101
|
Human stem cell-derived spinal cord astrocytes with defined mature or reactive phenotypes. Cell Rep 2013; 4:1035-1048. [PMID: 23994478 DOI: 10.1016/j.celrep.2013.06.021] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 05/15/2013] [Accepted: 06/18/2013] [Indexed: 12/23/2022] Open
Abstract
Differentiation of astrocytes from human stem cells has significant potential for analysis of their role in normal brain function and disease, but existing protocols generate only immature astrocytes. Using early neuralization, we generated spinal cord astrocytes from mouse or human embryonic or induced pluripotent stem cells with high efficiency. Remarkably, short exposure to fibroblast growth factor 1 (FGF1) or FGF2 was sufficient to direct these astrocytes selectively toward a mature quiescent phenotype, as judged by both marker expression and functional analysis. In contrast, tumor necrosis factor alpha and interleukin-1β, but not FGFs, induced multiple elements of a reactive inflammatory phenotype but did not affect maturation. These phenotypically defined, scalable populations of spinal cord astrocytes will be important both for studying normal astrocyte function and for modeling human pathological processes in vitro.
Collapse
|
102
|
Molofsky AV, Glasgow SM, Chaboub LS, Tsai HH, Murnen AT, Kelley KW, Fancy SPJ, Yuen TJ, Madireddy L, Baranzini S, Deneen B, Rowitch DH, Oldham MC. Expression profiling of Aldh1l1-precursors in the developing spinal cord reveals glial lineage-specific genes and direct Sox9-Nfe2l1 interactions. Glia 2013; 61:1518-32. [PMID: 23840004 DOI: 10.1002/glia.22538] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/10/2013] [Accepted: 05/15/2013] [Indexed: 01/26/2023]
Abstract
Developmental regulation of gliogenesis in the mammalian CNS is incompletely understood, in part due to a limited repertoire of lineage-specific genes. We used Aldh1l1-GFP as a marker for gliogenic radial glia and later-stage precursors of developing astrocytes and performed gene expression profiling of these cells. We then used this dataset to identify candidate transcription factors that may serve as glial markers or regulators of glial fate. Our analysis generated a database of developmental stage-related markers of Aldh1l1+ cells between murine embryonic day 13.5-18.5. Using these data we identify the bZIP transcription factor Nfe2l1 and demonstrate that it promotes glial fate under direct Sox9 regulatory control. Thus, this dataset represents a resource for identifying novel regulators of glial development.
Collapse
Affiliation(s)
- Anna V Molofsky
- Department of Pediatrics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, 513 Parnassus Avenue, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Prion replication elicits cytopathic changes in differentiated neurosphere cultures. J Virol 2013; 87:8745-55. [PMID: 23740992 DOI: 10.1128/jvi.00572-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms of prion-induced cytotoxicity remain largely obscure. Currently, only a few cell culture models have exhibited the cytopathic changes associated with prion infection. In this study, we introduced a cell culture model based on differentiated neurosphere cultures isolated from the brains of neonatal prion protein (PrP)-null mice and transgenic mice expressing murine PrP (dNP0 and dNP20 cultures). Upon exposure to mouse Chandler prions, dNP20 cultures supported the de novo formation of abnormal PrP and the resulting infectivity, as assessed by bioassays. Furthermore, this culture was susceptible to various prion strains, including mouse-adapted scrapie, bovine spongiform encephalopathy, and Gerstmann-Sträussler-Scheinker syndrome prions. Importantly, a subset of the cells in the infected culture that was mainly composed of astrocyte lineage cells consistently displayed late-occurring, progressive signs of cytotoxicity as evidenced by morphological alterations, decreased cell viability, and increased lactate dehydrogenase release. These signs of cytotoxicity were not observed in infected dNP0 cultures, suggesting the requirement of endogenous PrP expression for prion-induced cytotoxicity. Degenerated cells positive for glial fibrillary acidic protein accumulated abnormal PrP and exhibited features of apoptotic death as assessed by active caspase-3 and terminal deoxynucleotidyltransferase nick-end staining. Furthermore, caspase inhibition provided partial protection from prion-mediated cell death. These results suggest that differentiated neurosphere cultures can provide an in vitro bioassay for mouse prions and permit the study of the molecular basis for prion-induced cytotoxicity at the cellular level.
Collapse
|
104
|
Ramasamy S, Narayanan G, Sankaran S, Yu YH, Ahmed S. Neural stem cell survival factors. Arch Biochem Biophys 2013; 534:71-87. [PMID: 23470250 DOI: 10.1016/j.abb.2013.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 02/06/2013] [Accepted: 02/11/2013] [Indexed: 12/21/2022]
Abstract
Neural stem and progenitor cells (NSCs and NPs) give rise to the central nervous system (CNS) during embryonic development. NSCs and NPs differentiate into three main cell-types of the CNS; astrocytes, oligodendrocytes, and neurons. NSCs are present in the adult CNS and are important in maintenance and repair. Adult NSCs hold great promise for endogenous or self-repair of the CNS. Intriguingly, NSCs have been implicated as the cells that give rise to brain tumors. Thus, the balance between survival, growth and differentiation is a critical aspect of NSC biology, during development, in the adult, and in disease processes. In this review, we survey what is known about survival factors that control both embryonic and adult NSCs. We discuss the neurosphere culture system as this is widely used to measure NSC activity and behavior in vitro and emphasize the importance of clonality. We define here NSC survival factors in their broadest sense to include any factor that influences survival and proliferation of NSCs and NPs. NSC survival factors identified to date include growth factors, morphogens, proteoglycans, cytokines, hormones, and neurotransmitters. Understanding NSC and NP interaction in response to these survival factors will provide insight to CNS development, disease and repair.
Collapse
Affiliation(s)
- Srinivas Ramasamy
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore
| | | | | | | | | |
Collapse
|
105
|
Yamada T, Urano-Tashiro Y, Tanaka S, Akiyama H, Tashiro F. Involvement of crosstalk between Oct4 and Meis1a in neural cell fate decision. PLoS One 2013; 8:e56997. [PMID: 23451132 PMCID: PMC3581578 DOI: 10.1371/journal.pone.0056997] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/16/2013] [Indexed: 12/13/2022] Open
Abstract
Oct4 plays a critical role both in maintaining pluripotency and the cell fate decision of embryonic stem (ES) cells. Nonetheless, in the determination of the neuroectoderm (NE) from ES cells, the detailed regulation mechanism of the Oct4 gene expression is poorly understood. Here, we report that crosstalk between Oct4 and Meis1a, a Pbx-related homeobox protein, is required for neural differentiation of mouse P19 embryonic carcinoma (EC) cells induced by retinoic acid (RA). During neural differentiation, Oct4 expression was transiently enhanced during 6–12 h of RA addition and subsequently disappeared within 48 h. Coinciding with up-regulation of Oct4 expression, the induction of Meis1a expression was initiated and reached a plateau at 48 h, suggesting that transiently induced Oct4 activates Meis1a expression and the up-regulated Meis1a then suppresses Oct4 expression. Chromatin immunoprecipitation (ChIP) and luciferase reporter analysis showed that Oct4 enhanced Meis1a expression via direct binding to the Meis1 promoter accompanying histone H3 acetylation and appearance of 5-hydoxymethylcytosine (5hmC), while Meis1a suppressed Oct4 expression via direct association with the Oct4 promoter together with histone deacetylase 1 (HDAC1). Furthermore, ectopic Meis1a expression promoted neural differentiation via formation of large neurospheres that expressed Nestin, GLAST, BLBP and Sox1 as neural stem cell (NSC)/neural progenitor markers, whereas its down-regulation generated small neurospheres and repressed neural differentiation. Thus, these results imply that crosstalk between Oct4 and Meis1a on mutual gene expressions is essential for the determination of NE from EC cells.
Collapse
Affiliation(s)
- Takeyuki Yamada
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Yumiko Urano-Tashiro
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Saori Tanaka
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Hirotada Akiyama
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Fumio Tashiro
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
- * E-mail:
| |
Collapse
|
106
|
Hsieh FY, Ma TL, Shih HY, Lin SJ, Huang CW, Wang HY, Cheng YC. Dner inhibits neural progenitor proliferation and induces neuronal and glial differentiation in zebrafish. Dev Biol 2013; 375:1-12. [PMID: 23328254 DOI: 10.1016/j.ydbio.2013.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 12/17/2012] [Accepted: 01/02/2013] [Indexed: 11/19/2022]
Abstract
Delta/notch-like epidermal growth factor (EGF)-related receptor (DNER) is a single-pass transmembrane protein found to be a novel ligand in the Notch signaling pathway. Its function was previously characterized in the developing cerebellum and inner ear hair cells. In this study, we isolated a zebrafish homolog of DNER and showed that this gene is expressed in the developing nervous system. Overexpression of dner or the intracellular domain of dner was sufficient to inhibit the proliferation of neural progenitors and induce neuronal and glial differentiation. In contrast, the knockdown of endogenous Dner expression using antisense morpholino oligonucleotides increased the proliferation of neural progenitors and maintained neural cells in a progenitor status through inhibition of neuronal and glial differentiation. Through analysis of the antagonistic effect on the Delta ligand and the role of the potential downstream mediator Deltex1, we showed that Dner acts in Notch-dependent and Notch-independent manner. This is the first study to demonstrate a role for Dner in neural progenitors and neuronal differentiation and provides new insights into mediation of neuronal development and differentiation by the Notch signaling pathway.
