101
|
Zhang XC, Liu SQ, Ren HX, Wen Y, Zeng YJ. Dynamic Properties of Purkinje Cells Having Different Electrophysiological Parameters: a Model Study. NEUROPHYSIOLOGY+ 2015. [DOI: 10.1007/s11062-015-9489-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
102
|
Zhang Y, Li H, Pu Y, Gong S, Liu C, Jiang X, Tao J. Melatonin-mediated inhibition of Purkinje neuron P-type Ca²⁺ channels in vitro induces neuronal hyperexcitability through the phosphatidylinositol 3-kinase-dependent protein kinase C delta pathway. J Pineal Res 2015; 58:321-34. [PMID: 25707622 DOI: 10.1111/jpi.12218] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/20/2015] [Indexed: 12/18/2022]
Abstract
Although melatonin receptors are widely expressed in the mammalian central nervous system and peripheral tissues, there are limited data regarding the functions of melatonin in cerebellar Purkinje cells. Here, we identified a novel functional role of melatonin in modulating P-type Ca(2+) channels and action-potential firing in rat Purkinje neurons. Melatonin at 0.1 μm reversibly decreased peak currents (I(Ba)) by 32.9%. This effect was melatonin receptor 1 (MT(R1)) dependent and was associated with a hyperpolarizing shift in the voltage dependence of inactivation. Pertussis toxin pretreatment, intracellular application of QEHA peptide, and a selective antibody raised against the Gβ subunit prevented the inhibitory effects of melatonin. Pretreatment with phosphatidylinositol 3-kinase (PI3K) inhibitors abolished the melatonin-induced decrease in I(Ba). Surprisingly, melatonin responses were not regulated by Akt, a common downstream target of PI3K. Melatonin treatment significantly increased protein kinase C (PKC) activity 2.1-fold. Antagonists of PKC, but not of protein kinase A, abolished the melatonin-induced decrease in I(Ba). Melatonin application increased the membrane abundance of PKCδ, and PKCδ inhibition (either pharmacologically or genetically) abolished the melatonin-induced IBa response. Functionally, melatonin increased spontaneous action-potential firing by 53.0%; knockdown of MT(R1) and blockade of P-type channels abolished this effect. Thus, our results suggest that melatonin inhibits P-type channels through MT(R1) activation, which is coupled sequentially to the βγ subunits of G(i/o)-protein and to downstream PI3K-dependent PKCδ signaling. This likely contributes to its physiological functions, including spontaneous firing of cerebellar Purkinje neurons.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Neurobiology, Medical College of Soochow University, Suzhou, China; Department of Geriatrics and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | | | | | | | | | | | | |
Collapse
|
103
|
Masoli S, Solinas S, D'Angelo E. Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization. Front Cell Neurosci 2015; 9:47. [PMID: 25759640 PMCID: PMC4338753 DOI: 10.3389/fncel.2015.00047] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/30/2015] [Indexed: 12/02/2022] Open
Abstract
The Purkinje cell (PC) is among the most complex neurons in the brain and plays a critical role for cerebellar functioning. PCs operate as fast pacemakers modulated by synaptic inputs but can switch from simple spikes to complex bursts and, in some conditions, show bistability. In contrast to original works emphasizing dendritic Ca-dependent mechanisms, recent experiments have supported a primary role for axonal Na-dependent processing, which could effectively regulate spike generation and transmission to deep cerebellar nuclei (DCN). In order to account for the numerous ionic mechanisms involved (at present including Nav1.6, Cav2.1, Cav3.1, Cav3.2, Cav3.3, Kv1.1, Kv1.5, Kv3.3, Kv3.4, Kv4.3, KCa1.1, KCa2.2, KCa3.1, Kir2.x, HCN1), we have elaborated a multicompartmental model incorporating available knowledge on localization and gating of PC ionic channels. The axon, including initial segment (AIS) and Ranvier nodes (RNs), proved critical to obtain appropriate pacemaking and firing frequency modulation. Simple spikes initiated in the AIS and protracted discharges were stabilized in the soma through Na-dependent mechanisms, while somato-dendritic Ca channels contributed to sustain pacemaking and to generate complex bursting at high discharge regimes. Bistability occurred only following Na and Ca channel down-regulation. In addition, specific properties in RNs K currents were required to limit spike transmission frequency along the axon. The model showed how organized electroresponsive functions could emerge from the molecular complexity of PCs and showed that the axon is fundamental to complement ionic channel compartmentalization enabling action potential processing and transmission of specific spike patterns to DCN.
Collapse
Affiliation(s)
- Stefano Masoli
- Department of Brain and Behavioral Science, University of Pavia Pavia, Italy
| | - Sergio Solinas
- Brain Connectivity Center, Istituto Neurologico IRCCS C. Mondino Pavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Science, University of Pavia Pavia, Italy ; Brain Connectivity Center, Istituto Neurologico IRCCS C. Mondino Pavia, Italy
| |
Collapse
|
104
|
Zhang J, Zhuang QX, Li B, Wu GY, Yung WH, Zhu JN, Wang JJ. Selective Modulation of Histaminergic Inputs on Projection Neurons of Cerebellum Rapidly Promotes Motor Coordination via HCN Channels. Mol Neurobiol 2015; 53:1386-1401. [PMID: 25633097 DOI: 10.1007/s12035-015-9096-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/12/2015] [Indexed: 12/24/2022]
Abstract
Insights into function of central histaminergic system, a general modulator originating from the hypothalamus for whole brain activity, in motor control are critical for understanding the mechanism underlying somatic-nonsomatic integration. Here, we show a novel selective role of histamine in the cerebellar nuclei, the final integrative center and output of the cerebellum. Histamine depolarizes projection neurons but not interneurons in the cerebellar nuclei via the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels coupled to histamine H2 receptors, which are exclusively expressed on glutamatergic and glycinergic projection neurons. Furthermore, blockage of HCN channels to block endogenous histaminergic afferent inputs in the cerebellar nuclei significantly attenuates motor balance and coordination. Therefore, through directly and quickly modulation on projection neurons but not interneurons in the cerebellar nuclei, central histaminergic system may act as a critical biasing force to not only promptly regulate ongoing movement but also realize a rapid integration of somatic and nonsomatic response.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Mailbox 426, 22 Hankou Road, Nanjing, 210093, China.,Department of Physiology, Third Military Medical University, Chongqing, 400038, China
| | - Qian-Xing Zhuang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Mailbox 426, 22 Hankou Road, Nanjing, 210093, China
| | - Bin Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Mailbox 426, 22 Hankou Road, Nanjing, 210093, China
| | - Guan-Yi Wu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Mailbox 426, 22 Hankou Road, Nanjing, 210093, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Mailbox 426, 22 Hankou Road, Nanjing, 210093, China.
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Mailbox 426, 22 Hankou Road, Nanjing, 210093, China.
| |
Collapse
|
105
|
Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep 2015; 10:537-50. [PMID: 25640179 DOI: 10.1016/j.celrep.2014.12.051] [Citation(s) in RCA: 456] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 11/17/2014] [Accepted: 12/22/2014] [Indexed: 12/14/2022] Open
Abstract
During cerebellar development, the main portion of the cerebellar plate neuroepithelium gives birth to Purkinje cells and interneurons, whereas the rhombic lip, the germinal zone at its dorsal edge, generates granule cells and cerebellar nuclei neurons. However, it remains elusive how these components cooperate to form the intricate cerebellar structure. Here, we found that a polarized cerebellar structure self-organizes in 3D human embryonic stem cell (ESC) culture. The self-organized neuroepithelium differentiates into electrophysiologically functional Purkinje cells. The addition of fibroblast growth factor 19 (FGF19) promotes spontaneous generation of dorsoventrally polarized neural-tube-like structures at the level of the cerebellum. Furthermore, addition of SDF1 and FGF19 promotes the generation of a continuous cerebellar plate neuroepithelium with rhombic-lip-like structure at one end and a three-layer cytoarchitecture similar to the embryonic cerebellum. Thus, human-ESC-derived cerebellar progenitors exhibit substantial self-organizing potential for generating a polarized structure reminiscent of the early human cerebellum at the first trimester.
