymes, and limited amino acid diversification around these sites supports their role protecting against the humoral immune response. Combined, our data provide a structure-based blueprint for understanding how glycans render the glycoprotein spikes of Lassa virus and other Old World arenaviruses immunologically resistant targets.
Collapse
Affiliation(s)
- Yasunori Watanabe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, OX1 3QU Oxford, United Kingdom
- Division of Structural Biology, University of Oxford, OX3 7BN Oxford, United Kingdom
- Centre for Biological Sciences and Institute of Life Sciences, University of Southampton, SO17 1BJ Southampton, United Kingdom
| | - Jayna Raghwani
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7LF Oxford, United Kingdom
| | - Joel D Allen
- Centre for Biological Sciences and Institute of Life Sciences, University of Southampton, SO17 1BJ Southampton, United Kingdom
| | - Gemma E Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, OX1 3QU Oxford, United Kingdom
- Centre for Biological Sciences and Institute of Life Sciences, University of Southampton, SO17 1BJ Southampton, United Kingdom
| | - Sai Li
- Division of Structural Biology, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - Felipe Moser
- Division of Structural Biology, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - Juha T Huiskonen
- Division of Structural Biology, University of Oxford, OX3 7BN Oxford, United Kingdom
- Helsinki Institute of Life Science and Molecular and Integrative Biosciences Research Program, University of Helsinki, 00014 Helsinki, Finland
| | - Thomas Strecker
- Institute of Virology, Philipps Universität Marburg, 35043 Marburg, Germany
| | - Thomas A Bowden
- Division of Structural Biology, University of Oxford, OX3 7BN Oxford, United Kingdom;
| | - Max Crispin
- Centre for Biological Sciences and Institute of Life Sciences, University of Southampton, SO17 1BJ Southampton, United Kingdom;
| |
Collapse
|
103
|
Bagdonaite I, Wandall HH. Global aspects of viral glycosylation. Glycobiology 2018; 28:443-467. [PMID: 29579213 PMCID: PMC7108637 DOI: 10.1093/glycob/cwy021] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/10/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
Enveloped viruses encompass some of the most common human pathogens causing infections of different severity, ranging from no or very few symptoms to lethal disease as seen with the viral hemorrhagic fevers. All enveloped viruses possess an envelope membrane derived from the host cell, modified with often heavily glycosylated virally encoded glycoproteins important for infectivity, viral particle formation and immune evasion. While N-linked glycosylation of viral envelope proteins is well characterized with respect to location, structure and site occupancy, information on mucin-type O-glycosylation of these proteins is less comprehensive. Studies on viral glycosylation are often limited to analysis of recombinant proteins that in most cases are produced in cell lines with a glycosylation capacity different from the capacity of the host cells. The glycosylation pattern of the produced recombinant glycoproteins might therefore be different from the pattern on native viral proteins. In this review, we provide a historical perspective on analysis of viral glycosylation, and summarize known roles of glycans in the biology of enveloped human viruses. In addition, we describe how to overcome the analytical limitations by using a global approach based on mass spectrometry to identify viral O-glycosylation in virus-infected cell lysates using the complex enveloped virus herpes simplex virus type 1 as a model. We underscore that glycans often pay important contributions to overall protein structure, function and immune recognition, and that glycans represent a crucial determinant for vaccine design. High throughput analysis of glycosylation on relevant glycoprotein formulations, as well as data compilation and sharing is therefore important to identify consensus glycosylation patterns for translational applications.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| |
Collapse
|
104
|
Hastie KM, Saphire EO. Lassa virus glycoprotein: stopping a moving target. Curr Opin Virol 2018; 31:52-58. [PMID: 29843991 PMCID: PMC6193841 DOI: 10.1016/j.coviro.2018.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 11/25/2022]
Abstract
The structure of a prefusion arenavirus GPC was enigmatic for many years, owing to the metastable and non-covalent nature of the association between the receptor binding and fusion subunits. Recent engineering efforts to stabilize the glycoprotein of the Old World arenavirus Lassa in a native, yet cleaved state, allowed the first structure of any arenavirus prefusion GPC trimer to be determined. Comparison of this structure with the structures of other arenavirus glycoprotein subunits reveals surprising findings: that the receptor binding subunit, GP1, of Lassa virus is conformationally labile, while the GP1 subunit of New World arenaviruses is not, and that the arenavirus GPC adopts a trimeric state unlike other glycoproteins with similar fusion machinery. Structural analysis, combined with recent biochemical data regarding antibody epitopes and receptor binding requirements, provides a basis for rational vaccine design.
Collapse
Affiliation(s)
- Kathryn M Hastie
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
105
|
Greczmiel U, Oxenius A. The Janus Face of Follicular T Helper Cells in Chronic Viral Infections. Front Immunol 2018; 9:1162. [PMID: 29887868 PMCID: PMC5982684 DOI: 10.3389/fimmu.2018.01162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022] Open
Abstract
Chronic infections with non-cytopathic viruses constitutively expose virus-specific adaptive immune cells to cognate antigen, requiring their numeric and functional adaptation. Virus-specific CD8 T cells are compromised by various means in their effector functions, collectively termed T cell exhaustion. Alike CD8 T cells, virus-specific CD4 Th1 cell responses are gradually downregulated but instead, follicular T helper (TFH) cell differentiation and maintenance is strongly promoted during chronic infection. Thereby, the immune system promotes antibody responses, which bear less immune-pathological risk compared to cytotoxic and pro-inflammatory T cell responses. This emphasis on TFH cells contributes to tolerance of the chronic infection and is pivotal for the continued maturation and adaptation of the antibody response, leading eventually to the emergence of virus-neutralizing antibodies, which possess the potential to control the established chronic infection. However, sustained high levels of TFH cells can also result in a less stringent B cell selection process in active germinal center reactions, leading to the activation of virus-unspecific B cells, including self-reactive B cells, and to hypergammaglobulinemia. This dispersal of B cell help comes at the expense of a stringently selected virus-specific antibody response, thereby contributing to its delayed maturation. Here, we discuss these opposing facets of TFH cells in chronic viral infections.
Collapse
Affiliation(s)
- Ute Greczmiel
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
106
|
Alenazi Y, Singh K, Davies G, Eaton JRO, Elders P, Kawamura A, Bhattacharya S. Genetically engineered two-warhead evasins provide a method to achieve precision targeting of disease-relevant chemokine subsets. Sci Rep 2018; 8:6333. [PMID: 29679010 PMCID: PMC5910400 DOI: 10.1038/s41598-018-24568-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/06/2018] [Indexed: 12/21/2022] Open
Abstract
Both CC and CXC-class chemokines drive inflammatory disease. Tick salivary chemokine-binding proteins (CKBPs), or evasins, specifically bind subsets of CC- or CXC-chemokines, and could precisely target disease-relevant chemokines. Here we have used yeast surface display to identify two tick evasins: a CC-CKBP, P1243 from Amblyomma americanum and a CXC-CKBP, P1156 from Ixodes ricinus. P1243 binds 11 CC-chemokines with Kd < 10 nM, and 10 CC-chemokines with Kd between 10 and 100 nM. P1156 binds two ELR + CXC-chemokines with Kd < 10 nM, and four ELR + CXC-chemokines with Kd between 10 and 100 nM. Both CKBPs neutralize chemokine activity with IC50 < 10 nM in cell migration assays. As both CC- and CXC-CKBP activities are desirable in a single agent, we have engineered "two-warhead" CKBPs to create single agents that bind and neutralize subsets of CC and CXC chemokines. These results show that tick evasins can be linked to create non-natural proteins that target subsets of CC and CXC chemokines. We suggest that "two-warhead" evasins, designed by matching the activities of parental evasins to CC and CXC chemokines expressed in disease, would achieve precision targeting of inflammatory disease-relevant chemokines by a single agent.
