101
|
Turovsky E, Karagiannis A, Abdala AP, Gourine AV. Impaired CO2 sensitivity of astrocytes in a mouse model of Rett syndrome. J Physiol 2015; 593:3159-68. [PMID: 25981852 PMCID: PMC4532534 DOI: 10.1113/jp270369] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/11/2015] [Indexed: 12/13/2022] Open
Abstract
Rett syndrome, a prototypical neurological disorder caused by loss of function of the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2) gene, is associated with a severely disordered breathing pattern and reduced ventilatory CO2 sensitivity. In a mouse model of Rett syndrome (MeCP2 knockout), re-introduction of the MeCP2 gene selectively in astrocytes rescues normal respiratory phenotype. In the present study we determined whether the metabolic and/or signalling functions of astrocytes are affected by testing the hypotheses that in conditions of MeCP2 deficiency, medullary astrocytes are unable to produce/release appropriate amounts of lactate or detect changes in PCO2/[H(+) ], or both. No differences in tonic or hypoxia-induced release of lactate from the ventral surface of the medulla oblongata or cerebral cortex in brain slices of MeCP2-knockout and wild-type mice were found. In brainstem slices of wild-type mice, respiratory acidosis triggered robust elevations in [Ca(2+) ]i in astrocytes residing near the ventral surface of the medulla oblongata. The magnitude of CO2 -induced [Ca(2+) ]i responses in medullary astrocytes was markedly reduced in conditions of MeCP2 deficiency, whereas [Ca(2+) ]i responses to ATP were unaffected. These data suggest that (i) metabolic function of astrocytes in releasing lactate into the extracellular space is not affected by MeCP2 deficiency, and (ii) MeCP2 deficiency impairs the ability of medullary astrocytes to sense changes in PCO2/[H(+) ]. Taken together with the evidence of severely blunted ventilatory sensitivity to CO2 in mice with conditional MeCP2 deletion in astroglia, these data support the hypothesis of an important role played by astrocytes in central respiratory CO2 /pH chemosensitivity.
Collapse
Affiliation(s)
- Egor Turovsky
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.,Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Anastassios Karagiannis
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ana Paula Abdala
- School of Physiology & Pharmacology, University of Bristol, Bristol, BS8 1TD, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
102
|
Andoh-Noda T, Akamatsu W, Miyake K, Matsumoto T, Yamaguchi R, Sanosaka T, Okada Y, Kobayashi T, Ohyama M, Nakashima K, Kurosawa H, Kubota T, Okano H. Differentiation of multipotent neural stem cells derived from Rett syndrome patients is biased toward the astrocytic lineage. Mol Brain 2015; 8:31. [PMID: 26012557 PMCID: PMC4446051 DOI: 10.1186/s13041-015-0121-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/30/2015] [Indexed: 12/23/2022] Open
Abstract
Background Rett syndrome (RTT) is one of the most prevalent neurodevelopmental disorders in females, caused by de novo mutations in the X-linked methyl CpG-binding protein 2 gene, MECP2. Although abnormal regulation of neuronal genes due to mutant MeCP2 is thought to induce autistic behavior and impaired development in RTT patients, precise cellular mechanisms underlying the aberrant neural progression remain unclear. Results Two sets of isogenic pairs of either wild-type or mutant MECP2-expressing human induced pluripotent stem cell (hiPSC) lines were generated from a single pair of 10-year-old RTT-monozygotic (MZ) female twins. Mutant MeCP2-expressing hiPSC lines did not express detectable MeCP2 protein during any stage of differentiation. The lack of MeCP2 reflected altered gene expression patterns in differentiated neural cells rather than in undifferentiated hiPSCs, as assessed by microarray analysis. Furthermore, MeCP2 deficiency in the neural cell lineage increased astrocyte-specific differentiation from multipotent neural stem cells. Additionally, chromatin immunoprecipitation (ChIP) and bisulfite sequencing assays indicated that anomalous glial fibrillary acidic protein gene (GFAP) expression in the MeCP2-negative, differentiated neural cells resulted from the absence of MeCP2 binding to the GFAP gene. Conclusions An isogenic RTT-hiPSC model demonstrated that MeCP2 participates in the differentiation of neural cells. Moreover, MeCP2 deficiency triggers perturbation of astrocytic gene expression, yielding accelerated astrocyte formation from RTT-hiPSC-derived neural stem cells. These findings are likely to shed new light on astrocytic abnormalities in RTT, and suggest that astrocytes, which are required for neuronal homeostasis and function, might be a new target of RTT therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13041-015-0121-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomoko Andoh-Noda
- Division of Medicine and Engineering Science, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Yamanashi, Kofu, 400-8510, Japan. .,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Wado Akamatsu
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan. .,Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Kunio Miyake
- Department of Epigenetic Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| | - Takuya Matsumoto
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Ryo Yamaguchi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan. .,Sumitomo Dainipponn Pharma Co. Ltd., Osaka, Osaka, 541-0045, Japan.
| | - Tsukasa Sanosaka
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Yohei Okada
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan. .,Department of Neurology,School of Meidicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| | - Tetsuro Kobayashi
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Manabu Ohyama
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Hiroshi Kurosawa
- Division of Medicine and Engineering Science, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Yamanashi, Kofu, 400-8510, Japan.
| | - Takeo Kubota
- Department of Epigenetic Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
103
|
Yamamuro K, Kimoto S, Rosen KM, Kishimoto T, Makinodan M. Potential primary roles of glial cells in the mechanisms of psychiatric disorders. Front Cell Neurosci 2015; 9:154. [PMID: 26029044 PMCID: PMC4432872 DOI: 10.3389/fncel.2015.00154] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/06/2015] [Indexed: 01/05/2023] Open
Abstract
While neurons have long been considered the major player in multiple brain functions such as perception, emotion, and memory, glial cells have been relegated to a far lesser position, acting as merely a “glue” to support neurons. Multiple lines of recent evidence, however, have revealed that glial cells such as oligodendrocytes, astrocytes, and microglia, substantially impact on neuronal function and activities and are significantly involved in the underlying pathobiology of psychiatric disorders. Indeed, a growing body of evidence indicates that glial cells interact extensively with neurons both chemically (e.g., through neurotransmitters, neurotrophic factors, and cytokines) and physically (e.g., through gap junctions), supporting a role for these cells as likely significant modifiers not only of neural function in brain development but also disease pathobiology. Since questions have lingered as to whether glial dysfunction plays a primary role in the biology of neuropsychiatric disorders or a role related solely to their support of neuronal physiology in these diseases, informative and predictive animal models have been developed over the last decade. In this article, we review recent findings uncovered using glia-specific genetically modified mice with which we can evaluate both the causation of glia dysfunction and its potential role in neuropsychiatric disorders such as autism and schizophrenia.
Collapse
Affiliation(s)
- Kazuhiko Yamamuro
- Department of Psychiatry, Faculty of Medicine, Nara Medical University, Kashihara Japan
| | - Sohei Kimoto
- Department of Psychiatry, Faculty of Medicine, Nara Medical University, Kashihara Japan
| | | | - Toshifumi Kishimoto
- Department of Psychiatry, Faculty of Medicine, Nara Medical University, Kashihara Japan
| | - Manabu Makinodan
- Department of Psychiatry, Faculty of Medicine, Nara Medical University, Kashihara Japan
| |
Collapse
|
104
|
Rietveld L, Stuss DP, McPhee D, Delaney KR. Genotype-specific effects of Mecp2 loss-of-function on morphology of Layer V pyramidal neurons in heterozygous female Rett syndrome model mice. Front Cell Neurosci 2015; 9:145. [PMID: 25941473 PMCID: PMC4403522 DOI: 10.3389/fncel.2015.00145] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/29/2015] [Indexed: 01/29/2023] Open
Abstract
Rett syndrome (RTT) is a progressive neurological disorder primarily caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2). The heterozygous female brain consists of mosaic of neurons containing both wild-type MeCP2 (MeCP2+) and mutant MeCP2 (MeCP2-). Three-dimensional morphological analysis was performed on individually genotyped layer V pyramidal neurons in the primary motor cortex of heterozygous (Mecp2(+/-) ) and wild-type (Mecp2(+/+) ) female mice ( > 6 mo.) from the Mecp2(tm1.1Jae) line. Comparing basal dendrite morphology, soma and nuclear size of MeCP2+ to MeCP2- neurons reveals a significant cell autonomous, genotype specific effect of Mecp2. MeCP2- neurons have 15% less total basal dendritic length, predominantly in the region 70-130 μm from the cell body and on average three fewer branch points, specifically loss in the second and third branch orders. Soma and nuclear areas of neurons of mice were analyzed across a range of ages (5-21 mo.) and X-chromosome inactivation (XCI) ratios (12-56%). On average, MeCP2- somata and nuclei were 15 and 13% smaller than MeCP2+ neurons respectively. In most respects branching morphology of neurons in wild-type brains (MeCP2 WT) was not distinguishable from MeCP2+ but somata and nuclei of MeCP2 WT neurons were larger than those of MeCP2+ neurons. These data reveal cell autonomous effects of Mecp2 mutation on dendritic morphology, but also suggest non-cell autonomous effects with respect to cell size. MeCP2+ and MeCP2- neuron sizes were not correlated with age, but were correlated with XCI ratio. Unexpectedly the MeCP2- neurons were smallest in brains where the XCI ratio was highly skewed toward MeCP2+, i.e., wild-type. This raises the possibility of cell non-autonomous effects that act through mechanisms other than globally secreted factors; perhaps competition for synaptic connections influences cell size and morphology in the genotypically mosaic brain of RTT model mice.
Collapse
Affiliation(s)
- Leslie Rietveld
- Department of Biology, University of Victoria Victoria, BC, Canada
| | - David P Stuss
- Department of Biology, University of Victoria Victoria, BC, Canada
| | - David McPhee
- Department of Biology, University of Victoria Victoria, BC, Canada
| | - Kerry R Delaney
- Department of Biology, University of Victoria Victoria, BC, Canada
| |
Collapse
|
105
|
Dysregulation of glutamine transporter SNAT1 in Rett syndrome microglia: a mechanism for mitochondrial dysfunction and neurotoxicity. J Neurosci 2015; 35:2516-29. [PMID: 25673846 DOI: 10.1523/jneurosci.2778-14.2015] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rett syndrome (RTT) is an autism spectrum disorder caused by loss-of-function mutations in the gene encoding MeCP2, an epigenetic modulator that binds the methyl CpG dinucleotide in target genes to regulate transcription. Previously, we and others reported a role of microglia in the pathophysiology of RTT. To understand the mechanism of microglia dysfunction in RTT, we identified a MeCP2 target gene, SLC38A1, which encodes a major glutamine transporter (SNAT1), and characterized its role in microglia. We found that MeCP2 acts as a microglia-specific transcriptional repressor of SNAT1. Because glutamine is mainly metabolized in the mitochondria, where it is used as an energy substrate and a precursor for glutamate production, we hypothesize that SNAT1 overexpression in MeCP2-deficient microglia would impair the glutamine homeostasis, resulting in mitochondrial dysfunction as well as microglial neurotoxicity because of glutamate overproduction. Supporting this hypothesis, we found that MeCP2 downregulation or SNAT1 overexpression in microglia resulted in (1) glutamine-dependent decrease in microglial viability, which was corroborated by reduced microglia counts in the brains of MECP2 knock-out mice; (2) proliferation of mitochondria and enhanced mitochondrial production of reactive oxygen species; (3) increased oxygen consumption but decreased ATP production (an energy-wasting state); and (4) overproduction of glutamate that caused NMDA receptor-dependent neurotoxicity. The abnormalities could be rectified by mitochondria-targeted expression of catalase and a mitochondria-targeted peptide antioxidant, Szeto-Schiller 31. Our results reveal a novel mechanism via which MeCP2 regulates bioenergetic pathways in microglia and suggest a therapeutic potential of mitochondria-targeted antioxidants for RTT.
