101
|
Gentry RN, Schuweiler DR, Roesch MR. Dopamine signals related to appetitive and aversive events in paradigms that manipulate reward and avoidability. Brain Res 2019; 1713:80-90. [PMID: 30300635 PMCID: PMC6826219 DOI: 10.1016/j.brainres.2018.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 12/17/2022]
Abstract
Using environmental cues to acquire good and avoid harmful things is critical for survival. Rewarding and aversive outcomes both drive behavior through reinforcement learning and sometimes occur together in the environment, but it remains unclear how these signals are encoded within the brain and if signals for positive and negative reinforcement are encoded similarly. Recent studies demonstrate that the dopaminergic system and interconnected brain regions process both positive and negative reinforcement necessary for approach and avoidance behaviors, respectively. Here, we review these data with a special focus on behavioral paradigms that manipulate both expected reward and the avoidability of aversive events to reveal neural correlates related to value, prediction error encoding, motivation, and salience.
Collapse
Affiliation(s)
- Ronny N Gentry
- Department of Psychology, University of Maryland, College Park, MD 20742, United States; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, United States.
| | - Douglas R Schuweiler
- Department of Psychology, University of Maryland, College Park, MD 20742, United States; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, United States
| | - Matthew R Roesch
- Department of Psychology, University of Maryland, College Park, MD 20742, United States; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
102
|
Halbout B, Marshall AT, Azimi A, Liljeholm M, Mahler SV, Wassum KM, Ostlund SB. Mesolimbic dopamine projections mediate cue-motivated reward seeking but not reward retrieval in rats. eLife 2019; 8:43551. [PMID: 31107241 PMCID: PMC6548499 DOI: 10.7554/elife.43551] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 05/19/2019] [Indexed: 01/21/2023] Open
Abstract
Efficient foraging requires an ability to coordinate discrete reward-seeking and reward-retrieval behaviors. We used pathway-specific chemogenetic inhibition to investigate how rats’ mesolimbic and mesocortical dopamine circuits contribute to the expression and modulation of reward seeking and retrieval. Inhibiting ventral tegmental area dopamine neurons disrupted the tendency for reward-paired cues to motivate reward seeking, but spared their ability to increase attempts to retrieve reward. Similar effects were produced by inhibiting dopamine inputs to nucleus accumbens, but not medial prefrontal cortex. Inhibiting dopamine neurons spared the suppressive effect of reward devaluation on reward seeking, an assay of goal-directed behavior. Attempts to retrieve reward persisted after devaluation, indicating they were habitually performed as part of a fixed action sequence. Our findings show that complete bouts of reward seeking and retrieval are behaviorally and neurally dissociable from bouts of reward seeking without retrieval. This dichotomy may prove useful for uncovering mechanisms of maladaptive behavior.
Collapse
Affiliation(s)
- Briac Halbout
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, Irvine, United States.,Irvine Center for Addiction Neuroscience, University of California, Irvine, Irvine, United States
| | - Andrew T Marshall
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, Irvine, United States.,Irvine Center for Addiction Neuroscience, University of California, Irvine, Irvine, United States
| | - Ali Azimi
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, Irvine, United States.,Irvine Center for Addiction Neuroscience, University of California, Irvine, Irvine, United States
| | - Mimi Liljeholm
- Department of Cognitive Sciences, University of California, Irvine, Irvine, United States
| | - Stephen V Mahler
- Irvine Center for Addiction Neuroscience, University of California, Irvine, Irvine, United States.,Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
| | - Kate M Wassum
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States.,Brain Research Institute, University of California, Los Angeles, Los Angeles, United States
| | - Sean B Ostlund
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, Irvine, United States.,Irvine Center for Addiction Neuroscience, University of California, Irvine, Irvine, United States
| |
Collapse
|
103
|
Hart EE, Izquierdo A. Quantity versus quality: Convergent findings in effort-based choice tasks. Behav Processes 2019; 164:178-185. [PMID: 31082477 DOI: 10.1016/j.beproc.2019.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 01/14/2023]
Abstract
Organisms must frequently make cost-benefit decisions based on time, risk, and effort in choosing rewards to pursue. Various tasks have been developed to assess effort-based choice in rats, and experimenters have found largely similar results across tasks and brain regions. In this review, we focus primarily on the convergence of different effort-based choice tasks where quality or quantity of reward are manipulated. In the former, the rat is typically presented with the option to work for a preferred reward or select a less preferred, but freely-available reward. In such paradigms, the rewards are of different identities but are confirmed to differ qualitatively in value by a food preference task when both are freely-available. In the latter task type, rats are required to select between higher magnitude versus lower magnitudes of the same reward, but each with a similar effort requirement. We discuss the strengths/limitations of these paradigms, and describe brain regions that have been probed that result in converging or equivocal findings. Results are also reviewed with reference to a need for future work, and the broader impacts and implications of studies probing the mechanisms of effort.