Collapse
Affiliation(s)
- Yara Alenazi
- RDM Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Kamayani Singh
- RDM Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Graham Davies
- RDM Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - James R O Eaton
- RDM Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Philip Elders
- RDM Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Akane Kawamura
- RDM Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Shoumo Bhattacharya
- RDM Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
107
|
Yu WH, Zhao P, Draghi M, Arevalo C, Karsten CB, Suscovich TJ, Gunn B, Streeck H, Brass AL, Tiemeyer M, Seaman M, Mascola JR, Wells L, Lauffenburger DA, Alter G. Exploiting glycan topography for computational design of Env glycoprotein antigenicity. PLoS Comput Biol 2018; 14:e1006093. [PMID: 29677181 PMCID: PMC5931682 DOI: 10.1371/journal.pcbi.1006093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 05/02/2018] [Accepted: 03/16/2018] [Indexed: 11/20/2022] Open
Abstract
Mounting evidence suggests that glycans, rather than merely serving as a “shield”, contribute critically to antigenicity of the HIV envelope (Env) glycoprotein, representing critical antigenic determinants for many broadly neutralizing antibodies (bNAbs). While many studies have focused on defining the role of individual glycans or groups of proximal glycans in bNAb binding, little is known about the effects of changes in the overall glycan landscape in modulating antibody access and Env antigenicity. Here we developed a systems glycobiology approach to reverse engineer the complexity of HIV glycan heterogeneity to guide antigenicity-based de novo glycoprotein design. bNAb binding was assessed against a panel of 94 recombinant gp120 monomers exhibiting defined glycan site occupancies. Using a Bayesian machine learning algorithm, bNAb-specific glycan footprints were identified and used to design antigens that selectively alter bNAb antigenicity as a proof-of concept. Our approach provides a new design strategy to predictively modulate antigenicity via the alteration of glycan topography, thereby focusing the humoral immune response on sites of viral vulnerability for HIV. Carbohydrates on the HIV Env glycoprotein, previously often considered as a “shield” permitting immune evasion, can themselves represent targets for broadly neutralizing antibody (bNAb) recognition. Efforts to define the impact of individual glycans on bNAb recognition have clearly illustrated the critical nature of individual or groups of glycans on bNAb binding. However, glycans represent half the mass of the HIV envelope glycoprotein, representing a lattice of interacting sugars that shape the topographical landscape that alters antibody accessiblity to the underlying protein. However, whether alterations in individual glycans alter the broader interactions among glycans, proximal and distal, has not been heretofore rigorously examined, nor how this lattice may be actively exploited to improve antigenicity. To address this challenge, we describe here a systems glycobiology approach to reverse engineer the complex relationship between bNAb binding and glycan landscape effects on Env proteins spanning across various clades and tiers. Glycan occupancy was interrogated across every potential N-glycan site in 94 recombinant gp120 recombinant antigens. Sequences, glycan occupancy, as well as bNAb binding profiles were integrated across each of the 94-atngeins to generate a machine learning computational model enabling the identification of the glycan site determinants involved in binding to any given bNAb. Moreover, this model was used to generate a panel of novel gp120 variants with augmented selective bNAb binding profiles, further validating the contributions of glycans in Env antigen design. Whether glycan-optimization will additionally influence immunogenicity, particularly on emerging stabilized trimers, is unknown, but this study provides a proof of concept for selectively and agnostically exploiting both proximal and distal viral protein glycosylation in a principled manner to improve target Ab binding profiles.
Collapse
Affiliation(s)
- Wen-Han Yu
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Peng Zhao
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia, United States of America
| | - Monia Draghi
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| | - Claudia Arevalo
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| | - Christina B Karsten
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| | - Todd J Suscovich
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| | - Bronwyn Gunn
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| | - Hendrik Streeck
- Institute for HIV Research, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Abraham L Brass
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia, United States of America
| | - Michael Seaman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Lance Wells
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia, United States of America
| | - Douglas A Lauffenburger
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| |
Collapse
|
108
|
Abstract
Antibodies have been used for over a century prophylactically and, less often, therapeutically against viruses. 'Super-antibodies' — a new generation of highly potent and/or broadly cross-reactive human monoclonal antibodies — offer new opportunities for prophylaxis and therapy of viral infections. Super-antibodies are typically generated infrequently and/or in a limited number of individuals during natural infections. Isolation of these antibodies has primarily been achieved by large-scale screening for suitable donors and new single B cell approaches to human monoclonal antibody generation. Super-antibodies may offer the possibility of treating multiple viruses of a given family with a single reagent. They are also valuable templates for rational vaccine design. The great potency of super-antibodies has many advantages for practical development as therapeutic reagents. These advantages can be enhanced by a variety of antibody engineering technologies.
So-called super-antibodies are highly potent, broadly reactive antiviral antibodies that offer promise for the treatment of various chronic and emerging viruses. This Review describes how recent technological advances led to their isolation from rare, infected individuals and their development for the prevention and treatment of various viral infections. Antibodies have been used for more than 100 years in the therapy of infectious diseases, but a new generation of highly potent and/or broadly cross-reactive human monoclonal antibodies (sometimes referred to as 'super-antibodies') offers new opportunities for intervention. The isolation of these antibodies, most of which are rarely induced in human infections, has primarily been achieved by large-scale screening for suitable donors and new single B cell approaches to human monoclonal antibody generation. Engineering the antibodies to improve half-life and effector functions has further augmented their in vivo activity in some cases. Super-antibodies offer promise for the prophylaxis and therapy of infections with a range of viruses, including those that are highly antigenically variable and those that are newly emerging or that have pandemic potential. The next few years will be decisive in the realization of the promise of super-antibodies.
Collapse
|
109
|
Abstract
Glycosylation is an important post-translational modification that is required for structural and stability purposes and functional roles such as signalling, attachment and shielding. Many human pathogens such as bacteria display an array of carbohydrates on their surface that are non-self to the host; others such as viruses highjack the host-cell machinery and present self-carbohydrates sometimes arranged in a non-self more immunogenic manner. In combination with carrier proteins, these glycan structures can be highly immunogenic. During natural infection, glycan-binding antibodies are often elicited that correlate with long-lasting protection. A great amount of research has been invested in carbohydrate vaccine design to elicit such an immune response, which has led to the development of vaccines against the bacterial pathogens Haemophilus influenzae type b, Streptococcus pneumonia and Neisseria meningitidis. Other vaccines, e.g. against HIV-1, are still in development, but promising progress has been made with the isolation of broadly neutralizing glycan-binding antibodies and the engineering of stable trimeric envelope glycoproteins. Carbohydrate vaccines against other pathogens such as viruses (Dengue, Hepatitis C), parasites (Plasmodium) and fungi (Candida) are at different stages of development. This chapter will discuss the challenges in inducing cross-reactive carbohydrate-targeting antibodies and progress towards carbohydrate vaccines.
