101
|
Fazzari P, Penachioni J, Gianola S, Rossi F, Eickholt BJ, Maina F, Alexopoulou L, Sottile A, Comoglio PM, Flavell RA, Tamagnone L. Plexin-B1 plays a redundant role during mouse development and in tumour angiogenesis. BMC DEVELOPMENTAL BIOLOGY 2007; 7:55. [PMID: 17519029 PMCID: PMC1890291 DOI: 10.1186/1471-213x-7-55] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 05/22/2007] [Indexed: 11/13/2022]
Abstract
BACKGROUND Plexins are a large family of transmembrane receptors for the Semaphorins, known for their role in the assembly of neural circuitry. More recently, Plexins have been implicated in diverse biological functions, including vascular growth, epithelial tissue morphogenesis and tumour development. In particular, PlexinB1, the receptor for Sema4D, has been suggested to play a role in neural development and in tumour angiogenesis, based on in vitro studies. However, the tissue distribution of PlexinB1 has not been extensively studied and the functional relevance of this receptor in vivo still awaits experimental testing. In order to shed light on PlexinB1 function in vivo, we therefore undertook the genomic targeting of the mouse gene to obtain loss of function mutants. RESULTS This study shows that PlexinB1 receptor and its putative ligand, Sema4D, have a selective distribution in nervous and epithelial tissues during development and in the adult. PlexinB1 and Sema4D show largely complementary cell distribution in tissues, consistent with the idea that PlexinB1 acts as the receptor for Sema4D in vivo. Interestingly, PlexinB1 is also expressed in certain tissues in the absence of Sema4D, suggesting Sema4D independent activities. High expression of PlexinB1 was found in lung, kidney, liver and cerebellum. Mutant mice lacking expression of semaphorin receptor PlexinB1 are viable and fertile. Although the axon collapsing activity of Sema4D is impaired in PlexinB1 deficient neurons, we could not detect major defects in development, or in adult histology and basic functional parameters of tissues expressing PlexinB1. Moreover, in the absence of PlexinB1 the angiogenic response induced by orthotopically implanted tumours was not affected, suggesting that the expression of this semaphorin receptor in endothelial cells is redundant. CONCLUSION Our expression analysis suggests a multifaceted role of PlexinB1 during mouse development and tissue homeostasis in the adult. Nonetheless, the genetic deletion of PlexinB1 does not result in major developmental defects or clear functional abnormalities. We infer that PlexinB1 plays a redundant role in mouse development and it is not strictly required for tumour induced angiogenesis.
Collapse
Affiliation(s)
- Pietro Fazzari
- Institute for Cancer Research and Treatment (IRCC), University of Torino Medical School, Division of Molecular Oncology, Candiolo, Turin 10060, Italy
| | - Junia Penachioni
- Institute for Cancer Research and Treatment (IRCC), University of Torino Medical School, Division of Molecular Oncology, Candiolo, Turin 10060, Italy
| | - Sara Gianola
- Department of Neuroscience, Rita Levi Montalcini Centre for Brain Repair, University of Turin, I-10125 Turin, Italy
| | - Ferdinando Rossi
- Department of Neuroscience, Rita Levi Montalcini Centre for Brain Repair, University of Turin, I-10125 Turin, Italy
| | - Britta J Eickholt
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Flavio Maina
- Developmental Biology Institute of Marseille – Luminy (IBDML) UMR 6216, CNRS – Université de la Méditerrannée, Campus de Luminy – Case 907, France
| | - Lena Alexopoulou
- Department of Immunibiology, Yale University School of Medicine and Howard Hughes Medical Institute, New Haven, CT, USA
- Centre d'Immunologie de Marseille-Luminy, CNRS-INSERM- Université de la Méditerranée, 13288 Marseille, France
| | - Antonino Sottile
- Laboratory of Clinical Biochemistry, University of Torino Medical School, I-10060 Candiolo (Torino), Italy