Collapse
Affiliation(s)
- Fu-Yu Hsieh
- Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | | | | | | | | | | | | |
Collapse
|
107
|
Barry DS, Pakan JMP, O'Keeffe GW, McDermott KW. The spatial and temporal arrangement of the radial glial scaffold suggests a role in axon tract formation in the developing spinal cord. J Anat 2012; 222:203-13. [PMID: 23121514 DOI: 10.1111/joa.12006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2012] [Indexed: 01/14/2023] Open
Abstract
Radial glial cells serve diverse roles during the development of the central nervous system (CNS). In the embryonic brain, they are recognised as guidance conduits for migrating neuroblasts and as multipotent stem cells, generating both neurons and glia. While their stem cell capacities in the developing spinal cord are as yet not fully clarified, they are classically seen as a population of astrocytes precursors, before gradually disappearing as the spinal cord matures. Although the origins and lineages of CNS radial glial cells are being more clearly understood, the relationships between radial glial cells and growing white matter (WM) tracts are largely unknown. Here, we provide an in-depth description of the distribution and organisation of radial glial cell processes during the peak periods of axonogenesis in the rat spinal cord. We show that radial glial cell distribution is highly ordered in the WM from E14 to E18, when the initial patterning of axon tracts is taking place. We report that the density of radial glial cell processes is tightly conserved throughout development in the dorsal, lateral and ventral WM funiculi along the rostrocaudal axis of the spinal cord. We provide evidence that from E16 the dorsal funiculi grow within and are segregated by fascicles of processes emanating from the dorsomedial septum. The density of radial glial cells declines with the maturation of axon tracts and coincides with the onset of the radial glial cell-astrocyte transformation. As such, we propose that radial glial cells act as structural scaffolds by compartmentalising and supporting WM patterning in the spinal cord during embryonic development.
Collapse
Affiliation(s)
- Denis S Barry
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | | | | | | |
Collapse
|
108
|
Heng YHE, McLeay RC, Harvey TJ, Smith AG, Barry G, Cato K, Plachez C, Little E, Mason S, Dixon C, Gronostajski RM, Bailey TL, Richards LJ, Piper M. NFIX regulates neural progenitor cell differentiation during hippocampal morphogenesis. ACTA ACUST UNITED AC 2012; 24:261-79. [PMID: 23042739 DOI: 10.1093/cercor/bhs307] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Neural progenitor cells have the ability to give rise to neurons and glia in the embryonic, postnatal and adult brain. During development, the program regulating whether these cells divide and self-renew or exit the cell cycle and differentiate is tightly controlled, and imbalances to the normal trajectory of this process can lead to severe functional consequences. However, our understanding of the molecular regulation of these fundamental events remains limited. Moreover, processes underpinning development of the postnatal neurogenic niches within the cortex remain poorly defined. Here, we demonstrate that Nuclear factor one X (NFIX) is expressed by neural progenitor cells within the embryonic hippocampus, and that progenitor cell differentiation is delayed within Nfix(-/-) mice. Moreover, we reveal that the morphology of the dentate gyrus in postnatal Nfix(-/-) mice is abnormal, with fewer subgranular zone neural progenitor cells being generated in the absence of this transcription factor. Mechanistically, we demonstrate that the progenitor cell maintenance factor Sry-related HMG box 9 (SOX9) is upregulated in the hippocampus of Nfix(-/-) mice and demonstrate that NFIX can repress Sox9 promoter-driven transcription. Collectively, our findings demonstrate that NFIX plays a central role in hippocampal morphogenesis, regulating the formation of neuronal and glial populations within this structure.
Collapse
|
109
|
Molofsky AV, Krencik R, Krenick R, Ullian EM, Ullian E, Tsai HH, Deneen B, Richardson WD, Barres BA, Rowitch DH. Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 2012; 26:891-907. [PMID: 22549954 DOI: 10.1101/gad.188326.112] [Citation(s) in RCA: 510] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Astrocytes are no longer seen as a homogenous population of cells. In fact, recent studies indicate that astrocytes are morphologically and functionally diverse and play critical roles in neurodevelopmental diseases such as Rett syndrome and fragile X mental retardation. This review summarizes recent advances in astrocyte development, including the role of neural tube patterning in specification and developmental functions of astrocytes during synaptogenesis. We propose here that a precise understanding of astrocyte development is critical to defining heterogeneity and could lead advances in understanding and treating a variety of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Anna V Molofsky
- Department of Pediatrics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Kang P, Lee HK, Glasgow SM, Finley M, Donti T, Gaber ZB, Graham BH, Foster AE, Novitch BG, Gronostajski RM, Deneen B. Sox9 and NFIA coordinate a transcriptional regulatory cascade during the initiation of gliogenesis. Neuron 2012; 74:79-94. [PMID: 22500632 DOI: 10.1016/j.neuron.2012.01.024] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2012] [Indexed: 10/28/2022]
Abstract
Transcriptional cascades that operate over the course of lineage development are fundamental mechanisms that control cellular differentiation. In the developing central nervous system (CNS), these mechanisms are well characterized during neurogenesis, but remain poorly defined during neural stem cell commitment to the glial lineage. NFIA is a transcription factor that plays a crucial role in the onset of gliogenesis; we found that its induction is regulated by the transcription factor Sox9 and that this relationship mediates the initiation of gliogenesis. Subsequently, Sox9 and NFIA form a complex and coregulate a set of genes induced after glial initiation. Functional studies revealed that a subset of these genes, Apcdd1 and Mmd2, perform key migratory and metabolic roles during astro-gliogenesis, respectively. In sum, these studies delineate a transcriptional regulatory cascade that operates during the initiation of gliogenesis and identifies a unique set of genes that regulate key aspects of astro-glial precursor physiology during development.
Collapse
Affiliation(s)
- Peng Kang
- Center for Cell and Gene Therapy, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Emsley JG, Menezes JRL, Madeiro Da Costa RF, Martinez AMB, Macklis JD. Identification of radial glia-like cells in the adult mouse olfactory bulb. Exp Neurol 2012; 236:283-97. [PMID: 22634209 DOI: 10.1016/j.expneurol.2012.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 04/18/2012] [Accepted: 05/12/2012] [Indexed: 01/08/2023]
Abstract
Immature neurons migrate tangentially within the rostral migratory stream (RMS) to the adult olfactory bulb (OB), then radially to their final positions as granule and periglomerular neurons; the controls over this transition are not well understood. Using adult transgenic mice with the human GFAP promoter driving expression of enhanced GFP, we identified a population of radial glia-like cells that we term adult olfactory radial glia-like cells (AORGs). AORGs have large, round somas and simple, radially oriented processes. Confocal reconstructions indicate that AORGs variably express typical radial glial markers, only rarely express mouse GFAP, and do not express astroglial, oligodendroglial, neuronal, or tanycyte markers. Electron microscopy provides further supporting evidence that AORGs are not immature neurons. Developmental analyses indicate that AORGs are present as early as P1, and are generated through adulthood. Tracing studies show that AORGs are not born in the SVZa, suggesting that they are born either in the RMS or the OB. Migrating immature neurons from the adult SVZa are closely apposed to AORGs during radial migration in vivo and in vitro. Taken together, these data indicate a newly-identified population of radial glia-like cells in the adult OB that might function uniquely in neuronal radial migration during adult OB neurogenesis.
Collapse
Affiliation(s)
- Jason G Emsley
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
112
|
Neuron-astroglial interactions in cell-fate commitment and maturation in the central nervous system. Neurochem Res 2012; 37:2402-18. [PMID: 22614925 DOI: 10.1007/s11064-012-0798-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/18/2012] [Accepted: 05/07/2012] [Indexed: 01/24/2023]
Abstract
Neuron-astroglia interactions play a key role in several events of brain development, such as neuronal generation, migration, survival, and differentiation; axonal growth; and synapse formation and function. While there is compelling evidence of the effects of astrocyte factors on neurons, their effects on astrocytes have not been fully determined. In this review, we will focus on the role of neurons in astrocyte generation and maturation. Further, we highlight the great heterogeneity and diversity of astroglial and neural progenitors such as radial glia cells, and discuss the importance of the variety of cellular interactions in controlling the structural and functional organization of the brain. Finally, we present recent data on a new role of astrocytes in neuronal maturation, as mediators of the action of biolipids in the cerebral cortex. We will argue that the functional architecture of the brain depends on an intimate neuron-glia partnership, by briefly discussing the emerging view of how neuron-astrocyte dysfunctions might be associated with neurodegenerative diseases and neurological disorders.