Collapse
|
110
|
Jiménez de Oya N, De Giovanni M, Fioravanti J, Übelhart R, Di Lucia P, Fiocchi A, Iacovelli S, Efremov DG, Caligaris-Cappio F, Jumaa H, Ghia P, Guidotti LG, Iannacone M. Pathogen-specific B-cell receptors drive chronic lymphocytic leukemia by light-chain-dependent cross-reaction with autoantigens. EMBO Mol Med 2017; 9:1482-1490. [PMID: 28899929 PMCID: PMC5666309 DOI: 10.15252/emmm.201707732] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 12/27/2022] Open
Abstract
Several lines of evidence indirectly suggest that antigenic stimulation through the B-cell receptor (BCR) supports chronic lymphocytic leukemia (CLL) development. In addition to self-antigens, a number of microbial antigens have been proposed to contribute to the selection of the immunoglobulins expressed in CLL. How pathogen-specific BCRs drive CLL development remains, however, largely unexplored. Here, we utilized mouse models of CLL pathogenesis to equip B cells with virus-specific BCRs and study the effect of antigen recognition on leukemia growth. Our results show that BCR engagement is absolutely required for CLL development. Unexpectedly, however, neither acute nor chronic exposure to virus-derived antigens influenced leukemia progression. Rather, CLL clones preferentially selected light chains that, when paired with virus-specific heavy chains, conferred B cells the ability to recognize a broad range of autoantigens. Taken together, our results suggest that pathogens may drive CLL pathogenesis by selecting and expanding pathogen-specific B cells that cross-react with one or more self-antigens.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Autoantigens/immunology
- Disease Models, Animal
- Immunoglobulin Light Chains/metabolism
- Immunoglobulins/metabolism
- Intercellular Adhesion Molecule-3/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Protein Array Analysis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Spleen/cytology
- Spleen/metabolism
- Vesicular stomatitis Indiana virus/genetics
- Vesicular stomatitis Indiana virus/metabolism
Collapse
Affiliation(s)
- Nereida Jiménez de Oya
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco De Giovanni
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Jessica Fioravanti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rudolf Übelhart
- Institute of Immunology, University Hospital Ulm, Ulm, Germany
| | - Pietro Di Lucia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Amleto Fiocchi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Iacovelli
- Molecular Hematology Unit, International Centre for Genetic Engineering & Biotechnology, Trieste, Italy
| | - Dimitar G Efremov
- Molecular Hematology Unit, International Centre for Genetic Engineering & Biotechnology, Trieste, Italy
| | | | - Hassan Jumaa
- Institute of Immunology, University Hospital Ulm, Ulm, Germany
- Department of Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Paolo Ghia
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca G Guidotti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
111
|
Galan-Navarro C, Rincon-Restrepo M, Zimmer G, Ollmann Saphire E, Hubbell JA, Hirosue S, Swartz MA, Kunz S. Oxidation-sensitive polymersomes as vaccine nanocarriers enhance humoral responses against Lassa virus envelope glycoprotein. Virology 2017; 512:161-171. [PMID: 28963882 DOI: 10.1016/j.virol.2017.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 12/01/2022]
Abstract
Lassa virus (LASV) causes severe hemorrhagic fever with high mortality, yet no vaccine currently exists. Antibodies targeting viral attachment proteins are crucial for protection against many viral infections. However, the envelope glycoprotein (GP)-1 of LASV elicits weak antibody responses due to extensive glycan shielding. Here, we explored a novel vaccine strategy to enhance humoral immunity against LASV GP1. Using structural information, we designed a recombinant GP1 immunogen, and then encapsulated it into oxidation-sensitive polymersomes (PS) as nanocarriers that promote intracellular MHCII loading. Mice immunized with adjuvanted PS (LASV GP1) showed superior humoral responses than free LASV GP1, including antibodies with higher binding affinity to virion GP1, increased levels of polyfunctional anti-viral CD4 T cells, and IgG-secreting B cells. PS (LASV GP1) elicited a more diverse epitope repertoire of anti-viral IgG. Together, these data demonstrate the potential of our nanocarrier vaccine platform for generating virus-specific antibodies against weakly immunogenic viral antigens.
Collapse
Affiliation(s)
- Clara Galan-Navarro
- Institute of Microbiology, Lausanne University Hospital. Lausanne, Switzerland; Laboratory of Lymphatic and Cancer Bioengineering, Institute of Bioengineering, École Polytechnique Féderal de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Marcela Rincon-Restrepo
- Laboratory of Lymphatic and Cancer Bioengineering, Institute of Bioengineering, École Polytechnique Féderal de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Gert Zimmer
- Division of Virology, Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland
| | - Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Jeffrey A Hubbell
- Laboratory of Lymphatic and Cancer Bioengineering, Institute of Bioengineering, École Polytechnique Féderal de Lausanne (EPFL), 1015 Lausanne, Switzerland; Institute for Molecular Engineering and Ben May Department of Cancer Research, University of Chicago, IL, United States
| | - Sachiko Hirosue
- Laboratory of Lymphatic and Cancer Bioengineering, Institute of Bioengineering, École Polytechnique Féderal de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Melody A Swartz
- Laboratory of Lymphatic and Cancer Bioengineering, Institute of Bioengineering, École Polytechnique Féderal de Lausanne (EPFL), 1015 Lausanne, Switzerland; Institute for Molecular Engineering and Ben May Department of Cancer Research, University of Chicago, IL, United States.
| | - Stefan Kunz
- Institute of Microbiology, Lausanne University Hospital. Lausanne, Switzerland.
| |
Collapse
|
112
|
Woopen C, Straub T, Schweier O, Aichele U, Düker K, Boehm T, Pircher H. Immunological tolerance to LCMV antigens differently affects control of acute and chronic virus infection in mice. Eur J Immunol 2017; 48:120-127. [PMID: 28921501 DOI: 10.1002/eji.201747156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/27/2017] [Accepted: 08/09/2017] [Indexed: 11/08/2022]
Abstract
Cytotoxic T lymphocytes (CTLs) play a key role in the control of lymphocytic choriomeningitis virus (LCMV) infection. In C57BL/6 mice (H-2b ), the CTL response is mainly directed against epitopes from the LCMV glycoprotein (GP) and the nucleoprotein (NP) which represent the two major viral proteins. The role of GP- versus NP-derived epitopes for viral clearance was examined using transgenic (tg) mice ubiquitously expressing LCMV GP and NP, respectively. These mice lack GP- or NP-specific CTLs and show decreased levels of GP- or NP-specific antibodies as a result of tolerance induction. During acute LCMV infection, CTLs specific for GP- and NP-derived epitopes are generated with similar frequencies. Nonetheless, we found that lack of GP- but not of NP-specific CTLs abolished control of acute LCMV infection. In contrast, after high-dose or chronic LCMV infection, virus elimination was delayed to a similar extent in GP- and NP-tg mice. Thus, immunological tolerance to LCMV antigens differently affects virus clearance in acute and chronic infection settings. In addition, our data reveal that immunodominance of H-2b -restricted LCMV-specific CTL epitopes and their antiviral activity do not strictly correlate.
Collapse
Affiliation(s)
- Christina Woopen
- Institute for Immunology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Tobias Straub
- Institute for Immunology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Oliver Schweier
- Institute for Immunology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Ulrike Aichele
- Institute for Immunology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Katharina Düker
- Institute for Immunology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Hanspeter Pircher
- Institute for Immunology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
113
|
Huang J, Kang BH, Ishida E, Zhou T, Griesman T, Sheng Z, Wu F, Doria-Rose NA, Zhang B, McKee K, O'Dell S, Chuang GY, Druz A, Georgiev IS, Schramm CA, Zheng A, Joyce MG, Asokan M, Ransier A, Darko S, Migueles SA, Bailer RT, Louder MK, Alam SM, Parks R, Kelsoe G, Von Holle T, Haynes BF, Douek DC, Hirsch V, Seaman MS, Shapiro L, Mascola JR, Kwong PD, Connors M. Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth. Immunity 2017; 45:1108-1121. [PMID: 27851912 DOI: 10.1016/j.immuni.2016.10.027] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 12/17/2022]
Abstract
Detailed studies of the broadly neutralizing antibodies (bNAbs) that underlie the best available examples of the humoral immune response to HIV are providing important information for the development of therapies and prophylaxis for HIV-1 infection. Here, we report a CD4-binding site (CD4bs) antibody, named N6, that potently neutralized 98% of HIV-1 isolates, including 16 of 20 that were resistant to other members of its class. N6 evolved a mode of recognition such that its binding was not impacted by the loss of individual contacts across the immunoglobulin heavy chain. In addition, structural analysis revealed that the orientation of N6 permitted it to avoid steric clashes with glycans, which is a common mechanism of resistance. Thus, an HIV-1-specific bNAb can achieve potent, near-pan neutralization of HIV-1, making it an attractive candidate for use in therapy and prophylaxis.
Collapse
Affiliation(s)
- Jinghe Huang
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Byong H Kang
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Elise Ishida
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Trevor Griesman
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Fan Wu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ivelin S Georgiev
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Chaim A Schramm
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Anqi Zheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Mangaiarkarasi Asokan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Amy Ransier
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Sam Darko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Stephen A Migueles
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Tarra Von Holle
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Vanessa Hirsch
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Mark Connors
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
114
|
Pontremoli C, Forni D, Cagliani R, Pozzoli U, Riva S, Bravo IG, Clerici M, Sironi M. Evolutionary analysis of Old World arenaviruses reveals a major adaptive contribution of the viral polymerase. Mol Ecol 2017; 26:5173-5188. [PMID: 28779541 DOI: 10.1111/mec.14282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022]
Abstract
The Old World (OW) arenavirus complex includes several species of rodent-borne viruses, some of which (i.e., Lassa virus, LASV and Lymphocytic choriomeningitis virus, LCMV) cause human diseases. Most LCMV and LASV infections are caused by rodent-to-human transmissions. Thus, viral evolution is largely determined by events that occur in the wildlife reservoirs. We used a set of human- and rodent-derived viral sequences to investigate the evolutionary history underlying OW arenavirus speciation, as well as the more recent selective events that accompanied LASV spread in West Africa. We show that the viral RNA polymerase (L protein) was a major positive selection target in OW arenaviruses and during LASV out-of-Nigeria migration. No evidence of selection was observed for the glycoprotein, whereas positive selection acted on the nucleoprotein (NP) during LCMV speciation. Positively selected sites in L and NP are surrounded by highly conserved residues, and the bulk of the viral genome evolves under purifying selection. Several positively selected sites are likely to modulate viral replication/transcription. In both L and NP, structural features (solvent exposed surface area) are important determinants of site-wise evolutionary rate variation. By incorporating several rodent-derived sequences, we also performed an analysis of OW arenavirus codon adaptation to the human host. Results do not support a previously hypothesized role of codon adaptation in disease severity for non-Nigerian strains. In conclusion, L and NP represent the major selection targets and possible determinants of disease presentation; these results suggest that field surveys and experimental studies should primarily focus on these proteins.