| | - Paolo Maria Comoglio
- Institute for Cancer Research and Treatment (IRCC), University of Torino Medical School, Division of Molecular Oncology, Candiolo, Turin 10060, Italy
| | - Richard A Flavell
- Department of Immunibiology, Yale University School of Medicine and Howard Hughes Medical Institute, New Haven, CT, USA
| | - Luca Tamagnone
- Institute for Cancer Research and Treatment (IRCC), University of Torino Medical School, Division of Molecular Oncology, Candiolo, Turin 10060, Italy
| |
Collapse
|
102
|
Crespo D, Asher RA, Lin R, Rhodes KE, Fawcett JW. How does chondroitinase promote functional recovery in the damaged CNS? Exp Neurol 2007; 206:159-71. [PMID: 17572406 DOI: 10.1016/j.expneurol.2007.05.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 04/28/2007] [Accepted: 05/02/2007] [Indexed: 12/22/2022]
Abstract
A number of recent studies have established that the bacterial enzyme chondroitinase ABC promotes functional recovery in the injured CNS. The issue of how it works is rarely addressed, however. The effects of the enzyme are presumed to be due to the degradation of inhibitory chondroitin sulphate GAG chains. Here we review what is known about the composition, structure and distribution of the extracellular matrix in the CNS, and how it changes in response to injury. We summarize the data pertaining to the ability of chondroitinase to promote functional recovery, both in the context of axon regeneration and the reactivation of plasticity. We also present preliminary data on the persistence of the effects of the enzyme in vivo, and its hyaluronan-degrading activity in CNS homogenates in vitro. We then consider precisely how the enzyme might influence functional recovery in the CNS. The ability of chondroitinase to degrade hyaluronan is likely to result in greater matrix disruption than the degradation of chondroitin sulphate alone.
Collapse
Affiliation(s)
- Dámaso Crespo
- Cambridge University Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge, CB2 2PY, UK
| | | | | | | | | |
Collapse
|
103
|
Zhang Y, Zhang X, Yeh J, Richardson P, Bo X. Engineered expression of polysialic acid enhances Purkinje cell axonal regeneration in L1/GAP-43 double transgenic mice. Eur J Neurosci 2007; 25:351-61. [PMID: 17284175 DOI: 10.1111/j.1460-9568.2007.05311.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Purkinje axons in adult mammals are generally unable to regenerate after axotomy. Our recent work has shown that over-expression of growth related genes, GAP-43 and L1, in Purkinje cells increased their axonal outgrowth into a predegenerated peripheral nerve graft, but not into a fresh graft [Zhang et al., (2005) Proc. Natl Acad. Sci. USA, 102, 14883-14888]. In the current study we investigated whether engineered expression of growth permissive molecule polysialic acid (PSA) in the glial scar or on transplanted Schwann cells could overcome the inhibitory environment and promote Purkinje axonal regeneration. A stab wound was introduced in the cerebellum of the L1/GAP-43 transgenic mice and a lentiviral vector (LV) carrying the polysialyltransferase (PST) cDNA (LV/PST) was injected into the lesion site to transduce the cells in the glial scar. Regenerating Purkinje axons were examined by calbindin immunostaining. There was increased Purkinje axonal sprouting in the area expressing high-level PSA. However, Purkinje axons were unable to grow into the lesion cavity. In the second set of experiments when LV/PST transduced Schwann cells were transplanted into the lesion site, the number of Purkinje axons growing into the transplant was nine times more than that growing into Schwann cell transplant expressing GFP two months post operation. Our result suggests that transplanted Schwann cells engineered to express PSA support axonal regeneration better than naïve Schwann cells.