Collapse
|
106
|
Ma D, Yoon SI, Yang CH, Marcy G, Zhao N, Leong WY, Ganapathy V, Han J, Van Dongen AMJ, Hsu KS, Ming GL, Augustine GJ, Goh ELK. Rescue of Methyl-CpG Binding Protein 2 Dysfunction-induced Defects in Newborn Neurons by Pentobarbital. Neurotherapeutics 2015; 12:477-90. [PMID: 25753729 PMCID: PMC4404443 DOI: 10.1007/s13311-015-0343-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rett syndrome is a neurodevelopmental disorder that usually arises from mutations or deletions in methyl-CpG binding protein 2 (MeCP2), a transcriptional regulator that affects neuronal development and maturation without causing cell loss. Here, we show that silencing of MeCP2 decreased neurite arborization and synaptogenesis in cultured hippocampal neurons from rat fetal brains. These structural defects were associated with alterations in synaptic transmission and neural network activity. Similar retardation of dendritic growth was also observed in MeCP2-deficient newborn granule cells in the dentate gyrus of adult mouse brains in vivo, demonstrating direct and cell-autonomous effects on individual neurons. These defects, caused by MeCP2 deficiency, were reversed by treatment with the US Food and Drug Administration-approved drug, pentobarbital, in vitro and in vivo, possibly caused by modulation of γ-aminobutyric acid signaling. The results indicate that drugs modulating γ-aminobutyric acid signaling are potential therapeutics for Rett syndrome.
Collapse
Affiliation(s)
- Dongliang Ma
- Programme in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Su-In Yoon
- Programme in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chih-Hao Yang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Guillaume Marcy
- Programme in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Na Zhao
- Programme in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
- Department of Forensic Medicine, Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi People’s Republic of China
| | - Wan-Ying Leong
- Programme in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Vinu Ganapathy
- Programme in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Ju Han
- Programme in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Antonius M. J. Van Dongen
- Programme in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kuei-Sen Hsu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - George J. Augustine
- Programme in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore, Singapore
| | - Eyleen L. K. Goh
- Programme in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- KK Research Center, KK Women’s and Children’s Hospital, Singapore, Singapore
| |
Collapse
|
107
|
Liu F, Ni JJ, Huang JJ, Kou ZW, Sun FY. VEGF overexpression enhances the accumulation of phospho-S292 MeCP2 in reactive astrocytes in the adult rat striatum following cerebral ischemia. Brain Res 2015; 1599:32-43. [DOI: 10.1016/j.brainres.2014.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 12/12/2022]
|
108
|
Rousseaud A, Delépine C, Nectoux J, Billuart P, Bienvenu T. Differential Expression and Regulation of Brain-Derived Neurotrophic Factor (BDNF) mRNA Isoforms in Brain Cells from Mecp2(308/y) Mouse Model. J Mol Neurosci 2015; 56:758-767. [PMID: 25634725 DOI: 10.1007/s12031-014-0487-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/25/2014] [Indexed: 01/16/2023]
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disease caused by mutations in methyl-CpG-binding protein 2 (MECP2), which encodes a transcriptional modulator of many genes including BDNF. BDNF comprises nine distinct promoter regions, each triggering the expression of a specific transcript. The role of this diversity of transcripts remains unknown. MeCP2 being highly expressed in neurons, RTT was initially considered as a neuronal disease. However, recent studies have shown that MeCP2 was also expressed in astrocytes. Though several studies explored Bdnf IV expression in Mecp2-deficient mice, the differential expression of Bdnf isoforms in Mecp2-deficient neurons and astrocytes was never studied. By using TaqMan technology and a mouse model expressing a truncated Mecp2 (Mecp2(308/y)), we firstly showed in neurons that Bdnf transcripts containing exon I, IIb, IIc, IV, and VI are prominently expressed, whereas in astrocytes, Bdnf transcript containing exon VI is preferentially expressed, suggesting a specific regulation of Bdnf expression at the cellular level. Secondly, we confirmed the repressive role of Mecp2 only on the expression of Bdnf VI in neurons. Our data suggested that the truncated Mecp2 protein maintains its function on Bdnf expression regulation in neurons and in astrocytes. Interestingly, we observed that Bdnf transcripts (I and IXA), regulated by neural activity induced by bicuculline in Mecp2(308/y) neurons, were not affected by histone deacetylase inhibition. In contrast, Bdnf transcripts (IIb, IIc, and VI), regulated by histone deacetylation, were not affected by bicuculline treatment in wild-type and Mecp2(308/y) neurons. All these results reflect the complexity of regulation of Bdnf gene.
Collapse
Affiliation(s)
- Audrey Rousseaud
- Institut Cochin, INSERM U1016, Génétique, Physiopathologie et Approches Pharmacologiques des Maladies Neurodéveloppementales, Université Paris Descartes, Paris, France
| | - Chloé Delépine
- Institut Cochin, INSERM U1016, Génétique, Physiopathologie et Approches Pharmacologiques des Maladies Neurodéveloppementales, Université Paris Descartes, Paris, France
| | - Juliette Nectoux
- Institut Cochin, INSERM U1016, Génétique, Physiopathologie et Approches Pharmacologiques des Maladies Neurodéveloppementales, Université Paris Descartes, Paris, France
- Laboratoire de Biochimie et Génétique Moléculaire, Assistance Publique - Hôpitaux de Paris, GHU Cochin-Broca-Hôtel Dieu, Paris, France
| | - Pierre Billuart
- Institut Cochin, INSERM U1016, Génétique, Physiopathologie et Approches Pharmacologiques des Maladies Neurodéveloppementales, Université Paris Descartes, Paris, France
| | - Thierry Bienvenu
- Institut Cochin, INSERM U1016, Génétique, Physiopathologie et Approches Pharmacologiques des Maladies Neurodéveloppementales, Université Paris Descartes, Paris, France.
- Laboratoire de Biochimie et Génétique Moléculaire, Assistance Publique - Hôpitaux de Paris, GHU Cochin-Broca-Hôtel Dieu, Paris, France.
| |
Collapse
|
109
|
Liyanage VRB, Zachariah RM, Davie JR, Rastegar M. Ethanol deregulates Mecp2/MeCP2 in differentiating neural stem cells via interplay between 5-methylcytosine and 5-hydroxymethylcytosine at the Mecp2 regulatory elements. Exp Neurol 2015; 265:102-17. [PMID: 25620416 DOI: 10.1016/j.expneurol.2015.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/23/2014] [Accepted: 01/18/2015] [Indexed: 11/29/2022]
Abstract
Methyl CpG Binding Protein 2 (MeCP2) is an important epigenetic factor in the brain. MeCP2 expression is affected by different environmental insults including alcohol exposure. Accumulating evidence supports the role of aberrant MeCP2 expression in ethanol exposure-induced neurological symptoms. However, the underlying molecular mechanisms of ethanol-induced MeCP2 deregulation remain elusive. To study the effect of ethanol on Mecp2/MeCP2 expression during neurodifferentiation, we established an in vitro model of ethanol exposure, using differentiating embryonic brain-derived neural stem cells (NSC). Previously, we demonstrated the impact of DNA methylation at the Mecp2 regulatory elements (REs) on Mecp2/MeCP2 expression in vitro and in vivo. Here, we studied whether altered DNA methylation at these REs is associated with the Mecp2/MeCP2 misexpression induced by ethanol. Binge-like and continuous ethanol exposure upregulated Mecp2/MeCP2, while ethanol withdrawal downregulated its expression. DNA methylation analysis by methylated DNA immunoprecipitation indicated that increased 5-hydroxymethylcytosine (5hmC) and decreased 5-methylcytosine (5mC) enrichment at specific REs were associated with upregulated Mecp2/MeCP2 following continuous ethanol exposure. The reduced Mecp2/MeCP2 expression upon ethanol withdrawal was associated with reduced 5hmC and increased 5mC enrichment at these REs. Moreover, ethanol altered global DNA methylation (5mC and 5hmC). Under the tested conditions, ethanol had minimal effects on NSC cell fate commitment, but caused changes in neuronal morphology and glial cell size. Taken together, our data represent an epigenetic mechanism for ethanol-mediated misexpression of Mecp2/MeCP2 in differentiating embryonic brain cells. We also show the potential role of DNA methylation and MeCP2 in alcohol-related neurological disorders, specifically Fetal Alcohol Spectrum Disorders.
Collapse
Affiliation(s)
- Vichithra Rasangi Batuwita Liyanage
- Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada; Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada.
| | - Robby Mathew Zachariah
- Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada; Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada.
| | - James Ronald Davie
- Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada.
| | - Mojgan Rastegar
- Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada; Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada.
| |
Collapse
|
110
|
Chen XS, Huang N, Michael N, Xiao L. Advancements in the Underlying Pathogenesis of Schizophrenia: Implications of DNA Methylation in Glial Cells. Front Cell Neurosci 2015; 9:451. [PMID: 26696822 PMCID: PMC4667081 DOI: 10.3389/fncel.2015.00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/02/2015] [Indexed: 02/05/2023] Open
Abstract
Schizophrenia (SZ) is a chronic and severe mental illness for which currently there is no cure. At present, the exact molecular mechanism involved in the underlying pathogenesis of SZ is unknown. The disease is thought to be caused by a combination of genetic, biological, psychological, and environmental factors. Recent studies have shown that epigenetic regulation is involved in SZ pathology. Specifically, DNA methylation, one of the earliest found epigenetic modifications, has been extensively linked to modulation of neuronal function, leading to psychiatric disorders such as SZ. However, increasing evidence indicates that glial cells, especially dysfunctional oligodendrocytes undergo DNA methylation changes that contribute to the pathogenesis of SZ. This review primarily focuses on DNA methylation involved in glial dysfunctions in SZ. Clarifying this mechanism may lead to the development of new therapeutic interventional strategies for the treatment of SZ and other illnesses by correcting abnormal methylation in glial cells.
