101
|
Thomas L, Pasquini LA. Galectin-3-Mediated Glial Crosstalk Drives Oligodendrocyte Differentiation and (Re)myelination. Front Cell Neurosci 2018; 12:297. [PMID: 30258354 PMCID: PMC6143789 DOI: 10.3389/fncel.2018.00297] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022] Open
Abstract
Galectin-3 (Gal-3) is the only chimeric protein in the galectin family. Gal-3 structure comprises unusual tandem repeats of proline and glycine-rich short stretches bound to a carbohydrate-recognition domain (CRD). The present review summarizes Gal-3 functions in the extracellular and intracellular space, its regulation and its internalization and secretion, with a focus on the current knowledge of Gal-3 role in central nervous system (CNS) health and disease, particularly oligodendrocyte (OLG) differentiation, myelination and remyelination in experimental models of multiple sclerosis (MS). During myelination, microglia-expressed Gal-3 promotes OLG differentiation by binding glycoconjugates present only on the cell surface of OLG precursor cells (OPC). During remyelination, microglia-expressed Gal-3 favors an M2 microglial phenotype, hence fostering myelin debris phagocytosis through TREM-2b phagocytic receptor and OLG differentiation. Gal-3 is necessary for myelin integrity and function, as evidenced by myelin ultrastructural and behavioral studies from LGALS3-/- mice. Mechanistically, Gal-3 enhances actin assembly and reduces Erk 1/2 activation, leading to early OLG branching. Gal-3 later induces Akt activation and increases MBP expression, promoting gelsolin release and actin disassembly and thus regulating OLG final differentiation. Altogether, findings indicate that Gal-3 mediates the glial crosstalk driving OLG differentiation and (re)myelination and may be regarded as a target in the design of future therapies for a variety of demyelinating diseases.
Collapse
Affiliation(s)
- Laura Thomas
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Chemistry and Biological Physicochemistry (IQUIFIB), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Laura Andrea Pasquini
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Chemistry and Biological Physicochemistry (IQUIFIB), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
102
|
Blades F, Aprico A, Akkermann R, Ellis S, Binder MD, Kilpatrick TJ. The TAM receptor TYRO3 is a critical regulator of myelin thickness in the central nervous system. Glia 2018; 66:2209-2220. [PMID: 30208252 DOI: 10.1002/glia.23481] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 02/03/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune, demyelinating disease of the central nervous system (CNS). Major deficits arise in MS patients due to an inability to repair damaged myelin sheaths following CNS insult, resulting in prolonged axonal exposure and neurodegeneration. The TAM receptors (Tyro3, Axl, and Mertk) have been implicated in MS susceptibility, demyelination and remyelination. Previously, we have shown that Tyro3 regulates developmental myelination and myelin thickness within the optic nerve and rostral region of the corpus callosum (CC) of adult mice. In this study we have verified and extended our previous findings via a comprehensive analysis of axonal ensheathment and myelin thickness in the CC of unchallenged mice, following demyelination and during myelin repair. We show that the loss of the Tyro3 receptor correlates with significantly thinner myelin sheaths in both unchallenged mice and during remyelination, particularly in larger caliber axons. The hypomyelinated phenotype observed in the absence of Tyro3 occurs independently of any influence upon oligodendrocyte precursor cell (OPC) maturation, or density of oligodendrocytes (OLs) or microglia. Rather, the primary effect of Tyro3 is upon the radial expansion of myelin. The loss of Tyro3 leads to a reduction in the number of myelin lamellae on axons, and is therefore most likely a key component of the regulatory mechanism by which oligodendrocytes match myelin production to axonal diameter.
Collapse
Affiliation(s)
- Farrah Blades
- Multiple Sclerosis division, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
| | - Andrea Aprico
- Multiple Sclerosis division, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
| | - Rainer Akkermann
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sarah Ellis
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Michele D Binder
- Multiple Sclerosis division, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Trevor J Kilpatrick
- Multiple Sclerosis division, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
103
|
Jiang R, Prell C, Lönnerdal B. Milk osteopontin promotes brain development by up-regulating osteopontin in the brain in early life. FASEB J 2018; 33:1681-1694. [PMID: 30199283 DOI: 10.1096/fj.201701290rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Osteopontin (OPN) is a pleiotropic protein and is abundantly present in milk. Its functions include immune modulation and cellular proliferation and differentiation. OPN is highly expressed in the brain. We investigated the effects of milk-derived OPN on brain development of mouse pups. Wild-type (WT) dams producing OPN+ milk and OPN knockout (KO) dams producing OPN- milk nursed WT pups (OPN+/+), yielding 2 pup treatment groups, OPN+ OPN+/+ and OPN- OPN+/+, for comparison. Preliminary studies supported use of this model by showing high concentrations of OPN in milk of WT dams and no OPN in milk of OPN KO dams, and production of similar amounts of milk by WT and KO dams. The ability of ingested milk OPN to enter the brain was revealed by appearance of orally gavaged [125I]-labeled and antibody-probed milk OPN in brains of pups. Brain OPN mRNA levels were similar in both nursed groups, but the brain OPN protein level was significantly lower in the OPN- OPN+/+ group at postnatal days 6 and 8. Behavior tests showed impaired memory and learning ability in OPN- OPN+/+ pups. In addition, our study revealed increased expression of myelination-related proteins and elevated proliferation and differentiation of NG-2 glia into oligodendrocytes in the brain of OPN+ OPN+/+ pups, accompanied by increased activation of ERK-1/2 and PI3K/Akt signaling. We concluded that milk OPN can play an important role in brain development and behavior in infancy by promoting myelination.-Jiang, R., Prell, C., Lönnerdal, B. Milk osteopontin promotes brain development by up-regulating osteopontin in the brain in early life.
Collapse
Affiliation(s)
- Rulan Jiang
- Department of Nutrition, University of California Davis, Davis, California, USA
| | - Christine Prell
- Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | - Bo Lönnerdal
- Department of Nutrition, University of California Davis, Davis, California, USA
| |
Collapse
|
104
|
Jiang M, Rao R, Wang J, Wang J, Xu L, Wu LM, Chan JR, Wang H, Lu QR. The TSC1-mTOR-PLK axis regulates the homeostatic switch from Schwann cell proliferation to myelination in a stage-specific manner. Glia 2018; 66:1947-1959. [PMID: 29722913 PMCID: PMC6185760 DOI: 10.1002/glia.23449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/17/2022]
Abstract
Proper peripheral myelination depends upon the balance between Schwann cell proliferation and differentiation programs. The serine/threonine kinase mTOR integrates various environmental cues to serve as a central regulator of cell growth, metabolism, and function. We report here that tuberous sclerosis complex 1 (TSC1), a negative regulator of mTOR activity, establishes a stage-dependent program for Schwann cell lineage progression and myelination by controlling cell proliferation and myelin homeostasis. Tsc1 ablation in Schwann cell progenitors in mice resulted in activation of mTOR signaling, and caused over-proliferation of Schwann cells and blocked their differentiation, leading to hypomyelination. Transcriptome profiling analysis revealed that mTOR activation in Tsc1 mutants resulted in upregulation of a polo-like kinase (PLK)-dependent pathway and cell cycle regulators. Attenuation of mTOR or pharmacological inhibition of polo-like kinases partially rescued hypomyelination caused by Tsc1 loss in the developing peripheral nerves. In contrast, deletion of Tsc1 in mature Schwann cells led to redundant and overgrown myelin sheaths in adult mice. Together, our findings indicate stage-specific functions for the TSC1-mTOR-PLK signaling axis in controlling the transition from proliferation to differentiation and myelin homeostasis during Schwann cell development.
Collapse
Affiliation(s)
- Minqing Jiang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
- The Institute of Cognitive Neuroscience, East China Normal University, Shanghai, China
| | - Rohit Rao
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jincheng Wang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jiajia Wang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lingli Xu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lai Man Wu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jonah R. Chan
- Department of Neurology and Programs in Biomedical and Neurosciences, University of California, San Francisco, CA 94158
| | - Huimin Wang
- The Institute of Cognitive Neuroscience, East China Normal University, Shanghai, China
| | - Q. Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
105
|
Nicaise AM, Johnson KM, Willis CM, Guzzo RM, Crocker SJ. TIMP-1 Promotes Oligodendrocyte Differentiation Through Receptor-Mediated Signaling. Mol Neurobiol 2018; 56:3380-3392. [PMID: 30121936 DOI: 10.1007/s12035-018-1310-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022]
Abstract
The extracellular protein tissue inhibitor of metalloproteinase (TIMP)-1 is both a matrix metalloproteinase (MMP) inhibitor and a trophic factor. Mice lacking TIMP-1 exhibit delayed central nervous system myelination during postnatal development and impaired remyelination following immune-mediated injury in adulthood. We have previously determined that the trophic action of TIMP-1 on oligodendrocyte progenitor cells (OPCs) to mature into oligodendrocytes is independent of its MMP inhibitory function. However, the mechanism by which TIMP-1 promotes OPC differentiation is not known. To address this gap in our understanding, herein, we report that TIMP-1 signals via a CD63/β1-integrin receptor complex to activate Akt (protein kinase B) to promote β-catenin signaling in OPCs. The regulation of β-catenin by TIMP-1 to promote OPC differentiation was counteracted, but not abrogated, by canonical signaling evoked by Wnt7a. These data provide a previously uncharacterized trophic action of TIMP-1 to regulate oligodendrocyte maturation via a CD63/β1-integrin/Akt pathway mechanism. These findings contribute to our emerging understanding on the role of TIMP-1 as a growth factor expressed to promote CNS myelination during development and induced in the adult to promote myelin repair.
Collapse
Affiliation(s)
- Alexandra M Nicaise
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Kasey M Johnson
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Cory M Willis
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Rosa M Guzzo
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
106
|
LoPresti P. Tau in Oligodendrocytes Takes Neurons in Sickness and in Health. Int J Mol Sci 2018; 19:ijms19082408. [PMID: 30111714 PMCID: PMC6121290 DOI: 10.3390/ijms19082408] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 12/31/2022] Open
Abstract
Oligodendrocytes (OLGs), the myelin-forming cells of the central nervous system (CNS), are lifelong partners of neurons. They adjust to the functional demands of neurons over the course of a lifetime to meet the functional needs of a healthy CNS. When this functional interplay breaks down, CNS degeneration follows. OLG processes are essential features for OLGs being able to connect with the neurons. As many as fifty cellular processes from a single OLG reach and wrap an equal number of axonal segments. The cellular processes extend to meet and wrap axonal segments with myelin. Further, transport regulation, which is critical for myelination, takes place within the cellular processes. Because the microtubule-associated protein tau plays a crucial role in cellular process extension and myelination, alterations of tau in OLGs have deleterious effects, resulting in neuronal malfunction and CNS degeneration. Here, we review current concepts on the lifelong role of OLGs and myelin for brain health and plasticity. We present key studies of tau in OLGs and select important studies of tau in neurons. The extensive work on tau in neurons has considerably advanced our understanding of how tau promotes either health or disease. Because OLGs are crucial to neuronal health at any age, an understanding of the functions and regulation of tau in OLGs could uncover new therapeutics for selective CNS neurodegenerative diseases.
Collapse
Affiliation(s)
- Patrizia LoPresti
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA.
| |
Collapse
|
107
|
Xie YJ, Zhou L, Wang Y, Jiang NW, Cao S, Shao CY, Wang XT, Li XY, Shen Y, Zhou L. Leucine-Rich Glioma Inactivated 1 Promotes Oligodendrocyte Differentiation and Myelination via TSC-mTOR Signaling. Front Mol Neurosci 2018; 11:231. [PMID: 30034322 PMCID: PMC6043672 DOI: 10.3389/fnmol.2018.00231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022] Open
Abstract
Leucine-rich glioma inactivated 1 (Lgi1), a putative tumor suppressor, is tightly associated with autosomal dominant lateral temporal lobe epilepsy (ADLTE). It has been shown that Lgi1 regulates the myelination of Schwann cells in the peripheral nervous system (PNS). However, the function and underlying mechanisms for Lgi1 regulation of oligodendrocyte differentiation and myelination in the central nervous system (CNS) remain elusive. In addition, whether Lgi1 is required for myelin maintenance is unknown. Here, we show that Lgi1 is necessary and sufficient for the differentiation of oligodendrocyte precursor cells and is also required for the maintenance of myelinated fibers. The hypomyelination in Lgi1-/- mice attributes to the inhibition of the biosynthesis of lipids and proteins in oligodendrocytes (OLs). Moreover, we found that Lgi1 deficiency leads to a decrease in expression of tuberous sclerosis complex 1 (TSC1) and activates mammalian target of rapamycin signaling. Together, the present work establishes that Lgi1 is a regulator of oligodendrocyte development and myelination in CNS.