Collapse
Affiliation(s)
- Yi Zhang
- Neuroscience Centre, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, 4 Newark Road, Whitechapel, London E1 2AT, UK.
| | | | | | | | | |
Collapse
|
104
|
Galtrey CM, Fawcett JW. The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. BRAIN RESEARCH REVIEWS 2007; 54:1-18. [PMID: 17222456 DOI: 10.1016/j.brainresrev.2006.09.006] [Citation(s) in RCA: 454] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Revised: 07/24/2006] [Accepted: 09/11/2006] [Indexed: 01/09/2023]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) consist of a core protein and glycosaminoglycan (GAG) chains. There is enormous structural diversity among CSPGs due to variation in the core protein, the number of GAG chains and the extent and position of sulfation. Most CSPGs are secreted from cells and participate in the formation of the extracellular matrix (ECM). CSPGs are able to interact with various growth-active molecules and this may be important in their mechanism of action. In the normal central nervous system (CNS), CSPGs have a role in development and plasticity during postnatal development and in the adult. Plasticity is greatest in the young, especially during critical periods. CSPGs are crucial components of perineuronal nets (PNNs). PNNs have a role in closure of the critical period and digestion of PNNs allows their re-opening. In the adult, CSPGs play a part in learning and memory and the hypothalamo-neurohypophysial system. CSPGs have an important role in CNS injuries and diseases. After CNS injury, CSPGs are the major inhibitory component of the glial scar. Removal of CSPGs improves axonal regeneration and functional recovery. CSPGs may also be involved in the pathological processes in diseases such as epilepsy, stroke and Alzheimer's disease. Several possible methods of manipulating CSPGs in the CNS have recently been identified. The development of methods to remove CSPGs has considerable therapeutic potential in a number of CNS disorders.
Collapse
Affiliation(s)
- Clare M Galtrey
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Robinson Way, Cambridge, CB2 2PY, UK
| | | |
Collapse
|
105
|
Miyata S, Nishimura Y, Nakashima T. Perineuronal nets protect against amyloid beta-protein neurotoxicity in cultured cortical neurons. Brain Res 2007; 1150:200-6. [PMID: 17397805 DOI: 10.1016/j.brainres.2007.02.066] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 02/26/2007] [Accepted: 02/27/2007] [Indexed: 11/24/2022]
Abstract
Perineuronal nets (PNs) consisting of chondroitin sulfate proteoglycans (CSPGs) and hyaluronic acid are associated with distinct neuronal populations in mammalian brain. Cortical areas abundant in PNs have been known to be less affected by neurotoxicity in human Alzheimer's disease. In the present study, we examined whether PNs protect the neurotoxicity caused by amyloid beta-protein (Abeta), a major constituent of senile plaques in Alzheimer's disease using cortical neurons of dissociated culture. Double labeling experiments using confocal microscopy showed that the neurons associated with PNs were visualized with the anti-CSPG antibody in dissociated cortical culture. The analysis of reverse transcription-polymerase chain reaction revealed that mRNA expression of chondroitin sulfotransferases, CSPG-specific enzymes, was detected in neuronal culture, indicating that cultured cortical neurons are able to synthesize CSPGs and construct PNs structure. The treatment of Abeta1-42 showed significant neurotoxicity on PNs-free cortical neurons, however, it did not reveal neurotoxicity on PNs-associated neurons. Moreover, it was shown that the treatment of Abeta1-42 was able to kill PNs-associated neurons after the removal of chondroitin sulfate (CS) glycosaminoglycans with chondroitinase ABC. The treatment of glutamate killed not only PNs-free cortical neurons but also PNs-associated neurons. These results suggest that CS glycosaminoglycans on PNs are responsible for protecting neurons from Abeta1-42 neurotoxicity.
Collapse
Affiliation(s)
- Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | | | | |
Collapse
|
106
|
Busch SA, Silver J. The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 2007; 17:120-7. [PMID: 17223033 DOI: 10.1016/j.conb.2006.09.004] [Citation(s) in RCA: 352] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 09/25/2006] [Indexed: 10/23/2022]
Abstract
Chondroitin sulfate proteoglycans are the principal inhibitory component of glial scars, which form after damage to the adult central nervous system and act as a barrier to regenerating axons. Recent findings have furthered our understanding of the mechanisms that result in a failure of regeneration after spinal cord injury and suggest that a multipartite approach will be required to facilitate long-distance regeneration and functional recovery.