Collapse
Affiliation(s)
- Xing-Shu Chen
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
| | - Nanxin Huang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
| | - Namaka Michael
- College of Pharmacy and Medicine, Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and the College of Medicine, University of ManitobaWinnipeg, MB, Canada
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
- *Correspondence: Lan Xiao
| |
Collapse
|
111
|
Theoharides TC, Athanassiou M, Panagiotidou S, Doyle R. Dysregulated brain immunity and neurotrophin signaling in Rett syndrome and autism spectrum disorders. J Neuroimmunol 2014; 279:33-8. [PMID: 25669997 DOI: 10.1016/j.jneuroim.2014.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/18/2014] [Accepted: 12/02/2014] [Indexed: 12/21/2022]
Abstract
Rett syndrome is a neurodevelopmental disorder, which occurs in about 1:15,000 females and presents with neurologic and communication defects. It is transmitted as an X-linked dominant linked to mutations of the methyl-CpG-binding protein (MeCP2), a gene transcription suppressor, but its definitive pathogenesis is unknown thus hindering development of effective treatments. Almost half of children with Rett syndrome also have behavioral symptoms consistent with those of autism spectrum disorders (ASDs). PubMed was searched (2005-2014) using the terms: allergy, atopy, brain, brain-derived neurotrophic factor (BDNF), corticotropin-releasing hormone (CRH), cytokines, gene mutations, inflammation, mast cells (MCs), microglia, mitochondria, neurotensin (NT), neurotrophins, seizures, stress, and treatment. There are a number of intriguing differences and similarities between Rett syndrome and ASDs. Rett syndrome occurs in females, while ASDs more often in males, and the former has neurologic disabilities unlike ASDs. There is evidence of dysregulated immune system early in life in both conditions. Lack of microglial phagocytosis and decreased levels of BDNF appear to distinguish Rett syndrome from ASDs, in which there is instead microglia activation and/or proliferation and possibly defective BDNF signaling. Moreover, brain mast cell (MC) activation and focal inflammation may be more prominent in ASDs than Rett syndrome. The flavonoid luteolin blocks microglia and MC activation, provides BDNF-like activity, reverses Rett phenotype in mouse models, and has a significant benefit in children with ASDs. Appropriate formulations of luteolin or other natural molecules may be useful in the treatment of Rett syndrome.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA; Department of Internal Medicine, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA; Tufts Medical Center, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA.
| | - Marianna Athanassiou
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA
| | - Smaro Panagiotidou
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA
| | - Robert Doyle
- Pediatric Psychopharmacology Unit, Massachusetts General Hospital, Boston MA, USA; Harvard Medical School, Boston MA, USA
| |
Collapse
|
112
|
Hess-Homeier DL, Fan CY, Gupta T, Chiang AS, Certel SJ. Astrocyte-specific regulation of hMeCP2 expression in Drosophila. Biol Open 2014; 3:1011-9. [PMID: 25305037 PMCID: PMC4232758 DOI: 10.1242/bio.20149092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Alterations in the expression of Methyl-CpG-binding protein 2 (MeCP2) either by mutations or gene duplication leads to a wide spectrum of neurodevelopmental disorders including Rett Syndrome and MeCP2 duplication disorder. Common features of Rett Syndrome (RTT), MeCP2 duplication disorder, and neuropsychiatric disorders indicate that even moderate changes in MeCP2 protein levels result in functional and structural cell abnormalities. In this study, we investigated two areas of MeCP2 pathophysiology using Drosophila as a model system: the effects of MeCP2 glial gain-of-function activity on circuits controlling sleep behavior, and the cell-type specific regulation of MeCP2 expression. In this study, we first examined the effects of elevated MeCP2 levels on microcircuits by expressing human MeCP2 (hMeCP2) in astrocytes and distinct subsets of amine neurons including dopamine and octopamine (OA) neurons. Depending on the cell-type, hMeCP2 expression reduced sleep levels, altered daytime/nighttime sleep patterns, and generated sleep maintenance deficits. Second, we identified a 498 base pair region of the MeCP2e2 isoform that is targeted for regulation in distinct subsets of astrocytes. Levels of the full-length hMeCP2e2 and mutant RTT R106W protein decreased in astrocytes in a temporally and spatially regulated manner. In contrast, expression of the deletion Δ166 hMeCP2 protein was not altered in the entire astrocyte population. qPCR experiments revealed a reduction in full-length hMeCP2e2 transcript levels suggesting transgenic hMeCP2 expression is regulated at the transcriptional level. Given the phenotypic complexities that are caused by alterations in MeCP2 levels, our results provide insight into distinct cellular mechanisms that control MeCP2 expression and link microcircuit abnormalities with defined behavioral deficits.
Collapse
Affiliation(s)
- David L Hess-Homeier
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Chia-Yu Fan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tarun Gupta
- Neuroscience Graduate Program, The University of Montana, Missoula, MT 59812, USA
| | - Ann-Shyn Chiang
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sarah J Certel
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA Neuroscience Graduate Program, The University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
113
|
Chapleau CA, Lane J, Pozzo-Miller L, Percy AK. Evaluation of current pharmacological treatment options in the management of Rett syndrome: from the present to future therapeutic alternatives. ACTA ACUST UNITED AC 2014; 8:358-69. [PMID: 24050745 DOI: 10.2174/15748847113086660069] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/14/2013] [Accepted: 02/21/2013] [Indexed: 11/22/2022]
Abstract
Neurodevelopmental disorders are a large family of conditions of genetic or environmental origin that are characterized by deficiencies in cognitive and behavioral functions. The therapeutic management of individuals with these disorders is typically complex and is limited to the treatment of specific symptoms that characterize each disorder. The neurodevelopmental disorder Rett syndrome (RTT) is the leading cause of severe intellectual disability in females. Mutations in the gene encoding the transcriptional regulator methyl-CpG-binding protein 2 (MECP2), located on the X chromosome, have been confirmed in more than 95% of individuals meeting diagnostic criteria for classical RTT. RTT is characterized by an uneventful early infancy followed by stagnation and regression of growth, motor, language, and social skills later in development. This review will discuss the genetics, pathology, and symptoms that distinguish RTT from other neurodevelopmental disorders associated with intellectual disability. Because great progress has been made in the basic and clinical science of RTT, the goal of this review is to provide a thorough assessment of current pharmacotherapeutic options to treat the symptoms associated with this disorder. Furthermore, we will highlight recent discoveries made with novel pharmacological interventions in experimental preclinical phases, and which have reversed pathological phenotypes in mouse and cell culture models of RTT and may result in clinical trials.
Collapse
Affiliation(s)
- Christopher A Chapleau
- Department of Pediatrics, CIRC-320, The University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294-0021, USA.
| | | | | | | |
Collapse
|
114
|
Cartier N, Lewis CA, Zhang R, Rossi FMV. The role of microglia in human disease: therapeutic tool or target? Acta Neuropathol 2014; 128:363-80. [PMID: 25107477 PMCID: PMC4131134 DOI: 10.1007/s00401-014-1330-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 01/06/2023]
Abstract
Microglia have long been the focus of much attention due to their strong proliferative response (microgliosis) to essentially any kind of damage to the CNS. More recently, we reached the realization that these cells play specific roles in determining progression and outcomes of essentially all CNS disease. Thus, microglia has ceased to be viewed as an accessory to underlying pathologies and has now taken center stage as a therapeutic target. Here, we review how our understanding of microglia's involvement in promoting or limiting the pathogenesis of diseases such as amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, multiple sclerosis, X-linked adrenoleukodystrophy (X-ALD) and lysosomal storage diseases (LSD) has changed over time. While strategies to suppress the deleterious and promote the virtuous functions of microglia will undoubtedly be forthcoming, replacement of these cells has already proven its usefulness in a clinical setting. Over the past few years, we have reached the realization that microglia have a developmental origin that is distinct from that of bone marrow-derived myelomonocytic cells. Nevertheless, microglia can be replaced, in specific situations, by the progeny of hematopoietic stem cells (HSCs), pointing to a strategy to engineer the CNS environment through the transplantation of modified HSCs. Thus, microglia replacement has been successfully exploited to deliver therapeutics to the CNS in human diseases such as X-ALD and LSD. With this outlook in mind, we will discuss the evidence existing so far for microglial involvement in the pathogenesis and the therapy of specific CNS disease.
Collapse
Affiliation(s)
- Nathalie Cartier
- INSERM U986, 80 rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France
- MIRCen CEA Fontenay aux Roses, 92265 Fontenay-aux-Roses, France
- University Paris-Sud, 91400 Orsay, France
| | - Coral-Ann Lewis
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1C7 Canada
| | - Regan Zhang
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1C7 Canada
| | - Fabio M. V. Rossi
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1C7 Canada
| |
Collapse
|
115
|
Verkhratsky A, Marutle A, Rodríguez-Arellano JJ, Nordberg A. Glial Asthenia and Functional Paralysis: A New Perspective on Neurodegeneration and Alzheimer's Disease. Neuroscientist 2014; 21:552-568. [PMID: 25125026 DOI: 10.1177/1073858414547132] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neuroglia are represented by several population of cells heterogeneous in structure and function that provide for the homeostasis of the brain and the spinal cord. Neuroglial cells are also central for neuroprotection and defence of the central nervous system against exo- and endogenous insults. At the early stages of neurodegenerative diseases including Alzheimer's disease neuroglial cells become asthenic and lose some of their homeostatic, neuroprotective, and defensive capabilities. Astroglial reactivity, for example, correlates with preservation of cognitive function in patients with mild cognitive impairment and prodromal Alzheimer's disease. Here, we overview the experimental data indicating glial paralysis in neurodegeneration and argue that loss of glial function is fundamental for defining the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Amelia Marutle
- Karolinska Institutet, Dept NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Novum, Huddinge, Sweden
| | - J J Rodríguez-Arellano
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain
| | - Agneta Nordberg
- Karolinska Institutet, Dept NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Novum, Huddinge, Sweden Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
116
|
Song C, Feodorova Y, Guy J, Peichl L, Jost KL, Kimura H, Cardoso MC, Bird A, Leonhardt H, Joffe B, Solovei I. DNA methylation reader MECP2: cell type- and differentiation stage-specific protein distribution. Epigenetics Chromatin 2014; 7:17. [PMID: 25170345 PMCID: PMC4148084 DOI: 10.1186/1756-8935-7-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 07/23/2014] [Indexed: 11/21/2022] Open
Abstract
Background Methyl-CpG binding protein 2 (MECP2) is a protein that specifically binds methylated DNA, thus regulating transcription and chromatin organization. Mutations in the gene have been identified as the principal cause of Rett syndrome, a severe neurological disorder. Although the role of MECP2 has been extensively studied in nervous tissues, still very little is known about its function and cell type specific distribution in other tissues. Results Using immunostaining on tissue cryosections, we characterized the distribution of MECP2 in 60 cell types of 16 mouse neuronal and non-neuronal tissues. We show that MECP2 is expressed at a very high level in all retinal neurons except rod photoreceptors. The onset of its expression during retina development coincides with massive synapse formation. In contrast to astroglia, retinal microglial cells lack MECP2, similar to microglia in the brain, cerebellum, and spinal cord. MECP2 is also present in almost all non-neural cell types, with the exception of intestinal epithelial cells, erythropoietic cells, and hair matrix keratinocytes. Our study demonstrates the role of MECP2 as a marker of the differentiated state in all studied cells other than oocytes and spermatogenic cells. MECP2-deficient male (Mecp2-/y) mice show no apparent defects in the morphology and development of the retina. The nuclear architecture of retinal neurons is also unaffected as the degree of chromocenter fusion and the distribution of major histone modifications do not differ between Mecp2-/y and Mecp2wt mice. Surprisingly, the absence of MECP2 is not compensated by other methyl-CpG binding proteins. On the contrary, their mRNA levels were downregulated in Mecp2-/y mice. Conclusions MECP2 is almost universally expressed in all studied cell types with few exceptions, including microglia. MECP2 deficiency does not change the nuclear architecture and epigenetic landscape of retinal cells despite the missing compensatory expression of other methyl-CpG binding proteins. Furthermore, retinal development and morphology are also preserved in Mecp2-null mice. Our study reveals the significance of MECP2 function in cell differentiation and sets the basis for future investigations in this direction.