Collapse
|
106
|
Lennon W, Hecht-Nielsen R, Yamazaki T. A spiking network model of cerebellar Purkinje cells and molecular layer interneurons exhibiting irregular firing. Front Comput Neurosci 2014; 8:157. [PMID: 25520646 PMCID: PMC4249458 DOI: 10.3389/fncom.2014.00157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/14/2014] [Indexed: 11/24/2022] Open
Abstract
While the anatomy of the cerebellar microcircuit is well-studied, how it implements cerebellar function is not understood. A number of models have been proposed to describe this mechanism but few emphasize the role of the vast network Purkinje cells (PKJs) form with the molecular layer interneurons (MLIs)—the stellate and basket cells. We propose a model of the MLI-PKJ network composed of simple spiking neurons incorporating the major anatomical and physiological features. In computer simulations, the model reproduces the irregular firing patterns observed in PKJs and MLIs in vitro and a shift toward faster, more regular firing patterns when inhibitory synaptic currents are blocked. In the model, the time between PKJ spikes is shown to be proportional to the amount of feedforward inhibition from an MLI on average. The two key elements of the model are: (1) spontaneously active PKJs and MLIs due to an endogenous depolarizing current, and (2) adherence to known anatomical connectivity along a parasagittal strip of cerebellar cortex. We propose this model to extend previous spiking network models of the cerebellum and for further computational investigation into the role of irregular firing and MLIs in cerebellar learning and function.
Collapse
Affiliation(s)
- William Lennon
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Robert Hecht-Nielsen
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Tadashi Yamazaki
- Graduate School of Informatics and Engineering, The University of Electro-Communications Chofu, Japan
| |
Collapse
|
107
|
Tian J, Tep C, Benedick A, Saidi N, Ryu JC, Kim ML, Sadasivan S, Oberdick J, Smeyne R, Zhu MX, Yoon SO. p75 regulates Purkinje cell firing by modulating SK channel activity through Rac1. J Biol Chem 2014; 289:31458-72. [PMID: 25253694 PMCID: PMC4223344 DOI: 10.1074/jbc.m114.589937] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/11/2014] [Indexed: 12/22/2022] Open
Abstract
p75 is expressed among Purkinje cells in the adult cerebellum, but its function has remained obscure. Here we report that p75 is involved in maintaining the frequency and regularity of spontaneous firing of Purkinje cells. The overall spontaneous firing activity of Purkinje cells was increased in p75(-/-) mice during the phasic firing period due to a longer firing period and accompanying reduction in silence period than in the wild type. We attribute these effects to a reduction in small conductance Ca(2+)-activated potassium (SK) channel activity in Purkinje cells from p75(-/-) mice compared with the wild type littermates. The mechanism by which p75 regulates SK channel activity appears to involve its ability to activate Rac1. In organotypic cultures of cerebellar slices, brain-derived neurotrophic factor increased RacGTP levels by activating p75 but not TrkB. These results correlate with a reduction in RacGTP levels in synaptosome fractions from the p75(-/-) cerebellum, but not in that from the cortex of the same animals, compared with wild type littermates. More importantly, we demonstrate that Rac1 modulates SK channel activity and firing patterns of Purkinje cells. Along with the finding that spine density was reduced in p75(-/-) cerebellum, these data suggest that p75 plays a role in maintaining normalcy of Purkinje cell firing in the cerebellum in part by activating Rac1 in synaptic compartments and modulating SK channels.
Collapse
Affiliation(s)
- JinBin Tian
- the Department of Neuroscience, Ohio State University, Columbus, Ohio 43210, the Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Chhavy Tep
- From the Department of Molecular and Cellular Biochemistry, the Biochemistry Program, and
| | - Alex Benedick
- From the Department of Molecular and Cellular Biochemistry
| | - Nabila Saidi
- From the Department of Molecular and Cellular Biochemistry
| | - Jae Cheon Ryu
- From the Department of Molecular and Cellular Biochemistry
| | - Mi Lyang Kim
- From the Department of Molecular and Cellular Biochemistry
| | - Shankar Sadasivan
- the Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, and
| | | | - Richard Smeyne
- the Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, and
| | - Michael X Zhu
- the Department of Neuroscience, Ohio State University, Columbus, Ohio 43210, the Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Sung Ok Yoon
- From the Department of Molecular and Cellular Biochemistry,
| |
Collapse
|
108
|
Lang EJ, Tang T, Suh CY, Xiao J, Kotsurovskyy Y, Blenkinsop TA, Marshall SP, Sugihara I. Modulation of Purkinje cell complex spike waveform by synchrony levels in the olivocerebellar system. Front Syst Neurosci 2014; 8:210. [PMID: 25400556 PMCID: PMC4214199 DOI: 10.3389/fnsys.2014.00210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/06/2014] [Indexed: 11/13/2022] Open
Abstract
Purkinje cells (PCs) generate complex spikes (CSs) when activated by the olivocerebellar system. Unlike most spikes, the CS waveform is highly variable, with the number, amplitude, and timing of the spikelets that comprise it varying with each occurrence. This variability suggests that CS waveform could be an important control parameter of olivocerebellar activity. The origin of this variation is not well known. Thus, we obtained extracellular recordings of CSs to investigate the possibility that the electrical coupling state of the inferior olive (IO) affects the CS waveform. Using multielectrode recordings from arrays of PCs we showed that the variance in the recording signal during the period when the spikelets occur is correlated with CS synchrony levels in local groups of PCs. The correlation was demonstrated under both ketamine and urethane, indicating that it is robust. Moreover, climbing fiber reflex evoked CSs showed an analogous positive correlation between spikelet-related variance and the number of cells that responded to a stimulus. Intra-IO injections of GABA-A receptor antagonists or the gap junction blocker carbenoxolone produced correlated changes in the variance and synchrony levels, indicating the presence of a causal relationship. Control experiments showed that changes in variance with synchrony were primarily due to changes in the CS waveform, as opposed to changes in the strength of field potentials from surrounding cells. Direct counts of spikelets showed that their number increased with synchronization of CS activity. In sum, these results provide evidence of a causal link between two of the distinguishing characteristics of the olivocerebellar system, its ability to generate synchronous activity and the waveform of the CS.