Collapse
Affiliation(s)
- Ya-Jun Xie
- Key Laboratory of Medical Neurobiology of Ministry of Health, Department of Neurobiology, Zhejiang University School of MedicineHangzhou, China
| | - Lin Zhou
- Key Laboratory of Medical Neurobiology of Ministry of Health, Department of Neurobiology, Zhejiang University School of MedicineHangzhou, China
| | - Yin Wang
- Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical UniversityYinchuan, China
| | - Nan-Wei Jiang
- Ningbo Key Laboratory of Behavioral Neuroscience, Department of Physiology and Pharmacology, Ningbo University School of MedicineNingbo, China
| | - Shenglong Cao
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of MedicineHangzhou, China
| | - Chong-Yu Shao
- Key Laboratory of Medical Neurobiology of Ministry of Health, Department of Neurobiology, Zhejiang University School of MedicineHangzhou, China
| | - Xin-Tai Wang
- Key Laboratory of Medical Neurobiology of Ministry of Health, Department of Neurobiology, Zhejiang University School of MedicineHangzhou, China
| | - Xiang-Yao Li
- Key Laboratory of Medical Neurobiology of Ministry of Health, Department of Neurobiology, Zhejiang University School of MedicineHangzhou, China
| | - Ying Shen
- Key Laboratory of Medical Neurobiology of Ministry of Health, Department of Neurobiology, Zhejiang University School of MedicineHangzhou, China
| | - Liang Zhou
- Key Laboratory of Medical Neurobiology of Ministry of Health, Department of Neurobiology, Zhejiang University School of MedicineHangzhou, China
| |
Collapse
|
108
|
R-Ras1 and R-Ras2 Are Essential for Oligodendrocyte Differentiation and Survival for Correct Myelination in the Central Nervous System. J Neurosci 2018; 38:5096-5110. [PMID: 29720552 DOI: 10.1523/jneurosci.3364-17.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/14/2018] [Accepted: 04/10/2018] [Indexed: 12/21/2022] Open
Abstract
Rapid and effective neural transmission of information requires correct axonal myelination. Modifications in myelination alter axonal capacity to transmit electric impulses and enable pathological conditions. In the CNS, oligodendrocytes (OLs) myelinate axons, a complex process involving various cellular interactions. However, we know little about the mechanisms that orchestrate correct myelination. Here, we demonstrate that OLs express R-Ras1 and R-Ras2. Using female and male mutant mice to delete these proteins, we found that activation of the PI3K/Akt and Erk1/2-MAPK pathways was weaker in mice lacking one or both of these GTPases, suggesting that both proteins coordinate the activity of these two pathways. Loss of R-Ras1 and/or R-Ras2 diminishes the number of OLs in major myelinated CNS tracts and increases the proportion of immature OLs. In R-Ras1-/- and R-Ras2-/--null mice, OLs show aberrant morphologies and fail to differentiate correctly into myelin-forming phenotypes. The smaller OL population and abnormal OL maturation induce severe hypomyelination, with shorter nodes of Ranvier in R-Ras1-/- and/or R-Ras2-/- mice. These defects explain the slower conduction velocity of myelinated axons that we observed in the absence of R-Ras1 and R-Ras2. Together, these results suggest that R-Ras1 and R-Ras2 are upstream elements that regulate the survival and differentiation of progenitors into OLs through the PI3K/Akt and Erk1/2-MAPK pathways for proper myelination.SIGNIFICANCE STATEMENT In this study, we show that R-Ras1 and R-Ras2 play essential roles in regulating myelination in vivo and control fundamental aspects of oligodendrocyte (OL) survival and differentiation through synergistic activation of PI3K/Akt and Erk1/2-MAPK signaling. Mice lacking R-Ras1 and/or R-Ras2 show a diminished OL population with a higher proportion of immature OLs, explaining the observed hypomyelination in main CNS tracts. In vivo electrophysiology recordings demonstrate a slower conduction velocity of nerve impulses in the absence of R-Ras1 and R-Ras2. Therefore, R-Ras1 and R-Ras2 are essential for proper axonal myelination and accurate neural transmission.
Collapse
|
109
|
Extracellular Galectin-3 Induces Accelerated Oligodendroglial Differentiation Through Changes in Signaling Pathways and Cytoskeleton Dynamics. Mol Neurobiol 2018; 56:336-349. [DOI: 10.1007/s12035-018-1089-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/16/2018] [Indexed: 02/01/2023]
|
110
|
Pol SU, Polanco JJ, Seidman RA, O'Bara MA, Shayya HJ, Dietz KC, Sim FJ. Network-Based Genomic Analysis of Human Oligodendrocyte Progenitor Differentiation. Stem Cell Reports 2018; 9:710-723. [PMID: 28793249 PMCID: PMC5550273 DOI: 10.1016/j.stemcr.2017.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022] Open
Abstract
Impaired human oligodendrocyte progenitor cell (hOPC) differentiation likely contributes to failed remyelination in multiple sclerosis. The characterization of molecular pathways that regulate hOPC differentiation will provide means to induce remyelination. In this study, we determined the gene expression profile of PDGFαR+ hOPCs during initial oligodendrocyte commitment. Weighted gene coexpression network analysis was used to define progenitor and differentiation-specific gene expression modules and functionally important hub genes. These modules were compared with rodent OPC and oligodendrocyte data to determine the extent of species conservation. These analyses identified G-protein β4 (GNB4), which was associated with hOPC commitment. Lentiviral GNB4 overexpression rapidly induced human oligodendrocyte differentiation. Following xenograft in hypomyelinating shiverer/rag2 mice, GNB4 overexpression augmented myelin synthesis and the ability of hOPCs to ensheath host axons, establishing GNB4 as functionally important in human myelination. As such, network analysis of hOPC gene expression accurately predicts genes that influence human oligodendrocyte differentiation in vivo. Transcriptional database of differentiating human oligodendrocyte progenitor cells WGCNA reveals coordinated gene networks in oligodendrocyte specification Dataset comparison identifies unique and shared cross-species gene networks G-protein β4 (GNB4) expression accelerates human oligodendrocyte differentiation
Collapse
Affiliation(s)
- Suyog U Pol
- Neuroscience Program, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA; Department of Biomedical Engineering, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA
| | - Jessie J Polanco
- Neuroscience Program, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA
| | - Richard A Seidman
- Neuroscience Program, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA
| | - Melanie A O'Bara
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA
| | - Hani J Shayya
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA
| | - Karen C Dietz
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA; Neuroscience Program, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA
| | - Fraser J Sim
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA; Neuroscience Program, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA.
| |
Collapse
|
111
|
Srivastava T, Diba P, Dean JM, Banine F, Shaver D, Hagen M, Gong X, Su W, Emery B, Marks DL, Harris EN, Baggenstoss B, Weigel PH, Sherman LS, Back SA. A TLR/AKT/FoxO3 immune tolerance-like pathway disrupts the repair capacity of oligodendrocyte progenitors. J Clin Invest 2018; 128:2025-2041. [PMID: 29664021 DOI: 10.1172/jci94158] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 02/28/2018] [Indexed: 12/12/2022] Open
Abstract
Cerebral white matter injury (WMI) persistently disrupts myelin regeneration by oligodendrocyte progenitor cells (OPCs). We identified a specific bioactive hyaluronan fragment (bHAf) that downregulates myelin gene expression and chronically blocks OPC maturation and myelination via a tolerance-like mechanism that dysregulates pro-myelination signaling via AKT. Desensitization of AKT occurs via TLR4 but not TLR2 or CD44. OPC differentiation was selectively blocked by bHAf in a maturation-dependent fashion at the late OPC (preOL) stage by a noncanonical TLR4/TRIF pathway that induced persistent activation of the FoxO3 transcription factor downstream of AKT. Activated FoxO3 selectively localized to oligodendrocyte lineage cells in white matter lesions from human preterm neonates and adults with multiple sclerosis. FoxO3 constraint of OPC maturation was bHAf dependent, and involved interactions at the FoxO3 and MBP promoters with the chromatin remodeling factor Brg1 and the transcription factor Olig2, which regulate OPC differentiation. WMI has adapted an immune tolerance-like mechanism whereby persistent engagement of TLR4 by bHAf promotes an OPC niche at the expense of myelination by engaging a FoxO3 signaling pathway that chronically constrains OPC differentiation.
Collapse
Affiliation(s)
- Taasin Srivastava
- Department of Pediatrics, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Parham Diba
- Department of Pediatrics, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Justin M Dean
- Department of Pediatrics, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Fatima Banine
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Daniel Shaver
- Department of Pediatrics, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Matthew Hagen
- Department of Pediatrics, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Xi Gong
- Department of Pediatrics, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Weiping Su
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Ben Emery
- Department of Neurology, OHSU, Portland, Oregon, USA
| | - Daniel L Marks
- Department of Pediatrics, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Bruce Baggenstoss
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Paul H Weigel
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA.,Department of Cell, Developmental and Cancer Biology, OHSU, Portland, Oregon, USA
| | - Stephen A Back
- Department of Pediatrics, Oregon Health & Science University (OHSU), Portland, Oregon, USA.,Department of Neurology, OHSU, Portland, Oregon, USA
| |
Collapse
|
112
|
Almeida RG, Pan S, Cole KLH, Williamson JM, Early JJ, Czopka T, Klingseisen A, Chan JR, Lyons DA. Myelination of Neuronal Cell Bodies when Myelin Supply Exceeds Axonal Demand. Curr Biol 2018; 28:1296-1305.e5. [PMID: 29628374 PMCID: PMC5912901 DOI: 10.1016/j.cub.2018.02.068] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/02/2018] [Accepted: 02/23/2018] [Indexed: 01/10/2023]
Abstract
The correct targeting of myelin is essential for nervous system formation and function. Oligodendrocytes in the CNS myelinate some axons, but not others, and do not myelinate structures including cell bodies and dendrites [1]. Recent studies indicate that extrinsic signals, such as neuronal activity [2, 3] and cell adhesion molecules [4], can bias myelination toward some axons and away from cell bodies and dendrites, indicating that, in vivo, neuronal and axonal cues regulate myelin targeting. In vitro, however, oligodendrocytes have an intrinsic propensity to myelinate [5, 6, 7] and can promiscuously wrap inert synthetic structures resembling neuronal processes [8, 9] or cell bodies [4]. A current therapeutic goal for the treatment of demyelinating diseases is to greatly promote oligodendrogenesis [10, 11, 12, 13]; thus, it is important to test how accurately extrinsic signals regulate the oligodendrocyte’s intrinsic program of myelination in vivo. Here, we test the hypothesis that neurons regulate myelination with sufficient stringency to always ensure correct targeting. Surprisingly, however, we find that myelin targeting in vivo is not very stringent and that mistargeting occurs readily when oligodendrocyte and myelin supply exceed axonal demand. We find that myelin is mistargeted to neuronal cell bodies in zebrafish mutants with fewer axons and independently in drug-treated zebrafish with increased oligodendrogenesis. Additionally, by increasing myelin production of oligodendrocytes in zebrafish and mice, we find that excess myelin is also inappropriately targeted to cell bodies. Our results suggest that balancing oligodendrocyte-intrinsic programs of myelin supply with axonal demand is essential for correct myelin targeting in vivo and highlight potential liabilities of strongly promoting oligodendrogenesis. Balance between axons and myelin production regulates its targeting in vivo Excess myelin is mistargeted to cell bodies Low, but not zero, level of mistargeting during normal development Potential implications for myelin-promoting therapies
Collapse
Affiliation(s)
- Rafael G Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Simon Pan
- Department of Neurology and Program in Neuroscience, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94143, USA
| | - Katy L H Cole
- Centre for Discovery Brain Sciences, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Jill M Williamson
- Centre for Discovery Brain Sciences, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Jason J Early
- Centre for Discovery Brain Sciences, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Tim Czopka
- Centre for Discovery Brain Sciences, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK; Institute of Neuronal Cell Biology, Technical University of Munich, Biedersteiner Strasse 29, 80802 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen Strasse 17, 81377 Munich, Germany
| | - Anna Klingseisen
- Centre for Discovery Brain Sciences, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Jonah R Chan
- Department of Neurology and Program in Neuroscience, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94143, USA
| | - David A Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK.