Collapse
Affiliation(s)
- Congdi Song
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Yana Feodorova
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Jacky Guy
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3JR Edinburgh, UK
| | - Leo Peichl
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt am Main 60438, Germany
| | - Katharina Laurence Jost
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| | - Hiroshi Kimura
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, 565-0871 Suita, Osaka, Japan
| | - Maria Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3JR Edinburgh, UK
| | - Heinrich Leonhardt
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Boris Joffe
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Irina Solovei
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
117
|
Cheng TL, Qiu Z. MeCP2: multifaceted roles in gene regulation and neural development. Neurosci Bull 2014; 30:601-9. [PMID: 25082535 DOI: 10.1007/s12264-014-1452-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/22/2014] [Indexed: 11/27/2022] Open
Abstract
Methyl-CpG-binding protein 2 (MeCP2) is a classic methylated-DNA-binding protein, dysfunctions of which lead to various neurodevelopmental disorders such as Rett syndrome and autism spectrum disorder. Initially recognized as a transcriptional repressor, MeCP2 has been studied extensively and its functions have been expanded dramatically in the past two decades. Recently, it was found to be involved in gene regulation at the post-transcriptional level. MeCP2 represses nuclear microRNA processing by interacting directly with the Drosha/DGCR8 complex. In addition to its multifaceted functions, MeCP2 is remarkably modulated by posttranslational modifications such as phosphorylation, SUMOylation, and acetylation, providing more regulatory dimensions to its functions. The role of MeCP2 in the central nervous system has been studied extensively, from neurons to glia. Future investigations combining molecular, cellular, and physiological methods are necessary for defining the roles of MeCP2 in the brain and developing efficient treatments for MeCP2-related brain disorders.
Collapse
Affiliation(s)
- Tian-Lin Cheng
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China,
| | | |
Collapse
|
118
|
Verkhratsky A, Parpura V. Neurological and psychiatric disorders as a neuroglial failure. PERIOD BIOL 2014; 116:115-124. [PMID: 25544781 PMCID: PMC4276339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Neuroglia are a diverse non-neuronal population of cells in the central and peripheral nervous system. These cells have a variety of functions that can all be summed up as the maintenance of homeostasis of the nervous system. It is the loss of homeostasis that represents the culprit of all disorders. Thus, neuroglia can be envisioned as the pivotal element in all neural disorders, be that neurological or psychiatric. In this review, we discuss the role of glia in homeostasis and defence of the nervous system as well as changes in the morpho-functional characteristics of these cells in various disorders.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK ; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain ; University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force Microscopy & Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL 35294, USA ; Department of Biotechnology, University or Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
119
|
Johnston MV, Ammanuel S, O'Driscoll C, Wozniak A, Naidu S, Kadam SD. Twenty-four hour quantitative-EEG and in-vivo glutamate biosensor detects activity and circadian rhythm dependent biomarkers of pathogenesis in Mecp2 null mice. Front Syst Neurosci 2014; 8:118. [PMID: 25018705 PMCID: PMC4072927 DOI: 10.3389/fnsys.2014.00118] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/02/2014] [Indexed: 11/13/2022] Open
Abstract
Mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (Mecp2) cause most cases of Rett syndrome (RTT). Currently there is no cure for RTT. Abnormal EEGs are found in 100% of RTT cases and are associated with severe sleep dysfunction, the cause of which is not well understood. Mice deficient in MeCP2 protein have been studied and characterized for their neuropathological and behavioral deficits to better understand RTT. With the goal to study the non-ictal EEG correlates in symptomatic Mecp2 KO mice (Mecp2(tm1.1Bird/y)), and determine novel EEG biomarkers of their reported progressive neurodegeneration, we used 24 h video-EEG/EMG with synchronous in-vivo cortical glutamate biosensor in the frontal cortex. We scored the EEG for activity states and spectral analysis was performed to evaluate correlations to the synchronous extracellular glutamate fluctuations underlying Mecp2 inactivation as compared to WT. Significant alterations in sleep structure due to dark cycle-specific long wake states and poor quality of slow-wave sleep were associated with a significant increase in glutamate loads per activity cycle. The dynamics of the activity-state-dependent physiological rise and fall of glutamate indicative of glutamate homeostasis were significantly altered in the KO mice. Colorimetric quantitation of absolute glutamate levels in frontal cortex also indicated the presence of significantly higher levels in KO. This study for the first time found evidence of uncompensated sleep deprivation-like EEG biomarkers that were associated with glutamate homeostatic dysfunction in the Mecp2 KO mice.
Collapse
Affiliation(s)
- Michael V Johnston
- Neuroscience Laboratory, Departments of Neurology and Pediatrics, Hugo Moser Research Institute at Kennedy Krieger, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Simon Ammanuel
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger Baltimore, MD, USA
| | - Cliona O'Driscoll
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Hugo Moser Research Institute at Kennedy Krieger, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Amy Wozniak
- Biostatistics Center, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Sakkubai Naidu
- Departments of Neurology and Pediatrics, Hugo Moser Research Institute at Kennedy Krieger Baltimore, MD, USA
| | - Shilpa D Kadam
- Neuroscience Laboratory, Departments of Neurology, Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
120
|
Abstract
Rett syndrome (RTT) is a severe and progressive neurological disorder, which mainly affects young females. Mutations of the methyl-CpG binding protein 2 (MECP2) gene are the most prevalent cause of classical RTT cases. MECP2 mutations or altered expression are also associated with a spectrum of neurodevelopmental disorders such as autism spectrum disorders with recent links to fetal alcohol spectrum disorders. Collectively, MeCP2 relation to these neurodevelopmental disorders highlights the importance of understanding the molecular mechanisms by which MeCP2 impacts brain development, mental conditions, and compromised brain function. Since MECP2 mutations were discovered to be the primary cause of RTT, a significant progress has been made in the MeCP2 research, with respect to the expression, function and regulation of MeCP2 in the brain and its contribution in RTT pathogenesis. To date, there have been intensive efforts in designing effective therapeutic strategies for RTT benefiting from mouse models and cells collected from RTT patients. Despite significant progress in MeCP2 research over the last few decades, there is still a knowledge gap between the in vitro and in vivo research findings and translating these findings into effective therapeutic interventions in human RTT patients. In this review, we will provide a synopsis of Rett syndrome as a severe neurological disorder and will discuss the role of MeCP2 in RTT pathophysiology.
Collapse
|
121
|
Olson CO, Zachariah RM, Ezeonwuka CD, Liyanage VRB, Rastegar M. Brain region-specific expression of MeCP2 isoforms correlates with DNA methylation within Mecp2 regulatory elements. PLoS One 2014; 9:e90645. [PMID: 24594659 PMCID: PMC3940938 DOI: 10.1371/journal.pone.0090645] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/05/2014] [Indexed: 01/08/2023] Open
Abstract
MeCP2 is a critical epigenetic regulator in brain and its abnormal expression or compromised function leads to a spectrum of neurological disorders including Rett Syndrome and autism. Altered expression of the two MeCP2 isoforms, MeCP2E1 and MeCP2E2 has been implicated in neurological complications. However, expression, regulation and functions of the two isoforms are largely uncharacterized. Previously, we showed the role of MeCP2E1 in neuronal maturation and reported MeCP2E1 as the major protein isoform in the adult mouse brain, embryonic neurons and astrocytes. Recently, we showed that DNA methylation at the regulatory elements (REs) within the Mecp2 promoter and intron 1 impact the expression of Mecp2 isoforms in differentiating neural stem cells. This current study is aimed for a comparative analysis of temporal, regional and cell type-specific expression of MeCP2 isoforms in the developing and adult mouse brain. MeCP2E2 displayed a later expression onset than MeCP2E1 during mouse brain development. In the adult female and male brain hippocampus, both MeCP2 isoforms were detected in neurons, astrocytes and oligodendrocytes. Furthermore, MeCP2E1 expression was relatively uniform in different brain regions (olfactory bulb, striatum, cortex, hippocampus, thalamus, brainstem and cerebellum), whereas MeCP2E2 showed differential enrichment in these brain regions. Both MeCP2 isoforms showed relatively similar distribution in these brain regions, except for cerebellum. Lastly, a preferential correlation was observed between DNA methylation at specific CpG dinucleotides within the REs and Mecp2 isoform-specific expression in these brain regions. Taken together, we show that MeCP2 isoforms display differential expression patterns during brain development and in adult mouse brain regions. DNA methylation patterns at the Mecp2 REs may impact this differential expression of Mecp2/MeCP2 isoforms in brain regions. Our results significantly contribute towards characterizing the expression profiles of Mecp2/MeCP2 isoforms and thereby provide insights on the potential role of MeCP2 isoforms in the developing and adult brain.
Collapse
Affiliation(s)
- Carl O. Olson
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robby M. Zachariah
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chinelo D. Ezeonwuka
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vichithra R. B. Liyanage
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mojgan Rastegar
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
122
|
Bedogni F, Rossi RL, Galli F, Cobolli Gigli C, Gandaglia A, Kilstrup-Nielsen C, Landsberger N. Rett syndrome and the urge of novel approaches to study MeCP2 functions and mechanisms of action. Neurosci Biobehav Rev 2014; 46 Pt 2:187-201. [PMID: 24594195 DOI: 10.1016/j.neubiorev.2014.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/25/2013] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
Abstract
Rett syndrome (RTT) is a devastating genetic disorder that worldwide represents the most common genetic cause of severe intellectual disability in females. Most cases are caused by mutations in the X-linked MECP2 gene. Several recent studies have demonstrated that RTT mimicking animal models do not develop an irreversible condition and phenotypic rescue is possible. However, no cure for RTT has been identified so far, and patients are only given symptomatic and supportive treatments. The development of clinical applications imposes a more comprehensive knowledge of MeCP2 functional role(s) and their relevance for RTT pathobiology. Herein, we thoroughly survey the knowledge about MeCP2 structure and functions, highlighting the necessity of identifying more functional domains and the value of molecular genetics. Given that, in our opinion, RTT ultimately is generated by perturbations in gene transcription and so far no genes/pathways have been consistently linked to a dysfunctional MeCP2, we have used higher-level bioinformatic analyses to identify commonly deregulated mechanisms in MeCP2-defective samples. In this review we present our results and discuss the possible value of the utilized approach.
Collapse
Affiliation(s)
- Francesco Bedogni
- San Raffaele Rett Research Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy; Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, Busto Arsizio 21052, Italy
| | - Riccardo L Rossi
- Fondazione Istituto Nazionale Genetica Molecolare, Milan 20122, Italy
| | - Francesco Galli
- San Raffaele Rett Research Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Clementina Cobolli Gigli
- San Raffaele Rett Research Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy; Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, Busto Arsizio 21052, Italy
| | - Anna Gandaglia
- San Raffaele Rett Research Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy; Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, Busto Arsizio 21052, Italy
| | - Charlotte Kilstrup-Nielsen
- Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, Busto Arsizio 21052, Italy
| | - Nicoletta Landsberger
- San Raffaele Rett Research Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy; Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, Busto Arsizio 21052, Italy.
| |
Collapse
|
123
|
Zhang W, Peterson M, Beyer B, Frankel WN, Zhang ZW. Loss of MeCP2 from forebrain excitatory neurons leads to cortical hyperexcitation and seizures. J Neurosci 2014; 34:2754-63. [PMID: 24523563 PMCID: PMC3921436 DOI: 10.1523/jneurosci.4900-12.2014] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/11/2014] [Accepted: 01/15/2014] [Indexed: 11/21/2022] Open
Abstract
Mutations of MECP2 cause Rett syndrome (RTT), a neurodevelopmental disorder leading to loss of motor and cognitive functions, impaired social interactions, and seizure at young ages. Defects of neuronal circuit development and function are thought to be responsible for the symptoms of RTT. The majority of RTT patients show recurrent seizures, indicating that neuronal hyperexcitation is a common feature of RTT. However, mechanisms underlying hyperexcitation in RTT are poorly understood. Here we show that deletion of Mecp2 from cortical excitatory neurons but not forebrain inhibitory neurons in the mouse leads to spontaneous seizures. Selective deletion of Mecp2 from excitatory but not inhibitory neurons in the forebrain reduces GABAergic transmission in layer 5 pyramidal neurons in the prefrontal and somatosensory cortices. Loss of MeCP2 from cortical excitatory neurons reduces the number of GABAergic synapses in the cortex, and enhances the excitability of layer 5 pyramidal neurons. Using single-cell deletion of Mecp2 in layer 2/3 pyramidal neurons, we show that GABAergic transmission is reduced in neurons without MeCP2, but is normal in neighboring neurons with MeCP2. Together, these results suggest that MeCP2 in cortical excitatory neurons plays a critical role in the regulation of GABAergic transmission and cortical excitability.