Collapse
Affiliation(s)
- Eric J Lang
- Department of Neuroscience and Physiology, New York University School of Medicine New York, NY, USA
| | - Tianyu Tang
- Department of Neuroscience and Physiology, New York University School of Medicine New York, NY, USA
| | - Colleen Y Suh
- Department of Neuroscience and Physiology, New York University School of Medicine New York, NY, USA
| | - Jianqiang Xiao
- Department of Neuroscience and Physiology, New York University School of Medicine New York, NY, USA
| | - Yuriy Kotsurovskyy
- Department of Neuroscience and Physiology, New York University School of Medicine New York, NY, USA
| | - Timothy A Blenkinsop
- Department of Neuroscience and Physiology, New York University School of Medicine New York, NY, USA
| | - Sarah P Marshall
- Department of Neuroscience and Physiology, New York University School of Medicine New York, NY, USA
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Tokyo, Japan ; Center for Brain Integration Research, Tokyo Medical and Dental University Tokyo, Japan
| |
Collapse
|
109
|
Yan H, Pablo JL, Wang C, Pitt GS. FGF14 modulates resurgent sodium current in mouse cerebellar Purkinje neurons. eLife 2014; 3:e04193. [PMID: 25269146 PMCID: PMC4356139 DOI: 10.7554/elife.04193] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/29/2014] [Indexed: 11/13/2022] Open
Abstract
Rapid firing of cerebellar Purkinje neurons is facilitated in part by a voltage-gated Na+ (NaV) ‘resurgent’ current, which allows renewed Na+ influx during membrane repolarization. Resurgent current results from unbinding of a blocking particle that competes with normal channel inactivation. The underlying molecular components contributing to resurgent current have not been fully identified. In this study, we show that the NaV channel auxiliary subunit FGF14 ‘b’ isoform, a locus for inherited spinocerebellar ataxias, controls resurgent current and repetitive firing in Purkinje neurons. FGF14 knockdown biased NaV channels towards the inactivated state by decreasing channel availability, diminishing the ‘late’ NaV current, and accelerating channel inactivation rate, thereby reducing resurgent current and repetitive spiking. Critical for these effects was both the alternatively spliced FGF14b N-terminus and direct interaction between FGF14b and the NaV C-terminus. Together, these data suggest that the FGF14b N-terminus is a potent regulator of resurgent NaV current in cerebellar Purkinje neurons. DOI:http://dx.doi.org/10.7554/eLife.04193.001 The cerebellum is a region of the brain that is involved in motor control, and it contains a special type of nerve cells called Purkinje neurons. Messages travel along neurons as electrical signals carried by sodium ions, which have a positive electric charge. Normally, when a neuron is ‘at rest’, the plasma membrane that surrounds the neuron prevents the sodium ions outside the cell from entering. To send an electrical signal, voltage-sensitive proteins in the membrane called sodium channels open up. This allows the sodium ions to enter the cell by passing through a pore in the channel protein, thereby changing the voltage across the membrane. Once sodium channels open, they rapidly become ‘locked’ in a closed state, which allows the membrane voltage to return to its original value before another signal can be sent. This locked state also prevents sodium channels from reopening quickly. As a consequence most neurons cannot send successive electrical signals rapidly. Purkinje neurons are unusual because they can send many electrical signals in quick succession—known as rapid firing—without having to be reset each time. Rapid firing is possible in Purkinje neurons because the channel proteins can be reopened to allow more Na+ to enter the cell, but it is not clear how this is controlled. Now, based on experiments on Purkinje neurons isolated from mice, Yan et al. have shown that a protein called FGF14 that binds to the sodium channel proteins can help them to reopen quickly in order to allow rapid firing. Spinocerebellar ataxia is a degenerative disease caused by damage to the cerebellum that leads to loss of physical coordination. Some patients suffering from this disease carry mutations in the gene that makes the FGF14 protein. Therefore, understanding the role of FGF14 in the rapid firing of Purkinje neurons may aid the development of new treatments for this disease. DOI:http://dx.doi.org/10.7554/eLife.04193.002
Collapse
Affiliation(s)
- Haidun Yan
- Department of Medicine, Duke University Medical Center, Durham, United States
| | - Juan L Pablo
- Ion Channel Research Unit, Duke University Medical Center, Durham, United States
| | - Chaojian Wang
- Department of Medicine, Duke University Medical Center, Durham, United States
| | - Geoffrey S Pitt
- Department of Medicine, Duke University Medical Center, Durham, United States
| |
Collapse
|
110
|
Abstract
Voltage-gated sodium channels initiate action potentials in brain neurons, mutations in sodium channels cause inherited forms of epilepsy, and sodium channel blockers-along with other classes of drugs-are used in therapy of epilepsy. A mammalian voltage-gated sodium channel is a complex containing a large, pore-forming α subunit and one or two smaller β subunits. Extensive structure-function studies have revealed many aspects of the molecular basis for sodium channel structure, and X-ray crystallography of ancestral bacterial sodium channels has given insight into their three-dimensional structure. Mutations in sodium channel α and β subunits are responsible for genetic epilepsy syndromes with a wide range of severity, including generalized epilepsy with febrile seizures plus (GEFS+), Dravet syndrome, and benign familial neonatal-infantile seizures. These seizure syndromes are treated with antiepileptic drugs that offer differing degrees of success. The recent advances in understanding of disease mechanisms and sodium channel structure promise to yield improved therapeutic approaches.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280;
| |
Collapse
|
111
|
Abstract
Resurgent Na(+) current results from a distinctive form of Na(+) channel gating, originally identified in cerebellar Purkinje neurons. In these neurons, the tetrodotoxin-sensitive voltage-gated Na(+) channels responsible for action potential firing have specialized mechanisms that reduce the likelihood that they accumulate in fast inactivated states, thereby shortening refractory periods and permitting rapid, repetitive, and/or burst firing. Under voltage clamp, step depolarizations evoke transient Na(+) currents that rapidly activate and quickly decay, and step repolarizations elicit slower channel reopening, or a 'resurgent' current. The generation of resurgent current depends on a factor in the Na(+) channel complex, probably a subunit such as NaVβ4 (Scn4b), which blocks open Na(+) channels at positive voltages, competing with the fast inactivation gate, and unblocks at negative voltages, permitting recovery from an open channel block along with a flow of current. Following its initial discovery, resurgent Na(+) current has been found in nearly 20 types of neurons. Emerging research suggests that resurgent current is preferentially increased in a variety of clinical conditions associated with altered cellular excitability. Here we review the biophysical, molecular and structural mechanisms of resurgent current and their relation to the normal functions of excitable cells as well as pathophysiology.
Collapse
Affiliation(s)
- Amanda H Lewis
- Ion Channel Research Unit & Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Indira M Raman
- Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
112
|
Kruse W, Krause M, Aarse J, Mark MD, Manahan-Vaughan D, Herlitze S. Optogenetic modulation and multi-electrode analysis of cerebellar networks in vivo. PLoS One 2014; 9:e105589. [PMID: 25144735 PMCID: PMC4140813 DOI: 10.1371/journal.pone.0105589] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/22/2014] [Indexed: 01/31/2023] Open
Abstract
The firing patterns of cerebellar Purkinje cells (PCs), as the sole output of the cerebellar cortex, determine and tune motor behavior. PC firing is modulated by various inputs from different brain regions and by cell-types including granule cells (GCs), climbing fibers and inhibitory interneurons. To understand how signal integration in PCs occurs and how subtle changes in the modulation of PC firing lead to adjustment of motor behaviors, it is important to precisely record PC firing in vivo and to control modulatory pathways in a spatio-temporal manner. Combining optogenetic and multi-electrode approaches, we established a new method to integrate light-guides into a multi-electrode system. With this method we are able to variably position the light-guide in defined regions relative to the recording electrode with micrometer precision. We show that PC firing can be precisely monitored and modulated by light-activation of channelrhodopsin-2 (ChR2) expressed in PCs, GCs and interneurons. Thus, this method is ideally suited to investigate the spatio/temporal modulation of PCs in anesthetized and in behaving mice.
Collapse
Affiliation(s)
- Wolfgang Kruse
- Department of Zoology and Neurobiology, Faculty for Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
- * E-mail:
| | - Martin Krause
- Department of Zoology and Neurobiology, Faculty for Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Janna Aarse
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Melanie D. Mark
- Department of Zoology and Neurobiology, Faculty for Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Stefan Herlitze
- Department of Zoology and Neurobiology, Faculty for Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
113
|
Xiao J, Cerminara NL, Kotsurovskyy Y, Aoki H, Burroughs A, Wise AK, Luo Y, Marshall SP, Sugihara I, Apps R, Lang EJ. Systematic regional variations in Purkinje cell spiking patterns. PLoS One 2014; 9:e105633. [PMID: 25144311 PMCID: PMC4140808 DOI: 10.1371/journal.pone.0105633] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/23/2014] [Indexed: 12/01/2022] Open
Abstract
In contrast to the uniform anatomy of the cerebellar cortex, molecular and physiological studies indicate that significant differences exist between cortical regions, suggesting that the spiking activity of Purkinje cells (PCs) in different regions could also show distinct characteristics. To investigate this possibility we obtained extracellular recordings from PCs in different zebrin bands in crus IIa and vermis lobules VIII and IX in anesthetized rats in order to compare PC firing characteristics between zebrin positive (Z+) and negative (Z-) bands. In addition, we analyzed recordings from PCs in the A2 and C1 zones of several lobules in the posterior lobe, which largely contain Z+ and Z- PCs, respectively. In both datasets significant differences in simple spike (SS) activity were observed between cortical regions. Specifically, Z- and C1 PCs had higher SS firing rates than Z+ and A2 PCs, respectively. The irregularity of SS firing (as assessed by measures of interspike interval distribution) was greater in Z+ bands in both absolute and relative terms. The results regarding systematic variations in complex spike (CS) activity were less consistent, suggesting that while real differences can exist, they may be sensitive to other factors than the cortical location of the PC. However, differences in the interactions between SSs and CSs, including the post-CS pause in SSs and post-pause modulation of SSs, were also consistently observed between bands. Similar, though less strong trends were observed in the zonal recordings. These systematic variations in spontaneous firing characteristics of PCs between zebrin bands in vivo, raises the possibility that fundamental differences in information encoding exist between cerebellar cortical regions.