Collapse
|
113
|
Jungblut M, Tiveron MC, Barral S, Abrahamsen B, Knöbel S, Pennartz S, Schmitz J, Perraut M, Pfrieger FW, Stoffel W, Cremer H, Bosio A. Isolation and characterization of living primary astroglial cells using the new GLAST-specific monoclonal antibody ACSA-1. Glia 2012; 60:894-907. [PMID: 22374709 DOI: 10.1002/glia.22322] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 02/14/2012] [Indexed: 12/23/2022]
Abstract
Astrocytes show large morphological and functional heterogeneity and are involved in many aspects of neural function. Progress in defining astrocyte subpopulations has been hampered by the lack of a suitable antibody for their direct detection and isolation. Here, we describe a new monoclonal antibody, ACSA-1, which was generated by immunization of GLAST1 knockout mice. The antibody specifically detects an extracellular epitope of the astrocyte-specific L-glutamate/L-aspartate transporter GLAST (EAAT1, Slc1a3). As shown by immunohistochemistry, immunocytochemistry, and flow cytometry, ACSA-1 was cross-reactive for mouse, human, and rat. It labeled virtually all astrocytes positive for GFAP, GS, BLBP, RC2, and Nestin, including protoplastic, fibrous, and reactive astrocytes as well as Bergmann glia, Müller glia, and radial glia. Oligodendrocytes, microglia, neurons, and neuronal progenitors were negative for ACSA-1. Using an immunomagnetic approach, we established a method for the isolation of GLAST-positive cells with high purity. Binding of the antibody to GLAST and subsequent sorting of GLAST-positive cells neither interfered with cellular glutamate transport nor compromised astrocyte viability in vitro. The ACSA-1 antibody is not only a valuable tool to identify and track astrocytes by immunostaining, but also provides the possibility of separation and further analysis of pure astrocytes.
Collapse
Affiliation(s)
- Melanie Jungblut
- Miltenyi Biotec GmbH, Friedrich-Ebert-Straße 68, Bergisch Gladbach, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Abstract
Ependymal cells are part of the neurogenic niche in the adult subventricular zone of the lateral ventricles, where they regulate neurogenesis and neuroblast migration. Ependymal cells are generated from radial glia cells during embryonic brain development and acquire their final characteristics postnatally. The homeobox gene Six3 is expressed in ependymal cells during the formation of the lateral wall of the lateral ventricles in the brain. Here, we show that Six3 is necessary for ependymal cell maturation during postnatal stages of brain development. In its absence, ependymal cells fail to suppress radial glia characteristics, resulting in a defective lateral wall, abnormal neuroblast migration and differentiation, and hydrocephaly.
Collapse
Affiliation(s)
- Alfonso Lavado
- Department of Genetics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Guillermo Oliver
- Department of Genetics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
115
|
Gómez-López S, Wiskow O, Favaro R, Nicolis SK, Price DJ, Pollard SM, Smith A. Sox2 and Pax6 maintain the proliferative and developmental potential of gliogenic neural stem cells In vitro. Glia 2011; 59:1588-99. [PMID: 21766338 DOI: 10.1002/glia.21201] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 05/25/2011] [Indexed: 02/02/2023]
Abstract
Radial-glia-like neural stem (NS) cells may be derived from neural tissues or via differentiation of pluripotent embryonic stem (ES) cells. However, the mechanisms controlling NS cell propagation and differentiation are not yet fully understood. Here we investigated the roles of Sox2 and Pax6, transcription factors widely expressed in central nervous system (CNS) progenitors, in mouse NS cells. Conditional deletion of either Sox2 or Pax6 in forebrain-derived NS cells reduced their clonogenicity in a gene dosage-dependent manner. Cells heterozygous for either gene displayed moderate proliferative defects, which may relate to human pathologies attributed to SOX2 or PAX6 deficiencies. In the complete absence of Sox2, cells exited the cell cycle with concomitant downregulation of neural progenitor markers Nestin and Blbp. This occurred despite expression of the close relative Sox3. Ablation of Pax6 also caused major proliferative defects. However, a subpopulation of cells was able to expand continuously without Pax6. These Pax6-null cells retained progenitor markers but had altered morphology. They exhibited compromised differentiation into astrocytes and oligodendrocytes, highlighting that the role of Pax6 extends beyond neurogenic competence. Overall these findings indicate that Sox2 and Pax6 are both critical for self-renewal of differentiation-competent radial glia-like NS cells.
Collapse
Affiliation(s)
- Sandra Gómez-López
- Wellcome Trust Centre for Stem Cell Research and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
116
|
Petit A, Sanders AD, Kennedy TE, Tetzlaff W, Glattfelder KJ, Dalley RA, Puchalski RB, Jones AR, Roskams AJ. Adult spinal cord radial glia display a unique progenitor phenotype. PLoS One 2011; 6:e24538. [PMID: 21931744 PMCID: PMC3171483 DOI: 10.1371/journal.pone.0024538] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/12/2011] [Indexed: 11/18/2022] Open
Abstract
Radial glia (RG) are primarily embryonic neuroglial progenitors that express Brain Lipid Binding Protein (Blbp a.k.a. Fabp7) and Glial Fibrillary Acidic Protein (Gfap). We used these transcripts to demarcate the distribution of spinal cord radial glia (SCRG) and screen for SCRG gene expression in the Allen Spinal Cord Atlas (ASCA). We reveal that neonatal and adult SCRG are anchored in a non-ventricular niche at the spinal cord (SC) pial boundary, and express a “signature” subset of 122 genes, many of which are shared with “classic” neural stem cells (NSCs) of the subventricular zone (SVZ) and SC central canal (CC). A core expressed gene set shared between SCRG and progenitors of the SVZ and CC is particularly enriched in genes associated with human disease. Visualizing SCRG in a Fabp7-EGFP reporter mouse reveals an extensive population of SCRG that extend processes around the SC boundary and inwardly (through) the SC white matter (WM), whose abundance increases in a gradient from cervical to lumbar SC. Confocal analysis of multiple NSC-enriched proteins reveals that postnatal SCRG are a discrete and heterogeneous potential progenitor population that become activated by multiple SC lesions, and that CC progenitors are also more heterogeneous than previously appreciated. Gene ontology analysis highlights potentially unique regulatory pathways that may be further manipulated in SCRG to enhance repair in the context of injury and SC disease.
Collapse
Affiliation(s)
- Audrey Petit
- Department of Zoology, Life Sciences Institute and International Collaboration On Repair Discoveries (iCORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Ashley D. Sanders
- Department of Zoology, Life Sciences Institute and International Collaboration On Repair Discoveries (iCORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy E. Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Wolfram Tetzlaff
- Department of Zoology, Life Sciences Institute and International Collaboration On Repair Discoveries (iCORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Katie J. Glattfelder
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Rachel A. Dalley
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Ralph B. Puchalski
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Allan R. Jones
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - A. Jane Roskams
- Department of Zoology, Life Sciences Institute and International Collaboration On Repair Discoveries (iCORD), University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
117
|
Abstract
Radial glia (RG) are a glial cell type that can be found from the earliest stages of CNS development. They are clearly identifiable by their unique morphology, having a periventricular cell soma and a long process extending all the way to the opposite pial surface. Due to this striking morphology, RG have long been thought of as a transient substrate for neuron migration in the developing brain. In fact, RG cells, far from exclusively serving as a passive scaffold for cell migration, have a remarkably diverse range of critical functions in CNS development and function. These include serving as progenitors of neurons and glia both during development as well as in response to injury, helping to direct axonal and dendritic process outgrowth, and regulating synaptic development and function. RG also engage in extensive bidirectional signaling both with neurons and one another. This review describes the diversity of RG cell types in the CNS and discusses their many important activities.
Collapse
Affiliation(s)
- Mari Sild
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
118
|
|
119
|
López-Bayghen E, Ortega A. Glial glutamate transporters: New actors in brain signaling. IUBMB Life 2011; 63:816-23. [DOI: 10.1002/iub.536] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/10/2011] [Indexed: 01/10/2023]
|
120
|
Zebrafish Her8a is activated by Su(H)-dependent Notch signaling and is essential for the inhibition of neurogenesis. PLoS One 2011; 6:e19394. [PMID: 21541299 PMCID: PMC3082574 DOI: 10.1371/journal.pone.0019394] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 04/04/2011] [Indexed: 12/22/2022] Open
Abstract
Understanding how diversity of neural cells is generated is one of the main tasks of developmental biology. The Hairy/E(spl) family members are potential targets of Notch signaling, which has been shown to be fundamental to neural cell maintenance, cell fate decisions, and compartment boundary formation. However, their response to Notch signaling and their roles in neurogenesis are still not fully understood. In the present study, we isolated a zebrafish homologue of hairy/E(spl), her8a, and showed this gene is specifically expressed in the developing nervous system. her8a is positively regulated by Su(H)-dependent Notch signaling as revealed by a Notch-defective mutant and injection of variants of the Notch intracellular regulator, Su(H). Morpholino knockdown of Her8a resulted in upregulation of proneural and post-mitotic neuronal markers, indicating that Her8a is essential for the inhibition of neurogenesis. In addition, markers for glial precursors and mature glial cells were down-regulated in Her8a morphants, suggesting Her8a is required for gliogenesis. The role of Her8a and its response to Notch signaling is thus similar to mammalian HES1, however this is the converse of what is seen for the more closely related mammalian family member, HES6. This study not only provides further understanding of how the fundamental signaling pathway, Notch signaling, and its downstream genes mediate neural development and differentiation, but also reveals evolutionary diversity in the role of H/E(spl) genes.