Collapse
Affiliation(s)
- Evan E Hart
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Alicia Izquierdo
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA; The Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA; Integrative Center for Learning and Memory, University of California at Los Angeles, CA, USA; Integrative Center for Addictions, University of California at Los Angeles, CA, USA.
| |
Collapse
|
104
|
Malvaez M, Shieh C, Murphy MD, Greenfield VY, Wassum KM. Distinct cortical-amygdala projections drive reward value encoding and retrieval. Nat Neurosci 2019; 22:762-769. [PMID: 30962632 PMCID: PMC6486448 DOI: 10.1038/s41593-019-0374-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 02/28/2019] [Indexed: 11/09/2022]
Abstract
The value of an anticipated rewarding event is a crucial component of the decision to engage in its pursuit. But little is known of the networks responsible for encoding and retrieving this value. By using biosensors and pharmacological manipulations, we found that basolateral amygdala (BLA) glutamatergic activity tracks and mediates encoding and retrieval of the state-dependent incentive value of a palatable food reward. Projection-specific, bidirectional chemogenetic and optogenetic manipulations revealed that the orbitofrontal cortex (OFC) supports the BLA in these processes. Critically, the function of ventrolateral and medial OFC→BLA projections is doubly dissociable. Whereas lateral OFC→BLA projections are necessary and sufficient for encoding of the positive value of a reward, medial OFC→BLA projections are necessary and sufficient for retrieving this value from memory. These data reveal a new circuit for adaptive reward valuation and pursuit and provide insight into the dysfunction in these processes that characterizes myriad psychiatric diseases.
Collapse
Affiliation(s)
- Melissa Malvaez
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christine Shieh
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael D Murphy
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Venuz Y Greenfield
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kate M Wassum
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA. .,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
105
|
Moorman DE. The role of the orbitofrontal cortex in alcohol use, abuse, and dependence. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:85-107. [PMID: 29355587 PMCID: PMC6072631 DOI: 10.1016/j.pnpbp.2018.01.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/22/2017] [Accepted: 01/13/2018] [Indexed: 12/21/2022]
Abstract
One of the major functions of the orbitofrontal cortex (OFC) is to promote flexible motivated behavior. It is no surprise, therefore, that recent work has demonstrated a prominent impact of chronic drug use on the OFC and a potential role for OFC disruption in drug abuse and addiction. Among drugs of abuse, the use of alcohol is particularly salient with respect to OFC function. Although a number of studies in humans have implicated OFC dysregulation in alcohol use disorders, animal models investigating the association between OFC and alcohol use are only beginning to be developed, and there is still a great deal to be revealed. The goal of this review is to consider what is currently known regarding the role of the OFC in alcohol use and dependence. I will first provide a brief, general overview of current views of OFC function and its contributions to drug seeking and addiction. I will then discuss research to date related to the OFC and alcohol use, both in human clinical populations and in non-human models. Finally I will consider issues and strategies to guide future study that may identify this brain region as a key player in the transition from moderated to problematic alcohol use and dependence.
Collapse
Affiliation(s)
- David E. Moorman
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst MA 01003 USA
| |
Collapse
|
106
|
Hernaus D, Frank MJ, Brown EC, Brown JK, Gold JM, Waltz JA. Impaired Expected Value Computations in Schizophrenia Are Associated With a Reduced Ability to Integrate Reward Probability and Magnitude of Recent Outcomes. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 4:280-290. [PMID: 30683607 DOI: 10.1016/j.bpsc.2018.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/08/2018] [Accepted: 11/27/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Motivational deficits in people with schizophrenia (PSZ) are associated with an inability to integrate the magnitude and probability of previous outcomes. The mechanisms that underlie probability-magnitude integration deficits, however, are poorly understood. We hypothesized that increased reliance on "valueless" stimulus-response associations, in lieu of expected value (EV)-based learning, could drive probability-magnitude integration deficits in PSZ with motivational deficits. METHODS Healthy volunteers (n = 38) and PSZ (n = 49) completed a learning paradigm consisting of four stimulus pairs. Reward magnitude (3, 2, 1, 0 points) and probability (90%, 80%, 20%, 10%) determined each stimulus's EV. Following a learning phase, new and familiar stimulus pairings were presented. Participants were asked to select stimuli with the highest reward value. RESULTS PSZ with high motivational deficits made increasingly less optimal choices as the difference in reward value (probability × magnitude) between two competing stimuli increased. Using a previously validated computational hybrid model, PSZ relied less on EV ("Q-learning") and more on stimulus-response learning ("actor-critic"), which correlated with Scale for the Assessment of Negative Symptoms motivational deficit severity. PSZ specifically failed to represent reward magnitude, consistent with model demonstrations showing that response tendencies in the actor-critic were preferentially driven by reward probability. CONCLUSIONS Probability-magnitude deficits in PSZ with motivational deficits arise from underutilization of EV in favor of reliance on valueless stimulus-response associations. Confirmed by our computational hybrid framework, probability-magnitude integration deficits were driven specifically by a failure to represent reward magnitude. This work provides a first mechanistic explanation of complex EV-based learning deficits in PSZ with motivational deficits that arise from an inability to combine information from different reward modalities.