Collapse
Affiliation(s)
- Chiara Pontremoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Uberto Pozzoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Stefania Riva
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Ignacio G Bravo
- Laboratory MIVEGEC, UMR CNRS 5290, IRD 224, UM, Centre National de la Recherche Scientifique, Montpellier, France
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| |
Collapse
|
115
|
Shimon A, Shani O, Diskin R. Structural Basis for Receptor Selectivity by the Whitewater Arroyo Mammarenavirus. J Mol Biol 2017; 429:2825-2839. [PMID: 28736175 DOI: 10.1016/j.jmb.2017.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 10/19/2022]
Abstract
Whitewater Arroyo virus belongs to the "New World" group of mammarenaviruses that reside in rodent reservoirs and are prevalent in North and South Americas. Clades B and A/B of New World mammarenaviruses use transferrin receptor 1 (TfR1) for entry. While all of these viruses use rodent-derived TfR1 orthologs, some can also use the human-TfR1 and thereby infect humans. Although we have structural information for TfR1 recognition by pathogenic virus, we do not know what the structural differences are between the receptor-binding domains of pathogenic and non-pathogenic viruses that allow some but not all viruses to utilize the human receptor for entry. The poor understanding of the molecular determinants of mammarenavirus host range, and thus pathogenicity, is partly due to the low sequence similarity between the receptor-binding domains from these viruses and the limited available structural information that preclude the use of modeling approaches. Here we present the first crystal structure of a receptor-binding domain of a non-pathogenic clade A/B mammarenavirus. This structure reveals the magnitude of structural differences within the receptor-binding domains of TfR1-tropic viruses. Our structural and sequence analyses indicate that the same structural incompatibilities with the human receptor equally affect both pathogenic and non-pathogenic mammarenaviruses. Non-pathogenic viruses do not have specific structural elements that prevent them from using the human receptor. Instead, the ability to utilize the human receptor directly depends on the extent of weak interactions throughout the receptor-binding site that in some viruses are sufficiently strong to overcome the structural incompatibilities.
Collapse
Affiliation(s)
- Amir Shimon
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Shani
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Diskin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
116
|
Yeast surface display identifies a family of evasins from ticks with novel polyvalent CC chemokine-binding activities. Sci Rep 2017; 7:4267. [PMID: 28655871 PMCID: PMC5487423 DOI: 10.1038/s41598-017-04378-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/31/2017] [Indexed: 01/21/2023] Open
Abstract
Chemokines function via G-protein coupled receptors in a robust network to recruit immune cells to sites of inflammation. Due to the complexity of this network, targeting single chemokines or receptors has not been successful in inflammatory disease. Dog tick saliva contains polyvalent CC-chemokine binding peptides termed evasins 1 and 4, that efficiently disrupt the chemokine network in models of inflammatory disease. Here we develop yeast surface display as a tool for functionally identifying evasins, and use it to identify 10 novel polyvalent CC-chemokine binding evasin-like peptides from salivary transcriptomes of eight tick species in Rhipicephalus and Amblyomma genera. These evasins have unique binding profiles compared to evasins 1 and 4, targeting CCL2 and CCL13 in addition to other CC-chemokines. Evasin binding leads to neutralisation of chemokine function including that of complex chemokine mixtures, suggesting therapeutic efficacy in inflammatory disease. We propose that yeast surface display is a powerful approach to mine potential therapeutics from inter-species protein interactions that have arisen during evolution of parasitism in ticks.
Collapse
|
117
|
Convergent immunological solutions to Argentine hemorrhagic fever virus neutralization. Proc Natl Acad Sci U S A 2017. [PMID: 28630325 DOI: 10.1073/pnas.1702127114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transmission of hemorrhagic fever New World arenaviruses from their rodent reservoirs to human populations poses substantial public health and economic dangers. These zoonotic events are enabled by the specific interaction between the New World arenaviral attachment glycoprotein, GP1, and cell surface human transferrin receptor (hTfR1). Here, we present the structural basis for how a mouse-derived neutralizing antibody (nAb), OD01, disrupts this interaction by targeting the receptor-binding surface of the GP1 glycoprotein from Junín virus (JUNV), a hemorrhagic fever arenavirus endemic in central Argentina. Comparison of our structure with that of a previously reported nAb complex (JUNV GP1-GD01) reveals largely overlapping epitopes but highly distinct antibody-binding modes. Despite differences in GP1 recognition, we find that both antibodies present a key tyrosine residue, albeit on different chains, that inserts into a central pocket on JUNV GP1 and effectively mimics the contacts made by the host TfR1. These data provide a molecular-level description of how antibodies derived from different germline origins arrive at equivalent immunological solutions to virus neutralization.
Collapse
|
118
|
Hastie KM, Zandonatti MA, Kleinfelter LM, Heinrich ML, Rowland MM, Chandran K, Branco LM, Robinson JE, Garry RF, Saphire EO. Structural basis for antibody-mediated neutralization of Lassa virus. Science 2017; 356:923-928. [PMID: 28572385 PMCID: PMC6007842 DOI: 10.1126/science.aam7260] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/28/2017] [Indexed: 12/25/2022]
Abstract
The arenavirus Lassa causes severe hemorrhagic fever and a significant disease burden in West Africa every year. The glycoprotein, GPC, is the sole antigen expressed on the viral surface and the critical target for antibody-mediated neutralization. Here we present the crystal structure of the trimeric, prefusion ectodomain of Lassa GP bound to a neutralizing antibody from a human survivor at 3.2-angstrom resolution. The antibody extensively anchors two monomers together at the base of the trimer, and biochemical analysis suggests that it neutralizes by inhibiting conformational changes required for entry. This work illuminates pH-driven conformational changes in both receptor-binding and fusion subunits of Lassa virus, illustrates the unique assembly of the arenavirus glycoprotein spike, and provides a much-needed template for vaccine design against these threats to global health.