Collapse
|
121
|
Brain cancer stem cells: current status on glioblastoma multiforme. Cancers (Basel) 2011; 3:1777-97. [PMID: 24212782 PMCID: PMC3757390 DOI: 10.3390/cancers3021777] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 03/03/2011] [Accepted: 03/22/2011] [Indexed: 01/15/2023] Open
Abstract
Glioblastoma multiforme (GBM), an aggressive brain tumor of astrocytic/neural stem cell origin, represents one of the most incurable cancers. GBM tumors are highly heterogeneous. However, most tumors contain a subpopulation of cells that display neural stem cell characteristics in vitro and that can generate a new brain tumor upon transplantation in mice. Hence, previously identified molecular pathways regulating neural stem cell biology were found to represent the cornerstone of GBM stem cell self-renewal mechanism. GBM tumors are also notorious for their resistance to radiation therapy. Notably, GBM "cancer stem cells" were also found to be responsible for this radioresistance. Herein, we will analyze the data supporting or not the cancer stem cell model in GBM, overview the current knowledge regarding GBM stem cell self-renewal and radioresistance molecular mechanisms, and discuss the potential therapeutic application of these findings.
Collapse
|
122
|
Domowicz MS, Henry JG, Wadlington N, Navarro A, Kraig RP, Schwartz NB. Astrocyte precursor response to embryonic brain injury. Brain Res 2011; 1389:35-49. [PMID: 21396923 DOI: 10.1016/j.brainres.2011.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 02/23/2011] [Accepted: 03/02/2011] [Indexed: 02/06/2023]
Abstract
Penetrating traumatic insult during pregnancy is a leading cause of human fetal demise; in particular, trauma to the brain may lead to devastating long-term cognitive sequelae. Perinatal brain injury involves glial precursors, but the neural mechanisms controlling astrocyte ontogeny after injury remain incompletely understood, partly due to a lack of appropriate markers and animal models. We analyzed astrocyte precursor response to injury at the beginning (E11) and peak (E15) of gliogenesis in an avian tectal model of penetrating embryonic brain trauma, without confounding maternal and sibling effects. At both ages, lateral ventricular dilatation, necrotic foci, periventricular cysts and intraventricular hemorrhages were observed distal to stab wounds two days after a unilateral stab injury to optic tecta. Neuronal (TUBB3) and oligodendrocyte precursor (PLP) markers were down-regulated, even far-removed from the wound site. In contrast, the mature astrocyte marker, GFAP, was up-regulated at the wound site, around necrotic areas and cysts, plus in usual areas of GFAP expression. Increased inflammatory response and apoptotic cell death were also confirmed in the injured tecta. Increased expression of NFIA, SOX9 and GLAST at the wound site and in the ventricular zone (VZ) of the injured tecta indicated an astroglial precursor response. However, cell division increased in the VZ only in early (E11) injury, but not later (E15), indicating that in late injury the astrogliogenesis occurring after acute injury is predominantly due to precursor differentiation rather than precursor proliferation. The inability to replenish the glial precursor pool during the critical period of vulnerability to injury may be an important cause of subsequent developmental abnormalities.
Collapse
Affiliation(s)
- Miriam S Domowicz
- Department of Pediatrics, The University of Chicago Medical Center, 5841 S. Maryland Avenue, MC 5058, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
123
|
Ševc J, Daxnerová Z, Haňová V, Koval’ J. Novel observations on the origin of ependymal cells in the ventricular zone of the rat spinal cord. Acta Histochem 2011; 113:156-62. [PMID: 20079525 DOI: 10.1016/j.acthis.2009.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/17/2009] [Accepted: 09/21/2009] [Indexed: 10/19/2022]
Abstract
Despite extensive investigations of gliogenesis, the time of origin of ependymal cells in the spinal cord has not yet been fully elucidated. Using a single dose of 5-bromo-2-deoxyuridine combined with various survival times we monitored: mitotic activity (short survival time), the presence of newly formed cells in the ventricular zone (intermediate survival time) and the formation of ependymal cells (long survival time) during the late embryonic and early postnatal development in the ventricular zone of the spinal cord of rats. In the period of study it was found that the ependymal cells populated this region in two waves. Most of the ependymal cells originated around embryonic day 18 and then between postnatal days 8 and 15. In addition, it was observed that in the ventricular zone of the spinal cord, proliferation and production of ependymal cells continues at the slower rate at least until day 36 of postnatal development. Elucidation of the relationship between progenitors in the embryonic ventricular zone and the relative quiescent ependymal lining of the central canal in adulthood could be important in the search for the adult neural stem cell niche.
Collapse
|
124
|
Altered cerebellar development in nuclear receptor TAK1/ TR4 null mice is associated with deficits in GLAST(+) glia, alterations in social behavior, motor learning, startle reactivity, and microglia. THE CEREBELLUM 2011; 9:310-23. [PMID: 20393820 DOI: 10.1007/s12311-010-0163-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previously, deficiency in the expression of the nuclear orphan receptor TAK1 was found to be associated with delayed cerebellar granule cell migration and Purkinje cell maturation with a permanent deficit in foliation of lobules VI–VII, suggesting a role for TAK1 in cerebellum development. In this study, we confirm that TAK1-deficient (TAK1(−/−)) mice have a smaller cerebellum and exhibit a disruption of lobules VI–VII. We extended these studies and show that at postnatal day 7, TAK1(−/−) mice exhibit a delay in monolayer maturation of dysmorphic calbindin 28K-positive Purkinje cells. The astrocyte-specific glutamate transporter (GLAST) was expressed within Bergmann fibers and internal granule cell layer at significantly lower levels in the cerebellum of TAK1(−/−) mice. At PND21, Golgi-positive Purkinje cells in TAK1(−/−) mice displayed a smaller soma (18%) and shorter distance to first branch point (35%). Neuronal death was not observed in TAK1(−/−) mice at PND21; however, activated microglia were present in the cerebellum, suggestive of earlier cell death. These structural deficits in the cerebellum were not sufficient to alter motor strength, coordination, or activity levels; however, deficits in acoustic startle response, prepulse startle inhibition, and social interactions were observed. Reactions to a novel environment were inhibited in a light/dark chamber, open-field, and home-cage running wheel. TAK1(−/−) mice displayed a plateau in performance on the running wheel, suggesting a deficit in learning to coordinate performance on a motor task. These data indicate that TAK1 is an important transcriptional modulator of cerebellar development and neurodevelopmentally regulated behavior.
Collapse
|
125
|
Inamura N, Ono K, Takebayashi H, Zalc B, Ikenaka K. Olig2 Lineage Cells Generate GABAergic Neurons in the Prethalamic Nuclei, Including the Zona Incerta, Ventral Lateral Geniculate Nucleus and Reticular Thalamic Nucleus. Dev Neurosci 2011; 33:118-29. [DOI: 10.1159/000328974] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 05/01/2011] [Indexed: 11/19/2022] Open
|
126
|
Massie A, Schallier A, Kim SW, Fernando R, Kobayashi S, Beck H, Bundel DD, Vermoesen K, Bannai S, Smolders I, Conrad M, Plesnila N, Sato H, Michotte Y. Dopaminergic neurons of system x
c
–
‐deficient mice are highly protected against 6‐hydroxydopamine‐induced toxicity. FASEB J 2010; 25:1359-69. [DOI: 10.1096/fj.10-177212] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ann Massie
- Department of Pharmaceutical Chemistry and Drug AnalysisResearch Group Experimental Pharmacology, Vrije Universiteit Brussel Brussels Belgium
| | - Anneleen Schallier
- Department of Pharmaceutical Chemistry and Drug AnalysisResearch Group Experimental Pharmacology, Vrije Universiteit Brussel Brussels Belgium
| | | | - Ruani Fernando
- Department of Medical Biochemistry and BiophysicsKarolinska Institutet Stockholm Sweden
| | - Sho Kobayashi
- Department of Food and Applied Life SciencesFaculty of Agriculture, Yamagata University Tsuruoka Yamagata Japan
| | - Heike Beck
- Walter Brendel Center of Experimental Medicine, Ludwig‐Maximilians‐University Munich Germany
| | - Dimitri De Bundel
- Department of Pharmaceutical Chemistry and Drug AnalysisResearch Group Experimental Pharmacology, Vrije Universiteit Brussel Brussels Belgium
| | - Katia Vermoesen
- Department of Pharmaceutical Chemistry and Drug AnalysisResearch Group Experimental Pharmacology, Vrije Universiteit Brussel Brussels Belgium
| | - Shiro Bannai
- Department of Food and Applied Life SciencesFaculty of Agriculture, Yamagata University Tsuruoka Yamagata Japan
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry and Drug AnalysisResearch Group Experimental Pharmacology, Vrije Universiteit Brussel Brussels Belgium
| | - Marcus Conrad
- Helmholtz Center MunichInstitute of Clinical Molecular Biology and Tumor Genetics Munich Germany
| | | | - Hideyo Sato
- Department of Food and Applied Life SciencesFaculty of Agriculture, Yamagata University Tsuruoka Yamagata Japan
| | - Yvette Michotte
- Department of Pharmaceutical Chemistry and Drug AnalysisResearch Group Experimental Pharmacology, Vrije Universiteit Brussel Brussels Belgium
| |
Collapse
|
127
|
Abstract
Oligodendrocytes and astrocytes are macroglial cells of the vertebrate central nervous system. These cells have diverse roles in the maintenance of neurological function. In the embryo, the genetic mechanisms that underlie the specification of macroglial precursors in vivo appear strikingly similar to those that regulate the development of the diverse neuron types. The switch from producing neuronal to glial subtype-specific precursors can be modelled as an interplay between region-restricted components and temporal regulators that determine neurogenic or gliogenic phases of development, contributing to glial diversity. Gaining insight into the developmental genetics of macroglia has great potential to improve our understanding of a variety of neurological disorders in humans.