Collapse
Affiliation(s)
- Wen Zhang
- The Jackson Laboratory, Bar Harbor, Maine 04609
| | | | | | | | | |
Collapse
|
124
|
Abstract
The role of epigenetics in human disease has become an area of increased research interest. Collaborative efforts from scientists and clinicians have led to a better understanding of the molecular mechanisms by which epigenetic regulation is involved in the pathogenesis of many human diseases. Several neurological and non-neurological disorders are associated with mutations in genes that encode for epigenetic factors. One of the most studied proteins that impacts human disease and is associated with deregulation of epigenetic processes is Methyl CpG binding protein 2 (MeCP2). MeCP2 is an epigenetic regulator that modulates gene expression by translating epigenetic DNA methylation marks into appropriate cellular responses. In order to highlight the importance of epigenetics to development and disease, we will discuss how MeCP2 emerges as a key epigenetic player in human neurodevelopmental, neurological, and non-neurological disorders. We will review our current knowledge on MeCP2-related diseases, including Rett Syndrome, Angelman Syndrome, Fetal Alcohol Spectrum Disorder, Hirschsprung disease, and Cancer. Additionally, we will briefly discuss about the existing MeCP2 animal models that have been generated for a better understanding of how MeCP2 impacts certain human diseases.
Collapse
Affiliation(s)
| | - Mojgan Rastegar
- Author to whom correspondence should be addressed; ; Tel.: +204-272-3108; Fax: +204-789-3900
| |
Collapse
|
125
|
MeCP2 is required for activity-dependent refinement of olfactory circuits. Mol Cell Neurosci 2014; 59:63-75. [PMID: 24472844 DOI: 10.1016/j.mcn.2014.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 01/15/2014] [Accepted: 01/20/2014] [Indexed: 01/06/2023] Open
Abstract
Methyl CpG binding protein 2 (MeCP2) is a structural chromosomal protein involved in the regulation of gene expression. Alterations in the levels of MeCP2 have been related to neurodevelopmental disorders. Studies in mouse models of MeCP2 deficiency have demonstrated that this protein is important for neuronal maturation, neurite complexity, synaptogenesis, and synaptic plasticity. However, the mechanisms by which MeCP2 dysfunction leads to neurodevelopmental defects, and the role of activity, remain unclear, as most studies examine the adult nervous system, which may obfuscate the primary consequences of MeCP2 mutation. We hypothesize that MeCP2 plays a role during the formation and activity-driven maturation of neural circuits at early postnatal stages. To test this hypothesis, we use the olfactory system as a neurodevelopmental model. This system undergoes postnatal neurogenesis; axons from olfactory neurons form highly stereotyped projections to higher-order neurons, facilitating the detection of possible defects in the establishment of connectivity. In vivo olfactory stimulation paradigms were used to produce physiological synaptic activity in gene-targeted mice in which specific olfactory circuits are visualized. Our results reveal defective postnatal refinement of olfactory circuits in Mecp2 knock out (KO) mice after sensory (odorant) stimulation. This failure in refinement was associated with deficits in the normal responses to odorants, including brain-derived neurotrophic factor (BDNF) production, as well as changes in adhesion molecules known to regulate axonal convergence. The defective refinement observed in Mecp2 KO mice was prevented by daily treatment with ampakine beginning after the first postnatal week. These observations indicate that increasing synaptic activity at early postnatal stage might circumvent the detrimental effect of MeCP2 deficiency on circuitry maturation. The present results provide in vivo evidence in real time for the role of MeCP2 in activity-dependent maturation of olfactory circuitry, with implications for understanding the mechanism of MeCP2 mutations in the development of neural connectivity.
Collapse
|
126
|
Williams EC, Zhong X, Mohamed A, Li R, Liu Y, Dong Q, Ananiev GE, Mok JCC, Lin BR, Lu J, Chiao C, Cherney R, Li H, Zhang SC, Chang Q. Mutant astrocytes differentiated from Rett syndrome patients-specific iPSCs have adverse effects on wild-type neurons. Hum Mol Genet 2014; 23:2968-80. [PMID: 24419315 DOI: 10.1093/hmg/ddu008] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The disease mechanism of Rett syndrome (RTT) is not well understood. Studies in RTT mouse models have suggested a non-cell-autonomous role for astrocytes in RTT pathogenesis. However, it is not clear whether this is also true for human RTT astrocytes. To establish an in vitro human RTT model, we previously generated isogenic induced pluripotent stem cell (iPSC) lines from several RTT patients carrying different disease-causing mutations. Here, we show that these RTT iPSC lines can be efficiently differentiated into astroglial progenitors and glial fibrillary acidic protein-expressing (GFAP(+)) astrocytes that maintain isogenic status, that mutant RTT astrocytes carrying three different RTT mutations and their conditioned media have adverse effects on the morphology and function of wild-type neurons and that the glial effect on neuronal morphology is independent of the intrinsic neuronal deficit in mutant neurons. Moreover, we show that both insulin-like growth factor 1 (IGF-1) and GPE (a peptide containing the first 3 amino acids of IGF-1) are able to partially rescue the neuronal deficits caused by mutant RTT astrocytes. Our findings confirm the critical glial contribution to RTT pathology, reveal potential cellular targets of IGF-1 therapy and further validate patient-specific iPSCs and their derivatives as valuable tools to study RTT disease mechanism.
Collapse
|
127
|
Edmonson C, Ziats MN, Rennert OM. Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum. Mol Autism 2014; 5:3. [PMID: 24410870 PMCID: PMC3914711 DOI: 10.1186/2040-2392-5-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 12/23/2013] [Indexed: 01/29/2023] Open
Abstract
Background The cellular mechanism(s) underlying autism spectrum disorders (ASDs) are not completely understood, but ASDs are thought to ultimately result from disrupted synaptogenesis. However, studies have also shown that glial cell numbers and function are abnormal in post-mortem brain tissue from autistic patients. Direct assessment of glial cells in post-mortem human brain tissue is technically challenging, limiting glial research in human ASD studies. Therefore, we attempted to determine if glial cell-type specific markers may be altered in autistic brain tissue in a manner that is consistent with known cellular findings, such that they could serve as a proxy for glial cell numbers and/or activation patterns. Methods We assessed the relative expression of five glial-specific markers and two neuron-specific markers via qRT-PCR. We studied tissue samples from the prefrontal cortex (PFC) and cerebellum of nine post-mortem autistic brain samples and nine neurologically-normal controls. Relative fold-change in gene expression was determined using the ΔΔCt method normalized to housekeeping gene β-actin, with a two-tailed Student’s t-test P <0.05 between groups considered as significant. Results Both astrocyte- and microglial-specific markers were significantly more highly expressed in autistic PFC as compared to matched controls, while in the cerebellum only astrocyte markers were elevated in autistic samples. In contrast, neuron-specific markers showed significantly lower expression in both the PFC and cerebellum of autistic patients as compared to controls. Conclusions These results are in line with previous findings showing increased glial cell numbers and up-regulation of glial cell gene expression in autistic post-mortem brain tissue, particularly in the PFC, as well as decreased number of neurons in both the PFC and cerebellum of autistic patients. The concordance of these results with cell-level studies in post-mortem autistic brain tissue suggests that expression of glial cell-type specific markers may serve as a useful alternative to traditional cellular characterization methods, especially when appropriately-preserved post-mortem tissue is lacking. Additionally, these results demonstrate abnormal glial-specific gene expression in autistic brains, supporting previous studies that have observed altered glial cell numbers or activation patterns in ASDs. Future work should directly assess the correlation between cell-type specific marker levels and cell number and activation patterns.
Collapse
Affiliation(s)
- Catherine Edmonson
- Laboratory of Clinical and Developmental Genomics, National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Drive, Building 49, Room 2C078, Bethesda, MD 20814, USA.,University of Florida College of Medicine, 1600 SW Archer Rd, Gainesville, FL 32603, USA
| | - Mark N Ziats
- Laboratory of Clinical and Developmental Genomics, National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Drive, Building 49, Room 2C078, Bethesda, MD 20814, USA.,University of Cambridge, Robinson College, Grange Rd, Cambridgeshire CB3 9AN, UK.,Baylor College of Medicine MSTP, One Baylor Plaza, Houston, TX 77030, USA
| | - Owen M Rennert
- Laboratory of Clinical and Developmental Genomics, National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Drive, Building 49, Room 2C078, Bethesda, MD 20814, USA
| |
Collapse
|
128
|
Davila D, Thibault K, Fiacco TA, Agulhon C. Recent molecular approaches to understanding astrocyte function in vivo. Front Cell Neurosci 2013; 7:272. [PMID: 24399932 PMCID: PMC3871966 DOI: 10.3389/fncel.2013.00272] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/06/2013] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are a predominant glial cell type in the nervous systems, and are becoming recognized as important mediators of normal brain function as well as neurodevelopmental, neurological, and neurodegenerative brain diseases. Although numerous potential mechanisms have been proposed to explain the role of astrocytes in the normal and diseased brain, research into the physiological relevance of these mechanisms in vivo is just beginning. In this review, we will summarize recent developments in innovative and powerful molecular approaches, including knockout mouse models, transgenic mouse models, and astrocyte-targeted gene transfer/expression, which have led to advances in understanding astrocyte biology in vivo that were heretofore inaccessible to experimentation. We will examine the recently improved understanding of the roles of astrocytes – with an emphasis on astrocyte signaling – in the context of both the healthy and diseased brain, discuss areas where the role of astrocytes remains debated, and suggest new research directions.