Collapse
Affiliation(s)
- Jianqiang Xiao
- Department of Neuroscience & Physiology, New York University School of Medicine, New York, New York, United States of America
| | - Nadia L. Cerminara
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Yuriy Kotsurovskyy
- Department of Neuroscience & Physiology, New York University School of Medicine, New York, New York, United States of America
| | - Hanako Aoki
- Department of Systems Neurophysiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Amelia Burroughs
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Andrew K. Wise
- The Bionics Institute, East Melbourne, Victoria, Australia
| | - Yuanjun Luo
- Department of Systems Neurophysiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sarah P. Marshall
- Department of Neuroscience & Physiology, New York University School of Medicine, New York, New York, United States of America
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Richard Apps
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Eric J. Lang
- Department of Neuroscience & Physiology, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
114
|
Yang YM, Wang W, Fedchyshyn MJ, Zhou Z, Ding J, Wang LY. Enhancing the fidelity of neurotransmission by activity-dependent facilitation of presynaptic potassium currents. Nat Commun 2014; 5:4564. [PMID: 25078759 PMCID: PMC4503407 DOI: 10.1038/ncomms5564] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 07/01/2014] [Indexed: 12/02/2022] Open
Abstract
Neurons convey information in bursts of spikes across chemical synapses where the fidelity of information transfer critically depends on synaptic input-output relationship. With a limited number of synaptic vesicles (SVs) in the readily-releasable pool (RRP), how nerve terminals sustain transmitter release during intense activity remains poorly understood. Here we report that presynaptic K+ currents evoked by spikes facilitate in a Ca2+-independent but frequency- and voltage-dependent manner. Experimental evidence and computer simulations demonstrate this facilitation originates from dynamic transition of intermediate gating states of voltage-gated K+ channels (Kvs), and specifically attenuates spike amplitude and inter-spike potential during high-frequency firing. Single or paired recordings from a mammalian central synapse further reveal that facilitation of Kvs constrains presynaptic Ca2+ influx, thereby efficiently allocating SVs in the RRP to drive postsynaptic spiking at high rates. We conclude that presynaptic Kv facilitation imparts neurons with a powerful control of transmitter release to dynamically support high-fidelity neurotransmission.
Collapse
Affiliation(s)
- Yi-Mei Yang
- 1] Program in Neurosciences and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada M5G 1X8 [2] Department of Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 [3]
| | - Wei Wang
- 1] Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China [2] Department of Medical Engineering, the 180th Hospital of PLA, Quanzhou 362000, China [3]
| | - Michael J Fedchyshyn
- 1] Program in Neurosciences and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada M5G 1X8 [2] Department of Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Zhuan Zhou
- Institute of Molecular Medicine &PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Jiuping Ding
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lu-Yang Wang
- 1] Program in Neurosciences and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada M5G 1X8 [2] Department of Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
115
|
Lee RX, Huang JJ, Huang C, Tsai ML, Yen CT. Collateral projections from vestibular nuclear and inferior olivary neurons to lobules I/II and IX/X of the rat cerebellar vermis: a double retrograde labeling study. Eur J Neurosci 2014; 40:2811-21. [PMID: 24964034 DOI: 10.1111/ejn.12648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/11/2014] [Accepted: 05/04/2014] [Indexed: 11/29/2022]
Abstract
Axon collateral projections to various lobules of the cerebellar cortex are thought to contribute to the coordination of neuronal activities among different parts of the cerebellum. Even though lobules I/II and IX/X of the cerebellar vermis are located at the opposite poles in the anterior-posterior axis, they have been shown to receive dense vestibular mossy fiber projections. For climbing fibers, there is also a mirror-image-like organisation in their axonal collaterals between the anterior and posterior cerebellar cortex. However, the detailed organisation of mossy and climbing fiber collateral afferents to lobules I/II and IX/X is still unclear. Here, we carried out a double-labeling study with two retrograde tracers (FluoroGold and MicroRuby) in lobules I/II and IX/X. We examined labeled cells in the vestibular nuclei and inferior olive. We found a low percentage of double-labeled neurons in the vestibular nuclei (2.1 ± 0.9% of tracer-labeled neurons in this brain region), and a higher percentage of double-labeled neurons in the inferior olive (6.5 ± 1.9%), especially in its four small nuclei (18.5 ± 8.0%; including the β nucleus, dorsal cap of Kooy, ventrolateral outgrowth, and dorsomedial cell column), which are relevant for vestibular function. These results provide strong anatomical evidence for coordinated information processing in lobules I/II and IX/X for vestibular control.
Collapse
Affiliation(s)
- Ray X Lee
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | | | | | | | | |
Collapse
|
116
|
Egorova PA, Karelina TV, Vlasova OL, Antonov SM, Bezprozvanny IB. The effect of SK channel modulators on the simple spike firing frequency in discharge of cerebellar Purkinje cells in laboratory mice. J EVOL BIOCHEM PHYS+ 2014. [DOI: 10.1134/s0022093014020045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
117
|
Brown J, Pan WX, Dudman JT. The inhibitory microcircuit of the substantia nigra provides feedback gain control of the basal ganglia output. eLife 2014; 3:e02397. [PMID: 24849626 PMCID: PMC4067753 DOI: 10.7554/elife.02397] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 05/17/2014] [Indexed: 12/26/2022] Open
Abstract
Dysfunction of the basal ganglia produces severe deficits in the timing, initiation, and vigor of movement. These diverse impairments suggest a control system gone awry. In engineered systems, feedback is critical for control. By contrast, models of the basal ganglia highlight feedforward circuitry and ignore intrinsic feedback circuits. In this study, we show that feedback via axon collaterals of substantia nigra projection neurons control the gain of the basal ganglia output. Through a combination of physiology, optogenetics, anatomy, and circuit mapping, we elaborate a general circuit mechanism for gain control in a microcircuit lacking interneurons. Our data suggest that diverse tonic firing rates, weak unitary connections and a spatially diffuse collateral circuit with distinct topography and kinetics from feedforward input is sufficient to implement divisive feedback inhibition. The importance of feedback for engineered systems implies that the intranigral microcircuit, despite its absence from canonical models, could be essential to basal ganglia function. DOI: http://dx.doi.org/10.7554/eLife.02397.001.
Collapse
Affiliation(s)
- Jennifer Brown
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn , United States Department of Physiology, Development and Neuroscience , University of Cambridge, Cambridge , United Kingdom
| | - Wei-Xing Pan
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn , United States
| | - Joshua Tate Dudman
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn , United States
| |
Collapse
|
118
|
RNAi silencing of P/Q-type calcium channels in Purkinje neurons of adult mouse leads to episodic ataxia type 2. Neurobiol Dis 2014; 68:47-56. [PMID: 24768804 DOI: 10.1016/j.nbd.2014.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/04/2014] [Accepted: 04/12/2014] [Indexed: 01/05/2023] Open
Abstract
Episodic ataxia type-2 (EA2) is a dominantly inherited human neurological disorder caused by loss of function mutations in the CACNA1A gene, which encodes the CaV2.1 subunit of P/Q-type voltage-gated calcium channels. It remains however unknown whether the deficit of cerebellar CaV2.1 in adult is in direct link with the disease. To address this issue, we have used lentiviral based-vector RNA interference (RNAi) to knock-down CaV2.1 expression in the cerebellum of adult mice. We show that suppression of the P/Q-type channels in Purkinje neurons induced motor abnormalities, such as imbalance and ataxic gait. Interestingly, moderate channel suppression caused no basal ataxia, while β-adrenergic activation and exercise mimicked stress induced motor disorders. Moreover, stress-induced ataxia was stable, non-progressive and totally abolished by acetazolamide, a carbonic anhydrase inhibitor used to treat EA2. Altogether, these data reveal that P/Q-type channel suppression in adult mice supports the episodic status of EA2 disease.