Collapse
|
128
|
Shekarabi M, Salin-Cantegrel A, Laganière J, Gaudet R, Dion P, Rouleau GA. Cellular expression of the K+-Cl- cotransporter KCC3 in the central nervous system of mouse. Brain Res 2010; 1374:15-26. [PMID: 21147077 DOI: 10.1016/j.brainres.2010.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 11/29/2010] [Accepted: 12/04/2010] [Indexed: 10/18/2022]
Abstract
Potassium/Chloride cotransporters are transmembrane proteins that regulate cell volume and control neuronal activity by transporting K(+) and Cl(-) ions across the plasma membrane. Potassium/Chloride cotransporter 3 (KCC3) mutations are responsible for hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC), which is a severe sensory and motor neuropathy. Two major splice variants, KCC3a and KCC3b, were shown to be expressed in adult mouse tissues. Although KCC3a is mainly expressed in the central nervous system (CNS), its specific cellular expression patterns have not been determined. Here, we used an approach combining in situ hybridization and immunohistochemical techniques to determine the cellular expression of KCC3 in the mouse CNS and showed that KCC3 is mainly expressed in neurons, including a subpopulation of interneurons. Finally, we showed that some non-neuronal cells, such as radial glial-like cells in the spinal cord, also express KCC3.
Collapse
Affiliation(s)
- Masoud Shekarabi
- Centre of Excellence in Neuromics, CHUM Research Center and Department of Medicine, University of Montreal, Notre-Dame Hospital, 1560 Sherbrooke East, De-Seve Pavillion, room Y-3616-2, Montréal, QC, H2L 4M1, Canada
| | | | | | | | | | | |
Collapse
|
129
|
Brunne B, Zhao S, Derouiche A, Herz J, May P, Frotscher M, Bock HH. Origin, maturation, and astroglial transformation of secondary radial glial cells in the developing dentate gyrus. Glia 2010; 58:1553-69. [PMID: 20549747 DOI: 10.1002/glia.21029] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The dentate gyrus is a brain region where neurons are continuously born throughout life. In the adult, the role of its radial glia in neurogenesis has attracted much attention over the past years; however, little is known about the generation and differentiation of glial cells and their relationship to radial glia during the ontogenetic development of this brain structure. Here, we combine immunohistochemical phenotyping using antibodies against glial marker proteins with BrdU birthdating to characterize the development of the secondary radial glial scaffold in the dentate gyrus and its potential to differentiate into astrocytes. We demonstrate that the expression of brain lipid-binding protein, GLAST, and glial fibrillary acidic protein (GFAP) characterizes immature differentiating cells confined to an astrocytic fate in the early postnatal dentate gyrus. On the basis of our studies, we propose a model where immature astrocytes migrate radially through the granule cell layer to adopt their final positions in the molecular layer of the dentate gyrus. Time-lapse imaging of acute hippocampal slices from hGFAP-eGFP transgenic mice provides direct evidence for such a migration mode of differentiating astroglial cells in the developing dentate gyrus.
Collapse
Affiliation(s)
- Bianka Brunne
- Center of Neurosciences, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
130
|
Miyazaki T, Yamasaki M, Uchigashima M, Matsushima A, Watanabe M. Cellular expression and subcellular localization of secretogranin II in the mouse hippocampus and cerebellum. Eur J Neurosci 2010; 33:82-94. [PMID: 21044184 DOI: 10.1111/j.1460-9568.2010.07472.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Secretogranin II (SgII), or chromogranin C, is thought to participate in the sorting and packaging of peptide hormones and neuropeptides into secretory granules and large dense-core vesicle (LDCVs), and also functions as a precursor of neuropeptide secretoneurin. Although SgII is widely distributed in the brain and is predominantly localized at terminals of mossy fibers in the hippocampus and cerebellum and climbing fibers in the cerebellum, its cellular expression and ultrastructural localization remain largely unknown. In the present study, we addressed this issue in the adult mouse brain by multiple-labeling fluorescence in situ hybridization and immunofluorescence and by preembedding and postembedding immunoelectron microscopies. SgII was expressed in various neurons, distributed as either tiny puncta or coarse aggregates in the neuropil, and intensely accumulated in perikarya of particular neurons, such as parvalbumin-positive interneurons and mossy cells in the hippocampus and Purkinje cells in the cerebellum. Coarse aggregates were typical of terminals of mossy fibers and climbing fibers. In these terminals, numerous immunogold particles were clustered on individual LDCVs, and one or two particles also fell within small synaptic vesicle-accumulating portions. SgII was further detected as tiny puncta in neural elements lacking LDCVs, such as parallel fibers of cerebellar granule cells, somatodendritic elements of various neurons and Bergmann glia. Thus, SgII is present in LDCV and non-LDCV compartments of various neural cells. The wide subcellular localization of SgII may reflect diverse release sites of neuropeptides and secretorneurin, or suggests its role in the sorting and packaging of molecules other than neuropeptides in non-LDCV compartments.
Collapse
Affiliation(s)
- Taisuke Miyazaki
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | |
Collapse
|
131
|
Poluch S, Juliano SL. Populations of radial glial cells respond differently to reelin and neuregulin1 in a ferret model of cortical dysplasia. PLoS One 2010; 5:e13709. [PMID: 21060844 PMCID: PMC2965671 DOI: 10.1371/journal.pone.0013709] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 09/19/2010] [Indexed: 11/18/2022] Open
Abstract
Radial glial cells play an essential role during corticogenesis through their function as neural precursors and guides of neuronal migration. Both reelin and neuregulin1 (NRG1) maintain the radial glial scaffold; they also induce expression of Brain Lipid Binding Protein (BLBP), a well known marker of radial glia. Although radial glia in normal ferrets express both vimentin and BLBP, this coexpression diverges at P3; vimentin is expressed in the radial glial processes, while BLBP appears in cells detached from the ventricular zone. Our lab developed a model of cortical dysplasia in the ferret, resulting in impaired migration of neurons into the cortical plate and disordered radial glia. This occurs after exposure to the antimitotic methylazoxymethanol (MAM) on the 24th day of development (E24). Ferrets treated with MAM on E24 result in an overall decrease of BLBP expression; radial glia that continue to express BLBP, however, show only mild disruption compared with the strongly disrupted vimentin expressing radial glia. When E24 MAM-treated organotypic slices are exposed to reelin or NRG1, the severely disrupted vimentin+ radial glial processes are repaired but the slightly disordered BLBP+ processes are not. The realignment of vimentin+ processes was linked with an increase of their BLBP expression. BLBP expressing radial glia are distinguished by being both less affected by MAM treatment and by attempts at repair. We further investigated the effects induced by reelin and found that signaling was mediated via VLDLR/Dab1/Pi3K activation while NRG1 signaling was mediated via erbB3/erbB4/Pi3K. We then tested whether radial glial repair correlated with improved neuronal migration. Repairing the radial glial scaffold is not sufficient to restore neuronal migration; although reelin improves migration of neurons toward the cortical plate signaling through ApoER2/Dab1/PI3K activation, NRG1 does not.