Collapse
Affiliation(s)
- David Davila
- Glia-Glia and Glia-Neuron Interactions Group, National Center for Scientific Research, UFR Biomedicale, Paris Descartes University Paris, France
| | - Karine Thibault
- Glia-Glia and Glia-Neuron Interactions Group, National Center for Scientific Research, UFR Biomedicale, Paris Descartes University Paris, France
| | - Todd A Fiacco
- Department of Cell Biology and Neuroscience, and Center for Glial-Neuronal Interactions and Program in Cellular, Molecular and Developmental Biology, University of California at Riverside Riverside, CA, USA
| | - Cendra Agulhon
- Glia-Glia and Glia-Neuron Interactions Group, National Center for Scientific Research, UFR Biomedicale, Paris Descartes University Paris, France
| |
Collapse
|
129
|
Gallego J. Genetic diseases: congenital central hypoventilation, Rett, and Prader-Willi syndromes. Compr Physiol 2013; 2:2255-79. [PMID: 23723037 DOI: 10.1002/cphy.c100037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present review summarizes current knowledge on three rare genetic disorders of respiratory control, congenital central hypoventilation syndrome (CCHS), Rett syndrome (RTT), and Prader-Willi syndrome (PWS). CCHS is characterized by lack of ventilatory chemosensitivity caused by PHOX2B gene abnormalities consisting mainly of alanine expansions. RTT is associated with episodes of tachypneic and irregular breathing intermixed with breathholds and apneas and is caused by mutations in the X-linked MECP2 gene encoding methyl-CpG-binding protein. PWS manifests as sleep-disordered breathing with apneas and episodes of hypoventilation and is caused by the loss of a group of paternally inherited genes on chromosome 15. CCHS is the most specific disorder of respiratory control, whereas the breathing disorders in RTT and PWS are components of a more general developmental disorder. The main clinical features of these three disorders are reviewed with special emphasis on the associated brain abnormalities. In all three syndromes, disease-causing genetic defects have been identified, allowing the development of genetically engineered mouse models. New directions for future therapies based on these models or, in some cases, on clinical experience are delineated. Studies of CCHS, RTT, and PWS extend our knowledge of the molecular and cellular aspects of respiratory rhythm generation and suggest possible pharmacological approaches to respiratory control disorders. This knowledge is relevant for the clinical management of many respiratory disorders that are far more prevalent than the rare diseases discussed here.
Collapse
Affiliation(s)
- Jorge Gallego
- Inserm U676 and University of Paris Diderot, Paris, France.
| |
Collapse
|
130
|
Deng H, Zheng W, Song Z. Genetics, Molecular Biology, and Phenotypes of X-Linked Epilepsy. Mol Neurobiol 2013; 49:1166-80. [DOI: 10.1007/s12035-013-8589-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 11/05/2013] [Indexed: 11/25/2022]
|
131
|
Kadam SD, French BM, Kim ST, Morris-Berry CM, Zimmerman AW, Blue ME, Singer HS. Altered postnatal cell proliferation in brains of mouse pups prenatally exposed to IgG from mothers of children with autistic disorder. J Exp Neurosci 2013; 7:93-9. [PMID: 25157212 PMCID: PMC4089726 DOI: 10.4137/jen.s12979] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Auto antibodies found in the mothers of children with autistic disorder (MCAD) when passively transferred to pregnant mice cause behavioral alterations in juvenile and adult offspring. The goal of this study was to identify whether intraperitoneal injection of MCAD-IgG during gestation affected postnatal cell proliferation and survival in P7 offspring. Pooled MCAD-IgG or IgG from mothers of unaffected children (MUC) or phosphate-buffered saline was injected daily into C57BL/J6 pregnant dams (gestational days E13–E18). MCAD-IgG exposure significantly increased cell proliferation in the subventricular and subgranular zones. In contrast, BrdU-labeled cells on P1 and surviving until P7 (P1-generated cells) showed reduced cell densities in layers 2–4 of frontal and parietal cortices of MCAD mice compared to those in MUC and PBS-injected mice. In conclusion, significant increases in cell proliferation at P7 and reduced densities of P1-generated cells distinguish in utero exposure to MCAD compared to MUC and PBS.
Collapse
Affiliation(s)
- Shilpa D Kadam
- Neuroscience Laboratory, Hugo W Moser Research Institute ; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Beth M French
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S-T Kim
- Neuroscience Laboratory, Hugo W Moser Research Institute
| | - Christy M Morris-Berry
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Mary E Blue
- Neuroscience Laboratory, Hugo W Moser Research Institute ; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. ; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harvey S Singer
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. ; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
132
|
Voineagu I, Eapen V. Converging Pathways in Autism Spectrum Disorders: Interplay between Synaptic Dysfunction and Immune Responses. Front Hum Neurosci 2013; 7:738. [PMID: 24223544 PMCID: PMC3819618 DOI: 10.3389/fnhum.2013.00738] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/15/2013] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable, yet genetically heterogeneous neurodevelopmental conditions. Recent genome-wide association and gene expression studies have provided evidence supporting the notion that the large number of genetic variants associated with ASD converge toward a core set of dysregulated biological processes. Here we review recent data demonstrating the involvement of synaptic dysfunction and abnormal immune responses in ASD, and discuss the functional interplay between the two phenomena.
Collapse
Affiliation(s)
- Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney, NSW , Australia
| | | |
Collapse
|
133
|
Della Sala G, Pizzorusso T. Synaptic plasticity and signaling in Rett syndrome. Dev Neurobiol 2013; 74:178-96. [PMID: 23908158 DOI: 10.1002/dneu.22114] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 06/28/2013] [Accepted: 07/22/2013] [Indexed: 12/11/2022]
Abstract
Rett syndrome (RTT) is a disorder that is caused in the majority of cases by mutations in the gene methyl-CpG-binding protein-2 (MeCP2). Children with RTT are generally characterized by normal development up to the first year and a half of age, after which they undergo a rapid regression marked by a deceleration of head growth, the onset of stereotyped hand movements, irregular breathing, and seizures. Animal models of RTT with good construct and face validity are available. Their analysis showed that homeostatic regulation of MeCP2 gene is necessary for normal CNS functioning and that multiple complex pathways involving different neuronal and glial cell types are disrupted in RTT models. However, it is increasingly clear that RTT pathogenetic mechanisms converge at synaptic level impairing synaptic transmission and plasticity. We review novel findings showing how specific synaptic mechanisms and related signaling pathways are affected in RTT models.
Collapse
Affiliation(s)
- Grazia Della Sala
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence, Italy
| | | |
Collapse
|
134
|
Tanaka Y, Kim KY, Zhong M, Pan X, Weissman SM, Park IH. Transcriptional regulation in pluripotent stem cells by methyl CpG-binding protein 2 (MeCP2). Hum Mol Genet 2013; 23:1045-55. [PMID: 24129406 DOI: 10.1093/hmg/ddt500] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rett syndrome (RTT) is one of the most prevalent female mental disorders. De novo mutations in methyl CpG-binding protein 2 (MeCP2) are a major cause of RTT. MeCP2 regulates gene expression as a transcription regulator as well as through long-range chromatin interaction. Because MeCP2 is present on the X chromosome, RTT is manifested in an X-linked dominant manner. Investigation using murine MeCP2 null models and post-mortem human brain tissues has contributed to understanding the molecular and physiological function of MeCP2. In addition, RTT models using human induced pluripotent stem cells derived from RTT patients (RTT-iPSCs) provide novel resources to elucidate the regulatory mechanism of MeCP2. Previously, we obtained clones of female RTT-iPSCs that express either wild-type or mutant MECP2 due to the inactivation of one X chromosome. Reactivation of the X chromosome also allowed us to have RTT-iPSCs that express both wild-type and mutant MECP2. Using these unique pluripotent stem cells, we investigated the regulation of gene expression by MeCP2 in pluripotent stem cells by transcriptome analysis. We found that MeCP2 regulates genes encoding mitochondrial membrane proteins. In addition, loss of function in MeCP2 results in de-repression of genes on the inactive X chromosome. Furthermore, we showed that each mutation in MECP2 affects a partly different set of genes. These studies suggest that fundamental cellular physiology is affected by mutations in MECP2 from early development, and that a therapeutic approach targeting to unique forms of mutant MeCP2 is needed.
Collapse
|
135
|
Lindner R, Puttagunta R, Di Giovanni S. Epigenetic regulation of axon outgrowth and regeneration in CNS injury: the first steps forward. Neurotherapeutics 2013; 10:771-81. [PMID: 23881454 PMCID: PMC3805867 DOI: 10.1007/s13311-013-0203-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inadequate axonal sprouting and lack of regeneration limit functional recovery following neurologic injury, such as stroke, brain, and traumatic spinal cord injury. Recently, the enhancement of the neuronal regenerative program has led to promising improvements in axonal sprouting and regeneration in animal models of axonal injury. However, precise knowledge of the essential molecular determinants of this regenerative program remains elusive, thus limiting the choice of fully effective therapeutic strategies. Given that molecular regulation of axonal outgrowth and regeneration requires carefully orchestrated waves of gene expression, both temporally and spatially, epigenetic changes may be an ideal regulatory mechanism to address this unique need. While recent evidence suggests that epigenetic modifications could contribute to the regulation of axonal outgrowth and regeneration following axonal injury in models of stroke, and spinal cord and optic nerve injury, a number of unanswered questions remain. Such questions require systematic investigation of the epigenetic landscape between regenerative and non-regenerative conditions for the potential translation of this knowledge into regenerative strategies in human spinal and brain injury, as well as stroke.
Collapse
Affiliation(s)
- Ricco Lindner
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Otfried-Mueller Strasse 27, 72076 Tuebingen, Germany
| | - Radhika Puttagunta
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Otfried-Mueller Strasse 27, 72076 Tuebingen, Germany
| | - Simone Di Giovanni
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Otfried-Mueller Strasse 27, 72076 Tuebingen, Germany
| |
Collapse
|
136
|
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disease caused by MECP2 mutations. The MeCP2 protein was originally thought to function as a transcription repressor by binding to methylated CpG dinucleotides, but is now also thought to be a transcription activator. Recent studies suggest that MeCP2 is not only being expressed in neurons, but also in glial cells, which suggests a new paradigm for understanding the pathogenesis of RTT. It has also been demonstrated that reintroduction of MeCP2 into behaviorally affected Mecp2-null mice after birth rescues neurological symptoms, which indicates that epigenetic failures in RTT are reversible. Therefore, RTT may well be seen as a model disease that can be potentially treated by taking advantage of the reversibility of epigenetic phenomena in various congenital neurodevelopmental diseases that were previously thought to be untreatable.
Collapse
Affiliation(s)
- Takeo Kubota
- Department of Epigenetics Medicine, Interdisciplinary Graduate School of Medicine & Engineering, University of Yamanashi, Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Kunio Miyake
- Department of Epigenetics Medicine, Interdisciplinary Graduate School of Medicine & Engineering, University of Yamanashi, Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Takae Hirasawa
- Department of Epigenetics Medicine, Interdisciplinary Graduate School of Medicine & Engineering, University of Yamanashi, Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
137
|
Yang Y, Higashimori H, Morel L. Developmental maturation of astrocytes and pathogenesis of neurodevelopmental disorders. J Neurodev Disord 2013; 5:22. [PMID: 23988237 PMCID: PMC3765765 DOI: 10.1186/1866-1955-5-22] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/20/2013] [Indexed: 11/10/2022] Open
Abstract
Recent studies have implicated potentially significant roles for astrocytes in the pathogenesis of neurodevelopmental disorders. Astrocytes undergo a dramatic maturation process following early differentiation from which typical morphology and important functions are acquired. Despite significant progress in understanding their early differentiation, very little is known about how astrocytes become functionally mature. In addition, whether functional maturation of astrocytes is disrupted in neurodevelopmental disorders and the consequences of this disruption remains essentially unknown. In this review, we discuss our perspectives about how astrocyte developmental maturation is regulated, and how disruption of the astrocyte functional maturation process, especially alterations in their ability to regulate glutamate homeostasis, may alter synaptic physiology and contribute to the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yongjie Yang
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| | | | | |
Collapse
|
138
|
Mechanisms and therapeutic challenges in autism spectrum disorders: insights from Rett syndrome. Curr Opin Neurol 2013; 26:154-9. [PMID: 23449173 DOI: 10.1097/wco.0b013e32835f19a7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW A major challenge for understanding neurodevelopmental disorders, including autism spectrum disorders (ASDs), is to advance the findings from gene discovery to an exposition of neurobiological mechanisms that underlie these disorders and subsequently translate this knowledge into mechanism-based therapeutics. A promising way to proceed is revealed by the recent studies of rare subsets of ASDs. In this review, we summarize the latest advances in the mechanisms and emerging therapeutics for a rare single-gene ASD, Rett syndrome. RECENT FINDINGS Rett syndrome is caused by mutations in the gene coding for methyl CpG-binding protein 2 (MeCP2). Although MeCP2 has diverse functions, examination of MeCP2 mutant mice suggests the hypothesis that MeCP2 deficiency leads to aberrant maturation and maintenance of synapses and circuits in multiple brain systems. Some of the deficits arise from alterations in specific intracellular pathways such as the PI3K/Akt signaling pathway. These abnormalities can be at least partially rescued in MeCP2 mutant mice by treatment with therapeutic agents. SUMMARY Mechanism-based therapeutics are emerging for single-gene neurodevelopmental disorders such as Rett syndrome. Given the complexity of MeCP2 function, future directions include combination therapeutics that target multiple molecules and pathways. Such approaches will likely be applicable to other ASDs as well.