Collapse
Affiliation(s)
- Dennis Hernaus
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland.
| | - Michael J Frank
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island; Department of Psychiatry and Brown Institute for Brain Science, Brown University, Providence, Rhode Island
| | - Elliot C Brown
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland; Institute for Psychology, University of Lübeck, Lübeck, Germany
| | - Jaime K Brown
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - James M Gold
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - James A Waltz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
107
|
Chemogenetic Manipulations of Ventral Tegmental Area Dopamine Neurons Reveal Multifaceted Roles in Cocaine Abuse. J Neurosci 2018; 39:503-518. [PMID: 30446532 DOI: 10.1523/jneurosci.0537-18.2018] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 10/04/2018] [Accepted: 10/19/2018] [Indexed: 01/13/2023] Open
Abstract
Ventral tegmental area (VTA) dopamine (DA) neurons perform diverse functions in motivation and cognition, but their precise roles in addiction-related behaviors are still debated. Here, we targeted VTA DA neurons for bidirectional chemogenetic modulation during specific tests of cocaine reinforcement, demand, and relapse-related behaviors in male rats, querying the roles of DA neuron inhibitory and excitatory G-protein signaling in these processes. Designer receptor stimulation of Gq signaling, but not Gs signaling, in DA neurons enhanced cocaine seeking via functionally distinct projections to forebrain limbic regions. In contrast, engaging inhibitory Gi/o signaling in DA neurons blunted the reinforcing and priming effects of cocaine, reduced stress-potentiated reinstatement, and altered behavioral strategies for cocaine seeking and taking. Results demonstrate that DA neurons play several distinct roles in cocaine seeking, depending on behavioral context, G-protein-signaling cascades, and DA neuron efferent targets, highlighting their multifaceted roles in addiction.SIGNIFICANCE STATEMENT G-protein-coupled receptors are crucial modulators of ventral tegmental area (VTA) dopamine neuron activity, but how this metabotropic signaling impacts the complex roles of dopamine in reward and addiction is poorly understood. Here, we bidirectionally modulate dopamine neuron G-protein signaling with DREADDs (designer receptors exclusively activated by designer drugs) during a variety of cocaine-seeking behaviors, revealing nuanced, pathway-specific roles in cocaine reward, effortful seeking, and relapse-like behaviors. Gq and Gs stimulation activated dopamine neurons, but only Gq stimulation robustly enhanced cocaine seeking. Gi/o inhibitory signaling reduced some, but not all, types of cocaine seeking. Results show that VTA dopamine neurons modulate numerous distinct aspects of cocaine addiction- and relapse-related behaviors, and point to potential new approaches for intervening in these processes to treat addiction.
Collapse
|
108
|
Zimmerman EC, Grace AA. Prefrontal cortex modulates firing pattern in the nucleus reuniens of the midline thalamus via distinct corticothalamic pathways. Eur J Neurosci 2018; 48:3255-3272. [PMID: 30107061 PMCID: PMC6237082 DOI: 10.1111/ejn.14111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/12/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Abstract
The thalamus has long been recognized for its role in relaying sensory information from the periphery, a function accomplished by its "first-order" nuclei. However, a second category of thalamic nuclei, termed "higher-order" nuclei, have been shown instead to mediate communication between cortical areas. The nucleus reuniens of the midline thalamus (RE) is a higher-order nucleus known to act as a conduit of reciprocal communication between the medial prefrontal cortex (mPFC) and hippocampus. While anatomical and behavioural studies of RE are numerous, circuit-based electrophysiological studies, particularly those examining the impact of cortical input and the thalamic reticular nucleus (TRN) on RE neuron firing, are sparse. To characterize RE neuron firing properties and dissect the circuit dynamics of the infralimbic subdivision of the mPFC (ilPFC), the TRN and RE, we used in vivo, extracellular, single-unit recordings in male Sprague Dawley rats and manipulated neural activity using targeted pharmacological manipulations, electrical stimulation and a projection-specific implementation of designer receptors exclusively activated by designer drugs (DREADDs). We show that ilPFC inhibition reduces multiple burst firing parameters in RE, whereas ilPFC stimulation drives burst firing and dampens tonic firing. In addition, TRN inhibition reduces the number of spontaneously active neurons in RE. Finally, inhibition of ilPFC terminals in RE selectively enhances a subset of burst firing parameters. These findings demonstrate that ilPFC input, both via direct projections and via the TRN, can modulate RE neuron firing pattern in nuanced and complex ways. They also highlight the ilPFC-TRN-RE circuit as a likely critical component of prefrontal-hippocampal interactions.