Collapse
Affiliation(s)
- Sarah A Busch
- Case Western Reserve University School of Medicine, Department of Neurosciences, 2109 Adelbert Road E-658, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
107
|
Galtrey CM, Asher RA, Nothias F, Fawcett JW. Promoting plasticity in the spinal cord with chondroitinase improves functional recovery after peripheral nerve repair. ACTA ACUST UNITED AC 2007; 130:926-39. [PMID: 17255150 DOI: 10.1093/brain/awl372] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Functional recovery after peripheral nerve repair in humans is often disappointing. A major reason for this is the inaccuracy of re-innervation of muscles and sensory structures. We hypothesized that promoting plasticity in the spinal cord, through digestion of chondroitin sulphate proteoglycans (CSPGs) with chondroitinase ABC (ChABC), might allow the CNS to compensate for inaccurate peripheral re-innervation and improve functional recovery. The median and ulnar nerves were injured and repaired to produce three grades of inaccuracy of peripheral re-innervation by (i) crush of both nerves; (ii) correct repair of median to median and ulnar to ulnar; and (iii) crossover of the median and ulnar nerves. Mapping of the motor neuron pool of the flexor carpi radialis muscle showed precise re-innervation after nerve crush, inaccurate regeneration after correct repair, more inaccurate after crossover repair. Recovery of forelimb function, assessed by skilled paw reaching, grip strength and sensory testing varied with accuracy of re-innervation. This was not due to differences in the number of regenerated axons. Single injections of ChABC into the spinal cord led to long-term changes in the extracellular matrix, with hyaluronan and neurocan being removed and not fully replaced after 8 weeks. ChABC treatment produce increased sprouting visualized by MAP1BP staining and improved functional recovery in skilled paw reaching after correct repair and in grip strength after crossover repair. There was no hyperalgesia. Enhanced plasticity in the spinal cord, therefore, allows the CNS to compensate for inaccurate motor and sensory re-innervation of the periphery, and may be a useful adjunct therapy to peripheral nerve repair.
Collapse
Affiliation(s)
- Clare M Galtrey
- Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
108
|
Rossi F, Gianola S, Corvetti L. Regulation of intrinsic neuronal properties for axon growth and regeneration. Prog Neurobiol 2006; 81:1-28. [PMID: 17234322 DOI: 10.1016/j.pneurobio.2006.12.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 11/04/2006] [Accepted: 12/05/2006] [Indexed: 01/29/2023]
Abstract
Regulation of neuritic growth is crucial for neural development, adaptation and repair. The intrinsic growth potential of nerve cells is determined by the activity of specific molecular sets, which sense environmental signals and sustain structural extension of neurites. The expression and function of these molecules are dynamically regulated by multiple mechanisms, which adjust the actual growth properties of each neuron population at different ontogenetic stages or in specific conditions. The neuronal potential for axon elongation and regeneration are restricted at the end of development by the concurrent action of several factors associated with the final maturation of neurons and of the surrounding tissue. In the adult, neuronal growth properties can be significantly modulated by injury, but they are also continuously tuned in everyday life to sustain physiological plasticity. Strict regulation of structural remodelling and neuritic elongation is thought to be required to maintain specific patterns of connectivity in the highly complex mammalian CNS. Accordingly, procedures that neutralize such mechanisms effectively boost axon growth in both intact and injured nervous system. Even in these conditions, however, aberrant connections are only formed in the presence of unusual external stimuli or experience. Therefore, growth regulatory mechanisms play an essentially permissive role by setting the responsiveness of neural circuits to environmental stimuli. The latter exert an instructive action and determine the actual shape of newly formed connections. In the light of this notion, efficient therapeutic interventions in the injured CNS should combine targeted manipulations of growth control mechanisms with task-specific training and rehabilitation paradigms.