Collapse
Affiliation(s)
- Kathryn M Hastie
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michelle A Zandonatti
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lara M Kleinfelter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - James E Robinson
- Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Robert F Garry
- Zalgen Labs, Germantown, MD, USA
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
119
|
Cell Attachment Domains of the Porcine Epidemic Diarrhea Virus Spike Protein Are Key Targets of Neutralizing Antibodies. J Virol 2017; 91:JVI.00273-17. [PMID: 28381581 DOI: 10.1128/jvi.00273-17] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/24/2017] [Indexed: 01/12/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes enteric disease in pigs, resulting in significant economic losses to the swine industry worldwide. Current vaccination approaches against this emerging coronavirus are only partially effective, though natural infection protects pigs against reinfection and provides lactogenic immunity to suckling piglets. The viral spike (S) glycoprotein, responsible for receptor binding and cell entry, is the major target for neutralizing antibodies. However, knowledge of antibody epitopes, their nature and location in the spike structure, and the mechanisms by which the antibodies interfere with infection is scarce. Here we describe the generation and characterization of 10 neutralizing and nonneutralizing mouse monoclonal antibodies raised against the S1 receptor binding subunit of the S protein. By expression of different S1 protein fragments, six antibody epitope classes distributed over the five structural domains of the S1 subunit were identified. Characterization of antibodies for cross-reactivity and cross-neutralization revealed antigenic differences among PEDV strains. The epitopes of potent neutralizing antibodies segregated into two epitope classes and mapped within the N-terminal sialic acid binding domain and in the more C-terminal receptor binding domain. Antibody neutralization escape mutants displayed single amino acid substitutions that impaired antibody binding and neutralization and defined the locations of the epitopes. Our observations picture the antibody epitope landscape of the PEDV S1 subunit and reveal that its cell attachment domains are key targets of neutralizing antibodies.IMPORTANCE Porcine epidemic diarrhea virus (PEDV), an emerging porcine coronavirus, causes an economically important enteric disease in pigs. Effective PEDV vaccines for disease control are currently lacking. The spike (S) glycoprotein on the virion surface is the key player in virus cell entry and, therefore, the main target of neutralizing antibodies. To understand the antigenic landscape of the PEDV spike protein, we developed monoclonal antibodies against the spike protein's S1 receptor binding region and characterized their epitopes, neutralizing activity, and cross-reactivity toward multiple PEDV strains. Epitopes of antibodies segregated into six epitope classes dispersed over the multidomain S1 structure. Monoclonal antibodies revealed antigenic variability in B-cell epitopes between PEDV strains. The epitopes of neutralizing antibodies mapped to two distinct domains in S1 that are involved in binding to carbohydrate and proteinaceous cell surface molecules, respectively, indicating the importance of these cell attachment sites on the PEDV spike protein in eliciting a protective humoral immune response.
Collapse
|
120
|
Kallert SM, Darbre S, Bonilla WV, Kreutzfeldt M, Page N, Müller P, Kreuzaler M, Lu M, Favre S, Kreppel F, Löhning M, Luther SA, Zippelius A, Merkler D, Pinschewer DD. Replicating viral vector platform exploits alarmin signals for potent CD8 + T cell-mediated tumour immunotherapy. Nat Commun 2017; 8:15327. [PMID: 28548102 PMCID: PMC5458557 DOI: 10.1038/ncomms15327] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/22/2017] [Indexed: 12/27/2022] Open
Abstract
Viral infections lead to alarmin release and elicit potent cytotoxic effector T lymphocyte (CTLeff) responses. Conversely, the induction of protective tumour-specific CTLeff and their recruitment into the tumour remain challenging tasks. Here we show that lymphocytic choriomeningitis virus (LCMV) can be engineered to serve as a replication competent, stably-attenuated immunotherapy vector (artLCMV). artLCMV delivers tumour-associated antigens to dendritic cells for efficient CTL priming. Unlike replication-deficient vectors, artLCMV targets also lymphoid tissue stroma cells expressing the alarmin interleukin-33. By triggering interleukin-33 signals, artLCMV elicits CTLeff responses of higher magnitude and functionality than those induced by replication-deficient vectors. Superior anti-tumour efficacy of artLCMV immunotherapy depends on interleukin-33 signalling, and a massive CTLeff influx triggers an
inflammatory conversion of the tumour microenvironment. Our observations suggest that replicating viral delivery systems can release alarmins for improved anti-tumour efficacy. These mechanistic insights may outweigh safety concerns around replicating viral vectors in cancer immunotherapy. Viruses trigger potent cytotoxic T cell responses, whereas anti-tumour immunity has been difficult to establish. Here the authors engineer a replicating viral delivery system for tumour-associated antigens, which induces alarmin release, innate activation and protective anti-tumour immunity in mice.
Collapse
Affiliation(s)
- Sandra M Kallert
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Stephanie Darbre
- Departement de Pathologie et Immunologie, Centre Médical Universitaire, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Weldy V Bonilla
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Mario Kreutzfeldt
- Departement de Pathologie et Immunologie, Centre Médical Universitaire, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Nicolas Page
- Departement de Pathologie et Immunologie, Centre Médical Universitaire, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Philipp Müller
- Department of Biomedicine, University Hospital and University of Basel, Hebelstr. 20, 4031 Basel, Switzerland
| | - Matthias Kreuzaler
- Department of Biomedicine, University Hospital and University of Basel, Hebelstr. 20, 4031 Basel, Switzerland
| | - Min Lu
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Stéphanie Favre
- Department of Biochemistry, Center for Immunity and Infection Lausanne, University of Lausanne, Chemin des Boveresses 144, 1066 Epalinges, Switzerland
| | - Florian Kreppel
- Witten/Herdecke University (UW/H), Faculty of Health/School of Medicine, Stockumer Str. 10, 58453 Witten, Germany
| | - Max Löhning
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Sanjiv A Luther
- Department of Biochemistry, Center for Immunity and Infection Lausanne, University of Lausanne, Chemin des Boveresses 144, 1066 Epalinges, Switzerland
| | - Alfred Zippelius
- Department of Biomedicine, University Hospital and University of Basel, Hebelstr. 20, 4031 Basel, Switzerland.,Department of Medical Oncology, University Hospital Basel, Hebelstr. 20, 4031 Basel, Switzerland
| | - Doron Merkler
- Departement de Pathologie et Immunologie, Centre Médical Universitaire, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Daniel D Pinschewer
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| |
Collapse
|
121
|
Ly H. Differential Immune Responses to New World and Old World Mammalian Arenaviruses. Int J Mol Sci 2017; 18:E1040. [PMID: 28498311 PMCID: PMC5454952 DOI: 10.3390/ijms18051040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/09/2017] [Accepted: 05/09/2017] [Indexed: 12/17/2022] Open
Abstract
Some New World (NW) and Old World (OW) mammalian arenaviruses are emerging, zoonotic viruses that can cause lethal hemorrhagic fever (HF) infections in humans. While these are closely related RNA viruses, the infected hosts appear to mount different types of immune responses against them. Lassa virus (LASV) infection, for example, results in suppressed immune function in progressive disease stage, whereas patients infected with Junín virus (JUNV) develop overt pro-inflammatory cytokine production. These viruses have also evolved different molecular strategies to evade host immune recognition and activation. This paper summarizes current progress in understanding the differential immune responses to pathogenic arenaviruses and how the information can be exploited toward the development of vaccines against them.
Collapse
Affiliation(s)
- Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, 1988 Fitch Ave., Ste 295, Saint Paul, MN 55108, USA.
| |
Collapse
|
122
|
Penaloza MacMaster P, Shields JL, Alayo QA, Cabral C, Jimenez J, Mondesir J, Chandrashekar A, Cabral JM, Lim M, Iampietro MJ, Provine NM, Bricault CA, Seaman M, Orlinger K, Aspoeck A, Fuhrmann G, Lilja AE, Monath T, Mangeat B, Pinschewer DD, Barouch DH. Development of novel replication-defective lymphocytic choriomeningitis virus vectors expressing SIV antigens. Vaccine 2016; 35:1-9. [PMID: 27899229 DOI: 10.1016/j.vaccine.2016.11.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/06/2016] [Accepted: 11/18/2016] [Indexed: 01/23/2023]
Abstract
An important focus in vaccine research is the design of vaccine vectors with low seroprevalence and high immunogenicity. Replication-incompetent lymphocytic choriomeningitis virus (rLCMV) vectors do not elicit vector-neutralizing antibody responses, and homologous prime-boost regimens with rLCMV vectors induce boostable and protective T cell responses to model antigens in mice. However, cellular and humoral immune responses following homologous rLCMV vaccine regimens have not been rigorously evaluated in non-human primates (NHPs). To test whether rLCMV vectors constitute an effective vaccine platform in NHPs, we developed rLCMV vectors expressing SIVmac239 Env and Gag antigens and assessed their immunogenicity in mice and cynomolgus macaques. Immunization with rLCMV vaccine vectors expressing SIV Env and Gag was effective at generating SIV-specific T cell and antibody responses in both mice and NHPs. Epitope mapping using SIV Env in C57BL/6 mice demonstrated that rLCMV vectors induced sustained poly-functional responses to both dominant and subdominant epitopes. Our results suggest the potential of rLCMV vectors as vaccine candidates. Future SIV challenge experiments in rhesus macaques will be needed to assess immune protection by these vaccine vectors.