Collapse
Affiliation(s)
- Eric C Zimmerman
- Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
109
|
Ramanathan KR, Jin J, Giustino TF, Payne MR, Maren S. Prefrontal projections to the thalamic nucleus reuniens mediate fear extinction. Nat Commun 2018; 9:4527. [PMID: 30375397 PMCID: PMC6207683 DOI: 10.1038/s41467-018-06970-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
The thalamic nucleus reuniens (RE) receives dense projections from the medial prefrontal cortex (mPFC), interconnects the mPFC and hippocampus, and may serve a pivotal role in regulating emotional learning and memory. Here we show that the RE and its mPFC afferents are critical for the extinction of Pavlovian fear memories in rats. Pharmacological inactivation of the RE during extinction learning or retrieval increases freezing to an extinguished conditioned stimulus (CS); renewal of fear outside the extinction context was unaffected. Suppression of fear in the extinction context is associated with an increase in c-fos expression and spike firing in RE neurons to the extinguished CS. The role for the RE in suppressing extinguished fear requires the mPFC, insofar as pharmacogenetically silencing mPFC to RE projections impairs the expression of extinction memory. These results reveal that mPFC-RE circuits inhibit the expression of fear, a function that is essential for adaptive emotional regulation. Previous work has shown that the thalamic nucleus reuniens (RE) is involved in memory and emotion. Here the authors report that the RE and its inputs from the medial prefrontal cortex are indispensable for the top-down inhibition of fear memories after extinction.
Collapse
Affiliation(s)
- Karthik R Ramanathan
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Jingji Jin
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Thomas F Giustino
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Martin R Payne
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
110
|
Derman RC, Schneider K, Juarez S, Delamater AR. Sign-tracking is an expectancy-mediated behavior that relies on prediction error mechanisms. Learn Mem 2018; 25:550-563. [PMID: 30224558 PMCID: PMC6149955 DOI: 10.1101/lm.047365.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/29/2018] [Indexed: 01/04/2023]
Abstract
When discrete localizable stimuli are used during appetitive Pavlovian conditioning, "sign-tracking" and "goal-tracking" responses emerge. Sign-tracking is observed when conditioned responding is directed toward the CS, whereas goal-tracking manifests as responding directed to the site of expected reward delivery. These behaviors seem to rely on distinct, though overlapping neural circuitries, and, possibly, distinct psychological processes as well, and are thought to be related to addiction vulnerability. One currently popular view is that sign-tracking reflects an incentive motivational process, whereas goal-tracking reflects the influence of more top-down cognitive processes. To test these ideas, we used illness-induced outcome-devaluation and Kamin blocking procedures to determine whether these behaviors rely on similar or distinct underlying associative mechanisms. In Experiments 1 and 2 we showed that outcome-devaluation reduced sign-tracking responses, demonstrating that sign-tracking is controlled by reward expectancies. We also observed that post-CS goal-tracking in these animals is also devaluation sensitive. To test whether these two types of behaviors rely on similar or different prediction error mechanisms, we next tested whether Kamin blocking effects could be observed across these two classes of behaviors. In Experiment 3 we asked if sign-tracking to a lever CS could block the development of goal-tracking to a tone CS; whereas in Experiment 4, we examined whether goal-tracking to a tone CS could block sign-tracking to a lever CS. In both experiments blocking effects were observed suggesting that both sign- and goal-tracking emerge via a common prediction error mechanism. Collectively, the studies reported here suggest that the psychological mechanisms mediating sign- and goal-tracking are more similar than is commonly acknowledged.