| |
Collapse
|
113
|
Imaging mass spectrometry of frontal white matter lipid changes in human alcoholics. Alcohol 2018; 67:51-63. [PMID: 29425959 PMCID: PMC5864118 DOI: 10.1016/j.alcohol.2017.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/28/2017] [Accepted: 08/08/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Chronic alcohol use disorders (AUD) are associated with white matter (WM) degeneration with altered myelin integrity. Matrix assisted laser desorption ionization-imaging mass spectrometry (MALDI-IMS) enables high throughput analysis of myelin lipid biochemical histopathology to help characterize disease mechanisms. PURPOSE This study utilized MALDI-IMS to investigate frontal lobe WM myelin lipid abnormalities in AUD. METHODS Standardized cores of formalin-fixed WM from Brodmann Area 4 (BA4) and BA8/9 of 20 postmortem AUD and 19 control adult human brains were embedded in carboxymethyl-cellulose, cryo-sectioned (8 μm), thaw-mounted onto indium tin oxide (ITO) -coated glass slides, and sublimed with 2,5-dihydroxybenzxoic acid (DHB) matrix. Lipids were imaged by MALDI-time of flight in the negative ionization mode. Data were visualized with FlexImaging software v4.0 and analyzed with ClinProTools v3.0. RESULTS Principal component analysis (PCA) and data bar plots of MALDI-IMS data differentiated AUD from control WM. The dominant effect of AUD was to broadly reduce expression of sphingolipids (sulfatides and ceramides) and phospholipids. Data bar plots demonstrated overall similar responses to AUD in BA4 and BA8/9. However, differential regional effects of AUD on WM lipid profiles were manifested by non-overlapping expression or discordant responses to AUD for a subset of lipid ions. CONCLUSIONS Human AUD is associated with substantial inhibition of frontal lobe WM lipid expression with regional variability in these effects. MALDI-IMS can be used to characterize the nature of AUD-associated lipid biochemical abnormalities for correlation with lifetime exposures and WM degeneration, altered gene expression, and responses to abstinence or treatment.
Collapse
|
114
|
Vallarola A, Sironi F, Tortarolo M, Gatto N, De Gioia R, Pasetto L, De Paola M, Mariani A, Ghosh S, Watson R, Kalmes A, Bonetto V, Bendotti C. RNS60 exerts therapeutic effects in the SOD1 ALS mouse model through protective glia and peripheral nerve rescue. J Neuroinflammation 2018; 15:65. [PMID: 29495962 PMCID: PMC5833072 DOI: 10.1186/s12974-018-1101-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/21/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects the motor neuromuscular system leading to complete paralysis and premature death. The multifactorial nature of ALS that involves both cell-autonomous and non-cell-autonomous processes contributes to the lack of effective therapies, usually targeted to a single pathogenic mechanism. RNS60, an experimental drug containing oxygenated nanobubbles generated by modified Taylor-Couette-Poiseuille flow with elevated oxygen pressure, has shown anti-inflammatory and neuroprotective properties in different experimental paradigms. Since RNS60 interferes with multiple cellular mechanisms known to be involved in ALS pathology, we evaluated its effect in in vitro and in vivo models of ALS. METHODS Co-cultures of primary microglia/spinal neurons exposed to LPS and astrocytes/spinal neurons from SOD1G93A mice were used to examine the effect of RNS60 or normal saline (NS) on the selective motor neuron degeneration. Transgenic SOD1G93A mice were treated with RNS60 or NS (300 μl/mouse intraperitoneally every other day) starting at the disease onset and examined for disease progression as well as pathological and biochemical alterations. RESULTS RNS60 protected motor neurons in in vitro paradigms and slowed the disease progression of C57BL/6-SOD1G93A mice through a significant protection of spinal motor neurons and neuromuscular junctions. This was mediated by the (i) activation of an antioxidant response and generation of an anti-inflammatory environment in the spinal cord; (ii) activation of the PI3K-Akt pro-survival pathway in the spinal cord and sciatic nerves; (iii) reduced demyelination of the sciatic nerves; and (iv) elevation of peripheral CD4+/Foxp3+ T regulatory cell numbers. RNS60 did not show the same effects in 129Sv-SOD1G93A mice, which are unable to activate a protective immune response. CONCLUSION RNS60 demonstrated significant therapeutic efficacy in C57BL/6-SOD1G93A mice by virtue of its effects on multiple disease mechanisms in motor neurons, glial cells, and peripheral immune cells. These findings, together with the excellent clinical safety profile, make RNS60 a promising candidate for ALS therapy and support further studies to unravel its molecular mechanism of action. In addition, the differences in efficacy of RNS60 in SOD1G93A mice of different strains may be relevant for identifying potential markers to predict efficacy in clinical trials.
Collapse
Affiliation(s)
- Antonio Vallarola
- Molecular Neurobiology Lab, Department of Neuroscience, IRCCS - Mario Negri Institute, Via La Masa, 19, 20156, Milan, Italy
| | - Francesca Sironi
- Molecular Neurobiology Lab, Department of Neuroscience, IRCCS - Mario Negri Institute, Via La Masa, 19, 20156, Milan, Italy
| | - Massimo Tortarolo
- Molecular Neurobiology Lab, Department of Neuroscience, IRCCS - Mario Negri Institute, Via La Masa, 19, 20156, Milan, Italy
| | - Noemi Gatto
- Molecular Neurobiology Lab, Department of Neuroscience, IRCCS - Mario Negri Institute, Via La Masa, 19, 20156, Milan, Italy
| | - Roberta De Gioia
- Molecular Neurobiology Lab, Department of Neuroscience, IRCCS - Mario Negri Institute, Via La Masa, 19, 20156, Milan, Italy
| | - Laura Pasetto
- Translational Biomarkers Lab, Department of Molecular Biochemistry and Pharmacology, IRCCS - Mario Negri, Milan, Italy
| | - Massimiliano De Paola
- Analytical Biochemistry Lab, Department of Environmental Health Sciences, IRCCS- Mario Negri Institute, Milan, Italy
| | - Alessandro Mariani
- Analytical Biochemistry Lab, Department of Environmental Health Sciences, IRCCS- Mario Negri Institute, Milan, Italy
| | | | | | | | - Valentina Bonetto
- Translational Biomarkers Lab, Department of Molecular Biochemistry and Pharmacology, IRCCS - Mario Negri, Milan, Italy
| | - Caterina Bendotti
- Molecular Neurobiology Lab, Department of Neuroscience, IRCCS - Mario Negri Institute, Via La Masa, 19, 20156, Milan, Italy.
| |
Collapse
|
115
|
Li N, Han J, Tang J, Ying Y. IGFBP-7 inhibits the differentiation of oligodendrocyte precursor cells via regulation of Wnt/β-Catenin signaling. J Cell Biochem 2018; 119:4742-4750. [PMID: 29280192 DOI: 10.1002/jcb.26654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 12/20/2017] [Indexed: 11/09/2022]
Abstract
Oligodendrocytes (OLs) are glial cells that form myelin sheaths in the central nervous system. Myelin sheath plays important role in nervous system and loss of it in neurodegenerative diseases can lead to impairment of movement. Understanding the signals and factors that regulate OL differentiation can help to address novel strategies for improving myelin repair in neurodegenerative diseases. The aim of this study was to investigate the role of insulin-like growth factor-binding proteins 7 (IGFBP-7) in differentiating OL precursor cells (OPCs). It was found that oligodendrocyte precursors undergoing differentiation were accompanied by selective expression of IGFBP-7. In addition, knockdown of IGFBP-7 promoted differentiation of oligodendrocytes and increased formation of myelin in cultured cells. In contrast, excessive expression of IGFBP-7 inhibited differentiation of oligodendrocytes. Furthermore, overexpression of IGFBP-7 in oligodendrocyte precursor cells increased transcription of Wnt target genes and promoted β-Catenin nuclear translocation. These findings suggest that IGFBP-7 negatively regulates differentiation of oligodendrocyte precursor cells via regulation of Wnt/β-Catenin signaling.
Collapse
Affiliation(s)
- Nan Li
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Jinfeng Han
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Jing Tang
- Jinzhou Maternal and Children Healthy Care Hospital, Jinzhou, China
| | - Yanqin Ying
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
116
|
González-Fernández E, Jeong HK, Fukaya M, Kim H, Khawaja RR, Srivastava IN, Waisman A, Son YJ, Kang SH. PTEN negatively regulates the cell lineage progression from NG2 + glial progenitor to oligodendrocyte via mTOR-independent signaling. eLife 2018; 7:32021. [PMID: 29461205 PMCID: PMC5839742 DOI: 10.7554/elife.32021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 02/19/2018] [Indexed: 12/11/2022] Open
Abstract
Oligodendrocytes (OLs), the myelin-forming CNS glia, are highly vulnerable to cellular stresses, and a severe myelin loss underlies numerous CNS disorders. Expedited OL regeneration may prevent further axonal damage and facilitate functional CNS repair. Although adult OL progenitors (OPCs) are the primary players for OL regeneration, targetable OPC-specific intracellular signaling mechanisms for facilitated OL regeneration remain elusive. Here, we report that OPC-targeted PTEN inactivation in the mouse, in contrast to OL-specific manipulations, markedly promotes OL differentiation and regeneration in the mature CNS. Unexpectedly, an additional deletion of mTOR did not reverse the enhanced OL development from PTEN-deficient OPCs. Instead, ablation of GSK3β, another downstream signaling molecule that is negatively regulated by PTEN-Akt, enhanced OL development. Our results suggest that PTEN persistently suppresses OL development in an mTOR-independent manner, and at least in part, via controlling GSK3β activity. OPC-targeted PTEN-GSK3β inactivation may benefit facilitated OL regeneration and myelin repair.
Collapse
Affiliation(s)
- Estibaliz González-Fernández
- Shriners Hospitals Pediatric Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Unites States
| | - Hey-Kyeong Jeong
- Shriners Hospitals Pediatric Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Unites States
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hyukmin Kim
- Shriners Hospitals Pediatric Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Unites States
| | - Rabia R Khawaja
- Shriners Hospitals Pediatric Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Unites States
| | - Isha N Srivastava
- Shriners Hospitals Pediatric Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Unites States
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Young-Jin Son
- Shriners Hospitals Pediatric Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Unites States.,Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine, Philadelphia, United States
| | - Shin H Kang
- Shriners Hospitals Pediatric Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Unites States.,Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine, Philadelphia, United States
| |
Collapse
|
117
|
Wong KM, Beirowski B. Multiple lines of inhibitory feedback on AKT kinase in Schwann cells lacking TSC1/2 hint at distinct functions of mTORC1 and AKT in nerve development. Commun Integr Biol 2018; 11:e1433441. [PMID: 29497474 PMCID: PMC5824964 DOI: 10.1080/19420889.2018.1433441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/02/2018] [Accepted: 01/19/2018] [Indexed: 11/29/2022] Open
Abstract
During nerve development, Schwann cells (SCs) build multilayered myelin sheaths around axons to accelerate nerve conduction. The mechanistic target of rapamycin complex 1 (mTORC1) downstream of PI3K/AKT signaling lately emerged as a central anabolic regulator of myelination. Using mutant mice with sustained mTORC1 hyperactivity in developing SCs we recently uncovered that mTORC1 impedes developmental myelination by promoting proliferation of immature SCs while antagonizing SC differentiation. In contrast, mTORC1 stimulates myelin production, rather than SC proliferation, in already differentiated SCs. Importantly, these diametrical mTORC1 functions were unmasked under settings of greatly suppressed AKT signaling. Here we demonstrate, inter alia, additional mechanisms of feedback inhibition of AKT by mTORC1, such as strikingly elevated PTEN levels in SCs with disruption of the mTORC1 inhibitory complex, TSC1/2. These data lead us to propose a model wherein mTORC1 and AKT have distinct roles in developing SCs that have to be precisely coordinated for normal myelinogenesis.