Collapse
Affiliation(s)
- Sylvie Poluch
- Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, United States of America
- Neuroscience, Uniformed Services University, Bethesda, Maryland, United States of America
| | - Sharon L. Juliano
- Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, United States of America
- Neuroscience, Uniformed Services University, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
132
|
Takasaki C, Yamasaki M, Uchigashima M, Konno K, Yanagawa Y, Watanabe M. Cytochemical and cytological properties of perineuronal oligodendrocytes in the mouse cortex. Eur J Neurosci 2010; 32:1326-36. [DOI: 10.1111/j.1460-9568.2010.07377.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
133
|
Massie A, Goursaud S, Schallier A, Vermoesen K, Meshul CK, Hermans E, Michotte Y. Time-dependent changes in GLT-1 functioning in striatum of hemi-Parkinson rats. Neurochem Int 2010; 57:572-8. [PMID: 20643175 DOI: 10.1016/j.neuint.2010.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/29/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
Abstract
Striatal dopamine loss in Parkinson's disease is accompanied by a dysregulation of corticostriatal glutamatergic neurotransmission. Within this study, we investigated striatal expression and activity of the glial high-affinity Na(+)/K(+)-dependent glutamate transporters, GLT-1 and GLAST, in the 6-hydroxydopamine hemi-Parkinson rat model at different time points after unilateral 6-hydroxydopamine injection into the medial forebrain bundle. Using semi-quantitative Western blotting and an ex vivo D-[(3)H]-aspartate uptake assay, we showed a time-dependent bilateral effect of unilateral 6-hydroxydopamine lesioning on the expression as well as activity of GLT-1. At 3 and 12 weeks post-lesion, striatal GLT-1 function was bilaterally upregulated whereas at 5 weeks there was no change. Even though our data do not allow a straightforward conclusion as for the role of glutamate transporters in the pathogenesis of the disease, they do clearly demonstrate a link between disturbed glutamatergic neurotransmission and glutamate transporter functioning in the striatum of a rat model for Parkinson's disease.
Collapse
Affiliation(s)
- Ann Massie
- Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
134
|
Yamazaki M, Fukaya M, Hashimoto K, Yamasaki M, Tsujita M, Itakura M, Abe M, Natsume R, Takahashi M, Kano M, Sakimura K, Watanabe M. TARPs gamma-2 and gamma-7 are essential for AMPA receptor expression in the cerebellum. Eur J Neurosci 2010; 31:2204-20. [PMID: 20529126 DOI: 10.1111/j.1460-9568.2010.07254.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors require auxiliary subunits termed transmembrane AMPA receptor regulatory proteins (TARPs), which promote receptor trafficking to the cell surface and synapses and modulate channel pharmacology and gating. Of six TARPs, gamma-2 and gamma-7 are the two major TARPs expressed in the cerebellum. In the present study, we pursued their roles in synaptic expression of cerebellar AMPA receptors. In the cerebellar cortex, gamma-2 and gamma-7 were preferentially localized at various asymmetrical synapses. Using quantitative Western blot and immunofluorescence, we found severe reductions in GluA2 and GluA3 and mild reduction in GluA4 in gamma-2-knockout (KO) cerebellum, whereas GluA1 and GluA4 were moderately reduced in gamma-7-KO cerebellum. GluA2, GluA3 and GluA4 were further reduced in gamma-2/gamma-7 double-KO (DKO) cerebellum. The large losses of GluA2 and GluA3 in gamma-2-KO mice and further reductions in DKO mice were confirmed at all asymmetrical synapses examined with postembedding immunogold. Most notably, the GluA2 level in the postsynaptic density fraction, GluA2 labeling density at parallel fiber-Purkinje cell synapses, and AMPA receptor-mediated currents at climbing fiber-Purkinje cell synapses were all reduced to approximately 10% of the wild-type levels in DKO mice. On the other hand, the reduction in GluA4 in gamma-7-KO granular layer reflected its loss at mossy fiber-granule cell synapses, whereas that of GluA1 and GluA4 in gamma-7-KO molecular layer was caused, at least partly, by their loss in Bergmann glia. Therefore, gamma-2 and gamma-7 cooperatively promote synaptic expression of cerebellar AMPA receptors, and the latter also promotes glial expression.
Collapse
Affiliation(s)
- Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Lizarraga SB, Margossian SP, Harris MH, Campagna DR, Han AP, Blevins S, Mudbhary R, Barker JE, Walsh CA, Fleming MD. Cdk5rap2 regulates centrosome function and chromosome segregation in neuronal progenitors. Development 2010; 137:1907-17. [PMID: 20460369 PMCID: PMC2867323 DOI: 10.1242/dev.040410] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2010] [Indexed: 12/12/2022]
Abstract
Microcephaly affects approximately 1% of the population and is associated with mental retardation, motor defects and, in some cases, seizures. We analyzed the mechanisms underlying brain size determination in a mouse model of human microcephaly. The Hertwig's anemia (an) mutant shows peripheral blood cytopenias, spontaneous aneuploidy and a predisposition to hematopoietic tumors. We found that the an mutation is a genomic inversion of exon 4 of Cdk5rap2, resulting in an in-frame deletion of exon 4 from the mRNA. The finding that CDK5RAP2 human mutations cause microcephaly prompted further analysis of Cdk5rap2(an/an) mice and we demonstrated that these mice exhibit microcephaly comparable to that of the human disease, resulting from striking neurogenic defects that include proliferative and survival defects in neuronal progenitors. Cdk5rap2(an/an) neuronal precursors exit the cell cycle prematurely and many undergo apoptosis. These defects are associated with impaired mitotic progression coupled with abnormal mitotic spindle pole number and mitotic orientation. Our findings suggest that the reduction in brain size observed in humans with mutations in CDK5RAP2 is associated with impaired centrosomal function and with changes in mitotic spindle orientation during progenitor proliferation.
Collapse
Affiliation(s)
- Sofia B. Lizarraga
- Division of Genetics and the Manton Center for Orphan Disease Research, Children's Hospital Boston, Howard Hughes Medical Institute, Beth Israel-Deaconess Medical Center, and Departments of Pediatrics and Neurology, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Steven P. Margossian
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Division of Hematology/Oncology, Children's Hospital Boston and Dana Farber Cancer Institute, Harvard Medical School, 1 Blackfan Circle, Boston, MA 02115, USA
| | - Marian H. Harris
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Brigham And Women's Hospital, 45 Francis Street, Boston, MA 02115, USA
| | - Dean R. Campagna
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - An-Ping Han
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Sherika Blevins
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Raksha Mudbhary
- Division of Genetics and the Manton Center for Orphan Disease Research, Children's Hospital Boston, Howard Hughes Medical Institute, Beth Israel-Deaconess Medical Center, and Departments of Pediatrics and Neurology, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Jane E. Barker
- The Jackson Laboratory, 300 Main St, Bar Harbor, ME 04609, USA
| | - Christopher A. Walsh
- Division of Genetics and the Manton Center for Orphan Disease Research, Children's Hospital Boston, Howard Hughes Medical Institute, Beth Israel-Deaconess Medical Center, and Departments of Pediatrics and Neurology, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Mark D. Fleming
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
136
|
Agius E, Decker Y, Soukkarieh C, Soula C, Cochard P. Role of BMPs in controlling the spatial and temporal origin of GFAP astrocytes in the embryonic spinal cord. Dev Biol 2010; 344:611-20. [PMID: 20488175 DOI: 10.1016/j.ydbio.2010.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 04/03/2010] [Accepted: 05/12/2010] [Indexed: 11/18/2022]
Abstract
In the vertebrate central nervous system (CNS), astrocytes are the most abundant and functionally diverse glial cell population. However, the mechanisms underlying their specification and differentiation are still poorly understood. In this study, we have defined spatially and temporally the origin of astrocytes and studied the role of BMPs in astrocyte development in the embryonic chick spinal cord. Using explant cultures, we show that astrocyte precursors started migrating out of the neuroepithelium in the mantle layer from E5, and that the dorsal-most level of the neuroepithelium, from the roof plate to the dl3 level, did not generate GFAP-positive astrocytes. Using a variety of early astrocyte markers together with functional analyses, we show that dorsal-most progenitors displayed a potential for astrocyte production but that dorsally-derived BMP signalling, possibly mediated through BMP receptor 1B, promoted neuronal specification instead. BMP treatment completely prevented astrocyte development from intermediate spinal cord explants at E5, whereas it promoted it at E6. Such an abrupt change in the response of this tissue to BMP signalling could be correlated to the onset of new foci of BMP activity and enhanced expression of BMP receptor 1A, suggesting that BMP signalling could promote astrocyte development in this region.
Collapse
Affiliation(s)
- Eric Agius
- Centre de Biologie du Développement, UMR5547 CNRS/UPS, Université Paul Sabatier, Toulouse, France.
| | | | | | | | | |
Collapse
|
137
|
Lima SS, Lima dos Santos MC, Sinder MP, Moura AS, Barradas PC, Tenório F. Glycogen stores are impaired in hypothalamic nuclei of rats malnourished during early life. Nutr Neurosci 2010; 13:21-8. [PMID: 20132651 DOI: 10.1179/147683010x12611460763805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Perinatal nutrition has persistent influences on neural development and cognition. In humans and other animals, protein malnutrition during the perinatal period causes permanent changes, inducing to adulthood metabolic syndrome. Feeding is mainly modulated by neural and hormonal inputs to the hypothalamus. Hypothalamic glycogen stores are a source of glucose in high energetic demands, as during development of neural circuits. As some hypothalamic circuits are formed during lactation, we studied the effects of malnutrition, during the first 10 days of lactation, on glycogen stores in hypothalamic nuclei involved in the control of energy metabolism. Female pregnant rats were fed ad libitum with a normal protein diet (22% protein). After delivery, each dam was kept with 6 male pups. During the first 10 days of lactation, dams from the experimental group received a protein-free diet and the control group a normoprotein diet. By post-natal day 10 (P10), glycogen stores were very high in the arcuate nucleus and median eminence of control group. Glycogen stores decreased during development. In P20 control animals, glycogen stores were lower when compared to P10 control animals. Animals submitted to malnutrition presented a staining even lower than control ones. After P45, it was difficult to determine differences between control and diet groups because glycogen stores were reduced. We also showed that tanycytes were the cells presenting glycogen stores. Our data reinforce the concept that maternal nutritional state during lactation may be critical for neurodevelopment since it resulted in a low hypothalamic glycogen store, which may be critical for establishment of neuronal circuitry.