Collapse
Affiliation(s)
- Ferdinando Rossi
- Rita Levi Montalcini Centre for Brain Repair, Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125 Turin, Italy.
| | | | | |
Collapse
|
109
|
Brückner G, Pavlica S, Morawski M, Palacios AG, Reichenbach A. Organization of brain extracellular matrix in the Chilean fat-tailed mouse opossum Thylamys elegans (Waterhouse, 1839). J Chem Neuroanat 2006; 32:143-58. [PMID: 16996716 DOI: 10.1016/j.jchemneu.2006.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 08/08/2006] [Accepted: 08/15/2006] [Indexed: 11/21/2022]
Abstract
We investigated the structural and molecular organization of the extracellular matrix in Thylamys elegans, a marsupial representative of the mammalian order Didelphimorphia. Perineuronal nets (PNs) associated with distinct types of neurons were visualized by detection of chondroitin sulfate proteoglycans and hyaluronan, and by labeling with Wisteria floribunda agglutinin (WFA), a marker for PNs in the mammalian brain. In the neocortex of Thylamys, these methods revealed PNs on pyramidal cells. In contrast, parvalbumin-immunoreactive interneurons in the neocortex and hippocampal formation (displaying robust, WFA-labeled PNs in placental mammals) were ensheathed only with a delicate rim of hyaluronan and proteoglycans not detectable with WFA. The absence of WFA staining was characteristic also of some subcortical regions which contained PNs intensely labeled for chondroitin sulfate proteoglycan and hyaluronan. However, corresponding to placental mammals, numerous subcortical nuclei showed clearly WFA-stained PNs. Similar as in placental mammals, cholinergic basal forebrain neurons and tyrosine hydroxylase-immunoreactive neurons of the substantia nigra and locus coeruleus were devoid of PNs. Together with our earlier study on Monodelphis, the present results reveal that South American opossums show either a particular "marsupial" or "Didelphid" type of extracellular matrix chemoarchitecture, supporting the view that these components may vary phylogenetically as integral parts of neuronal physiology at the systems and single cell level.
Collapse
Affiliation(s)
- Gert Brückner
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Jahnalle 59, D-04109 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
110
|
Barritt AW, Davies M, Marchand F, Hartley R, Grist J, Yip P, McMahon SB, Bradbury EJ. Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury. J Neurosci 2006; 26:10856-67. [PMID: 17050723 PMCID: PMC3339436 DOI: 10.1523/jneurosci.2980-06.2006] [Citation(s) in RCA: 323] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 08/29/2006] [Accepted: 09/05/2006] [Indexed: 12/24/2022] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are inhibitory extracellular matrix molecules that are upregulated after CNS injury. Degradation of CSPGs using the enzyme chondroitinase ABC (ChABC) can promote functional recovery after spinal cord injury. However, the mechanisms underlying this recovery are not clear. Here we investigated the effects of ChABC treatment on promoting plasticity within the spinal cord. We found robust sprouting of both injured (corticospinal) and intact (serotonergic) descending projections as well as uninjured primary afferents after a cervical dorsal column injury and ChABC treatment. Sprouting fibers were observed in aberrant locations in degenerating white matter proximal to the injury in regions where CSPGs had been degraded. Corticospinal and serotonergic sprouting fibers were also observed in spinal gray matter at and below the level of the lesion, indicating increased innervation in the terminal regions of descending projections important for locomotion. Spinal-injured animals treated with a vehicle solution showed no significant sprouting. Interestingly, ChABC treatment in uninjured animals did not induce sprouting in any system. Thus, both denervation and CSPG degradation were required to promote sprouting within the spinal cord. We also examined potential detrimental effects of ChABC-induced plasticity. However, although primary afferent sprouting was observed after lumbar dorsal column lesions and ChABC treatment, there was no increased connectivity of nociceptive neurons or development of mechanical allodynia or thermal hyperalgesia. Thus, CSPG digestion promotes robust sprouting of spinal projections in degenerating and denervated areas of the spinal cord; compensatory sprouting of descending systems could be a key mechanism underlying functional recovery.