Collapse
Affiliation(s)
- Pablo Penaloza MacMaster
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jennifer L Shields
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Quazim A Alayo
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Crystal Cabral
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jessica Jimenez
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jade Mondesir
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Abishek Chandrashekar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Joseph M Cabral
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Matthew Lim
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - M Justin Iampietro
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Nicholas M Provine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Christine A Bricault
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Michael Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Klaus Orlinger
- Hookipa Biotech AG Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| | - Andreas Aspoeck
- Hookipa Biotech AG Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| | - Gerhard Fuhrmann
- Hookipa Biotech AG Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| | - Anders E Lilja
- Hookipa Biotech AG Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| | - Thomas Monath
- Hookipa Biotech AG Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| | - Bastien Mangeat
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland
| | - Daniel D Pinschewer
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Ragon Institute of MGH, MIT, and Harvard, Boston, MA 02114, USA.
| |
Collapse
|
123
|
Fallet B, Narr K, Ertuna YI, Remy M, Sommerstein R, Cornille K, Kreutzfeldt M, Page N, Zimmer G, Geier F, Straub T, Pircher H, Larimore K, Greenberg PD, Merkler D, Pinschewer DD. Interferon-driven deletion of antiviral B cells at the onset of chronic infection. Sci Immunol 2016; 1:eaah6817. [PMID: 27872905 PMCID: PMC5115616 DOI: 10.1126/sciimmunol.aah6817] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Inadequate antibody responses and perturbed B cell compartments represent hallmarks of persistent microbial infections, but the mechanisms whereby persisting pathogens suppress humoral immunity remain poorly defined. Using adoptive transfer experiments in the context of a chronic lymphocytic choriomeningitis virus (LCMV) infection of mice, we have documented rapid depletion of virus-specific B cells that coincided with the early type I interferon response to infection. We found that the loss of activated B cells was driven by type I interferon (IFN-I) signaling to several cell types including dendritic cells, T cells and myeloid cells. Intriguingly, this process was independent of B cell-intrinsic IFN-I sensing and resulted from biased differentiation of naïve B cells into short-lived antibody-secreting cells. The ability to generate robust B cell responses was restored upon IFN-I receptor blockade or, partially, when experimentally depleting myeloid cells or the IFN-I-induced cytokines interleukin 10 and tumor necrosis factor alpha. We have termed this IFN-I-driven depletion of B cells "B cell decimation". Strategies to counter "B cell decimation" should thus help us better leverage humoral immunity in the combat against persistent microbial diseases.
Collapse
Affiliation(s)
- Benedict Fallet
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4003 Basel, Switzerland
| | - Kerstin Narr
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4003 Basel, Switzerland
| | - Yusuf I. Ertuna
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4003 Basel, Switzerland
| | - Melissa Remy
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4003 Basel, Switzerland
| | - Rami Sommerstein
- Department of Pathology and Immunology, Geneva Faculty of Medicine, 1211 Geneva 4, Switzerland
| | - Karen Cornille
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4003 Basel, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Geneva Faculty of Medicine, 1211 Geneva 4, Switzerland
- Division of Clinical Pathology, University Hospital Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, Geneva Faculty of Medicine, 1211 Geneva 4, Switzerland
| | - Gert Zimmer
- Institute of Virology and Immunology IVI, 3147 Mittelhäusern, Switzerland
| | - Florian Geier
- Department of Biomedicine, Bioinformatics Core Facility, University Hospital Basel, 4031 Basel, Switzerland
| | - Tobias Straub
- Institute for Immunology, Department for Medical Microbiology and Hygiene, University Medical Center Freiburg, 79104 Freiburg, Germany
| | - Hanspeter Pircher
- Institute for Immunology, Department for Medical Microbiology and Hygiene, University Medical Center Freiburg, 79104 Freiburg, Germany
| | - Kevin Larimore
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98109, USA
- Department of Immunology, University of Washington, Seattle, Washington, WA 98109, USA
| | - Philip D. Greenberg
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98109, USA
- Department of Immunology, University of Washington, Seattle, Washington, WA 98109, USA
| | - Doron Merkler
- Department of Pathology and Immunology, Geneva Faculty of Medicine, 1211 Geneva 4, Switzerland
- Division of Clinical Pathology, University Hospital Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Daniel D. Pinschewer
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4003 Basel, Switzerland
| |
Collapse
|
124
|
Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat Struct Mol Biol 2016; 23:899-905. [PMID: 27617430 PMCID: PMC5515730 DOI: 10.1038/nsmb.3293] [Citation(s) in RCA: 318] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022]
Abstract
Cryo-EM and mass spectrometry analyses of the spike glycoprotein trimer from coronavirus HcoV-NL63 reveal an extensive glycan shield that covers the protein surface, including an epitope targeted by neutralizing antibodies against several coronaviruses. The threat of a major coronavirus pandemic urges the development of strategies to combat these pathogens. Human coronavirus NL63 (HCoV-NL63) is an α-coronavirus that can cause severe lower-respiratory-tract infections requiring hospitalization. We report here the 3.4-Å-resolution cryo-EM reconstruction of the HCoV-NL63 coronavirus spike glycoprotein trimer, which mediates entry into host cells and is the main target of neutralizing antibodies during infection. The map resolves the extensive glycan shield obstructing the protein surface and, in combination with mass spectrometry, provides a structural framework to understand the accessibility to antibodies. The structure reveals the complete architecture of the fusion machinery including the triggering loop and the C-terminal domains, which contribute to anchoring the trimer to the viral membrane. Our data further suggest that HCoV-NL63 and other coronaviruses use molecular trickery, based on epitope masking with glycans and activating conformational changes, to evade the immune system of infected hosts.
Collapse
|
125
|
Wang W, Zhou Z, Zhang L, Wang S, Xiao G. Structure-function relationship of the mammarenavirus envelope glycoprotein. Virol Sin 2016; 31:380-394. [PMID: 27562602 DOI: 10.1007/s12250-016-3815-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/27/2016] [Indexed: 12/29/2022] Open
Abstract
Mammarenaviruses, including lethal pathogens such as Lassa virus and Junín virus, can cause severe hemorrhagic fever in humans. Entry is a key step for virus infection, which starts with binding of the envelope glycoprotein (GP) to receptors on target cells and subsequent fusion of the virus with target cell membranes. The GP precursor is synthesized as a polypeptide, and maturation occurs by two cleavage events, yielding a tripartite GP complex (GPC) formed by a stable signal peptide (SSP), GP1 and GP2. The unique retained SSP interacts with GP2 and plays essential roles in virion maturation and infectivity. GP1 is responsible for binding to the cell receptor, and GP2 is a class I fusion protein. The native structure of the tripartite GPC is unknown. GPC is critical for the receptor binding, membrane fusion and neutralization antibody recognition. Elucidating the molecular mechanisms underlining the structure-function relationship of the three subunits is the key for understanding their function and can facilitate novel avenues for combating virus infections. This review summarizes the basic aspects and recent research of the structure-function relationship of the three subunits. We discuss the structural basis of the receptor-binding domain in GP1, the interaction between SSP and GP2 and its role in virion maturation and membrane fusion, as well as the mechanism by which glycosylation stabilizes the GPC structure and facilitates immune evasion. Understanding the molecular mechanisms involved in these aspects will contribute to the development of novel vaccines and treatment strategies against mammarenaviruses infection.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Zheng Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shaobo Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
126
|
Košutić-Gulija T, Slovic A, Ljubin-Sternak S, Mlinarić-Galinović G, Forčić D. A study of genetic variability of human parainfluenza virus type 1 in Croatia, 2011-2014. J Med Microbiol 2016; 65:793-803. [PMID: 27302417 DOI: 10.1099/jmm.0.000297] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular epidemiology of human parainfluenza viruses type 1 (HPIV1) was investigated. Samples were collected from patients hospitalized in Croatia during the three consecutive epidemic seasons (2011-2014). Results indicated co-circulation of two major genetic clusters of HPIV1. Samples from the current study refer to clades II and III in a phylogenetic tree of haemagglutinin-neuraminidase (HN) gene. Additional phylogenetic trees of fusion (F) and phosphoprotein (P) genes confirmed the topology. Analysis of nucleotide diversity of entire P, F and HN genes demonstrated similar values: 0.0255, 0.0236 and 0.0237, respectively. However, amino acid diversity showed F protein to be the most conserved, while P protein was the most tolerant to mutations. Potential N- and O-glycosylation sites suggested that HPIV1 HN protein is abundantly glycosylated, and a specific N-glycosylation pattern could distinguish between clades II and III. Analysis of potential O-glycosylation sites in F protein indicated that samples from this study have two potential O-glycosylation sites, while publicly available sequences have five potential sites. This study provides data on the molecular characterization and epidemic pattern of HPIV1 in Croatia.