Collapse
Affiliation(s)
- Rifka C Derman
- Department of Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Kevin Schneider
- Neuroscience and Cognitive Science, University of Maryland, Maryland, 20742, USA
| | - Shaina Juarez
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794, USA
| | - Andrew R Delamater
- Department of Psychology, Brooklyn College and Graduate Center of the City University of New York, Brooklyn, New York 11210, USA
| |
Collapse
|
111
|
Kamigaki T. Prefrontal circuit organization for executive control. Neurosci Res 2018; 140:23-36. [PMID: 30227166 DOI: 10.1016/j.neures.2018.08.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/21/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
Abstract
The essential role of executive control is to select the most appropriate behavior among other candidates depending on the sensory information (exogenous information) and on the subject's internal state (endogenous information). Here I review series of the evidence implicating that the rodent prefrontal cortex (PFC) evaluates and compares the expected outcome for candidate actions that are automatically primed by exogenous and endogenous information, and selects the most appropriate action while inhibiting the others, with different PFC subregions contributing to distinct aspects of the computation via differential recruitments of the distributed networks. The recurrent nature of the PFC networks further facilitates the computation by integrating bottom-up signals over a long timescale. I also overview the local circuit organization in the PFC, where vasoactive intestinal peptide-positive (VIP) GABAergic interneurons are tightly linked with the cholinergic system and play significant roles in regulating executive control signals. The empirical evidence inspires the disinhibitory module hypothesis of the PFC organization that a group of pyramidal neurons and interneurons forms a disinhibitory module with similar task-variable selectivity in the PFC, and long-range inputs and neuromodulations in these modules exert a distributed gain modulation of the ongoing executive control signals by adjusting VIP neuron activity.
Collapse
Affiliation(s)
- Tsukasa Kamigaki
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
112
|
Rizzo G, Milardi D, Bertino S, Basile GA, Di Mauro D, Calamuneri A, Chillemi G, Silvestri G, Anastasi G, Bramanti A, Cacciola A. The Limbic and Sensorimotor Pathways of the Human Amygdala: A Structural Connectivity Study. Neuroscience 2018; 385:166-180. [DOI: 10.1016/j.neuroscience.2018.05.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022]
|
113
|
Novick AM, Levandowski ML, Laumann LE, Philip NS, Price LH, Tyrka AR. The effects of early life stress on reward processing. J Psychiatr Res 2018; 101:80-103. [PMID: 29567510 PMCID: PMC5889741 DOI: 10.1016/j.jpsychires.2018.02.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 01/19/2023]
Abstract
Early life stress (ELS), in the form of childhood maltreatment, abuse, or neglect, increases the risk for psychiatric sequelae later in life. The neurobiology of response to early stress and of reward processing overlap substantially, leading to the prediction that reward processing may be a primary mediator of the effects of early life stress. We describe a growing body of literature investigating the effects of early life stressors on reward processing in animals and humans. Despite variation in the reviewed studies, an emerging pattern of results indicates that ELS results in deficits of ventral striatum-related functions of reward responsiveness and approach motivation, especially when the stressor is experienced in early in development. For stressors experienced later in the juvenile period and adolescence, the animal literature suggests an opposite effect, in which ELS results in increased hedonic drive. Future research in this area will help elucidate the transdiagnostic impact of early life stress, and therefore potentially identify and intervene with at-risk youth, prior to the emergence of clinical psychopathology.
Collapse
Affiliation(s)
- Andrew M. Novick
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA,Corresponding author: Andrew M Novick, MD PhD, Butler Hospital, 345 Blackstone Blvd, Providence, RI 02906, USA,
| | - Mateus L. Levandowski
- Developmental Cognitive Neuroscience Lab (DCNL), Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Laura E. Laumann
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| | - Noah S. Philip
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA,Center for Neurorestoration and Neurotechnology, Providence VA, Providence, RI, USA
| | - Lawrence H. Price
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Audrey R. Tyrka
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
114
|
Identity prediction errors in the human midbrain update reward-identity expectations in the orbitofrontal cortex. Nat Commun 2018; 9:1611. [PMID: 29686225 PMCID: PMC5913228 DOI: 10.1038/s41467-018-04055-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
There is general consensus that dopaminergic midbrain neurons signal reward prediction errors, computed as the difference between expected and received reward value. However, recent work in rodents shows that these neurons also respond to errors related to inferred value and sensory features, indicating an expanded role for dopamine beyond learning cached values. Here we utilize a transreinforcer reversal learning task and functional magnetic resonance imaging (fMRI) to test whether prediction error signals in the human midbrain are evoked when the expected identity of an appetitive food odor reward is violated, while leaving value matched. We found that midbrain fMRI responses to identity and value errors are correlated, suggesting a common neural origin for these error signals. Moreover, changes in reward-identity expectations, encoded in the orbitofrontal cortex (OFC), are directly related to midbrain activity, demonstrating that identity-based error signals in the midbrain support the formation of outcome identity expectations in OFC. Responses in the dopaminergic midbrain are known to signal prediction errors for reward value. Here, the authors show that the human midbrain also encodes errors in predicted reward identity, and that these signals update expectations of reward identity in the orbitofrontal cortex.