Collapse
Affiliation(s)
- S S Lima
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | | | | | | | | |
Collapse
|
138
|
Lee HS, Han J, Lee SH, Park JA, Kim KW. Meteorin promotes the formation of GFAP-positive glia via activation of the Jak-STAT3 pathway. J Cell Sci 2010; 123:1959-68. [PMID: 20460434 DOI: 10.1242/jcs.063784] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Meteorin is an orphan ligand which has been previously reported to control neuritogenesis and angiogenesis, as well as gliogenesis. However, the precise function of this factor in CNS development and the underlying molecular mechanisms are poorly understood. Here, we demonstrate that meteorin is involved in GFAP-positive glial differentiation through activation of the Jak-STAT3 pathway, by using neurosphere and retinal explant culture systems. During embryonic brain development, meteorin is highly expressed in neural stem and radial glia cells of the ventricular zone and immature neurons outside the ventricular zone but its expression disappears spontaneously as development proceeds except in GFAP-positive astrocytes. In cultured neurospheres, meteorin activates STAT3, and in turn increases the transcriptional activity of GFAP by enhancing the binding of STAT3 to the promoter. By meteorin stimulation, differentiating neurospheres show increased numbers of GFAP-positive cells, but the effect is abrogated by a blockade of the Jak-STAT3 pathway using either a Jak inhibitor or STAT3 siRNA. Furthermore, we expand our findings to the retina, and show that meteorin increases GFAP expression in Müller glia. Together, our results suggest that meteorin promotes GFAP-positive glia formation by mediating the Jak-STAT3 signaling pathway during both cortical stem cell differentiation and retinal glia development.
Collapse
Affiliation(s)
- Hye Shin Lee
- Neurovascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
139
|
Tamura H, Shibata M, Koike M, Sasaki M, Uchiyama Y. Atg9A protein, an autophagy-related membrane protein, is localized in the neurons of mouse brains. J Histochem Cytochem 2010; 58:443-53. [PMID: 20124090 DOI: 10.1369/jhc.2010.955690] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Old and unneeded intracellular macromolecules are delivered through autophagy to lysosomes that degrade macromolecules into bioactive monomers such as amino acids. Autophagy is conserved in eukaryotes and is essential for the maintenance of cellular metabolism. Currently, more than 30 autophagy-related genes (Atgs) have been identified in yeast. Of these genes, the18 that are essential for autophagosome formation are also conserved in mammalian cells. Atg9 is the only transmembrane Atg protein required for autophagosome formation. Although the subcellular localization of the Atg9A protein (Atg9Ap) has been examined, little is known about its precise cell and tissue distribution. To determine this, we produced an antibody specific to mouse Atg9Ap. The antibody recognized both non-glycosylated and glycosylated Atg9Ap, which have molecular masses of approximately 94 kDa and 105 kDa, respectively. Although Atg9Ap was ubiquitously detected, it was highly expressed in neurons of the central nervous system. In Purkinje cells, Atg9Ap immunoreactivity was localized in the endoplasmic reticulum (ER), trans-Golgi network (TGN), lysosomes/late endosomes, and in axon terminals. These results suggest that Atg9Ap may be involved in autophagosome formation in the ER and axon terminals of neurons, the TGN, and lysosomes/late endosomes.
Collapse
Affiliation(s)
- Hirosumi Tamura
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | |
Collapse
|
140
|
Sirko S, von Holst A, Weber A, Wizenmann A, Theocharidis U, Götz M, Faissner A. Chondroitin Sulfates Are Required for Fibroblast Growth Factor-2-Dependent Proliferation and Maintenance in Neural Stem Cells and for Epidermal Growth Factor-Dependent Migration of Their Progeny. Stem Cells 2010; 28:775-87. [DOI: 10.1002/stem.309] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
141
|
Structural and Functional Analysis of Chondroitin Sulfate Proteoglycans in the Neural Stem Cell Niche. Methods Enzymol 2010; 479:37-71. [DOI: 10.1016/s0076-6879(10)79003-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
142
|
Hebsgaard JB, Nelander J, Sabelström H, Jönsson ME, Stott S, Parmar M. Dopamine neuron precursors within the developing human mesencephalon show radial glial characteristics. Glia 2009; 57:1648-58. [DOI: 10.1002/glia.20877] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
143
|
Yeh TH, Lee DY, Gianino SM, Gutmann DH. Microarray analyses reveal regional astrocyte heterogeneity with implications for neurofibromatosis type 1 (NF1)-regulated glial proliferation. Glia 2009; 57:1239-49. [PMID: 19191334 DOI: 10.1002/glia.20845] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Numerous studies have suggested that astrocytes in the central nervous system (CNS) exhibit molecular and functional heterogeneity. In this regard, astroglia from different CNS locations express distinct immune system, and neurotransmitter proteins, have varying levels of gap junction coupling and respond differently to injury. However, the relevance of these differences to human disease is unclear. As brain tumors in children arise in specific CNS locations, we hypothesized that regional astroglial cell heterogeneity might partly underlie the propensity for gliomas to arise in these areas. In this study, we performed high-density RNA microarray profiling on astrocytes from postnatal day 1 optic nerve, cerebellum, brainstem, and neocortex. We showed that astroglia from each region are molecularly distinct, and we were able to develop gene expression patterns that distinguish astroglia, but not neural stem cells, from these different brain regions. We next used these microarray data to determine whether brain tumor suppressor genes were differentially expressed in these distinct populations of astroglia. Interestingly, neurofibromatosis type 1 (NF1) gene expression was decreased at both the RNA and protein levels in neocortical astroglia relative to astroglia from the other brain regions. To determine the functional significance of this finding, we found increased astroglial cell proliferation in optic nerve, brainstem, and cerebellum, but not neocortex, following Nf1 inactivation in vitro and in vivo. These findings provide molecular evidence for CNS astroglial cell heterogeneity, and suggest that differences in tumor suppressor gene expression might contribute to the regional localization of human brain tumors.
Collapse
Affiliation(s)
- Tu-Hsueh Yeh
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
144
|
Sevc J, Daxnerová Z, Miklosová M. Role of radial glia in transformation of the primitive lumen to the central canal in the developing rat spinal cord. Cell Mol Neurobiol 2009; 29:927-36. [PMID: 19291394 DOI: 10.1007/s10571-009-9377-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 02/23/2009] [Indexed: 12/01/2022]
Abstract
In the last quarter of the embryonic development of rat and shortly after a termination of neurogenesis, the transformation of the spinal cord primitive lumen (pL) to the central canal (CC) occurs. In this work, we show that this phenomenon is not an insignificant event but it is directly associated with the processes of gliogenesis. Using a light microscopy and immunohistochemistry, we monitored the development of the rat embryonic spinal cord from the end of the neurogenesis on the embryonic day 17 until the maturation of the spinal cord during the first postnatal weeks. Our observations demonstrate the importance of the transformation of the pL to the CC and its connection with gliogenesis, and the mechanism of this transformation is proposed. It is found that a segregation of the glutamate transporter (GLAST) immunopositive cells from the alar plates and transformation of the radial glial cells to the fibrous and protoplasmic astrocytes play presumably a key role in the diminution of the ventricular zone. Results indicate that the very transformation and migration of the radial glial cells during gliogenesis could result in a transformation of the pL to the CC.