Collapse
Affiliation(s)
- A W Barritt
- Neurorestoration Group, Wolfson Centre for Age Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Rossi F, Gianola S, Corvetti L. The strange case of Purkinje axon regeneration and plasticity. THE CEREBELLUM 2006; 5:174-82. [PMID: 16818392 DOI: 10.1080/14734220600786444] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the last few years Purkinje cells have become a most interesting model to investigate cellular/molecular mechanisms of axon regeneration and plasticity. Adult Purkinje cells are most peculiar for their weak cell body response to axotomy, which is accompanied by a strong resistance to injury and a virtually absolute inability to regenerate severed neurites, even in the presence of favourable environmental conditions. The same neurons show a vigorous intrinsic inclination toward axonal sprouting and structural plasticity, which can be elicited by removing extrinsic growth-inhibitory cues. These features gradually develop during early postnatal life, but the underlying mechanisms and biological significance remain unclear. This article reviews recent studies aimed at addressing these questions with respect to the general issue of brain repair. Indeed, understanding the reasons for the extremely poor regenerative capacity of Purkinje cells will be most important to elucidate basic biological mechanisms of axon regeneration and plasticity, and to promote circuit rewiring in the adult CNS.
Collapse
Affiliation(s)
- Ferdinando Rossi
- Department of Neuroscience and "Rita Levi Montalcini Centre for Brain Repair", University of Turin, Turin, Italy.
| | | | | |
Collapse
|
112
|
Abstract
There are now numerous preclinical reports of various experimental treatments promoting some functional recovery after spinal cord injury. Surprisingly, perhaps, the mechanisms that underlie recovery have rarely been definitively established. Here, we critically evaluate the evidence that regeneration of damaged pathways or compensatory collateral sprouting can promote recovery. We also discuss several more speculative mechanisms that might putatively explain or confound some of the reported outcomes of experimental interventions.
Collapse
Affiliation(s)
- Elizabeth J Bradbury
- Neurorestoration Group, Wolfson Wing, Hodgkin Building, Guy's Campus, King's College London, London Bridge, London SE1 1UL, UK
| | | |
Collapse
|
113
|
Massey JM, Hubscher CH, Wagoner MR, Decker JA, Amps J, Silver J, Onifer SM. Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury. J Neurosci 2006; 26:4406-14. [PMID: 16624960 PMCID: PMC6673998 DOI: 10.1523/jneurosci.5467-05.2006] [Citation(s) in RCA: 255] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Upregulation of extracellular chondroitin sulfate proteoglycans (CSPGs) after CNS injuries contributes to the impediment of functional recovery by restricting both axonal regeneration and synaptic plasticity. In the present study, the effect of degrading CSPGs with the application of the bacterial enzyme chondroitinase ABC (chABC) into the cuneate nucleus of rats partially denervated of forepaw dorsal column axons was examined. A dorsal column transection between the C6-C7 dorsal root entry zones was followed immediately by an ipsilateral brainstem injection of either chABC or a bacterial-derived control enzyme [penicillinase (P-ase)] and then subsequently (1 week later) followed with a second brainstem enzyme injection and cholera toxin B subunit (CTB) tracer injection into the ipsilateral forepaw digits and pads. After 1 additional week, the rats underwent electrophysiological receptive field mapping of the cuneate nucleus and/or anatomical evaluation. Examination of the brainstems of rats from each group revealed that CSPGs had been reduced after chABC treatment. Importantly, in the chABC-treated rats (but not in the P-ase controls), a significantly greater area of the cuneate nucleus was occupied by physiologically active CTB traced forepaw afferents that had been spared by the initial cord lesion. These results demonstrate, for the first time, a functional change directly linked to anatomical evidence of sprouting by spinal cord afferents after chABC treatment.