Collapse
Affiliation(s)
- Keit Men Wong
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Bogdan Beirowski
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
118
|
Preclinical evaluation of the PI3K/Akt/mTOR pathway in animal models of multiple sclerosis. Oncotarget 2018; 9:8263-8277. [PMID: 29492193 PMCID: PMC5823598 DOI: 10.18632/oncotarget.23862] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022] Open
Abstract
The PI3K/AKT/mTOR pathway is an intracellular signalling pathway that regulates cell activation. proliferation, metabolism and apoptosis. Increasing body of data suggests that alterations in the PI3K/AKT/mTOR pathway may result in an enhanced susceptibility to autoimmunity. Multiple Sclerosis (MS) is one of the most common chronic inflammatory diseases of the central nervous system leading to demyelination and neurodegeneration. In the current study, we have firstly evaluated in silico the involvement of the mTOR network on the generation and progression of MS and on oligodendrocyte function, making use of currently available whole-genome transcriptomic data. Then, the data generated in silico were subjected to an ex-vivo evaluation. To this aim, the involvement of mTOR was validated on a well-known animal model of MS and in vitro on Th17 cells. Our data indicate that there is a significant involvement of the mTOR network in the etiopathogenesis of MS and that Rapamycin treatment may represent a useful therapeutic approach in this clinical setting. On the other hand, our data showed that a significant involvement of the mTOR network could be observed only in the early phases of oligodendrocyte maturation, but not in the maturation process of adult oligodendrocytes and in the process of remyelination following demyelinating injury. Overall, our study suggests that targeting the PI3K/mTOR pathway, although it may not be a useful therapeutic approach to promote remyelination in MS patients, it can be exploited to exert immunomodulation, preventing/delaying relapses, and to treat MS patients in order to slow down the progression of disability.
Collapse
|
119
|
The Protein Tyrosine Phosphatase Shp2 Regulates Oligodendrocyte Differentiation and Early Myelination and Contributes to Timely Remyelination. J Neurosci 2017; 38:787-802. [PMID: 29217681 DOI: 10.1523/jneurosci.2864-16.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/01/2017] [Accepted: 11/26/2017] [Indexed: 11/21/2022] Open
Abstract
Shp2 is a nonreceptor protein tyrosine phosphatase that has been shown to influence neurogenesis, oligodendrogenesis, and oligodendrocyte differentiation. Furthermore, Shp2 is a known regulator of the Akt/mammalian target of rapamycin and ERK signaling pathways in multiple cellular contexts, including oligodendrocytes. Its role during later postnatal CNS development or in response to demyelination injury has not been examined. Based on the current studies, we hypothesize that Shp2 is a negative regulator of CNS myelination. Using transgenic mouse technology, we show that Shp2 is involved in oligodendrocyte differentiation and early myelination, but is not necessary for myelin maintenance. We also show that Shp2 regulates the timely differentiation of oligodendrocytes following lysolecithin-induced demyelination, although apparently normal remyelination occurs at a delayed time point. These data suggest that Shp2 is a relevant therapeutic target in demyelinating diseases such as multiple sclerosis.SIGNIFICANCE STATEMENT In the present study, we show that the protein phosphatase Shp2 is an important mediator of oligodendrocyte differentiation and myelination, both during developmental myelination as well as during myelin regeneration. We provide important insight into the signaling mechanisms regulating myelination and propose that Shp2 acts as a transient brake to the developmental myelination process. Furthermore, we show that Shp2 regulates oligodendrocyte differentiation following demyelination and therefore has important therapeutic implications in diseases such as multiple sclerosis.
Collapse
|
120
|
Figlia G, Gerber D, Suter U. Myelination and mTOR. Glia 2017; 66:693-707. [PMID: 29210103 PMCID: PMC5836902 DOI: 10.1002/glia.23273] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/08/2017] [Accepted: 11/17/2017] [Indexed: 02/06/2023]
Abstract
Myelinating cells surround axons to accelerate the propagation of action potentials, to support axonal health, and to refine neural circuits. Myelination is metabolically demanding and, consistent with this notion, mTORC1—a signaling hub coordinating cell metabolism—has been implicated as a key signal for myelination. Here, we will discuss metabolic aspects of myelination, illustrate the main metabolic processes regulated by mTORC1, and review advances on the role of mTORC1 in myelination of the central nervous system and the peripheral nervous system. Recent progress has revealed a complex role of mTORC1 in myelinating cells that includes, besides positive regulation of myelin growth, additional critical functions in the stages preceding active myelination. Based on the available evidence, we will also highlight potential nonoverlapping roles between mTORC1 and its known main upstream pathways PI3K‐Akt, Mek‐Erk1/2, and AMPK in myelinating cells. Finally, we will discuss signals that are already known or hypothesized to be responsible for the regulation of mTORC1 activity in myelinating cells. Myelination is metabolically demanding. The metabolic regulator mTORC1 controls differentiation of myelinating cells and promotes myelin
growth. mTORC1‐independent targets of the PI3K‐Akt and Mek‐Erk1/2 pathways may also be significant in myelination.
Collapse
Affiliation(s)
- Gianluca Figlia
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, CH 8093, Switzerland
| | - Daniel Gerber
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, CH 8093, Switzerland
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, CH 8093, Switzerland
| |
Collapse
|
121
|
Moore ME, Koenig AE, Hillgartner MA, Otap CC, Barnby E, MacGregor GG. Abnormal social behavior in mice with tyrosinemia type I is associated with an increase of myelin in the cerebral cortex. Metab Brain Dis 2017; 32:1829-1841. [PMID: 28712060 DOI: 10.1007/s11011-017-0071-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/11/2017] [Indexed: 12/26/2022]
Abstract
Hereditary tyrosinemia type I (HT1) is caused by mutations in the fumarylacetoacetate hydrolase (FAH) gene, the template for the final enzyme in the tyrosine catabolism pathway. If left untreated this deficiency of functional FAH leads to a buildup of toxic metabolites that can cause liver disease, kidney dysfunction and high mortality. The current treatment with the drug NTBC prevents the production of these metabolites and has consequently increased the survival rate in HT1 children. As a result of this increased survival, long term complications of HT1 are now being observed, including slower learning, impaired cognition and altered social behavior. We studied a mouse model of HT1 to gain insight into the effects of HT1 and treatment with NTBC on social behavior in mice. We showed that mice with HT1 display abnormal social behavior in that they spend more time in the absence of another mouse and do not discriminate between a novel mouse and an already familiar mouse. This altered behavior was due to HT1 and not treatment with NTBC. Quantification of cerebral cortex myelin in mice with HT1 showed a two to threefold increase in myelin expression. Our findings suggest that absence of FAH expression in the brain produces an altered brain biochemistry resulting in increased expression of myelin. This increase in myelination could lead to abnormal action potential velocity and altered neuronal connections that provide a mechanism for the altered learning, social behavior and cognitive issues recently seen in HT1.
Collapse
Affiliation(s)
- Marissa E Moore
- Department of Biological Sciences, University of Alabama in Huntsville, SST 361, 301 Sparkman Dr, Huntsville, AL, 35899, USA
| | - Ashton E Koenig
- Department of Biological Sciences, University of Alabama in Huntsville, SST 361, 301 Sparkman Dr, Huntsville, AL, 35899, USA
| | - Megan A Hillgartner
- Department of Biological Sciences, University of Alabama in Huntsville, SST 361, 301 Sparkman Dr, Huntsville, AL, 35899, USA
| | - Christopher C Otap
- Department of Biological Sciences, University of Alabama in Huntsville, SST 361, 301 Sparkman Dr, Huntsville, AL, 35899, USA
| | - Elizabeth Barnby
- College of Nursing, University of Alabama in Huntsville, 1610 Ben Graves Drive, Huntsville, AL, 35899, USA
| | - Gordon G MacGregor
- Department of Biological Sciences, University of Alabama in Huntsville, SST 361, 301 Sparkman Dr, Huntsville, AL, 35899, USA.
| |
Collapse
|
122
|
Yalcin EB, McLean T, Tong M, de la Monte SM. Progressive white matter atrophy with altered lipid profiles is partially reversed by short-term abstinence in an experimental model of alcohol-related neurodegeneration. Alcohol 2017; 65:51-62. [PMID: 29084630 DOI: 10.1016/j.alcohol.2017.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 01/01/2023]
Abstract
Chronic ethanol exposure causes white matter (WM) atrophy and degeneration with major impairments in the structural integrity of myelin. Since myelin is composed of oligodendrocyte lipid-rich membranes, understanding the consequences and reversibility of alcohol-related oligodendrocyte dysfunction in relation to myelin structure could provide new insights into the pathogenesis of WM degeneration and potential strategies for treatment. Adult male Long Evans rats were pair-fed with isocaloric liquid diets containing 0% or 26% ethanol (caloric) for 3 or 8 weeks. During the last 2 weeks of feeding, the ethanol groups were binged with 2 g/kg of ethanol by intraperitoneal (i.p.) injection on Mondays, Wednesdays, and Fridays; controls were treated with i.p. saline. For recovery effects, at the 6-week time point, ethanol exposures were tapered over 2 days, and then discontinued, rendering the rats ethanol-free for 12 days. Anterior corpus callosum WM lipid ion profiles were analyzed using matrix-assisted laser desorption ionization-imaging mass spectrometry (MALDI-IMS) and correlated with histopathology. Ethanol exposures caused progressive atrophy and reductions in myelin staining intensity within the corpus callosum, whereas short-term recovery partially reversed those effects. MALDI-IMS demonstrated striking ethanol-associated alterations in WM lipid profiles characterized by reduced levels of phosphatidylinositols, phosphatidylserines, phosphatidylethanolamines, and sulfatides, and partial "normalization" of lipid expression with recovery. Ethanol exposure duration and recovery responses were further distinguished by heatmap hierarchical dendrogram and PCA plots. In conclusion, chronic+binge ethanol exposures caused progressive, partially reversible WM atrophy with myelin loss associated with reduced expression of WM phospholipids and sulfatides. The extent of WM lipid abnormalities suggests that ethanol broadly impairs molecular and biochemical functions regulating myelin synthesis, degradation, and maintenance in oligodendrocytes.
Collapse
|
123
|
Abstract
Although the core concept of remyelination - based on the activation, migration, proliferation and differentiation of CNS progenitors - has not changed over the past 20 years, our understanding of the detailed mechanisms that underlie this process has developed considerably. We can now decorate the central events of remyelination with a host of pathways, molecules, mediators and cells, revealing a complex and precisely orchestrated process. These advances have led to recent drug-based and cell-based clinical trials for myelin diseases and have opened up hitherto unrecognized opportunities for drug-based approaches to therapeutically enhance remyelination.
Collapse
|
124
|
On Myelinated Axon Plasticity and Neuronal Circuit Formation and Function. J Neurosci 2017; 37:10023-10034. [PMID: 29046438 DOI: 10.1523/jneurosci.3185-16.2017] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/31/2017] [Indexed: 12/28/2022] Open
Abstract
Studies of activity-driven nervous system plasticity have primarily focused on the gray matter. However, MRI-based imaging studies have shown that white matter, primarily composed of myelinated axons, can also be dynamically regulated by activity of the healthy brain. Myelination in the CNS is an ongoing process that starts around birth and continues throughout life. Myelin in the CNS is generated by oligodendrocytes and recent evidence has shown that many aspects of oligodendrocyte development and myelination can be modulated by extrinsic signals including neuronal activity. Because modulation of myelin can, in turn, affect several aspects of conduction, the concept has emerged that activity-regulated myelination represents an important form of nervous system plasticity. Here we review our increasing understanding of how neuronal activity regulates oligodendrocytes and myelinated axons in vivo, with a focus on the timing of relevant processes. We highlight the observations that neuronal activity can rapidly tune axonal diameter, promote re-entry of oligodendrocyte progenitor cells into the cell cycle, or drive their direct differentiation into oligodendrocytes. We suggest that activity-regulated myelin formation and remodeling that significantly change axonal conduction properties are most likely to occur over timescales of days to weeks. Finally, we propose that precise fine-tuning of conduction along already-myelinated axons may also be mediated by alterations to the axon itself. We conclude that future studies need to analyze activity-driven adaptations to both axons and their myelin sheaths to fully understand how myelinated axon plasticity contributes to neuronal circuit formation and function.