Collapse
Affiliation(s)
- Tanja Košutić-Gulija
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Anamarija Slovic
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Sunčanica Ljubin-Sternak
- Andrija Stampar Teaching Institute of Public Health, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Gordana Mlinarić-Galinović
- Department of Virology, Croatian National Institute of Public Health, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dubravko Forčić
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
127
|
Abstract
INTRODUCTION Lassa virus (LASV), the most prominent human pathogen of the Arenaviridae, is transmitted to humans from infected rodents and can cause Lassa Fever (LF). The sizeable disease burden in West Africa, numerous imported LF cases worldwide, and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. There are no licensed LASV vaccines and the antiviral treatment is limited to an off-label use of ribavirin that is only partially effective. AREAS COVERED LASV vaccine development is hampered by high cost of biocontainment requirement, the absence of appropriate small animal models, genetic diversity of LASV species, and by high HIV-1 prevalence in LASV endemic areas. Over the past 15 years several vaccine platforms have been developed. Natural history of LASV and pathogenesis of the disease provide strong justification for replication-competent (RC) vaccine as one of the most feasible approaches to control LF. Development of LASV vaccine candidates based on reassortant, recombinant, and alphavirus replicon technologies is covered in this review. Expert commentary: Two lead RC vaccine candidates, reassortant ML29 and recombinant VSV/LASV, have been successfully tested in non-human primates and have been recommended by international vaccine experts for rapid clinical development. Both platforms have powerful molecular tools to further secure safety, improve immunogenicity, and cross-protection. These platforms are well positioned to design multivalent vaccines to protect against all LASV strains citculatrd in West Africa. The regulatory pathway of Candid #1, the first live-attenuated arenaviral vaccine against Argentine hemorrhagic, will be a reasonable guideline for LASV vaccine efficacy trials.
Collapse
Affiliation(s)
- Igor S Lukashevich
- a Department of Pharmacology and Toxicology, School of Medicine, and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases , University of Louisville , Louisville , KY , USA
| | | |
Collapse
|
128
|
Robinson JE, Hastie KM, Cross RW, Yenni RE, Elliott DH, Rouelle JA, Kannadka CB, Smira AA, Garry CE, Bradley BT, Yu H, Shaffer JG, Boisen ML, Hartnett JN, Zandonatti MA, Rowland MM, Heinrich ML, Martínez-Sobrido L, Cheng B, de la Torre JC, Andersen KG, Goba A, Momoh M, Fullah M, Gbakie M, Kanneh L, Koroma VJ, Fonnie R, Jalloh SC, Kargbo B, Vandi MA, Gbetuwa M, Ikponmwosa O, Asogun DA, Okokhere PO, Follarin OA, Schieffelin JS, Pitts KR, Geisbert JB, Kulakoski PC, Wilson RB, Happi CT, Sabeti PC, Gevao SM, Khan SH, Grant DS, Geisbert TW, Saphire EO, Branco LM, Garry RF. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits. Nat Commun 2016; 7:11544. [PMID: 27161536 PMCID: PMC4866400 DOI: 10.1038/ncomms11544] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/07/2016] [Indexed: 01/19/2023] Open
Abstract
Lassa fever is a severe multisystem disease that often has haemorrhagic manifestations. The epitopes of the Lassa virus (LASV) surface glycoproteins recognized by naturally infected human hosts have not been identified or characterized. Here we have cloned 113 human monoclonal antibodies (mAbs) specific for LASV glycoproteins from memory B cells of Lassa fever survivors from West Africa. One-half bind the GP2 fusion subunit, one-fourth recognize the GP1 receptor-binding subunit and the remaining fourth are specific for the assembled glycoprotein complex, requiring both GP1 and GP2 subunits for recognition. Notably, of the 16 mAbs that neutralize LASV, 13 require the assembled glycoprotein complex for binding, while the remaining 3 require GP1 only. Compared with non-neutralizing mAbs, neutralizing mAbs have higher binding affinities and greater divergence from germline progenitors. Some mAbs potently neutralize all four LASV lineages. These insights from LASV human mAb characterization will guide strategies for immunotherapeutic development and vaccine design.
Collapse
Affiliation(s)
- James E Robinson
- Section of Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA
| | - Kathryn M Hastie
- Department of Immunology and Microbial Science, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, Texas 77555, USA
| | - Rachael E Yenni
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA
| | - Deborah H Elliott
- Section of Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA
| | - Julie A Rouelle
- Section of Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA
| | - Chandrika B Kannadka
- Section of Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA
| | - Ashley A Smira
- Section of Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA
| | - Courtney E Garry
- Section of Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA.,Autoimmune Technologies, LLC, 1010 Common St #1705, New Orleans, Louisiana 70112, USA
| | - Benjamin T Bradley
- Section of Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA
| | - Haini Yu
- Section of Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA
| | - Jeffrey G Shaffer
- Department of Biostatistics and Bioinformatics, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana 70112, USA
| | - Matt L Boisen
- Corgenix, Inc., 11575 Main Street #400, Broomfield, Colorado 80020, USA
| | - Jessica N Hartnett
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA
| | - Michelle A Zandonatti
- Department of Immunology and Microbial Science, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Megan M Rowland
- Zalgen Labs, LLC, 20271 Goldenrod Lane, Suite 2083, Germantown, Maryland 20876, USA
| | - Megan L Heinrich
- Zalgen Labs, LLC, 20271 Goldenrod Lane, Suite 2083, Germantown, Maryland 20876, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642, USA
| | - Benson Cheng
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642, USA
| | - Juan C de la Torre
- Department of Immunology and Microbial Science, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Kristian G Andersen
- Department of Immunology and Microbial Science, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Augustine Goba
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, 1 Combema Road, Kenema, Sierra Leone
| | - Mambu Momoh
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, 1 Combema Road, Kenema, Sierra Leone.,Department of Laboratory Sciences Polytechnic College, 2 Combema Road, Kenema, Sierra Leone
| | - Mohamed Fullah
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, 1 Combema Road, Kenema, Sierra Leone.,Department of Laboratory Sciences Polytechnic College, 2 Combema Road, Kenema, Sierra Leone
| | - Michael Gbakie
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, 1 Combema Road, Kenema, Sierra Leone
| | - Lansana Kanneh
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, 1 Combema Road, Kenema, Sierra Leone
| | - Veronica J Koroma
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, 1 Combema Road, Kenema, Sierra Leone
| | - Richard Fonnie
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, 1 Combema Road, Kenema, Sierra Leone
| | - Simbirie C Jalloh
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, 1 Combema Road, Kenema, Sierra Leone
| | - Brima Kargbo
- Ministry of Health and Sanitation, 4th Floor Youyi Building, Freetown, Sierra Leone
| | - Mohamed A Vandi
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, 1 Combema Road, Kenema, Sierra Leone.,Ministry of Health and Sanitation, 4th Floor Youyi Building, Freetown, Sierra Leone
| | - Momoh Gbetuwa
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, 1 Combema Road, Kenema, Sierra Leone.,Ministry of Health and Sanitation, 4th Floor Youyi Building, Freetown, Sierra Leone
| | - Odia Ikponmwosa
- Department of Medicine, Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Km. 87, Benin/Auchi Road, Irrua, Nigeria
| | - Danny A Asogun
- Department of Medicine, Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Km. 87, Benin/Auchi Road, Irrua, Nigeria
| | - Peter O Okokhere
- Department of Medicine, Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Km. 87, Benin/Auchi Road, Irrua, Nigeria
| | - Onikepe A Follarin
- Department of Medicine, Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Km. 87, Benin/Auchi Road, Irrua, Nigeria.,Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Off Gbongan-Oshogbo Road, Ede, Nigeria.,African Center of Excellence for Genomics of Infectious Disease (ACEGID), Redeemer's University, Off Gbongan-Oshogbo Road, Ede, Nigeria
| | - John S Schieffelin
- Section of Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA.,Section of Infectious Disease, Department of Internal Medicine, Tulane University School of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA
| | - Kelly R Pitts
- Corgenix, Inc., 11575 Main Street #400, Broomfield, Colorado 80020, USA