Collapse
|
139
|
Caravagna C, Soliz J, Seaborn T. Brain-derived neurotrophic factor interacts with astrocytes and neurons to control respiration. Eur J Neurosci 2013; 38:3261-9. [PMID: 23930598 DOI: 10.1111/ejn.12320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/24/2013] [Indexed: 01/08/2023]
Abstract
Respiratory rhythm is generated and modulated in the brainstem. Neuronal involvement in respiratory control and rhythmogenesis is now clearly established. However, glial cells have also been shown to modulate the activity of brainstem respiratory groups. Although the potential involvement of other glial cell type(s) cannot be excluded, astrocytes are clearly involved in this modulation. In parallel, brain-derived neurotrophic factor (BDNF) also modulates respiratory rhythm. The currently available data on the respective roles of astrocytes and BDNF in respiratory control and rhythmogenesis lead us to hypothesize that there is BDNF-mediated control of the communication between neurons and astrocytes in the maintenance of a proper neuronal network capable of generating a stable respiratory rhythm. According to this hypothesis, progression of Rett syndrome, an autism spectrum disease with disordered breathing, can be stabilized in mouse models by re-expressing the normal gene pattern in astrocytes or microglia, as well as by stimulating the BDNF signaling pathway. These results illustrate how the signaling mechanisms by which glia exerts its effects in brainstem respiratory groups is of great interest for pathologies associated with neurological respiratory disorders.
Collapse
Affiliation(s)
- Céline Caravagna
- Department of Pediatrics, Laval University, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Hôpital St-François d'Assise, 10 Rue de l'Espinay, Room D0-742, Québec, QC, Canada
| | | | | |
Collapse
|
140
|
Kato TA, Hayakawa K, Monji A, Kanba S. Missing and Possible Link between Neuroendocrine Factors, Neuropsychiatric Disorders, and Microglia. Front Integr Neurosci 2013; 7:53. [PMID: 23874274 PMCID: PMC3711058 DOI: 10.3389/fnint.2013.00053] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 07/02/2013] [Indexed: 12/27/2022] Open
Abstract
Endocrine systems have long been suggested to be one of the important factors in neuropsychiatric disorders, while the underlying mechanisms have not been well understood. Traditionally, neuropsychiatric disorders have been mainly considered the consequence of abnormal conditions in neural circuitry. Beyond the neuronal doctrine, microglia, one of the glial cells with inflammatory/immunological functions in the central nervous system (CNS), have recently been suggested to play important roles in neuropsychiatric disorders. However, the crosstalk between neuroendocrine factors, neuropsychiatric disorders, and microglia has been unsolved. Therefore, we herein introduce and discuss a missing and possible link between these three factors; especially highlighting the following hormones; (1) Hypothalamic-Pituitary-Adrenal (HPA) axis-related hormones such as corticotropin-releasing hormone (CRH) and glucocorticoids, (2) sex-related hormones such as estrogen and progesterone, and (3) oxytocin. A growing body of evidence has suggested that these hormones have a direct effect on microglia. We hypothesize that hormone-induced microglial activation and the following microglia-derived mediators may lead to maladaptive neuronal networks including synaptic dysfunctions, causing neuropsychiatric disorders. Future investigations to clarify the correlation between neuroendocrine factors and microglia may contribute to a novel understanding of the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan ; Innovation Center for Medical Redox Navigation, Kyushu University , Fukuoka , Japan
| | | | | | | |
Collapse
|
141
|
Tang X, Zhou L, Wagner AM, Marchetto MCN, Muotri AR, Gage FH, Chen G. Astroglial cells regulate the developmental timeline of human neurons differentiated from induced pluripotent stem cells. Stem Cell Res 2013; 11:743-57. [PMID: 23759711 DOI: 10.1016/j.scr.2013.05.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/28/2013] [Accepted: 05/07/2013] [Indexed: 02/03/2023] Open
Abstract
Neurons derived from human induced-pluripotent stem cells (hiPSCs) have been used to model a variety of neurological disorders. Different protocols have been used to differentiate hiPSCs into neurons, but their functional maturation process has varied greatly among different studies. Here, we demonstrate that laminin, a commonly used substrate for iPSC cultures, was inefficient to promote fully functional maturation of hiPSC-derived neurons. In contrast, astroglial substrate greatly accelerated neurodevelopmental processes of hiPSC-derived neurons. We have monitored the neural differentiation and maturation process for up to two months after plating hiPSC-derived neuroprogenitor cells (hNPCs) on laminin or astrocytes. We found that one week after plating hNPCs, there were 21-fold more newly differentiated neurons on astrocytes than on laminin. Two weeks after plating hNPCs, there were 12-fold more dendritic branches in neurons cultured on astrocytes than on laminin. Six weeks after plating hNPCs, the Na(+) and K(+) currents, as well as glutamate and GABA receptor currents, were 3-fold larger in neurons cultured on astrocytes than on laminin. And two months after plating hNPCs, the spontaneous synaptic events were 8-fold more in neurons cultured on astrocytes than on laminin. These results highlight a critical role of astrocytes in promoting neural differentiation and functional maturation of human neurons derived from hiPSCs. Moreover, our data presents a thorough developmental timeline of hiPSC-derived neurons in culture, providing important benchmarks for future studies on disease modeling and drug screening.
Collapse
Affiliation(s)
- Xin Tang
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | |
Collapse
|
142
|
Karpova NN. Role of BDNF epigenetics in activity-dependent neuronal plasticity. Neuropharmacology 2013; 76 Pt C:709-18. [PMID: 23587647 DOI: 10.1016/j.neuropharm.2013.04.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 03/21/2013] [Accepted: 04/03/2013] [Indexed: 01/11/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a key mediator of the activity-dependent processes in the brain that have a major impact on neuronal development and plasticity. Impaired control of neuronal activity-induced BDNF expression mediates the pathogenesis of various neurological and psychiatric disorders. Different environmental stimuli, such as the use of pharmacological compounds, physical and learning exercises or stress exposure, lead to activation of specific neuronal networks. These processes entail tight temporal and spatial transcriptional control of numerous BDNF splice variants through epigenetic mechanisms. The present review highlights recent findings on the dynamic and long-term epigenetic programming of BDNF gene expression by the DNA methylation, histone-modifying and microRNA machineries. The review also summarizes the current knowledge on the activity-dependent BDNF mRNA trafficking critical for rapid local regulation of BDNF levels and synaptic plasticity. Current data open novel directions for discovery of new promising therapeutic targets for treatment of neuropsychiatric disorders. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Nina N Karpova
- Neuroscience Center, University of Helsinki, Viikinkaari 4, 00790 Helsinki, Finland.
| |
Collapse
|
143
|
Cao Z, Hulsizer S, Cui Y, Pretto DL, Kim KH, Hagerman PJ, Tassone F, Pessah IN. Enhanced asynchronous Ca(2+) oscillations associated with impaired glutamate transport in cortical astrocytes expressing Fmr1 gene premutation expansion. J Biol Chem 2013; 288:13831-41. [PMID: 23553633 DOI: 10.1074/jbc.m112.441055] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND FMR1 CGG expansion repeats in the premutation range have not been linked to astrocyte pathophysiology. RESULTS Premutation cortical astrocytes display decreased Glu transporter expression/activity and enhanced asynchronous Ca(2+) oscillations. CONCLUSION Glu transport and Ca(2+) signaling defects in premutation astrocytes could contribute to FXTAS neuropathology. SIGNIFICANCE Premutation astrocytes may have an etiological role in FXTAS neuropathology. Premutation CGG repeat expansions (55-200 CGG repeats; preCGG) within the fragile X mental retardation 1 (FMR1) gene can cause fragile X-associated tremor/ataxia syndrome. Defects in early neuronal migration and morphology, electrophysiological activity, and mitochondria trafficking have been described in a premutation mouse model, but whether preCGG mutations also affect astrocyte function remains unknown. PreCGG cortical astrocytes (∼170 CGG repeats) displayed 3-fold higher Fmr1 mRNA and 30% lower FMR1 protein (FMRP) when compared with WT. PreCGG astrocytes showed modest reductions in expression of glutamate (Glu) transporters GLT-1 and GLAST and attenuated Glu uptake (p < 0.01). Consistent with astrocyte cultures in vitro, aged preCGG mice cerebral cortex also displayed reduced GLAST and GLT-1 expression. Approximately 65% of the WT and preCGG cortical astrocytes displayed spontaneous asynchronous Ca(2+) oscillations. PreCGG astrocytes exhibited nearly 50% higher frequency of asynchronous Ca(2+) oscillations (p < 0.01) than WT, a difference mimicked by chronic exposure of WT astrocytes to l-trans-pyrrolidine-2,4-dicarboxylic acid (l-trans-PDC) or by partial suppression of GLAST using siRNA interference. Acute challenge with Glu augmented the frequency of Ca(2+) oscillations in both genotypes. Additionally, 10 μm Glu elicited a sustained intracellular Ca(2+) rise in a higher portion of preCGG astrocytes when compared with WT. Pharmacological studies showed that mGluR5, but not NMDA receptor, contributed to Glu hypersensitivity in preCGG astrocytes. These functional defects in preCGG astrocytes, especially in Glu signaling, may contribute to fragile X-associated tremor/ataxia syndrome neuropathology.