Collapse
|
125
|
Gibson EM, Geraghty AC, Monje M. Bad wrap: Myelin and myelin plasticity in health and disease. Dev Neurobiol 2017; 78:123-135. [PMID: 28986960 DOI: 10.1002/dneu.22541] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/31/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022]
Abstract
Human central nervous system myelin development extends well into the fourth decade of life, and this protracted period underscores the potential for experience to modulate myelination. The concept of myelin plasticity implies adaptability in myelin structure and function in response to experiences during development and beyond. Mounting evidence supports this concept of neuronal activity-regulated changes in myelin-forming cells, including oligodendrocyte precursor cell proliferation, oligodendrogenesis and modulation of myelin microstructure. In healthy individuals, myelin plasticity in associative white matter structures of the brain is implicated in learning and motor function in both rodents and humans. Activity-dependent changes in myelin-forming cells may influence the function of neural networks that depend on the convergence of numerous neural signals on both a temporal and spatial scale. However, dysregulation of myelin plasticity can disadvantageously alter myelin microstructure and result in aberrant circuit function or contribute to pathological cell proliferation. Emerging roles for myelin plasticity in normal neurological function and in disease are discussed. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 123-135, 2018.
Collapse
Affiliation(s)
- Erin M Gibson
- Department of Neurology, Stanford University School of Medicine, Stanford, California, 94305
| | - Anna C Geraghty
- Department of Neurology, Stanford University School of Medicine, Stanford, California, 94305
| | - Michelle Monje
- Department of Neurology, Stanford University School of Medicine, Stanford, California, 94305
| |
Collapse
|
126
|
Goddard MN, van Rijn S, Rombouts SARB, Swaab H. White matter microstructure in a genetically defined group at increased risk of autism symptoms, and a comparison with idiopathic autism: an exploratory study. Brain Imaging Behav 2017; 10:1280-1288. [PMID: 26699143 PMCID: PMC5660893 DOI: 10.1007/s11682-015-9496-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Klinefelter syndrome (47,XXY) is associated with physical, behavioral, and cognitive consequences. Deviations in brain structure and function have been reported, but structural characteristics of white matter have barely been assessed. This exploratory diffusion tensor imaging study assessed white matter microstructure in boys with 47,XXY compared with non-clinical, male controls. Additionally, both similarities and differences between 47,XXY and autism spectrum disorders (ASD) have been reported in cognition, behavior and neural architecture. To further investigate these brain-behavior pathways, white matter microstructure in boys with 47,XXY was compared to that of boys with ASD. Fractional anisotropy (FA), radial diffusivity (Dr), axial diffusivity (Da), and mean diffusivity (MD) were assessed in 47,XXY (n = 9), ASD (n = 18), and controls (n = 14), using tract-based spatial statistics. Compared with controls, boys with 47,XXY have reduced FA, coupled with reduced Da, in the corpus callosum. Boys with 47,XXY also have reduced Dr. in the left anterior corona radiata and sagittal striatum compared with controls. Compared with boys with ASD, boys with 47,XXY show reduced Da in the right inferior fronto-occipital fasciculus. Although this study is preliminary considering the small sample size, reduced white matter integrity in the corpus callosum may be a contributing factor in the cognitive and behavioral problems associated with 47,XXY. In addition, the differences in white matter microstructure between 47,XXY and ASD may be important for our understanding of the mechanisms that are fundamental to behavioral outcome in social dysfunction, and may be targeted through intervention.
Collapse
Affiliation(s)
- Marcia N Goddard
- Faculty of Social and Behavioural Sciences, Department of Clinical Child and Adolescent Studies, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands. .,Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Sophie van Rijn
- Faculty of Social and Behavioural Sciences, Department of Clinical Child and Adolescent Studies, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Serge A R B Rombouts
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden, The Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hanna Swaab
- Faculty of Social and Behavioural Sciences, Department of Clinical Child and Adolescent Studies, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| |
Collapse
|
127
|
de Faria O, Pama EAC, Evans K, Luzhynskaya A, Káradóttir RT. Neuroglial interactions underpinning myelin plasticity. Dev Neurobiol 2017; 78:93-107. [PMID: 28941015 DOI: 10.1002/dneu.22539] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/11/2017] [Accepted: 09/14/2017] [Indexed: 11/07/2022]
Abstract
The CNS is extremely responsive to an ever-changing environment. Studies of neural circuit plasticity focus almost exclusively on functional and structural changes of neuronal synapses. In recent years, however, myelin plasticity has emerged as a potential modulator of neuronal networks. Myelination of previously unmyelinated axons and changes in the structure of myelin on already-myelinated axons (similar to changes in internode number and length or myelin thickness or geometry of the nodal area) can in theory have significant effects on the function of neuronal networks. In this article, the authors review the current evidence for myelin changes occurring in the adult CNS, highlight some potential underlying mechanisms of how neuronal activity may regulate myelin changes, and explore the similarities between neuronal and myelin plasticity. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 93-107, 2018.
Collapse
Affiliation(s)
- Omar de Faria
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute & Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ewa Anastazia Claudia Pama
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute & Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Kimberley Evans
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute & Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Aryna Luzhynskaya
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute & Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ragnhildur Thóra Káradóttir
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute & Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
128
|
Figlia G, Norrmén C, Pereira JA, Gerber D, Suter U. Dual function of the PI3K-Akt-mTORC1 axis in myelination of the peripheral nervous system. eLife 2017; 6:e29241. [PMID: 28880149 PMCID: PMC5589416 DOI: 10.7554/elife.29241] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/31/2017] [Indexed: 01/24/2023] Open
Abstract
Myelination is a biosynthetically demanding process in which mTORC1, the gatekeeper of anabolism, occupies a privileged regulatory position. We have shown previously that loss of mTORC1 function in Schwann cells (SCs) hampers myelination. Here, we genetically disrupted key inhibitory components upstream of mTORC1, TSC1 or PTEN, in mouse SC development, adult homeostasis, and nerve injury. Surprisingly, the resulting mTORC1 hyperactivity led to markedly delayed onset of both developmental myelination and remyelination after injury. However, if mTORC1 was hyperactivated after myelination onset, radial hypermyelination was observed. At early developmental stages, physiologically high PI3K-Akt-mTORC1 signaling suppresses expression of Krox20 (Egr2), the master regulator of PNS myelination. This effect is mediated by S6K and contributes to control mechanisms that keep SCs in a not-fully differentiated state to ensure proper timing of myelination initiation. An ensuing decline in mTORC1 activity is crucial to allow myelination to start, while remaining mTORC1 activity drives myelin growth.
Collapse
Affiliation(s)
- Gianluca Figlia
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of TechnologyZürichSwitzerland
| | - Camilla Norrmén
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of TechnologyZürichSwitzerland
| | - Jorge A Pereira
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of TechnologyZürichSwitzerland
| | - Daniel Gerber
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of TechnologyZürichSwitzerland
| | - Ueli Suter
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of TechnologyZürichSwitzerland
| |
Collapse
|
129
|
Mount CW, Monje M. Wrapped to Adapt: Experience-Dependent Myelination. Neuron 2017; 95:743-756. [PMID: 28817797 PMCID: PMC5667660 DOI: 10.1016/j.neuron.2017.07.009] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 02/03/2023]
Abstract
Activity of the nervous system has long been recognized as a critical modulator of brain structure and function. Influences of experience on the cytoarchitecture and functional connectivity of neurons have been appreciated since the classic work of Hubel and Wiesel (1963; Wiesel and Hubel, 1963a, 1963b). In recent years, a similar structural plasticity has come to light for the myelinated infrastructure of the nervous system. While an innate program of myelin development proceeds independently of nervous system activity, increasing evidence supports a role for activity-dependent, plastic changes in myelin-forming cells that influence myelin structure and neurological function. Accumulating evidence of complementary and likely temporally overlapping activity-independent and activity-dependent modes of myelination are beginning to crystallize in a model of myelin plasticity, with broad implications for neurological function in health and disease.
Collapse
Affiliation(s)
| | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
130
|
Wesseling H, Elgersma Y, Bahn S. A brain proteomic investigation of rapamycin effects in the Tsc1+/- mouse model. Mol Autism 2017; 8:41. [PMID: 28775826 PMCID: PMC5540199 DOI: 10.1186/s13229-017-0151-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 06/14/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a rare monogenic disorder characterized by benign tumors in multiple organs as well as a high prevalence of epilepsy, intellectual disability and autism. TSC is caused by inactivating mutations in the TSC1 or TSC2 genes. Heterozygocity induces hyperactivation of mTOR which can be inhibited by mTOR inhibitors, such as rapamycin, which have proven efficacy in the treatment of TSC-associated symptoms. The aim of the present study was (1) to identify molecular changes associated with social and cognitive deficits in the brain tissue of Tsc1+/- mice and (2) to investigate the molecular effects of rapamycin treatment, which has been shown to ameliorate genotype-related behavioural deficits. METHODS Molecular alterations in the frontal cortex and hippocampus of Tsc1+/- and control mice, with or without rapamycin treatment, were investigated. A quantitative mass spectrometry-based shotgun proteomic approach (LC-MSE) was employed as an unbiased method to detect changes in protein levels. Changes identified in the initial profiling stage were validated using selected reaction monitoring (SRM). Protein Set Enrichment Analysis was employed to identify dysregulated pathways. RESULTS LC-MSE analysis of Tsc1+/- mice and controls (n = 30) identified 51 proteins changed in frontal cortex and 108 in the hippocampus. Bioinformatic analysis combined with targeted proteomic validation revealed several dysregulated molecular pathways. Using targeted assays, proteomic alterations in the hippocampus validated the pathways "myelination", "dendrite," and "oxidative stress", an upregulation of ribosomal proteins and the mTOR kinase. LC-MSE analysis was also employed on Tsc1+/- and wildtype mice (n = 34) treated with rapamycin or vehicle. Rapamycin treatment exerted a stronger proteomic effect in Tsc1+/- mice with significant changes (mainly decreased expression) in 231 and 106 proteins, respectively. The cellular pathways "oxidative stress" and "apoptosis" were found to be affected in Tsc1+/- mice and the cellular compartments "myelin sheet" and "neurofilaments" were affected by rapamycin treatment. Thirty-three proteins which were altered in Tsc1+/- mice were normalized following rapamycin treatment, amongst them oxidative stress related proteins, myelin-specific and ribosomal proteins. CONCLUSIONS Molecular changes in the Tsc1+/- mouse brain were more prominent in the hippocampus compared to the frontal cortex. Pathways linked to myelination and oxidative stress response were prominently affected and, at least in part, normalized following rapamycin treatment. The results could aid in the identification of novel drug targets for the treatment of cognitive, social and psychiatric symptoms in autism spectrum disorders. Similar pathways have also been implicated in other psychiatric and neurodegenerative disorders and could imply similar disease processes. Thus, the potential efficacy of mTOR inhibitors warrants further investigation not only for autism spectrum disorders but also for other neuropsychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Hendrik Wesseling
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT UK
| | - Ype Elgersma
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, 3000 CA The Netherlands
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT UK
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, 3000 CA The Netherlands
| |
Collapse
|
131
|
Integrin-Linked Kinase (ILK) Deletion Disrupts Oligodendrocyte Development by Altering Cell Cycle. J Neurosci 2017; 37:397-412. [PMID: 28077718 DOI: 10.1523/jneurosci.2113-16.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/28/2016] [Accepted: 11/15/2016] [Indexed: 01/29/2023] Open
Abstract
During development, oligodendrocytes are initially specified, after which oligodendrocyte precursor cells (OPCs) migrate and proliferate before differentiating into myelinating cells. Lineage-specific programming of oligodendrocytes results from sensing environmental cues through membrane-bound receptors and related intracellular signaling molecules. Integrin-linked kinase (ILK) is an important protein that is expressed at the inner margins of the plasma membrane and can mediate some of these signals. The current studies demonstrate that ILK deletion reduces the proliferation and differentiation of OPCs in the developing CNS. There was a significant decrease in the number of OPCs and mature oligodendrocytes throughout postnatal development in Olig1Cre+/- × ILKfl/fl mice. These changes were accompanied by reduced numbers of myelinated axons. Key proteins involved in cell cycle regulation were dysregulated. Cyclin D1/D3 and cyclin-dependent kinase 2/4 (cdc2/cdc4) were downregulated and the cell cycle inhibitor protein p27 Kip1 was upregulated. Therefore, ILK deletion impaired the developmental profile, proliferation, and differentiation of OPCs by altering the expression of regulatory cytoplasmic and nuclear factors. SIGNIFICANCE STATEMENT Integrin-linked kinase (ILK) is a scaffolding protein involved in integrating signals from the extracellular environment and communicating those signals to downstream effectors within cells. It has been proposed to regulate aspects of oligodendrocyte process extension and thereby myelination. However, the current studies demonstrate that it has an earlier impact on cells in this lineage. Knocking down ILK in Olig1-Cre-expressing cells reduces the pool of oligodendrocyte progenitor cells (OPCs). This smaller pool of OPCs results from altered cell cycle and reduced cell proliferation. These cells myelinate fewer axons than in wild-type mice and, in corpus callosum, the myelin is thinner than in controls. Interestingly, the smaller pool of spinal cord oligodendrocytes generates myelin that is of normal thickness.