Collapse
|
119
|
Chopra R, Shakkottai VG. Translating cerebellar Purkinje neuron physiology to progress in dominantly inherited ataxia. FUTURE NEUROLOGY 2014; 9:187-196. [PMID: 25221437 DOI: 10.2217/fnl.14.6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cerebellum is an important structure for accurate control and timing of movement, and Purkinje neurons in the cerebellar cortex are key players in cerebellar motor control. Cerebellar dysfunction can result in ataxia, a disorder characterized by postural instability, gait disturbances and motor incoordination. Cerebellar ataxia is a symptom of a number of conditions, and the emerging evidence that Purkinje neuron dysfunction, in particular, abnormal Purkinje neuron repetitive firing, is a major driver of motor dysfunction in a subset of dominantly inherited ataxias is dicussed. Abnormalities in Purkinje neuron excitability that are observed in mouse models of each of these disorders, and where appropriate describe studies linking particular ion channels to aberrant excitability are also discussed. Common mechanisms of dysfunction and speculate about potential therapeutic targets, suggesting that Purkinje neuron firing abnormalities are a novel target for improving motor dysfunction in patients with some forms of dominantly inherited ataxia are proposed.
Collapse
Affiliation(s)
- Ravi Chopra
- Department of Neurology, University of Michigan, Alfred A Taubman Biomedical Science Research Building, Room 4009, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Michigan, Alfred A Taubman Biomedical Science Research Building, Room 4009, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
120
|
Godinho AF, Stanzani SL, Ferreira FC, Braga TC, Silva MC, Chaguri JL, Dias-Júnior CA. "Permethrin chronic exposure alters motor coordination in rats: effect of calcium supplementation and amlodipine". ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:878-884. [PMID: 24667353 DOI: 10.1016/j.etap.2014.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 06/03/2023]
Abstract
Recently was observed that pyrethroids decrease motor coordination and that calcium channels can be important targets for this effect. To contribute with this observation, this work studied the motor coordination and exploration (using hole-board apparatus), and locomotion (using open-field apparatus) of rats exposed to following treatments: permethrin (PM), PM plus calcium gluconate (CG) and PM plus amlodipine (AML). The results obtained show that CG or AML alone not changed the motor coordination while PM decreases it. CG kept the effect of permethrin; AML, however, decreased the values of permethrin to the control. Locomotor activity and exploration, which could confound results of motor coordination, were not modified by treatments. The concentration of PM in brain tissue was increased by the CG and AML. The neurosomatic index (weight brain/body weight) was increased by the PM and PM+CG. In conclusion, the combined results here obtained indicates that the calcium ion and the channels in which it is involved can be important targets for the toxic effect of pyrethroid insecticide permethrin on motor nerve activity of rats.
Collapse
Affiliation(s)
- A F Godinho
- Centro de Assistência Toxicológica (CEATOX), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Campus de Botucatu, CEP 18618-000, Distrito de Rubião Júnior, s/n, Botucatu, SP, Brazil.
| | - S L Stanzani
- Centro de Assistência Toxicológica (CEATOX), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Campus de Botucatu, CEP 18618-000, Distrito de Rubião Júnior, s/n, Botucatu, SP, Brazil
| | - F C Ferreira
- Centro de Assistência Toxicológica (CEATOX), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Campus de Botucatu, CEP 18618-000, Distrito de Rubião Júnior, s/n, Botucatu, SP, Brazil
| | - T C Braga
- Centro de Assistência Toxicológica (CEATOX), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Campus de Botucatu, CEP 18618-000, Distrito de Rubião Júnior, s/n, Botucatu, SP, Brazil
| | - M C Silva
- Centro de Assistência Toxicológica (CEATOX), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Campus de Botucatu, CEP 18618-000, Distrito de Rubião Júnior, s/n, Botucatu, SP, Brazil
| | - J L Chaguri
- Centro de Assistência Toxicológica (CEATOX), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Campus de Botucatu, CEP 18618-000, Distrito de Rubião Júnior, s/n, Botucatu, SP, Brazil
| | - C A Dias-Júnior
- Centro de Assistência Toxicológica (CEATOX), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Campus de Botucatu, CEP 18618-000, Distrito de Rubião Júnior, s/n, Botucatu, SP, Brazil
| |
Collapse
|
121
|
Reusch K, Russell NA, Bellamy TC. Stimulus discrimination in cerebellar Purkinje neurons. PLoS One 2014; 9:e87828. [PMID: 24505320 PMCID: PMC3914862 DOI: 10.1371/journal.pone.0087828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/30/2013] [Indexed: 11/18/2022] Open
Abstract
Cerebellar Purkinje neurons fire spontaneously in the absence of synaptic input. Overlaid on this intrinsic activity, excitatory input from parallel fibres can add simple spikes to the output train, whereas inhibitory input from interneurons can introduce pauses. These and other influences lead to an irregular spike train output in Purkinje neurons in vitro and in vivo, supplying a variable inhibitory drive to deep cerebellar nuclear neurons. From a computational perspective, this variability raises some questions, as individual spikes induced by excitatory inputs are indistinguishable from intrinsic firing activity. Although bursts of high-frequency excitatory input could be discriminated unambiguously from background activity, granule neurons are known to fire in vivo over a wide range of frequencies. This would mean that much of the sensory information relayed through the cerebellar cortex would be lost within the random variation in background activity. We speculated that alternative mechanisms for signal discrimination may exist, and sought to identify characteristic motifs within the sequence of spikes that followed stimulation events. We found that under certain conditions, parallel fibre stimulation could reliably add a “couplet” of spikes with an unusually short interspike interval to the output train. Therefore, despite representing a small fraction of the total number of spikes, these signals can be reliably discriminated from background firing on a moment-to-moment basis, and could result in a differential downstream response.
Collapse
Affiliation(s)
- Katharina Reusch
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- School of Electrical and Electronic Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Noah A. Russell
- School of Electrical and Electronic Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Tomas C. Bellamy
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
122
|
Cheron G, Prigogine C, Cheron J, Márquez-Ruiz J, Traub RD, Dan B. Emergence of a 600-Hz buzz UP state Purkinje cell firing in alert mice. Neuroscience 2014; 263:15-26. [PMID: 24440752 DOI: 10.1016/j.neuroscience.2014.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/19/2013] [Accepted: 01/03/2014] [Indexed: 12/25/2022]
Abstract
Purkinje cell (PC) firing represents the sole output from the cerebellar cortex onto the deep cerebellar and vestibular nuclei. Here, we explored the different modes of PC firing in alert mice by extracellular recording. We confirm the existence of a tonic and/or bursting and quiescent modes corresponding to UP and DOWN state, respectively. We demonstrate the existence of a novel 600-Hz buzz UP state of firing characterized by simple spikes (SS) of very small amplitude. Climbing fiber (CF) input is able to switch the 600-Hz buzz to the DOWN state, as for the classical UP-to-DOWN state transition. Conversely, the CF input can initiate a typical SS pattern terminating into 600-Hz buzz. The 600-Hz buzz was transiently suppressed by whisker pad stimulation demonstrating that it remained responsive to peripheral input. It must not be mistaken for a DOWN state or the sign of PC inhibition. Complex spike (CS) frequency was increased during the 600-Hz buzz, indicating that this PC output actively contributes to the cerebello-olivary loop by triggering a disinhibition of the inferior olive. During the 600-Hz buzz, the first depolarizing component of the CS was reduced and the second depolarizing component was suppressed. Consistent with our experimental observations, using a 559-compartment single-PC model - in which PC UP state (of about -43mV) was obtained by the combined action of large tonic AMPA conductances and counterbalancing GABAergic inhibition - removal of this inhibition produced the 600-Hz buzz; the simulated buzz frequency decreased following an artificial CS.