Collapse
|
115
|
CNO Evil? Considerations for the Use of DREADDs in Behavioral Neuroscience. Neuropsychopharmacology 2018; 43:934-936. [PMID: 29303143 PMCID: PMC5854815 DOI: 10.1038/npp.2017.299] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 12/31/2022]
|
116
|
Sarlitto MC, Foilb AR, Christianson JP. Inactivation of the Ventrolateral Orbitofrontal Cortex Impairs Flexible Use of Safety Signals. Neuroscience 2018; 379:350-358. [PMID: 29604383 DOI: 10.1016/j.neuroscience.2018.03.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 01/30/2023]
Abstract
Survival depends on adaptation to shifting environmental risks and opportunities. Regarding risks, the mechanisms which permit acquisition, recall, and flexible use of aversive associations is poorly understood. Drawing on the evidence that the orbital frontal cortex is critical to integrating outcome expectancies with flexible appetitive behavioral responses, we hypothesized that OFC would contribute to behavioral flexibility within an aversive learning domain. We introduce a fear conditioning procedure in which adult male rats were presented with shock-paired conditioned stimulus (CS+) or a safety cue (CS-). In a recall test, rats exhibit greater freezing to the CS+ than the CS-. Temporary inactivation of the ventrolateral OFC with muscimol prior to conditioning did not affect later discrimination, but inactivation after learning and prior to recall impaired discrimination between safety and danger cues. This result complements prior research in the appetitive domain and suggests that the OFC plays a general role in behavioral flexibility regardless of the valence of the CS.
Collapse
Affiliation(s)
- Mary C Sarlitto
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA
| | - Allison R Foilb
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA
| | | |
Collapse
|
117
|
Delamater AR, Chen B, Nasser H, Elayouby K. Learning what to expect and when to expect it involves dissociable neural systems. Neurobiol Learn Mem 2018; 153:144-152. [PMID: 29477609 DOI: 10.1016/j.nlm.2018.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/18/2018] [Accepted: 02/21/2018] [Indexed: 11/16/2022]
Abstract
Two experiments with Long-Evans rats examined the potential independence of learning about different features of food reward, namely, "what" reward is to be expected and "when" it will occur. This was examined by investigating the effects of selective reward devaluation upon responding in an instrumental peak timing task in Experiment 1 and by exploring the effects of pre-training lesions targeting the basolateral amygdala (BLA) upon the selective reward devaluation effect and interval timing in a Pavlovian peak timing task in Experiment 2. In both tasks, two stimuli, each 60 s long, signaled that qualitatively distinct rewards (different flavored food pellets) could occur after 20 s. Responding on non-rewarded probe trials displayed the characteristic peak timing function with mean responding gradually increasing and peaking at approximately 20 s before more gradually declining thereafter. One of the rewards was then independently paired repeatedly with LiCl injections in order to devalue it whereas the other reward was unpaired with these injections. In a final set of test sessions in which both stimuli were presented without rewards, it was observed that responding was selectively reduced in the presence of the stimulus signaling the devalued reward compared to the stimulus signaling the still valued reward. Moreover, the timing function was mostly unaltered by this devaluation manipulation. Experiment 2 showed that pre-training BLA lesions abolished this selective reward devaluation effect, but it had no impact on peak timing functions shown by the two stimuli. It appears from these data that learning about "what" and "when" features of reward may entail separate underlying neural systems.
Collapse
Affiliation(s)
- Andrew R Delamater
- Brooklyn College and Graduate Center, City University of New York, United States.
| | - Brandon Chen
- Brooklyn College and Graduate Center, City University of New York, United States
| | - Helen Nasser
- Brooklyn College and Graduate Center, City University of New York, United States
| | - Karim Elayouby
- Brooklyn College and Graduate Center, City University of New York, United States
| |
Collapse
|
118
|
Campbell EJ, Marchant NJ. The use of chemogenetics in behavioural neuroscience: receptor variants, targeting approaches and caveats. Br J Pharmacol 2018; 175:994-1003. [PMID: 29338070 DOI: 10.1111/bph.14146] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/13/2017] [Accepted: 12/27/2017] [Indexed: 12/18/2022] Open
Abstract
The last decade has seen major advances in neuroscience tools allowing us to selectively modulate cellular pathways in freely moving animals. Chemogenetic approaches such as designer receptors exclusively activated by designer drugs (DREADDs) permit the remote control of neuronal function by systemic drug administration. These approaches have dramatically advanced our understanding of the neural control of behaviour. Here, we review the different techniques and genetic approaches available for the restriction of chemogenetic receptors to defined neuronal populations. We highlight the use of a dual virus approach to target specific circuitries and the effectiveness of different routes of administration of designer drugs. Finally, we discuss the potential caveats associated with DREADDs including off-target effects of designer drugs, the effects of chronic chemogenetic receptor activation and the issue of collateral projections associated with DREADD activation and inhibition.