Collapse
|
132
|
Li X, Ren C, Li S, Han R, Gao J, Huang Q, Jin K, Luo Y, Ji X. Limb Remote Ischemic Conditioning Promotes Myelination by Upregulating PTEN/Akt/mTOR Signaling Activities after Chronic Cerebral Hypoperfusion. Aging Dis 2017; 8:392-401. [PMID: 28840054 PMCID: PMC5524802 DOI: 10.14336/ad.2016.1227] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 12/27/2016] [Indexed: 12/31/2022] Open
Abstract
Limb Remote ischemic conditioning (LRIC) has been proved to be a promising neuroprotective method in white matter lesions after ischemia; however, its mechanism underlying protection after chronic cerebral hypoperfusion remains largely unknown. Here, we investigated whether LRIC promoted myelin growth by activating PI3K/Akt/mTOR signal pathway in a rat chronic hypoperfusion model. Thirty adult male Sprague Dawley underwent permanent double carotid artery (2VO), and limb remote ischemic conditioning was applied for 3 days after the 2VO surgery. Cognitive function, oligodendrocyte counts, myelin density, apoptosis and proliferation activity, as well as PTEN/Akt/mTOR signaling activity were determined 4 weeks after treatment. We found that LRIC significantly inhibited oligodendrocytes apoptosis (p<0.05), promoted myelination (p<0.01) in the corpus callosum and improved spatial learning impairment (p<0.05) at 4 weeks after chronic cerebral hypoperfusion. Oligodendrocytes proliferation, along with demyelination, in corpus callosum were not obviously affected by LRIC (p>0.05). Western blot analysis indicated that LRIC upregulated PTEN/Akt/mTOR signaling activities in corpus callosum (p<0.05). Our results suggest that LRIC exerts neuroprotective effect on white matter injuries through activating PTEN/Akt/mTOR signaling pathway after chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Xiaohua Li
- 1Institute of Hypoxia Medicine, Xuanwu hospital, Capital Medical University, Beijing 100053, China
| | - Changhong Ren
- 1Institute of Hypoxia Medicine, Xuanwu hospital, Capital Medical University, Beijing 100053, China.,6Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Sijie Li
- 5Emergency department, Xuanwu hospital, Capital Medical University, Beijing 100053, China
| | - Rongrong Han
- 1Institute of Hypoxia Medicine, Xuanwu hospital, Capital Medical University, Beijing 100053, China
| | - Jinhuan Gao
- 1Institute of Hypoxia Medicine, Xuanwu hospital, Capital Medical University, Beijing 100053, China
| | - Qingjian Huang
- 1Institute of Hypoxia Medicine, Xuanwu hospital, Capital Medical University, Beijing 100053, China
| | - Kunlin Jin
- 4Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, Texas 76107, USA
| | - Yinghao Luo
- 2Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xunming Ji
- 1Institute of Hypoxia Medicine, Xuanwu hospital, Capital Medical University, Beijing 100053, China.,3Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China.,6Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| |
Collapse
|
133
|
Cholesterol Biosynthesis Supports Myelin Gene Expression and Axon Ensheathment through Modulation of P13K/Akt/mTor Signaling. J Neurosci 2017; 36:7628-39. [PMID: 27445141 DOI: 10.1523/jneurosci.0726-16.2016] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/06/2016] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Myelin, which ensheaths and insulates axons, is a specialized membrane highly enriched with cholesterol. During myelin formation, cholesterol influences membrane fluidity, associates with myelin proteins such as myelin proteolipid protein, and assembles lipid-rich microdomains within membranes. Surprisingly, cholesterol also is required by oligodendrocytes, glial cells that make myelin, to express myelin genes and wrap axons. How cholesterol mediates these distinct features of oligodendrocyte development is not known. One possibility is that cholesterol promotes myelination by facilitating signal transduction within the cell, because lipid-rich microdomains function as assembly points for signaling molecules. Signaling cascades that localize to cholesterol-rich regions of the plasma membrane include the PI3K/Akt pathway, which acts upstream of mechanistic target of rapamycin (mTOR), a major driver of myelination. Through manipulation of cholesterol levels and PI3K/Akt/mTOR signaling in zebrafish, we discovered that mTOR kinase activity in oligodendrocytes requires cholesterol. Drawing on a combination of pharmacological and rescue experiments, we provide evidence that mTOR kinase activity is required for cholesterol-mediated myelin gene expression. On the other hand, cholesterol-dependent axon ensheathment is mediated by Akt signaling, independent of mTOR kinase activity. Our data reveal that cholesterol-dependent myelin gene expression and axon ensheathment are facilitated by distinct signaling cascades downstream of Akt. Because mTOR promotes cholesterol synthesis, our data raise the possibility that cholesterol synthesis and mTOR signaling engage in positive feedback to promote the formation of myelin membrane. SIGNIFICANCE STATEMENT The speed of electrical impulse movement through axons is increased by myelin, a specialized, cholesterol-rich glial cell membrane that tightly wraps axons. During development, myelin membrane grows dramatically, suggesting a significant demand on mechanisms that produce and assemble myelin components, while it spirally wraps axons. Our studies indicate that cholesterol is necessary for both myelin growth and axon wrapping. Specifically, we found that cholesterol facilitates signaling mediated by the PI3K/Akt/mTOR pathway, a powerful driver of myelination. Because mTOR promotes the expression of genes necessary for cholesterol synthesis, cholesterol formation and PI3K/Akt/mTOR signaling might function as a feedforward mechanism to produce the large amounts of myelin membrane necessary for axon ensheathment.
Collapse
|
134
|
Loss of Tuberous Sclerosis Complex1 in Adult Oligodendrocyte Progenitor Cells Enhances Axon Remyelination and Increases Myelin Thickness after a Focal Demyelination. J Neurosci 2017; 37:7534-7546. [PMID: 28694334 DOI: 10.1523/jneurosci.3454-16.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 06/09/2017] [Accepted: 06/17/2017] [Indexed: 01/09/2023] Open
Abstract
Although the mammalian target of rapamycin (mTOR) is an essential regulator of developmental oligodendrocyte differentiation and myelination, oligodendrocyte-specific deletion of tuberous sclerosis complex (TSC), a major upstream inhibitor of mTOR, surprisingly also leads to hypomyelination during CNS development. However, the function of TSC has not been studied in the context of remyelination. Here, we used the inducible Cre-lox system to study the function of TSC in the remyelination of a focal, lysolecithin-demyelinated lesion in adult male mice. Using two different mouse models in which Tsc1 is deleted by Cre expression in oligodendrocyte progenitor cells (OPCs) or in premyelinating oligodendrocytes, we reveal that deletion of Tsc1 affects oligodendroglia differently depending on the stage of the oligodendrocyte lineage. Tsc1 deletion from NG2+ OPCs accelerated remyelination. Conversely, Tsc1 deletion from proteolipid protein (PLP)-positive oligodendrocytes slowed remyelination. Contrary to developmental myelination, there were no changes in OPC or oligodendrocyte numbers in either model. Our findings reveal a complex role for TSC in oligodendrocytes during remyelination in which the timing of Tsc1 deletion is a critical determinant of its effect on remyelination. Moreover, our findings suggest that TSC has different functions in developmental myelination and remyelination.SIGNIFICANCE STATEMENT Myelin loss in demyelinating disorders such as multiple sclerosis results in disability due to loss of axon conductance and axon damage. Encouragingly, the nervous system is capable of spontaneous remyelination, but this regenerative process often fails. Many chronically demyelinated lesions have oligodendrocyte progenitor cells (OPCs) within their borders. It is thus of great interest to elucidate mechanisms by which we might enhance endogenous remyelination. Here, we provide evidence that deletion of Tsc1 from OPCs, but not differentiating oligodendrocytes, is beneficial to remyelination. This finding contrasts with the loss of oligodendroglia and hypomyelination seen with Tsc1 or Tsc2 deletion in the oligodendrocyte lineage during CNS development and points to important differences in the regulation of developmental myelination and remyelination.
Collapse
|
135
|
Matrine promotes oligodendrocyte development in CNS autoimmunity through the PI3K/Akt signaling pathway. Life Sci 2017; 180:36-41. [PMID: 28499934 DOI: 10.1016/j.lfs.2017.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 01/21/2023]
Abstract
AIMS Matrine (MAT), a quinolizidine alkaloid derived from the herb Radix Sophorae flavescens, has been recently found to be beneficial in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, mainly through its anti-inflammatory effect. In the present study, we tested the effect of MAT on ongoing EAE and defined possible mechanisms underlying its effects on myelination and oligodendrocytes. MAIN METHODS EAE was induced in C57BL/6 mice and MAT treatment was started at disease onset. Clinical scores were monitored daily; spinal cords and the corpus callosum brain region of mice were harvested on day 23 p.i. for inflammatory infiltration and demyelination of the central nervous system. Myelin content and the development of oligodendrocytes and their precursors were determined by immunostaining, and expression of p-Akt, p-mTOR, p-PI3K, and p-P70S6 was determined by Western blot. KEY FINDINGS MAT effectively suppressed EAE severity and increased the expression of proteolipid protein, a myelin protein that is a marker of CNS myelin. MAT treatment largely increased the number of mature oligodendrocytes, and significantly activated the PI3K/Akt/mTOR signaling pathway, which is required for oligodendrocyte survival and axon myelination. SIGNIFICANCE These findings demonstrate a beneficial effect of MAT on oligodendrocyte differentiation and myelination during EAE, most likely through activating the PI3K/Akt/mTOR signaling pathway.
Collapse
|
136
|
Onore C, Yang H, Van de Water J, Ashwood P. Dynamic Akt/mTOR Signaling in Children with Autism Spectrum Disorder. Front Pediatr 2017; 5:43. [PMID: 28361047 PMCID: PMC5350147 DOI: 10.3389/fped.2017.00043] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/15/2017] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a behaviorally defined disorder affecting 1 in 68 children. Currently, there is no known cause for the majority of ASD cases nor are there physiological diagnostic tools or biomarkers to aid behavioral diagnosis. Whole-genome linkage studies, genome-wide association studies, copy number variation screening, and SNP analyses have identified several ASD candidate genes, but which vary greatly among individuals and family clusters, suggesting that a variety of genetic mutations may result in a common pathology or alter a common mechanistic pathway. The Akt/mammalian target of rapamycin (mTOR) pathway is involved in many cellular processes including synaptic plasticity and immune function that can alter neurodevelopment. In this study, we examined the activity of the Akt/mTOR pathway in cells isolated from children with ASD and typically developing controls. We observed higher activity of mTOR, extracellular receptor kinase, and p70S6 kinase and lower activity of glycogen synthase kinase 3 (GSK3)α and tuberin (TSC2) in cells from children with ASD. These data suggest a phosphorylation pattern indicative of higher activity in the Akt/mTOR pathway in children with general/idiopathic ASD and may suggest a common pathological pathway of interest for ASD.
Collapse
Affiliation(s)
- Charity Onore
- The M.I.N.D. Institute, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Houa Yang
- The M.I.N.D. Institute, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Judy Van de Water
- The M.I.N.D. Institute, University of California Davis, Davis, CA, USA
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, USA
| | - Paul Ashwood
- The M.I.N.D. Institute, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| |
Collapse
|
137
|
Abnormal Trajectory of Intracortical Myelination in Schizophrenia Implicates White Matter in Disease Pathophysiology and the Therapeutic Mechanism of Action of Antipsychotics. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 3:454-462. [PMID: 29735155 DOI: 10.1016/j.bpsc.2017.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/08/2017] [Accepted: 03/05/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND Postmortem and imaging studies provide converging evidence that the frontal lobe myelination trajectory is dysregulated in schizophrenia (SZ) and suggest that early in treatment, antipsychotic medications increase intracortical myelin (ICM). We used magnetic resonance imaging to examine whether the ICM trajectory in SZ is dysregulated and altered by antipsychotic treatment. METHODS We examined 93 subjects with SZ (64 men and 29 women) taking second-generation oral antipsychotics with medication exposures of 0-333 months in conjunction with 80 healthy control subjects (52 men and 28 women). Frontal lobe ICM volume was estimated using a novel dual contrast magnetic resonance imaging method that combines two images that track different tissue components. RESULTS When plotted against oral antipsychotic exposure duration, ICM of subjects with SZ was higher as a function of medication exposure during the first year of treatment but declined thereafter. In the age range examined, ICM of subjects with SZ was lower with increased age, while ICM of healthy control subjects was not. CONCLUSIONS In adults with SZ, the relationship between length of exposure to oral second-generation antipsychotics and ICM was positive during the first year of treatment but was negative after this initial period, consistent with suboptimal later adherence after initial adherence. This ICM trajectory resembles clinically observed antipsychotic response trajectory with high rates of remission in the first year followed by progressively lower response rates. The results support postmortem evidence that SZ pathophysiology involves ICM deficits and suggest that correcting these deficits may be an important mechanism of action for antipsychotics.