Collapse
Affiliation(s)
- Juraj Sevc
- Institute of Biology and Ecology, Faculty of Sciences, PJ Safárik University, 04167 Kosice, Slovak Republic.
| | | | | |
Collapse
|
145
|
Illes S, Theiss S, Hartung HP, Siebler M, Dihné M. Niche-dependent development of functional neuronal networks from embryonic stem cell-derived neural populations. BMC Neurosci 2009; 10:93. [PMID: 19660102 PMCID: PMC2733139 DOI: 10.1186/1471-2202-10-93] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/06/2009] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The present work was performed to investigate the ability of two different embryonic stem (ES) cell-derived neural precursor populations to generate functional neuronal networks in vitro. The first ES cell-derived neural precursor population was cultivated as free-floating neural aggregates which are known to form a developmental niche comprising different types of neural cells, including neural precursor cells (NPCs), progenitor cells and even further matured cells. This niche provides by itself a variety of different growth factors and extracellular matrix proteins that influence the proliferation and differentiation of neural precursor and progenitor cells. The second population was cultivated adherently in monolayer cultures to control most stringently the extracellular environment. This population comprises highly homogeneous NPCs which are supposed to represent an attractive way to provide well-defined neuronal progeny. However, the ability of these different ES cell-derived immature neural cell populations to generate functional neuronal networks has not been assessed so far. RESULTS While both precursor populations were shown to differentiate into sufficient quantities of mature NeuN+ neurons that also express GABA or vesicular-glutamate-transporter-2 (vGlut2), only aggregate-derived neuronal populations exhibited a synchronously oscillating network activity 24 weeks after initiating the differentiation as detected by the microelectrode array technology. Neurons derived from homogeneous NPCs within monolayer cultures did merely show uncorrelated spiking activity even when differentiated for up to 12 weeks. We demonstrated that these neurons exhibited sparsely ramified neurites and an embryonic vGlut2 distribution suggesting an inhibited terminal neuronal maturation. In comparison, neurons derived from heterogeneous populations within neural aggregates appeared as fully mature with a dense neurite network and punctuated vGlut2 expression within presynaptic vesicles. Also those NPCs that had migrated away from adherent neural aggregates maintained their ability to generate a synchronously oscillating neuronal network, even if they were separated from adherent aggregates, dissociated and re-plated. CONCLUSION These findings suggest that the complex environment within niches and aggregates of heterogeneous neural cell populations support the generation of fully mature neurons and functional neuronal networks from ES cell-derived neural cells. In contrast, homogeneous ES cell-derived NPCs within monolayer cultures exhibited an impaired functional neuronal maturation.
Collapse
Affiliation(s)
- Sebastian Illes
- Department of Neurology, Heinrich-Heine University, Moorenstr, 5, Düsseldorf 40225, Germany.
| | | | | | | | | |
Collapse
|
146
|
Whalley K, Gögel S, Lange S, Ferretti P. Changes in progenitor populations and ongoing neurogenesis in the regenerating chick spinal cord. Dev Biol 2009; 332:234-45. [DOI: 10.1016/j.ydbio.2009.05.569] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 05/26/2009] [Accepted: 05/27/2009] [Indexed: 11/28/2022]
|
147
|
Wilczynska KM, Singh SK, Adams B, Bryan L, Rao RR, Valerie K, Wright S, Griswold-Prenner I, Kordula T. Nuclear factor I isoforms regulate gene expression during the differentiation of human neural progenitors to astrocytes. Stem Cells 2009; 27:1173-81. [PMID: 19418463 DOI: 10.1002/stem.35] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Even though astrocytes are critical for both normal brain functions and the development and progression of neuropathological states, including neuroinflammation associated with neurodegenerative diseases, the mechanisms controlling gene expression during astrocyte differentiation are poorly understood. Thus far, several signaling pathways were shown to regulate astrocyte differentiation, including JAK-STAT, bone morphogenic protein-2/Smads, and Notch. More recently, a family of nuclear factor-1 (NFI-A, -B, -C, and -X) was implicated in the regulation of vertebral neocortex development, with NFI-A and -B controlling the onset of gliogenesis. Here, we developed an in vitro model of differentiation of stem cells towards neural progenitors (NP) and subsequently astrocytes. The transition from stem cells to progenitors was accompanied by an expected change in the expression profile of markers, including Sox-2, Musashi-1, and Oct4. Subsequently, generated astrocytes were characterized by proper morphology, increased glutamate uptake, and marker gene expression. We used this in vitro differentiation model to study the expression and functions of NFIs. Interestingly, stem cells expressed only background levels of NFIs, while differentiation to NP activated the expression of NFI-A. More importantly, NFI-X expression was induced during the later stages of differentiation towards astrocytes. In addition, NFI-X and -C were required for the expression of glial fibrillary acidic protein and secreted protein acidic and rich in cystein-like protein 1, which are the markers of astrocytes at the later stages of differentiation. We conclude that an expression program of NFIs is executed during the differentiation of astrocytes, with NFI-X and -C controlling the expression of astrocytic markers at late stages of differentiation.
Collapse
Affiliation(s)
- Katarzyna M Wilczynska
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Roybon L, Deierborg T, Brundin P, Li JY. Involvement of Ngn2, Tbr and NeuroD proteins during postnatal olfactory bulb neurogenesis. Eur J Neurosci 2009; 29:232-43. [PMID: 19200230 DOI: 10.1111/j.1460-9568.2008.06595.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Postnatal neurogenesis takes place in two brain regions, the hippocampus and the subventricular zone (SVZ). The transcriptional cascade controlling hippocampal neurogenesis has been described in detail; however, the transcriptional control of olfactory bulb neurogenesis is still not well mapped. In this study, we provide insights into the molecular events controlling postnatal olfactory bulb neurogenesis. We first show the existence of diverse neural stem cell/progenitor populations along the SVZ-rostral migratory stream (RMS) axis, focusing on those expressing the basic helix-loop-helix (bHLH) transcription factor Mash1. We provide evidence that Mash1-derived progenies generate oligodendrocytic and neuronal precursors through the transient expression of the bHLH transcription factors Olig2 and neurogenin2 (Ngn2), respectively. Furthermore, we reveal that Ngn2-positive progenies express the T-box transcription factors Tbr2 and Tbr1, which are usually present during cortical and hippocampal glutamatergic neuronal differentiation. We also highlight a cell population expressing another bHLH transcription factor, neuroD1 (ND1). The ND1-positive cells are located in the SVZ-RMS axis and also co-express Tbr2, Tbr1 and neuroD2. The observations that these cells incorporate bromodeoxyuridine and express both doublecortin and polysialylated form of neural cell adhesion molecule suggest that they are newborn neurons. Finally, using an in vitro assay, we demonstrate that Ngn2 and ND1 equally and exclusively direct differentiation of Mash1-expressing precursors into calbindin-expressing and calretinin-expressing neurons, which are both neuronal subtypes normally found in the olfactory bulb. Taken together, our data illustrate that Ngn2, neuroD and Tbr transcription factors are involved in postnatal neurogenesis in the olfactory bulb.
Collapse
Affiliation(s)
- Laurent Roybon
- Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A10, 22184 Lund, Sweden.
| | | | | | | |
Collapse
|
149
|
Scafidi J, Fagel DM, Ment LR, Vaccarino FM. Modeling premature brain injury and recovery. Int J Dev Neurosci 2009; 27:863-71. [PMID: 19482072 DOI: 10.1016/j.ijdevneu.2009.05.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022] Open
Abstract
Premature birth is a growing and significant public health problem because of the large number of infants that survive with neurodevelopmental sequelae from brain injury. Recent advances in neuroimaging have shown that although some neuroanatomical structures are altered, others improve over time. This review outlines recent insights into brain structure and function in these preterm infants at school age and relevant animal models. These animal models have provided scientists with an opportunity to explore in depth the molecular and cellular mechanisms of injury as well as the potential of the brain for recovery. The endogenous potential that the brain has for neurogenesis and gliogenesis, and how environment contributes to recovery, are also outlined. These preclinical models will provide important insights into the genetic and epigenetic mechanisms responsible for variable degrees of injury and recovery, permitting the exploration of targeted therapies to facilitate recovery in the developing preterm brain.
Collapse
Affiliation(s)
- Joey Scafidi
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | |
Collapse
|
150
|
Lipid rafts enriched in phosphatidylglucoside direct astroglial differentiation by regulating tyrosine kinase activity of epidermal growth factor receptors. Biochem J 2009; 419:565-75. [DOI: 10.1042/bj20081896] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Membrane lipid rafts provide a specialized microenvironment enriched with sphingolipids and phospholipids containing saturated fatty acids and serve as a platform for various intracellular signalling pathways. PtdGlc (phosphatidylglucoside) is a type of glycophospholipid localized in the outer leaflet of the plasma membrane. Owing to PtdGlc's unique fatty acid composition, exclusively composed of C18:0 at sn-1 and C20:0 at sn-2 of the glycerol backbone, it tends to form PGLRs (PtdGlc-enriched lipid rafts). Previously, we demonstrated that PGLRs reside on the cell surface of astroglial cells from fetal rat brain [Nagatsuka, Horibata, Yamazaki, Kinoshita, Shinoda, Hashikawa, Koshino, Nakamura and Hirabayashi (2006) Biochemistry 45, 8742–8750]. In the present study, we observed PGLRs in astroglial lineage cells at mid-embryonic to early-postnatal stages of developing mouse cortex. This suggests that PGLRs are developmentally correlated with astroglial differentiation during fetal cortical development. Our cell culture studies with multipotent neural progenitor cells prepared from fetal mouse telencephalon demonstrated that treatment with EGF (epidermal growth factor) or anti-PtdGlc antibody caused recruitment of EGFRs (EGF receptors) into lipid raft compartments, leading to activation of EGFRs. Moreover, the activation of EGFRs by antibody triggered downstream tyrosine kinase signalling and induced marked GFAP (glial fibrillary acidic protein) expression via the JAK (Janus kinase)/STAT (signal transducer and activator of transcription) signalling pathway. These findings strongly suggest that PGLRs are physiologically coupled to activated EGFRs on neural progenitor cells during fetal cortical development, and thereby play a distinct role in mediating astrogliogenesis.
Collapse
|