| | - Joan B Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, Texas 77555, USA
| | - Peter C Kulakoski
- Autoimmune Technologies, LLC, 1010 Common St #1705, New Orleans, Louisiana 70112, USA
| | - Russell B Wilson
- Autoimmune Technologies, LLC, 1010 Common St #1705, New Orleans, Louisiana 70112, USA
| | - Christian T Happi
- Department of Medicine, Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Km. 87, Benin/Auchi Road, Irrua, Nigeria.,Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Off Gbongan-Oshogbo Road, Ede, Nigeria.,African Center of Excellence for Genomics of Infectious Disease (ACEGID), Redeemer's University, Off Gbongan-Oshogbo Road, Ede, Nigeria
| | - Pardis C Sabeti
- Department of Organismic and Evolutionary Biology, Center for Systems Biology, Harvard University, 1350 Massachusetts Avenue, Cambridge, Massachusetts 02138, USA.,Center for Systems Biology, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, USA.,Department of Immunology and Infectious Disease, Harvard School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - Sahr M Gevao
- Department of Medicine, University of Sierra Leone, Freetown, Sierra Leone
| | - S Humarr Khan
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, 1 Combema Road, Kenema, Sierra Leone.,Ministry of Health and Sanitation, 4th Floor Youyi Building, Freetown, Sierra Leone
| | - Donald S Grant
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, 1 Combema Road, Kenema, Sierra Leone.,Ministry of Health and Sanitation, 4th Floor Youyi Building, Freetown, Sierra Leone
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, Texas 77555, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Luis M Branco
- Zalgen Labs, LLC, 20271 Goldenrod Lane, Suite 2083, Germantown, Maryland 20876, USA
| | - Robert F Garry
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA.,Zalgen Labs, LLC, 20271 Goldenrod Lane, Suite 2083, Germantown, Maryland 20876, USA
| |
Collapse
|
129
|
Stewart-Jones GBE, Soto C, Lemmin T, Chuang GY, Druz A, Kong R, Thomas PV, Wagh K, Zhou T, Behrens AJ, Bylund T, Choi CW, Davison JR, Georgiev IS, Joyce MG, Kwon YD, Pancera M, Taft J, Yang Y, Zhang B, Shivatare SS, Shivatare VS, Lee CCD, Wu CY, Bewley CA, Burton DR, Koff WC, Connors M, Crispin M, Baxa U, Korber BT, Wong CH, Mascola JR, Kwong PD. Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G. Cell 2016; 165:813-26. [PMID: 27114034 PMCID: PMC5543418 DOI: 10.1016/j.cell.2016.04.010] [Citation(s) in RCA: 342] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/14/2016] [Accepted: 04/01/2016] [Indexed: 11/20/2022]
Abstract
The HIV-1-envelope (Env) trimer is covered by a glycan shield of ∼90 N-linked oligosaccharides, which comprises roughly half its mass and is a key component of HIV evasion from humoral immunity. To understand how antibodies can overcome the barriers imposed by the glycan shield, we crystallized fully glycosylated Env trimers from clades A, B, and G, visualizing the shield at 3.4-3.7 Å resolution. These structures reveal the HIV-1-glycan shield to comprise a network of interlocking oligosaccharides, substantially ordered by glycan crowding, that encase the protein component of Env and enable HIV-1 to avoid most antibody-mediated neutralization. The revealed features delineate a taxonomy of N-linked glycan-glycan interactions. Crowded and dispersed glycans are differently ordered, conserved, processed, and recognized by antibody. The structures, along with glycan-array binding and molecular dynamics, reveal a diversity in oligosaccharide affinity and a requirement for accommodating glycans among known broadly neutralizing antibodies that target the glycan-shielded trimer.
Collapse
Affiliation(s)
- Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cinque Soto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas Lemmin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul V Thomas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chang W Choi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jack R Davison
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Justin Taft
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sachin S Shivatare
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Vidya S Shivatare
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chang-Chun D Lee
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dennis R Burton
- Department of Immunology and Microbial Science, International AIDS Vaccine Initiative Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA 02142, USA
| | - Wayne C Koff
- International AIDS Vaccine Initiative, New York, NY 10038, USA
| | - Mark Connors
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Bette T Korber
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan; Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
130
|
Native functionality and therapeutic targeting of arenaviral glycoproteins. Curr Opin Virol 2016; 18:70-5. [PMID: 27104809 DOI: 10.1016/j.coviro.2016.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/08/2016] [Accepted: 04/01/2016] [Indexed: 12/31/2022]
Abstract
Surface glycoproteins direct cellular targeting, attachment, and membrane fusion of arenaviruses and are the primary target for neutralizing antibodies. Despite significant conservation of the glycoprotein architecture across the arenavirus family, there is considerable variation in the molecular recognition mechanisms used during host cell entry. We review recent progress in dissecting these infection events and describe how arenaviral glycoproteins can be targeted by small-molecule antivirals, the natural immune response, and immunoglobulin-based therapeutics. Arenaviral glycoprotein-mediated assembly and infection pathways present numerous opportunities and challenges for therapeutic intervention.
Collapse
|
131
|
Glycoprotein-Specific Antibodies Produced by DNA Vaccination Protect Guinea Pigs from Lethal Argentine and Venezuelan Hemorrhagic Fever. J Virol 2016; 90:3515-29. [PMID: 26792737 DOI: 10.1128/jvi.02969-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Several members of the Arenaviridae can cause acute febrile diseases in humans, often resulting in lethality. The use of convalescent-phase human plasma is an effective treatment in humans infected with arenaviruses, particularly species found in South America. Despite this, little work has focused on developing potent and defined immunotherapeutics against arenaviruses. In the present study, we produced arenavirus neutralizing antibodies by DNA vaccination of rabbits with plasmids encoding the full-length glycoprotein precursors of Junín virus (JUNV), Machupo virus (MACV), and Guanarito virus (GTOV). Geometric mean neutralizing antibody titers, as measured by the 50% plaque reduction neutralization test (PRNT(50)), exceeded 5,000 against homologous viruses. Antisera against each targeted virus exhibited limited cross-species binding and, to a lesser extent, cross-neutralization. Anti-JUNV glycoprotein rabbit antiserum protected Hartley guinea pigs from lethal intraperitoneal infection with JUNV strain Romero when the antiserum was administered 2 days after challenge and provided some protection (∼30%) when administered 4 days after challenge. Treatment starting on day 6 did not protect animals. We further formulated an IgG antibody cocktail by combining anti-JUNV, -MACV, and -GTOV antibodies produced in DNA-vaccinated rabbits. This cocktail protected 100% of guinea pigs against JUNV and GTOV lethal disease. We then expanded on this cocktail approach by simultaneously vaccinating rabbits with a combination of plasmids encoding glycoproteins from JUNV, MACV, GTOV, and Sabia virus (SABV). Sera collected from rabbits vaccinated with the combination vaccine neutralized all four targets. These findings support the concept of using a DNA vaccine approach to generate a potent pan-arenavirus immunotherapeutic. IMPORTANCE Arenaviruses are an important family of emerging viruses. In infected humans, convalescent-phase plasma containing neutralizing antibodies can mitigate the severity of disease caused by arenaviruses, particularly species found in South America. Because of variations in potency of the human-derived product, limited availability, and safety concerns, this treatment option has essentially been abandoned. Accordingly, despite this approach being an effective postinfection treatment option, research on novel approaches to produce potent polyclonal antibody-based therapies have been deficient. Here we show that DNA-based vaccine technology can be used to make potently neutralizing antibodies in rabbits that exclusively target the glycoproteins of several human-pathogenic arenaviruses found in South America, including JUNV, MACV, GTOV, and SABV. These antibodies protected guinea pigs from lethal disease when given post-virus challenge. We also generated a purified antibody cocktail with antibodies targeting three arenaviruses and demonstrated protective efficacy against all three targets. Our findings demonstrate that use of the DNA vaccine technology could be used to produce candidate antiarenavirus neutralizing antibody-based products.
Collapse
|