Collapse
Affiliation(s)
- Erin J Campbell
- The Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Nathan J Marchant
- The Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
119
|
Alcaraz F, Fresno V, Marchand AR, Kremer EJ, Coutureau E, Wolff M. Thalamocortical and corticothalamic pathways differentially contribute to goal-directed behaviors in the rat. eLife 2018; 7:32517. [PMID: 29405119 PMCID: PMC5800843 DOI: 10.7554/elife.32517] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/12/2018] [Indexed: 01/06/2023] Open
Abstract
Highly distributed neural circuits are thought to support adaptive decision-making in volatile and complex environments. Notably, the functional interactions between prefrontal and reciprocally connected thalamic nuclei areas may be important when choices are guided by current goal value or action-outcome contingency. We examined the functional involvement of selected thalamocortical and corticothalamic pathways connecting the dorsomedial prefrontal cortex (dmPFC) and the mediodorsal thalamus (MD) in the behaving rat. Using a chemogenetic approach to inhibit projection-defined dmPFC and MD neurons during an instrumental learning task, we show that thalamocortical and corticothalamic pathways differentially support goal attributes. Both pathways participate in adaptation to the current goal value, but only thalamocortical neurons are required to integrate current causal relationships. These data indicate that antiparallel flow of information within thalamocortical circuits may convey qualitatively distinct aspects of adaptive decision-making and highlight the importance of the direction of information flow within neural circuits. Planning and decision-making rely upon a region of the brain called the prefrontal cortex. But the prefrontal cortex does not act in isolation. Instead, it works together with a number of other brain regions. These include the thalamus, an area long thought to pass information on to the cortex for further processing. But signals also travel in the opposite direction, from the cortex back to the thalamus. Does the cortex-to-thalamus pathway carry the same information as the thalamus-to-cortex pathway? To find out, Alcaraz et al. blocked each pathway in rats performing a decision-making task. The rats had learned that pressing a lever led to one type of reward, whereas moving a rod led to another. Alcaraz et al. reduced the desirability of one of the rewards by giving the rats free access to it for an hour. Afterwards, the rats opted mainly for the action associated with the reward that had remained desirable. However, blocking either the thalamus-to-cortex or cortex-to-thalamus pathway prevented this preference from emerging. This suggests that an information flow in both directions is necessary to update knowledge about the value of a reward. In a second experiment, Alcaraz et al. removed the link between one of the actions and its reward. The reward instead appeared at random, irrespective of the rat’s own behavior. Control rats responded by focusing their efforts on the action that still delivered a reliable reward, and by performing the other action less often. Blocking the thalamus-to-cortex pathway prevented this response, but blocking the cortex-to-thalamus pathway did not. This suggests that only the former pathway is necessary to re-evaluate the relationship between an action and an outcome. Two key aspects of goal-directed behavior – recognizing the value of a reward and the link between an action and an outcome – thus depend differently on the thalamus-to-cortex and cortex-to-thalamus pathways. This same principle may also be at work in other neural circuits with bidirectional connections. Understanding such principles may lead to better strategies for treating disorders of brain connectivity, such as schizophrenia.
Collapse
Affiliation(s)
- Fabien Alcaraz
- CNRS, INCIA, UMR 5287, Bordeaux, France.,Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France
| | - Virginie Fresno
- CNRS, INCIA, UMR 5287, Bordeaux, France.,Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France
| | - Alain R Marchand
- CNRS, INCIA, UMR 5287, Bordeaux, France.,Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Etienne Coutureau
- CNRS, INCIA, UMR 5287, Bordeaux, France.,Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France
| | - Mathieu Wolff
- CNRS, INCIA, UMR 5287, Bordeaux, France.,Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France
| |
Collapse
|
120
|
Nasser HM, Lafferty DS, Lesser EN, Bacharach SZ, Calu DJ. Disconnection of basolateral amygdala and insular cortex disrupts conditioned approach in Pavlovian lever autoshaping. Neurobiol Learn Mem 2018; 147:35-45. [PMID: 29169849 PMCID: PMC5972554 DOI: 10.1016/j.nlm.2017.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/20/2017] [Accepted: 11/18/2017] [Indexed: 01/09/2023]
Abstract
Previously established individual differences in appetitive approach and devaluation sensitivity observed in goal- and sign-trackers may be attributed to differences in the acquisition, modification, or use of associative information in basolateral amygdala (BLA) pathways. Here, we sought to determine the extent to which communication of associative information between BLA and anterior portions of insular cortex (IC) supports ongoing Pavlovian conditioned approach behaviors in sign- and goal-tracking rats, in the absence of manipulations to outcome value. We hypothesized that the BLA mediates goal-, but not sign- tracking approach through interactions with the IC, a brain region involved in supporting flexible behavior. We first trained rats in Pavlovian lever autoshaping to determine their sign- or goal-tracking tendency. During alternating test sessions, we gave unilateral intracranial injections of vehicle or a cocktail of gamma-aminobutyric acid (GABA) receptor agonists, baclofen and muscimol, unilaterally into the BLA and contralaterally or ipsilaterally into the IC prior to reinforced lever autoshaping sessions. Consistent with our hypothesis we found that contralateral inactivation of BLA and IC increased the latency to approach the food cup and decreased the number of food cup contacts in goal-trackers. While contralateral inactivation of BLA and IC did not affect the total number of lever contacts in sign-trackers, this manipulation increased the latency to approach the lever. Ipsilateral inactivation of BLA and IC did not impact approach behaviors in Pavlovian lever autoshaping. These findings, contrary to our hypothesis, suggest that communication between BLA and IC maintains a representation of initially learned appetitive associations that commonly support the initiation of Pavlovian conditioned approach behavior regardless of whether it is directed at the cue or the location of reward delivery.