Collapse
|
138
|
Luo F, Herrup K, Qi X, Yang Y. Inhibition of Drp1 hyper-activation is protective in animal models of experimental multiple sclerosis. Exp Neurol 2017; 292:21-34. [PMID: 28238799 DOI: 10.1016/j.expneurol.2017.02.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 12/20/2022]
Abstract
Multiple Sclerosis (MS), a leading neurological disorder of young adults, is characterized by the loss of oligodendrocytes (OLs), demyelination, inflammation and neuronal degeneration. Here we show that dynamin-related protein 1 (Drp1), a mitochondrial fission protein, is activated in primary OL cells exposed to TNF-α induced inflammation or oxidative stress, as well as in EAE-immunized and cuprizone toxicity-induced demyelinating mouse models. Inhibition of Drp1 hyper-activation by the selective inhibitor P110 abolishes Drp1 translocation to the mitochondria, reduces mitochondrial fragmentation and stems necrosis in primary OLs exposed to TNF-α and H2O2. Notably, in both types of mouse models, treatment with P110 significantly reduces the loss of mature OLs and demyelination, attenuates the number of active microglial cells and astrocytes, yet has no effect on the differentiation of oligodendrocyte precursor cells. Drp1 activation appears to be mediated through the RIPK1/RIPK3/MLKL/PGAM5 pathway during TNF-α-induced oligodendroglia necroptosis. Our results demonstrate a critical role of Drp1 hyper-activation in OL cell death and suggest that an inhibitor of Drp1 hyper-activation such as P110 is worth exploring for its ability to halt or slow the progression of MS.
Collapse
Affiliation(s)
- Fucheng Luo
- Department of Neurology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Karl Herrup
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA; Center for Mitochondria Diseases, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| | - Yan Yang
- Department of Neurology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA; Center for Translational Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| |
Collapse
|
139
|
Rajendran R, Giraldo-Velásquez M, Stadelmann C, Berghoff M. Oligodendroglial fibroblast growth factor receptor 1 gene targeting protects mice from experimental autoimmune encephalomyelitis through ERK/AKT phosphorylation. Brain Pathol 2017; 28:212-224. [PMID: 28117910 DOI: 10.1111/bpa.12487] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/18/2017] [Indexed: 01/17/2023] Open
Abstract
Fibroblast growth factors (FGFs) exert diverse biological effects by binding and activation of specific fibroblast growth factor receptors (FGFRs). FGFs and FGFRs have been implicated in demyelinating pathologies including multiple sclerosis. In vitro activation of the FGF2/FGFR1 pathway results in downregulation of myelin proteins. FGF1, 2 and 9 have been shown to be involved in the pathology of multiple sclerosis. Recent studies on the function of oligodendroglial FGFR1 in a model of toxic demyelination showed that deletion of FGFR1 led to increased remyelination and preservation of axonal density and an increased number of mature oligodendrocytes. In the present study the in vivo function of oligodendroglial FGFR1 was characterized using an oligodendrocyte-specific genetic approach in the most frequently used model of multiple sclerosis the MOG35-55 -induced EAE. Oligodendroglial FGFR1 deficient mice (referred to as Fgfr1ind-/- ) showed a significantly ameliorated disease course in MOG35-55 -induced EAE. Less myelin and axonal loss, and reduced lymphocyte and macrophage/microglia infiltration were found in Fgfr1ind-/- mice. The reduction in disease severity in Fgfr1ind-/- mice was accompanied by ERK/AKT phosphorylation, and increased expression of BDNF and TrkB. Reduced proinflammatory cytokine and chemokine expression was seen in Fgfr1ind-/- mice compared with control mice. Considering that FGFR inhibitors are used in cancer trials, the oligodendroglial FGFR1 pathway may provide a new target for therapy in multiple sclerosis.
Collapse
Affiliation(s)
- Ranjithkumar Rajendran
- Department of Neurology, University of Giessen, Klinikstrasse 33, Giessen, 35385, Germany
| | | | - Christine Stadelmann
- Institute of Neuropathology, University of Göttingen, Robert-Koch-Strasse 40, Göttingen, 37099, Germany
| | - Martin Berghoff
- Department of Neurology, University of Giessen, Klinikstrasse 33, Giessen, 35385, Germany
| |
Collapse
|
140
|
Guo W, Li Y, Sun C, Duan HQ, Liu S, Xu YQ, Feng SQ. Neurotrophin-4 induces myelin protein zero expression in cultured Schwann cells via the TrkB/PI3K/Akt/mTORC1 pathway. Anim Cells Syst (Seoul) 2017; 21:84-92. [PMID: 30460055 PMCID: PMC6138314 DOI: 10.1080/19768354.2017.1289980] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/16/2016] [Accepted: 01/17/2017] [Indexed: 01/18/2023] Open
Abstract
Myelin formation during peripheral nervous system development, as well as myelin repair after injury and in disease, requires multiple intrinsic and extrinsic signals. Neurotrophin-4 (NT-4) is a member of the neurotrophin family, which regulates the development of neuronal networks by participating in the growth of neuronal processes, synaptic development and plasticity, neuronal survival, and differentiation. However, the intracellular signaling pathways by which NT-4 participates in myelination by Schwann cells remain elusive. In this study, we examined the effects of NT-4 on the expression of compact myelin proteins in cultured Schwann cells. Using real-time quantitative RT-PCR and western blotting, we found that NT-4 could significantly enhance the expression of myelin protein zero (MPZ) but not the expression of myelin basic protein or peripheral myelin protein 22. Further, knockdown of truncated TrkB with small interfering RNA could eliminate the effect of NT-4 on MPZ expression. Moreover, we demonstrated that the NT-4-enhanced MPZ expression depended on Akt and mTORC1 signaling. Taken together, these results suggest that NT-4 binds TrkB to enhance the expression of MPZ in Schwann cells, probably through the PI3K/Akt/mTORC1 signaling pathway, thus contributing to myelination.
Collapse
Affiliation(s)
- Wei Guo
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Yan Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Chao Sun
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Hui-Quan Duan
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Shen Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Yun-Qiang Xu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Shi-Qing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| |
Collapse
|
141
|
Boerboom A, Dion V, Chariot A, Franzen R. Molecular Mechanisms Involved in Schwann Cell Plasticity. Front Mol Neurosci 2017; 10:38. [PMID: 28261057 PMCID: PMC5314106 DOI: 10.3389/fnmol.2017.00038] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/31/2017] [Indexed: 01/09/2023] Open
Abstract
Schwann cell incredible plasticity is a hallmark of the utmost importance following nerve damage or in demyelinating neuropathies. After injury, Schwann cells undergo dedifferentiation before redifferentiating to promote nerve regeneration and complete functional recovery. This review updates and discusses the molecular mechanisms involved in the negative regulation of myelination as well as in the reprogramming of Schwann cells taking place early following nerve lesion to support repair. Significant advance has been made on signaling pathways and molecular components that regulate SC regenerative properties. These include for instance transcriptional regulators such as c-Jun or Notch, the MAPK and the Nrg1/ErbB2/3 pathways. This comprehensive overview ends with some therapeutical applications targeting factors that control Schwann cell plasticity and highlights the need to carefully modulate and balance this capacity to drive nerve repair.
Collapse
Affiliation(s)
| | - Valérie Dion
- GIGA-Neurosciences, University of Liège Liège, Belgium
| | - Alain Chariot
- GIGA-Molecular Biology of Diseases, University of LiègeLiège, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO)Wavre, Belgium
| | | |
Collapse
|
142
|
Akkermann R, Aprico A, Perera AA, Bujalka H, Cole AE, Xiao J, Field J, Kilpatrick TJ, Binder MD. The TAM receptor Tyro3 regulates myelination in the central nervous system. Glia 2017; 65:581-591. [PMID: 28145605 DOI: 10.1002/glia.23113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/05/2016] [Accepted: 12/20/2016] [Indexed: 11/12/2022]
Abstract
Myelin is an essential component of the mammalian nervous system, facilitating rapid conduction of electrical impulses by axons, as well as providing trophic support to neurons. Within the central nervous system, the oligodendrocyte is the specialized neural cell responsible for producing myelin by a process that is thought to be regulated by both activity dependent and independent mechanisms but in incompletely understood ways. We have previously identified that the protein Gas6, a ligand for a family of tyrosine kinase receptors known as the TAM (Tyro3, Axl, and Mertk) receptors, directly increases oligodendrocyte induced myelination in vitro. Gas6 can bind to and activate all three TAM receptors, but the high level of expression of Tyro3 on oligodendrocytes makes this receptor the principal candidate for transducing the pro-myelinating effect of Gas6. In this study, we establish that in the absence of Tyro3, the pro-myelinating effect of Gas6 is lost, that developmental myelination is delayed and that the myelin produced is thinner than normal. We show that this effect is specific to the myelination process and not due to changes in the proliferation or differentiation of oligodendrocyte precursor cells. We have further demonstrated that the reduction in myelination is due to the loss of Tyro3 on oligodendrocytes, and this effect may be mediated by activation of Erk1. Collectively, our findings indicate the critical importance of Tyro3 in potentiating central nervous system myelination. GLIA 2017 GLIA 2017;65:581-591.
Collapse
Affiliation(s)
- Rainer Akkermann
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Andrea Aprico
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade (Cnr Genetics Lane), Parkville, Victoria, 3052, Australia
| | - Ashwyn A Perera
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade (Cnr Genetics Lane), Parkville, Victoria, 3052, Australia
| | - Helena Bujalka
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Alistair E Cole
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Junhua Xiao
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Judith Field
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia.,The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade (Cnr Genetics Lane), Parkville, Victoria, 3052, Australia
| | - Trevor J Kilpatrick
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia.,The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade (Cnr Genetics Lane), Parkville, Victoria, 3052, Australia
| | - Michele D Binder
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia.,The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade (Cnr Genetics Lane), Parkville, Victoria, 3052, Australia
| |
Collapse
|
143
|
He F, Peng Y, Yang Z, Ge Z, Tian Y, Ma T, Li H. Activated ClC-2 Inhibits p-Akt to Repress Myelination in GDM Newborn Rats. Int J Biol Sci 2017; 13:179-188. [PMID: 28255270 PMCID: PMC5332872 DOI: 10.7150/ijbs.17716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022] Open
Abstract
This study aims to investigate the effect and mechanism of type 2 voltage-gated chloride channel (ClC-2) on myelin development of newborn rats' cerebral white matter with gestational diabetes mellitus (GDM). In this study, GDM model was induced in late pregnant rat model. The alteration of ClC-2 expression in various developmental stages of cerebral white matter with/without being exposed to high glucose was analyzed using RT-PCR, active oxygen detection, TUNEL staining, Western Blot as well as immuno-histochemical staining. Our results showed that ClC-2 mRNA and protein expressions in GDM group were significantly increased in white matter of fetal rats after E18 stage, and elevated the level of TNF-α and iNOS in white matter at P0 and P3 stage of newborn rats. Meanwhile, In GDM group, reactive oxygen species (ROS) levels of the white matter at E18, P0, and P3 stage were significantly higher than control group. Furthermore, the expression level of myelin transcription factor Olig2 at P0 stage and CNPase at P3 stage were strikingly lower than that of the control group. In GDM group, ClC-2 expression in the corpus callosum (CC) and cingulate gyrus (CG) regains, and TUNEL positive cell number were increased at P0 and P3 stage. However, PDGFα positive cell number at P0 stage and CNPase expression at P3 stage were significantly decreased. Caspase-3 was also increased in those white matter regions in GDM group, but p-Akt expression was inhibited. While DIDS (a chloride channel blocker) can reverse these changes. In conclusion, ClC-2 and caspase-3 were induced by GDM, which resulted in apoptosis and myelination inhibition. The effect was caused by repressing PI3K-Akt signaling pathway. Application of ClC-2 inhibitor DIDS showed protective effects on cerebral white matter damage stimulated by high glucose concentration.