Collapse
Affiliation(s)
- Zhengyu Cao
- Department of Molecular Biosciences, School of Veterinary Medicine, University ofCalifornia, Davis, California 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Zeng L, Zhang P, Shi L, Yamamoto V, Lu W, Wang K. Functional impacts of NRXN1 knockdown on neurodevelopment in stem cell models. PLoS One 2013; 8:e59685. [PMID: 23536886 PMCID: PMC3607566 DOI: 10.1371/journal.pone.0059685] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/16/2013] [Indexed: 12/28/2022] Open
Abstract
Exonic deletions in NRXN1 have been associated with several neurodevelopmental disorders, including autism, schizophrenia and developmental delay. However, the molecular mechanism by which NRXN1 deletions impact neurodevelopment remains unclear. Here we used human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) as models to investigate the functional impacts of NRXN1 knockdown. We first generated hiPSCs from skin fibroblasts and differentiated them into neural stem cells (NSCs). We reduced NRXN1 expression in NSCs via a controlled shRNAmir-based knockdown system during differentiation, and monitored the transcriptome alteration by RNA-Seq and quantitative PCR at several time points. Interestingly, half reduction of NRXN1 expression resulted in changes of expression levels for the cell adhesion pathway (20 genes, P = 2.8×10−6) and neuron differentiation pathway (13 genes, P = 2.1×10−4), implicating that single-gene perturbation can impact biological networks important for neurodevelopment. Furthermore, astrocyte marker GFAP was significantly reduced in a time dependent manner that correlated with NRXN1 reduction. This observation was reproduced in both hiPSCs and hESCs. In summary, based on in vitro models, NRXN1 deletions impact several biological processes during neurodevelopment, including synaptic adhesion and neuron differentiation. Our study highlights the utility of stem cell models in understanding the functional roles of copy number variations (CNVs) in conferring susceptibility to neurodevelopmental diseases.
Collapse
Affiliation(s)
- Liyun Zeng
- Zilhka Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Peilin Zhang
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Lingling Shi
- Zilhka Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Vicky Yamamoto
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Wange Lu
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (WL); (KW)
| | - Kai Wang
- Zilhka Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Psychiatry and Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (WL); (KW)
| |
Collapse
|
145
|
Yazdani M, Deogracias R, Guy J, Poot RA, Bird A, Barde YA. Disease modeling using embryonic stem cells: MeCP2 regulates nuclear size and RNA synthesis in neurons. Stem Cells 2013; 30:2128-39. [PMID: 22865604 DOI: 10.1002/stem.1180] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mutations in the gene encoding the methyl-CpG-binding protein MECP2 are the major cause of Rett syndrome, an autism spectrum disorder mainly affecting young females. MeCP2 is an abundant chromatin-associated protein, but how and when its absence begins to alter brain function is still far from clear. Using a stem cell-based system allowing the synchronous differentiation of neuronal progenitors, we found that in the absence of MeCP2, the size of neuronal nuclei fails to increase at normal rates during differentiation. This is accompanied by a marked decrease in the rate of ribonucleotide incorporation, indicating an early role of MeCP2 in regulating total gene transcription, not restricted to selected mRNAs. We also found that the levels of brain-derived neurotrophic factor (BDNF) were decreased in mutant neurons, while those of the presynaptic protein synaptophysin increased at similar rates in wild-type and mutant neurons. By contrast, nuclear size, transcription rates, and BDNF levels remained unchanged in astrocytes lacking MeCP2. Re-expressing MeCP2 in mutant neurons rescued the nuclear size phenotype as well as BDNF levels. These results reveal a new role of MeCP2 in regulating overall RNA synthesis in neurons during the course of their maturation, in line with recent findings indicating a reduced nucleolar size in neurons of the developing brain of mice lacking Mecp2.
Collapse
|
146
|
Eyo UB, Dailey ME. Microglia: key elements in neural development, plasticity, and pathology. J Neuroimmune Pharmacol 2013; 8:494-509. [PMID: 23354784 DOI: 10.1007/s11481-013-9434-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 01/14/2013] [Indexed: 12/31/2022]
Abstract
A century after Cajal identified a "third element" of the nervous system, many issues have been clarified about the identity and function of one of its major components, the microglia. Here, we review recent findings by microgliologists, highlighting results from imaging studies that are helping provide new views of microglial behavior and function. In vivo imaging in the intact adult rodent CNS has revolutionized our understanding of microglial behaviors in situ and has raised speculation about their function in the uninjured adult brain. Imaging studies in ex vivo mammalian tissue preparations and in intact model organisms including zebrafish are providing insights into microglial behaviors during brain development. These data suggest that microglia play important developmental roles in synapse remodeling, developmental apoptosis, phagocytic clearance, and angiogenesis. Because microglia also contribute to pathology, including neurodevelopmental and neurobehavioral disorders, ischemic injury, and neuropathic pain, promising new results raise the possibility of leveraging microglia for therapeutic roles. Finally, exciting recent work is addressing unanswered questions regarding the nature of microglial-neuronal communication. While it is now apparent that microglia play diverse roles in neural development, behavior, and pathology, future research using neuroimaging techniques will be essential to more fully exploit these intriguing cellular targets for effective therapeutic intervention applied to a variety of conditions.
Collapse
Affiliation(s)
- Ukpong B Eyo
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
147
|
Yasui DH, Xu H, Dunaway KW, Lasalle JM, Jin LW, Maezawa I. MeCP2 modulates gene expression pathways in astrocytes. Mol Autism 2013; 4:3. [PMID: 23351786 PMCID: PMC3561260 DOI: 10.1186/2040-2392-4-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/10/2013] [Indexed: 12/04/2022] Open
Abstract
Background Mutations in MECP2 encoding methyl-CpG-binding protein 2 (MeCP2) cause the X-linked neurodevelopmental disorder Rett syndrome. Rett syndrome patients exhibit neurological symptoms that include irregular breathing, impaired mobility, stereotypic hand movements, and loss of speech. MeCP2 protein epigenetically modulates gene expression through genome-wide binding to methylated CpG dinucleotides. While neurons have the highest level of MeCP2 expression, astrocytes and other cell types also express detectable levels of MeCP2. Recent studies suggest that astrocytes likely control the progression of Rett syndrome. Thus, the object of these studies was to identify gene targets that are affected by loss of MeCP2 binding in astrocytes. Methods To identify gene targets of MeCP2 in astrocytes, combined approaches of expression microarray and chromatin immunoprecipitation of MeCP2 followed by sequencing (ChIP-seq) were compared between wild-type and MeCP2-deficient astrocytes. MeCP2 gene targets were compared with genes in the top 10% of MeCP2 binding levels in gene windows either within 2 kb upstream of the transcription start site, or the ‘gene body’ that extended from transcription start to end site, or 2 kb downstream of the transcription end site. Results A total of 118 gene transcripts surpassed the highly significant threshold (P < 0.005, fold change > 1.2) in expression microarray analysis from triplicate cultures. The top 10% of genes with the highest levels of MeCP2 binding were identified in two independent ChIP-seq experiments. Together this integrated, genome-wide screen for MeCP2 target genes provided an overlapping list of 19 high-confidence MeCP2-responsive gene transcripts in astrocytes. Validation of candidate target gene transcripts by RT-PCR revealed that expression of Apoc2, Cdon, Csrp and Nrep were consistently responsive to MeCP2 deficiency in astrocytes. Conclusions The first MeCP2 ChIP-seq and gene expression microarray analysis in astrocytes reveals a set of potential MeCP2 target genes that may contribute to normal astrocyte signaling, cell division and neuronal support functions, the loss of which may contribute to the Rett syndrome phenotype.
Collapse
Affiliation(s)
- Dag H Yasui
- Department of Medical Microbiology and Immunology, UC Davis Genome Center, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA.
| | | | | | | | | | | |
Collapse
|
148
|
Lilja T, Wallenborg K, Björkman K, Albåge M, Eriksson M, Lagercrantz H, Rohdin M, Hermanson O. Novel alterations in the epigenetic signature of MeCP2-targeted promoters in lymphocytes of Rett syndrome patients. Epigenetics 2013; 8:246-51. [PMID: 23348913 PMCID: PMC3669117 DOI: 10.4161/epi.23752] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder with neurological symptoms, such as motor disorders and mental retardation. In most cases, RTT is caused by mutations in the DNA binding protein MeCP2. In mice, MeCP2 gene deletion has been reported to result in genome-wide increased histone acetylation. Transcriptional regulation of neurotrophic factor BDNF and transcription factor DLX5, essential for proper neurogenesis, is further altered in MeCP2-deleted animals. We therefore investigated the chromatin environment of MeCP2 target genes BDNF and DLX5 in lymphocytes from RTT patients and human controls, and analyzed the density of histones H3, H2B and H1, as well as the levels of methylation and acetylation on selected lysines of histone H3. Notably, we found a general increase in the density of histone H3 in RTT patients’ lymphocytes compared with controls, and decreased levels of trimethylation of lysine 4 on histone H3 (H3K4me3), a modification associated with transcriptional activation. The levels of acetylation of lysine 9 (H3K9ac) and 27 (H3K27ac) did not show any statistically significant changes when normalized to the decreased histone H3 levels; nevertheless, an average decrease in acetylation was noted. Our results reveal an unexpected alteration of the chromatin state of established MeCP2 target genes in lymphocytes of human subjects with RTT.
Collapse
Affiliation(s)
- Tobias Lilja
- Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Maloney SE, Rieger MA, Dougherty JD. Identifying essential cell types and circuits in autism spectrum disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 113:61-96. [PMID: 24290383 DOI: 10.1016/b978-0-12-418700-9.00003-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autism spectrum disorder (ASD) is highly genetic in its etiology, with potentially hundreds of genes contributing to risk. Despite this heterogeneity, these disparate genetic lesions may result in the disruption of a limited number of key cell types or circuits-information which could be leveraged for the design of therapeutic interventions. While hypotheses for cellular disruptions can be identified by postmortem anatomical analysis and expression studies of ASD risk genes, testing these hypotheses requires the use of animal models. In this review, we explore the existing evidence supporting the contribution of different cell types to ASD, specifically focusing on rodent studies disrupting serotonergic, GABAergic, cerebellar, and striatal cell types, with particular attention to studies of the sufficiency of specific cellular disruptions to generate ASD-related behavioral abnormalities. This evidence suggests multiple cellular routes can create features of the disorder, though it is currently unclear if these cell types converge on a final common circuit. We hope that in the future, systematic studies of cellular sufficiency and genetic interaction will help to classify patients into groups by type of cellular disruptions which suggest tractable therapeutic targets.
Collapse
Affiliation(s)
- Susan E Maloney
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
150
|
Chapleau CA, Lane J, Larimore J, Li W, Pozzo-Miller L, Percy AK. Recent Progress in Rett Syndrome and MeCP2 Dysfunction: Assessment of Potential Treatment Options. FUTURE NEUROLOGY 2013; 8. [PMID: 24348096 DOI: 10.2217/fnl.12.79] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synaptic communication is highly regulated process of contact between cells allowing information to be stored and modified. Synaptic formation and maturation is the result of interactions between intrinsic genetic/molecular factors and the external environment to establish the communication in the brain. One disorder associated with faulty synapse communication is Rett Syndrome (RTT). RTT is the leading form of severe MR in females, affecting approximately 1:10,000 females worldwide, without predisposition to any particular racial or ethnic group. Mutations in MECP2, the gene encoding methyl-CpG-binding protein-2, have been identified in more than 95% of individuals with RTT. Birth and the milestones of early development appear to be normal in individuals with RTT until approximately 6-18 months when in the subsequent months and years that follows, physical, motor, and social-cognitive development enter a period of regression. The clinical management of these individuals is extremely multifaceted, relying on collaborations of specialists and researchers from many different fields. In this critical literature review, we provide an overview of Rett Syndrome, from patient to pathophysiology with a therapeutic summary of clinical trials in RTT and preclinical studies using mouse and cell models of RTT.
Collapse
Affiliation(s)
- Christopher A Chapleau
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jane Lane
- Department of Pediatrics, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer Larimore
- Biology Department and Neuroscience Program, Agnes Scott College, Decatur, GA 30030
| | - Wei Li
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alan K Percy
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA ; Department of Pediatrics, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|