Collapse
Affiliation(s)
- Helen M Nasser
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Danielle S Lafferty
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ellen N Lesser
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sam Z Bacharach
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Donna J Calu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
121
|
Derman RC, Ferrario CR. Enhanced incentive motivation in obesity-prone rats is mediated by NAc core CP-AMPARs. Neuropharmacology 2017; 131:326-336. [PMID: 29291424 PMCID: PMC6010194 DOI: 10.1016/j.neuropharm.2017.12.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 11/07/2022]
Abstract
Studies in humans suggest that stronger incentive motivational responses to Pavlovian food cues may drive over-consumption leading to and maintaining obesity, particularly in susceptible individuals. However, whether this enhanced incentive motivation emerges as a consequence of obesity or rather precedes obesity is unknown. Moreover, while human imaging studies have provided important information about differences in striatal responsiveness between susceptible and non-susceptible individuals, the neural mechanisms mediating these behavioral differences are unknown. The Nucleus Accumbens (NAc) mediates cue-triggered reward seeking and activity in the NAc is enhanced in obesity-susceptible populations. Therefore here, we used selectively-bred obesity-prone and obesity-resistant rats to examine intrinsic differences in incentive motivation, and the role of NAc AMPARs in the expression of these behaviors prior to obesity. We found that obesity-prone rats exhibit robust cue-triggered food-seeking (Pavlovian-to-instrumental transfer, PIT). Using intra-NAc infusion of AMPAR antagonists, we show that this behavior is selectively mediated by CP-AMPARs in the NAc core. Additionally, biochemical data suggest that this is due in part to experience-induced increases in CP-AMPAR surface expression in the NAc of obesity-prone rats. In contrast, in obesity-resistant rats PIT was weak and unreliable and training did not increase NAc AMPAR surface expression. Collectively, these data show that food cues acquire greater incentive motivational control in obesity-susceptible populations prior to the development of obesity. This provides support to the idea that enhanced intrinsic incentive motivation may be a contributing factor, rather than a consequence of obesity. In addition, these data demonstrate a novel role for experience-induced up-regulation of NAc CP-AMPARs in PIT, pointing to potential mechanistic parallels between the processes leading to addiction and to obesity.
Collapse
Affiliation(s)
- Rifka C Derman
- Department of Pharmacology, University of Michigan, United States
| | - Carrie R Ferrario
- Department of Pharmacology, University of Michigan, United States; Neuroscience Graduate Program, University of Michigan, United States.
| |
Collapse
|
122
|
Functional Heterogeneity within Rat Orbitofrontal Cortex in Reward Learning and Decision Making. J Neurosci 2017; 37:10529-10540. [PMID: 29093055 DOI: 10.1523/jneurosci.1678-17.2017] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/31/2017] [Accepted: 09/25/2017] [Indexed: 11/21/2022] Open
Abstract
Rat orbitofrontal cortex (OFC) is located in the dorsal bank of the rhinal sulcus, and is divided into the medial orbital area, ventral orbital area, ventrolateral orbital area, lateral orbital area, dorsolateral orbital area, and agranular insular areas. Over the past 20 years, there has been a marked increase in the number of publications focused on the functions of rat OFC. While collectively this extensive body of work has provided great insight into the functions of OFC, leading to theoretical and computational models of its functions, one issue that has emerged relates to what is defined as OFC because targeting of this region can be quite variable between studies of appetitive behavior, even within the same species. Also apparent is that there is an oversampling and undersampling of certain subregions of rat OFC for study, and this will be demonstrated here. The intent of the Viewpoint is to summarize studies in rat OFC, given the diversity of what groups refer to as "OFC," and to integrate these with the findings of recent anatomical studies. The primary aim is to help discern functions in reward learning and decision-making, clearing the course for future empirical work.
Collapse
|