Collapse
Affiliation(s)
- Feixiang He
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China.; Battalion 5 of Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Yuchen Peng
- Battalion 4 of Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Zhi Yang
- Battalion 5 of Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Zilu Ge
- Battalion 5 of Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Yanping Tian
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Teng Ma
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Hongli Li
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| |
Collapse
|
144
|
Maggipinto MJ, Ford J, Le KH, Tutolo JW, Furusho M, Wizeman JW, Bansal R, Barbarese E. Conditional knockout of TOG results in CNS hypomyelination. Glia 2017; 65:489-501. [PMID: 28063167 DOI: 10.1002/glia.23106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/29/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022]
Abstract
The tumor overexpressed gene (TOG) protein is present in RNA granules that transport myelin basic protein (MBP) mRNA in oligodendrocyte processes to the myelin compartment. Its role was investigated by conditionally knocking it out (KO) in myelinating glia in vivo. TOG KO mice have severe motor deficits that are already apparent at the time of weaning. This phenotype correlates with a paucity of myelin in several CNS regions, the most severe being in the spinal cord. In the TOG KO optic nerve <30% of axons are myelinated. The number of oligodendrocytes in the corpus callosum, cerebellum, and cervical spinal cord is normal. In the absence of TOG, the most patent biochemical change is a large reduction in MBP content, yet normal amounts of MBP transcripts are found in the brain of affected animals. MBP transcripts are largely confined to the cell body of the oligodendrocytes in the TOG KO in contrast to the situation in wild type mice where they are found in the processes of the oligodendrocytes and in the myelin compartment. These findings indicate that MBP gene expression involves a post-transcriptional TOG-dependent step. TOG may be necessary for MBP mRNA assembly into translation permissive granules, and/or for transport to preferred sites of translation. GLIA 2017;65:489-501.
Collapse
Affiliation(s)
- Michael J Maggipinto
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Joshay Ford
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Kristine H Le
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Jessica W Tutolo
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Miki Furusho
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - John W Wizeman
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Rashmi Bansal
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Elisa Barbarese
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| |
Collapse
|
145
|
Quintes S, Brinkmann BG. Transcriptional inhibition in Schwann cell development and nerve regeneration. Neural Regen Res 2017; 12:1241-1246. [PMID: 28966633 PMCID: PMC5607813 DOI: 10.4103/1673-5374.213537] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Schwann cells, the myelinating glial cells of the peripheral nervous system are remarkably plastic after nerve trauma. Their transdifferentiation into specialized repair cells after injury shares some features with their development from the neural crest. Both processes are governed by a tightly regulated balance between activators and inhibitors to ensure timely lineage progression and allow re-maturation after nerve injury. Functional recovery after injury is very successful in rodents, however, in humans, lack of regeneration after nerve trauma and loss of function as the result of peripheral neuropathies represents a significant problem. Our understanding of the basic molecular machinery underlying Schwann cell maturation and plasticity has made significant progress in recent years and novel players have been discovered. While the transcriptional activators of Schwann cell development and nerve repair have been well defined, the mechanisms counteracting negative regulation of (re-)myelination are less well understood. Recently, transcriptional inhibition has emerged as a new regulatory mechanism in Schwann cell development and nerve repair. This mini-review summarizes some of the regulatory mechanisms controlling both processes and the novel concept of “inhibiting the inhibitors” in the context of Schwann cell plasticity.
Collapse
Affiliation(s)
- Susanne Quintes
- Max-Planck-Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Bastian G Brinkmann
- Max-Planck-Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany
| |
Collapse
|
146
|
Giacoppo S, Pollastro F, Grassi G, Bramanti P, Mazzon E. Target regulation of PI3K/Akt/mTOR pathway by cannabidiol in treatment of experimental multiple sclerosis. Fitoterapia 2016; 116:77-84. [PMID: 27890794 DOI: 10.1016/j.fitote.2016.11.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/11/2016] [Accepted: 11/19/2016] [Indexed: 02/07/2023]
Abstract
This study was aimed to investigate whether treatment with purified cannabidiol (CBD) may counteract the development of experimental multiple sclerosis (MS), by targeting the PI3K/Akt/mTOR pathway. Although the PI3K/Akt/mTOR pathway was found to be activated by cannabinoids in several immune and non-immune cells, currently, there is no data about the effects of CBD in the PI3K/Akt/mTOR activity in MS. Experimental Autoimmune Encephalomyelitis (EAE), the most common model of MS, was induced in C57BL/6 mice by immunization with myelin oligodendroglial glycoprotein peptide (MOG)35-55. After EAE onset, which occurs approximately 14days after disease induction, mice were daily intraperitoneally treated with CBD (10mg/kg mouse) and observed for clinical signs of EAE. At 28days from EAE-induction, mice were euthanized and spinal cord tissues were sampled to perform immunohistochemical evaluations and western blot analysis. Our results showed a clear downregulation of the PI3K/Akt/mTOR pathway following EAE induction. CBD treatment was able to restore it, increasing significantly the phosphorylation of PI3K, Akt and mTOR. Also, an increased level of BNDF in CBD-treated mice seems to be involved in the activation of PI3K/Akt/mTOR pathway. In addition, our data demonstrated that therapeutic efficacy of CBD treatment is due to reduction of pro-inflammatory cytokines, like IFN-γ and IL-17 together with an up-regulation of PPARγ. Finally, CBD was found to promote neuronal survival by inhibiting JNK and p38 MAP kinases. These results provide an interesting discovery about the regulation of the PI3K/Akt/mTOR pathway by cannabidiol administration, that could be a new potential therapeutic target for MS management.
Collapse
Affiliation(s)
- Sabrina Giacoppo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Federica Pollastro
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Gianpaolo Grassi
- Council for Research and Experimentation in Agriculture - Research Centre for Industrial Crops (CRA-CIN), Rovigo, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
147
|
Purger D, Gibson EM, Monje M. Myelin plasticity in the central nervous system. Neuropharmacology 2016; 110:563-573. [DOI: 10.1016/j.neuropharm.2015.08.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 07/20/2015] [Accepted: 08/01/2015] [Indexed: 12/31/2022]
|
148
|
Wang LC, Kennedy TE, Almazan G. A novel function of TBK1 as a target of Cdon in oligodendrocyte differentiation and myelination. J Neurochem 2016; 140:451-462. [PMID: 27797401 DOI: 10.1111/jnc.13882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/21/2016] [Accepted: 10/25/2016] [Indexed: 11/28/2022]
Abstract
During central nervous system development, oligodendrocyte progenitors elaborate multiple branched processes to contact axons and initiate myelination. Using cultured primary rat oligodendrocytes (OLGs), we have recently demonstrated that a cell surface protein belonging to the immunoglobulin superfamily, cell adhesion molecule-related, down-regulated by oncogenes (Cdon), is important in initiating OLG differentiation and axon myelination by promoting the formation of branched cellular processes; however, the molecular mechanism by which Cdon regulates OLG differentiation is not known. Here, using Cdon immunoprecipitation (IP) and liquid chromatography-tandem mass spectrometry analysis, we identified serine/threonine kinase TANK-binding kinase 1 (TBK1) as a candidate novel target of Cdon. We confirmed this interaction using co-IP and immunofluorescence with TBK1 antibodies, showing that TBK1 partly co-localizes with Cdon along cellular processes in puncta-like structures. We show that TBK1 is expressed throughout OLG differentiation, and surprisingly, that levels of phosphorylated TBK1 (ser172) increase during OLG maturation, while total levels of TBK1 protein decrease. To investigate function, TBK1 expression was knocked down using siRNA in OLG primary cultures, reducing protein levels by 69%. Two myelin-specific proteins, myelin basic protein and myelin-associated glycoprotein, were similarly reduced when examined at day 2 and day 4 of OLG differentiation. Reduced Cdon or TBK1 expression also decreased Akt phosphorylation at Threonine 308 in OLG. Our findings provide evidence that a Cdon-TBK1 complex is associated with Akt phosphorylation and early OLG differentiation.
Collapse
Affiliation(s)
- Li-Chun Wang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Guillermina Almazan
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
149
|
Verden D, Macklin WB. Neuroprotection by central nervous system remyelination: Molecular, cellular, and functional considerations. J Neurosci Res 2016; 94:1411-1420. [PMID: 27618492 DOI: 10.1002/jnr.23923] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/09/2016] [Accepted: 08/24/2016] [Indexed: 12/27/2022]
Abstract
Oligodendrocytes and their myelin sheaths play an intricate role in axonal health and function. The prevalence of white matter pathology in a wide variety of central nervous system disorders has gained attention in recent years. Remyelination has therefore become a major target of therapeutic research, with the aim of protecting axons from further damage. The axon-myelin unit is elaborate, and demyelination causes profound changes in axonal molecular domains, signal transmission, and metabolism. Remyelination is known to restore some of these changes, but many of its outcomes remain unknown. Understanding how different aspects of the axon-myelin unit are restored by remyelination is important for making effective, targeted therapeutics for white matter dysfunction. Additionally, understanding how subtle deficits relate to axonal function during demyelination and remyelination may provide clues into the impact of myelin on neuronal circuits. In this review, we discuss the current knowledge of the neuroprotective effects of remyelination, as well as gaps in our knowledge. Finally, we propose systems with unique myelin profiles that may serve as useful models for investigating remyelination efficacy. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dylan Verden
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
150
|
Akt Regulates Axon Wrapping and Myelin Sheath Thickness in the PNS. J Neurosci 2016; 36:4506-21. [PMID: 27098694 DOI: 10.1523/jneurosci.3521-15.2016] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/02/2016] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED The signaling pathways that regulate myelination in the PNS remain poorly understood. Phosphatidylinositol-4,5-bisphosphate 3-kinase 1A, activated in Schwann cells by neuregulin and the extracellular matrix, has an essential role in the early events of myelination. Akt/PKB, a key effector of phosphatidylinositol-4,5-bisphosphate 3-kinase 1A, was previously implicated in CNS, but not PNS myelination. Here we demonstrate that Akt plays a crucial role in axon ensheathment and in the regulation of myelin sheath thickness in the PNS. Pharmacological inhibition of Akt in DRG neuron-Schwann cell cocultures dramatically decreased MBP and P0 levels and myelin sheath formation without affecting expression of Krox20/Egr2, a key transcriptional regulator of myelination. Conversely, expression of an activated form of Akt in purified Schwann cells increased expression of myelin proteins, but not Krox20/Egr2, and the levels of activated Rac1. Transgenic mice expressing a membrane-targeted, activated form of Akt under control of the 2',3'-cyclic nucleotide 3'-phosphodiesterase promoter, exhibited thicker PNS and CNS myelin sheaths, and PNS myelin abnormalities, such as tomacula and myelin infoldings/outfoldings, centered around the paranodes and Schmidt Lanterman incisures. These effects were corrected by rapamycin treatmentin vivo Importantly, Akt activity in the transgenic mice did not induce myelination of nonmyelinating Schwann cells in the sympathetic trunk or Remak fibers of the dorsal roots, although, in those structures, they wrapped membranes redundantly around axons. Together, our data indicate that Akt is crucial for PNS myelination driving axonal wrapping by unmyelinated and myelinated Schwann cells and enhancing myelin protein synthesis in myelinating Schwann cells. SIGNIFICANCE STATEMENT Although the role of the key serine/threonine kinase Akt in promoting CNS myelination has been demonstrated, its role in the PNS has not been established and remains uncertain. This work reveals that Akt controls several key steps of the PNS myelination. First, its activity promotes membrane production and axonal wrapping independent of a transcriptional effect. In myelinated axons, it also enhances myelin thickness through the mTOR pathway. Finally, sustained Akt activation in Schwann cells leads to hypermyelination/dysmyelination, mimicking some features present in neuropathies, such as hereditary neuropathy with liability to pressure palsies or demyelinating forms of Charcot-Marie-Tooth disease. Together, these data demonstrate the role of Akt in regulatory mechanisms underlying axonal wrapping and myelination in the PNS.
Collapse
|