Collapse
|
114
|
Deepa SS, Carulli D, Galtrey C, Rhodes K, Fukuda J, Mikami T, Sugahara K, Fawcett JW. Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans. J Biol Chem 2006; 281:17789-800. [PMID: 16644727 DOI: 10.1074/jbc.m600544200] [Citation(s) in RCA: 295] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We developed a method to extract differentially chondroitin sulfate proteoglycans (CSPGs) that are diffusely present in the central nervous system (CNS) matrix and CSPGs that are present in the condensed matrix of perineuronal nets (PNNs). Adult rat brain was sequentially extracted with Tris-buffered saline (TBS), TBS-containing detergent, 1 m NaCl, and 6 m urea. Extracting tissue sections with these buffers showed that the diffuse and membrane-bound CSPGs were extracted in the first three buffers, but PNN-associated CSPGs remained and were only removed by 6 m urea. Most of the CSPGs were extracted to some degree with all the buffers, with neurocan, brevican, aggrecan, and versican particularly associated with the stable urea-extractable PNNs. The CSPGs in stable complexes only extractable in urea buffer are found from postnatal day 7-14 coinciding with PNN formation. Disaccharide composition analysis indicated a different glycosaminoglycan (GAG) composition for PGs strongly associated with extracellular matrix (ECM). For CS/dermatan sulfate (DS)-GAG the content of nonsulfated, 6-O-sulfated, 2,6-O-disulfated, and 4,6-O-disulfated disaccharides were higher and for heparan sulfate (HS)-GAG, the content of 6-O-sulfated, 2-N-, 6-O-disulfated, 2-O-, 2-N-disulfated, and 2-O-, 2-N-, 6-O-trisulfated disaccharides were higher in urea extract compared with other buffer extracts. Digestions with chondroitinase ABC and hyaluronidase indicated that aggrecan, versican, neurocan, brevican, and phosphacan are retained in PNNs through binding to hyaluronan (HA). A comparison of the brain and spinal cord ECM with respect to CSPGs indicated that the PNNs in both parts of the CNS have the same composition.
Collapse
|
115
|
Brückner G, Szeöke S, Pavlica S, Grosche J, Kacza J. Axon initial segment ensheathed by extracellular matrix in perineuronal nets. Neuroscience 2006; 138:365-75. [PMID: 16427210 DOI: 10.1016/j.neuroscience.2005.11.068] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 10/20/2005] [Accepted: 11/29/2005] [Indexed: 11/27/2022]
Abstract
Perineuronal nets of extracellular matrix are associated with distinct types of neurons in the cerebral cortex and many subcortical regions. Large complexes of aggregating proteoglycans form a chemically specified microenvironment around the somata, proximal dendrites and the axon initial segment, including the presynaptic boutons attached to these domains. The subcellular distribution and the temporal course of postnatal formation suggest that perineuronal nets may be involved in the regulation of synaptic plasticity. Here we investigate structural and cytochemical characteristics of the extracellular matrix around axon initial segments virtually devoid of synaptic contacts. Wisteria floribunda agglutinin staining, the immunocytochemical detection of aggrecan and tenascin-R, as well as affinity-labeling of hyaluronan were used to analyze perineuronal nets associated with large motoneurons in the mouse superior colliculus. The molecular composition of perineuronal nets was divergent between neurons but was identical around the different cellular domains of the individual neurons. The axon initial segments largely devoid of synapses were covered by a continuous matrix sheath infiltrating the adjacent neuropil. The periaxonal zone penetrated by matrix components often increased in diameter along the initial segment from the axon hillock toward the myelinated part of the axon. The axonal and somatodendritic domains of perineuronal nets were concomitantly formed during the first three weeks of postnatal development. The common molecular properties and major structural features of subcellular perineuronal net domains were retained in organotypic midbrain slice cultures. The results support the hypothesis that the aggrecan-related extracellular matrix of perineuronal nets provides a continuous micromilieu for different subcellular domains performing integration and generation of the electrical activity of neurons.
Collapse
Affiliation(s)
- G Brückner
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany.
| | | | | | | | | |
Collapse
|