Collapse
Affiliation(s)
- G Cheron
- Laboratory of Electrophysiology, Université de Mons, 7000 Mons, Belgium; Laboratory of Neurophysiology and Movement Biomechanics, CP601, ULB Neurosciences Institut, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| | - C Prigogine
- Laboratory of Electrophysiology, Université de Mons, 7000 Mons, Belgium; Laboratory of Neurophysiology and Movement Biomechanics, CP601, ULB Neurosciences Institut, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - J Cheron
- Laboratory of Electrophysiology, Université de Mons, 7000 Mons, Belgium; Laboratory of Neurophysiology and Movement Biomechanics, CP601, ULB Neurosciences Institut, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - J Márquez-Ruiz
- División de Neurociencias, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - R D Traub
- Department of Physical Sciences, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - B Dan
- Laboratory of Neurophysiology and Movement Biomechanics, CP601, ULB Neurosciences Institut, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
123
|
D'Angelo E. The organization of plasticity in the cerebellar cortex: from synapses to control. PROGRESS IN BRAIN RESEARCH 2014; 210:31-58. [PMID: 24916288 DOI: 10.1016/b978-0-444-63356-9.00002-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cerebellum is thought to play a critical role in procedural learning, but the relationship between this function and the underlying cellular and synaptic mechanisms remains largely speculative. At present, at least nine forms of long-term synaptic and nonsynaptic plasticity (some of which are bidirectional) have been reported in the cerebellar cortex and deep cerebellar nuclei. These include long-term potentiation (LTP) and long-term depression at the mossy fiber-granule cell synapse, at the synapses formed by parallel fibers, climbing fibers, and molecular layer interneurons on Purkinje cells, and at the synapses formed by mossy fibers and Purkinje cells on deep cerebellar nuclear cells, as well as LTP of intrinsic excitability in granule cells, Purkinje cells, and deep cerebellar nuclear cells. It is suggested that the complex properties of cerebellar learning would emerge from the distribution of plasticity in the network and from its dynamic remodeling during the different phases of learning. Intrinsic and extrinsic factors may hold the key to explain how the different forms of plasticity cooperate to select specific transmission channels and to regulate the signal-to-noise ratio through the cerebellar cortex. These factors include regulation of neuronal excitation by local inhibitory networks, engagement of specific molecular mechanisms by spike bursts and theta-frequency oscillations, and gating by external neuromodulators. Therefore, a new and more complex view of cerebellar plasticity is emerging with respect to that predicted by the original "Motor Learning Theory," opening issues that will require experimental and computational testing.
Collapse
Affiliation(s)
- Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy.
| |
Collapse
|
124
|
Snow WM, Anderson JE, Fry M. Regional and genotypic differences in intrinsic electrophysiological properties of cerebellar Purkinje neurons from wild-type and dystrophin-deficient mdx mice. Neurobiol Learn Mem 2014; 107:19-31. [DOI: 10.1016/j.nlm.2013.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 10/10/2013] [Accepted: 10/25/2013] [Indexed: 10/26/2022]
|
125
|
González C, Baez-Nieto D, Valencia I, Oyarzún I, Rojas P, Naranjo D, Latorre R. K(+) channels: function-structural overview. Compr Physiol 2013; 2:2087-149. [PMID: 23723034 DOI: 10.1002/cphy.c110047] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Potassium channels are particularly important in determining the shape and duration of the action potential, controlling the membrane potential, modulating hormone secretion, epithelial function and, in the case of those K(+) channels activated by Ca(2+), damping excitatory signals. The multiplicity of roles played by K(+) channels is only possible to their mammoth diversity that includes at present 70 K(+) channels encoding genes in mammals. Today, thanks to the use of cloning, mutagenesis, and the more recent structural studies using x-ray crystallography, we are in a unique position to understand the origins of the enormous diversity of this superfamily of ion channels, the roles they play in different cell types, and the relations that exist between structure and function. With the exception of two-pore K(+) channels that are dimers, voltage-dependent K(+) channels are tetrameric assemblies and share an extremely well conserved pore region, in which the ion-selectivity filter resides. In the present overview, we discuss in the function, localization, and the relations between function and structure of the five different subfamilies of K(+) channels: (a) inward rectifiers, Kir; (b) four transmembrane segments-2 pores, K2P; (c) voltage-gated, Kv; (d) the Slo family; and (e) Ca(2+)-activated SK family, SKCa.
Collapse
Affiliation(s)
- Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | | | | | | | | | | | |
Collapse
|
126
|
T-type channel blockade impairs long-term potentiation at the parallel fiber-Purkinje cell synapse and cerebellar learning. Proc Natl Acad Sci U S A 2013; 110:20302-7. [PMID: 24277825 DOI: 10.1073/pnas.1311686110] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CaV3.1 T-type channels are abundant at the cerebellar synapse between parallel fibers and Purkinje cells where they contribute to synaptic depolarization. So far, no specific physiological function has been attributed to these channels neither as charge carriers nor more specifically as Ca(2+) carriers. Here we analyze their incidence on synaptic plasticity, motor behavior, and cerebellar motor learning, comparing WT animals and mice where T-type channel function has been abolished either by gene deletion or by acute pharmacological blockade. At the cellular level, we show that CaV3.1 channels are required for long-term potentiation at parallel fiber-Purkinje cell synapses. Moreover, basal simple spike discharge of the Purkinje cell in KO mice is modified. Acute or chronic T-type current blockade results in impaired motor performance in particular when a good body balance is required. Because motor behavior integrates reflexes and past memories of learned behavior, this suggests impaired learning. Indeed, subjecting the KO mice to a vestibulo-ocular reflex phase reversal test reveals impaired cerebellum-dependent motor learning. These data identify a role of low-voltage activated calcium channels in synaptic plasticity and establish a role for CaV3.1 channels in cerebellar learning.
Collapse
|
127
|
Bellingham MC. Pre- and postsynaptic mechanisms underlying inhibition of hypoglossal motor neuron excitability by riluzole. J Neurophysiol 2013; 110:1047-61. [PMID: 23741042 DOI: 10.1152/jn.00587.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Riluzole is the sole treatment for amyotrophic lateral sclerosis (ALS), but its therapeutically relevant actions on motor neurons are not well defined. Whole cell patch-clamp recordings were made from hypoglossal motor neurons (HMs, n = 25) in brain stem slices from 10- to 23-day-old rats anesthetized with pentobarbital sodium to investigate the hypothesis that riluzole inhibits HMs by multiple mechanisms. Riluzole (20 μM) hyperpolarized HMs by decreasing an inward current, inhibited voltage-gated persistent Na(+) and Ca(2+) currents activated by slow voltage ramps, and negatively shifted activation of the hyperpolarization-activated cationic current (IH). Repetitive firing of HMs was strongly inhibited by riluzole, which also increased action potential threshold voltage and rheobase and decreased amplitude and maximum rise slope but did not alter the maximal afterhyperpolarization amplitude or decay time constant. HM rheobase was inversely correlated with persistent Na(+) current density. Glutamatergic synaptic transmission was inhibited by riluzole by both pre- and postsynaptic effects. Riluzole decreased activity-dependent glutamate release, as shown by decreased amplitude of evoked and spontaneous excitatory postsynaptic currents (EPSCs), decreased paired-pulse ratio, and decreased spontaneous, but not miniature, EPSC frequency. However, riluzole also decreased miniature EPSC amplitude and the inward current evoked by local application of glutamate onto HMs, suggesting a reduction of postsynaptic glutamate receptor sensitivity. Riluzole thus has a marked inhibitory effect on HM activity by membrane hyperpolarization, decreasing firing and inhibiting glutamatergic excitation by both pre- and postsynaptic mechanisms. These results broaden the range of mechanisms controlling motor neuron inhibition by riluzole and are relevant to researchers and clinicians interested in understanding ALS pathogenesis and treatment.
Collapse
Affiliation(s)
- Mark C Bellingham
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
128
|
|
129
|
Rehak R, Bartoletti TM, Engbers JDT, Berecki G, Turner RW, Zamponi GW. Low voltage activation of KCa1.1 current by Cav3-KCa1.1 complexes. PLoS One 2013; 8:e61844. [PMID: 23626738 PMCID: PMC3633930 DOI: 10.1371/journal.pone.0061844] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/14/2013] [Indexed: 02/03/2023] Open
Abstract
Calcium-activated potassium channels of the KCa1.1 class are known to regulate repolarization of action potential discharge through a molecular association with high voltage-activated calcium channels. The current study examined the potential for low voltage-activated Cav3 (T-type) calcium channels to interact with KCa1.1 when expressed in tsA-201 cells and in rat medial vestibular neurons (MVN) in vitro. Expression of the channel α-subunits alone in tsA-201 cells was sufficient to enable Cav3 activation of KCa1.1 current. Cav3 calcium influx induced a 50 mV negative shift in KCa1.1 voltage for activation, an interaction that was blocked by Cav3 or KCa1.1 channel blockers, or high internal EGTA. Cav3 and KCa1.1 channels coimmunoprecipitated from lysates of either tsA-201 cells or rat brain, with Cav3 channels associating with the transmembrane S0 segment of the KCa1.1 N-terminus. KCa1.1 channel activation was closely aligned with Cav3 calcium conductance in that KCa1.1 current shared the same low voltage dependence of Cav3 activation, and was blocked by voltage-dependent inactivation of Cav3 channels or by coexpressing a non calcium-conducting Cav3 channel pore mutant. The Cav3-KCa1.1 interaction was found to function highly effectively in a subset of MVN neurons by activating near –50 mV to contribute to spike repolarization and gain of firing. Modelling data indicate that multiple neighboring Cav3-KCa1.1 complexes must act cooperatively to raise calcium to sufficiently high levels to permit KCa1.1 activation. Together the results identify a novel Cav3-KCa1.1 signaling complex where Cav3-mediated calcium entry enables KCa1.1 activation over a wide range of membrane potentials according to the unique voltage profile of Cav3 calcium channels, greatly extending the roles for KCa1.1 potassium channels in controlling membrane excitability.
Collapse
Affiliation(s)
- Renata Rehak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Theodore M. Bartoletti
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Jordan D. T. Engbers
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Geza Berecki
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Ray W. Turner
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- * E-mail:
| |
Collapse
|
130
|
Thomas MG, Covington JA, Wall MJ. A chamber for the perfusion of in vitro tissue with multiple solutions. J Neurophysiol 2013; 110:269-77. [PMID: 23576703 DOI: 10.1152/jn.01039.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There are currently no practical systems that allow extended regions (>5 mm(2)) of a tissue slice in vitro to be exposed, in isolation, to changes in ionic conditions or to pharmacological manipulation. Previous work has only achieved this at the expense of access to the tissue for recording electrodes. Here, we present a chamber that allows a tissue slice to be maintained in multiple solutions, at physiological temperatures, and preserves the ability to record from the slice. We demonstrate the effectiveness of the tissue bath with respect to minimizing the mixing of the solutions, maintaining the viability of the tissue, and preserving the ability to record from the slice simultaneously.
Collapse
Affiliation(s)
- Matthew G Thomas
- School of Life Sciences, University of Warwick, Coventry, United Kingdom.
| | | | | |
Collapse
|
131
|
Kasumu AW, Hougaard C, Rode F, Jacobsen TA, Sabatier JM, Eriksen BL, Strøbæk D, Liang X, Egorova P, Vorontsova D, Christophersen P, Rønn LCB, Bezprozvanny I. Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. ACTA ACUST UNITED AC 2013; 19:1340-53. [PMID: 23102227 DOI: 10.1016/j.chembiol.2012.07.013] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/25/2012] [Accepted: 07/10/2012] [Indexed: 12/18/2022]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disorder caused by a polyglutamine expansion within the Ataxin-2 (Atxn2) protein. Purkinje cells (PC) of the cerebellum fire irregularly and eventually die in SCA2. We show here that the type 2 small conductance calcium-activated potassium channel (SK2) play a key role in control of normal PC activity. Using cerebellar slices from transgenic SCA2 mice we demonstrate that SK channel modulators restore regular pacemaker activity of SCA2 PCs. Furthermore, we also show that oral delivery of a more selective positive modulator of SK2/3 channels (NS13001) alleviates behavioral and neuropathological phenotypes of aging SCA2 transgenic mice. We conclude that SK2 channels constitute a therapeutic target for SCA2 treatment and that the developed selective SK2/3 modulator NS13001 holds promise as a potential therapeutic agent for treatment of SCA2 and possibly other cerebellar ataxias.
Collapse
Affiliation(s)
- Adebimpe W Kasumu
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Benton MD, Lewis AH, Bant JS, Raman IM. Iberiotoxin-sensitive and -insensitive BK currents in Purkinje neuron somata. J Neurophysiol 2013; 109:2528-41. [PMID: 23446695 DOI: 10.1152/jn.00127.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Purkinje cells have specialized intrinsic ionic conductances that generate high-frequency action potentials. Disruptions of their Ca or Ca-activated K (KCa) currents correlate with altered firing patterns in vitro and impaired motor behavior in vivo. To examine the properties of somatic KCa currents, we recorded voltage-clamped KCa currents in Purkinje cell bodies isolated from postnatal day 17-21 mouse cerebellum. Currents were evoked by endogenous Ca influx with approximately physiological Ca buffering. Purkinje somata expressed voltage-activated, Cd-sensitive KCa currents with iberiotoxin (IBTX)-sensitive (>100 nS) and IBTX-insensitive (>75 nS) components. IBTX-sensitive currents activated and partially inactivated within milliseconds. Rapid, incomplete macroscopic inactivation was also evident during 50- or 100-Hz trains of 1-ms depolarizations. In contrast, IBTX-insensitive currents activated more slowly and did not inactivate. These currents were insensitive to the small- and intermediate-conductance KCa channel blockers apamin, scyllatoxin, UCL1684, bicuculline methiodide, and TRAM-34, but were largely blocked by 1 mM tetraethylammonium. The underlying channels had single-channel conductances of ∼150 pS, suggesting that the currents are carried by IBTX-resistant (β4-containing) large-conductance KCa (BK) channels. IBTX-insensitive currents were nevertheless increased by small-conductance KCa channel agonists EBIO, chlorzoxazone, and CyPPA. During trains of brief depolarizations, IBTX-insensitive currents flowed during interstep intervals, and the accumulation of interstep outward current was enhanced by EBIO. In current clamp, EBIO slowed spiking, especially during depolarizing current injections. The two components of BK current in Purkinje somata likely contribute differently to spike repolarization and firing rate. Moreover, augmentation of BK current may partially underlie the action of EBIO and chlorzoxazone to alleviate disrupted Purkinje cell firing associated with genetic ataxias.
Collapse
Affiliation(s)
- Mark D Benton
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, Illinois, USA
| | | | | | | |
Collapse
|
133
|
Gemes G, Koopmeiners A, Rigaud M, Lirk P, Sapunar D, Bangaru ML, Vilceanu D, Garrison SR, Ljubkovic M, Mueller SJ, Stucky CL, Hogan QH. Failure of action potential propagation in sensory neurons: mechanisms and loss of afferent filtering in C-type units after painful nerve injury. J Physiol 2013; 591:1111-31. [PMID: 23148321 PMCID: PMC3591718 DOI: 10.1113/jphysiol.2012.242750] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/09/2012] [Indexed: 01/03/2023] Open
Abstract
The T-junction of sensory neurons in the dorsal root ganglion (DRG) is a potential impediment to action potential (AP) propagation towards the CNS. Using intracellular recordings from rat DRG neuronal somata during stimulation of the dorsal root, we determined that the maximal rate at which all of 20 APs in a train could successfully transit the T-junction (following frequency) was lowest in C-type units, followed by A-type units with inflected descending limbs of the AP, and highest in A-type units without inflections. In C-type units, following frequency was slower than the rate at which AP trains could be produced in either dorsal root axonal segments or in the soma alone, indicating that the T-junction is a site that acts as a low-pass filter for AP propagation. Following frequency was slower for a train of 20 APs than for two, indicating that a cumulative process leads to propagation failure. Propagation failure was accompanied by diminished somatic membrane input resistance, and was enhanced when Ca(2+)-sensitive K(+) currents were augmented or when Ca(2+)-sensitive Cl(-) currents were blocked. After peripheral nerve injury, following frequencies were increased in axotomized C-type neurons and decreased in axotomized non-inflected A-type neurons. These findings reveal that the T-junction in sensory neurons is a regulator of afferent impulse traffic. Diminished filtering of AP trains at the T-junction of C-type neurons with axotomized peripheral processes could enhance the transmission of activity that is ectopically triggered in a neuroma or the neuronal soma, possibly contributing to pain generation.
Collapse
Affiliation(s)
- Geza Gemes
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Isope P, Hildebrand ME, Snutch TP. Contributions of T-type voltage-gated calcium channels to postsynaptic calcium signaling within Purkinje neurons. THE CEREBELLUM 2012; 11:651-65. [PMID: 20734177 PMCID: PMC3411289 DOI: 10.1007/s12311-010-0195-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Low threshold voltage-gated T-type calcium channels have long been implicated in the electrical excitability and calcium signaling of cerebellar Purkinje neurons although the molecular composition, localization, and modulation of T-type channels within Purkinje cells have only recently been addressed. The specific functional roles that T-type channels play in local synaptic integration within Purkinje spines are also currently being unraveled. Overall, Purkinje neurons represent a powerful model system to explore the potential roles of postsynaptic T-type channels throughout the nervous system. In this review, we present an overview of T-type calcium channel biophysical, pharmacological, and physiological characteristics that provides a foundation for understanding T-type channels within Purkinje neurons. We also describe the biophysical properties of T-type channels in context of other voltage-gated calcium channel currents found within Purkinje cells. The data thus far suggest that one specific T-type isoform, Cav3.1, is highly expressed within Purkinje spines and both physically and functionally couples to mGluR1 and other effectors within putative signaling microdomains. Finally, we discuss how the selective potentiation of Cav3.1 channels via activation of mGluR1 by parallel fiber inputs affects local synaptic integration and how this interaction may relate to the overall excitability of Purkinje neuron dendrites.
Collapse
Affiliation(s)
- Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, CNRS-Université de Strasbourg, 5 rue Blaise Pascal, Strasbourg, France.
| | | | | |
Collapse
|
135
|
Enhanced synaptic inhibition disrupts the efferent code of cerebellar Purkinje neurons in leaner Cav2.1 Ca 2+ channel mutant mice. THE CEREBELLUM 2012; 11:666-80. [PMID: 20845003 DOI: 10.1007/s12311-010-0210-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cerebellar Purkinje cells (PCs) encode afferent information in the rate and temporal structure of their spike trains. Both spontaneous firing in these neurons and its modulation by synaptic inputs depend on Ca(2+) current carried by Ca(v)2.1 (P/Q) type channels. Previous studies have described how loss-of-function Ca(v)2.1 mutations affect intrinsic excitability and excitatory transmission in PCs. This study examines the effects of the leaner mutation on fast GABAergic transmission and its modulation of spontaneous firing in PCs. The leaner mutation enhances spontaneous synaptic inhibition of PCs, leading to transitory reductions in PC firing rate and increased spike rate variability. Enhanced inhibition is paralleled by an increase in the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) measured under voltage clamp. These differences are abolished by tetrodotoxin, implicating effects of the mutation on spike-induced GABA release. Elevated sIPSC frequency in leaner PCs is not accompanied by increased mean firing rate in molecular layer interneurons, but IPSCs evoked in PCs by direct stimulation of these neurons exhibit larger amplitude, slower decay rate, and a higher burst probability compared to wild-type PCs. Ca(2+) release from internal stores appears to be required for enhanced inhibition since differences in sIPSC frequency and amplitude in leaner and wild-type PCs are abolished by thapsigargin, an ER Ca(2+) pump inhibitor. These findings represent the first account of the functional consequences of a loss-of-function P/Q channel mutation on PC firing properties through altered GABAergic transmission. Gain in synaptic inhibition shown here would compromise the fidelity of information coding in these neurons and may contribute to impaired cerebellar function resulting from loss-of function mutations in the Ca(V)2.1 channel gene.
Collapse
|
136
|
Hansen ST, Meera P, Otis TS, Pulst SM. Changes in Purkinje cell firing and gene expression precede behavioral pathology in a mouse model of SCA2. Hum Mol Genet 2012; 22:271-83. [PMID: 23087021 PMCID: PMC3526159 DOI: 10.1093/hmg/dds427] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited disorder, which is caused by a pathological expansion of a polyglutamine (polyQ) tract in the coding region of the ATXN2 gene. Like other ataxias, SCA2 most overtly affects Purkinje cells (PCs) in the cerebellum. Using a transgenic mouse model expressing a full-length ATXN2Q127-complementary DNA under control of the Pcp2 promoter (a PC-specific promoter), we examined the time course of behavioral, morphologic, biochemical and physiological changes with particular attention to PC firing in the cerebellar slice. Although motor performance began to deteriorate at 8 weeks of age, reductions in PC number were not seen until after 12 weeks. Decreases in the PC firing frequency first showed at 6 weeks and paralleled deterioration of motor performance with progression of disease. Transcription changes in several PC-specific genes such as Calb1 and Pcp2 mirrored the time course of changes in PC physiology with calbindin-28 K changes showing the first small, but significant decreases at 4 weeks. These results emphasize that in this model of SCA2, physiological and behavioral phenotypes precede morphological changes by several weeks and provide a rationale for future studies examining the effects of restoration of firing frequency on motor function and prevention of future loss of PCs.
Collapse
|
137
|
Ireland MF, Funk GD, Bellingham MC. Muscarinic acetylcholine receptors enhance neonatal mouse hypoglossal motoneuron excitability in vitro. J Appl Physiol (1985) 2012; 113:1024-39. [DOI: 10.1152/japplphysiol.00699.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In brain stem slices from neonatal ( postnatal days 0–4) CD-1 mice, muscarinic ACh receptors (MAChRs) increased rhythmic inspiratory-related and tonic hypoglossal nerve discharge and depolarized single hypoglossal motoneurons (HMs) via an inward current without changing input resistance. These responses were blocked by the MAChR antagonist 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP; 100 nM). MAChRs shifted voltage-dependent activation of the hyperpolarization-activated cation current to more positive levels. MAChRs increased the HM repetitive firing rate and decreased rheobase, with both effects being blocked by 4-DAMP. Muscarinic agonists reduced the afterhyperpolarization of single action potentials (APs), suggesting that small-conductance Ca2+-dependent K+ current inhibition increased the HM firing rate. Muscarinic agonists also reduced the AP amplitude and slowed its time course, suggesting that MAChRs inhibited voltage-gated Na+ channels. To compare muscarinic excitation of single HMs to muscarinic excitatory effects on motor output in thicker brain stem slices requiring higher extracellular K+ for rhythmic activity, we tested the effects of muscarinic agonists on single HM excitability in high-K+ artificial cerebrospinal fluid (aCSF). In high-K+ aCSF, muscarinic agonists still depolarized HMs and altered AP size and shape, as in standard aCSF, but did not increase the steady-state firing rate, decrease afterhyperpolarization, or alter threshold potential. These results indicate that the basic cellular response of HMs to muscarinic receptors is excitatory, via a number of distinct mechanisms, and that this excitatory response will be largely preserved in rhythmically active brain stem slices.
Collapse
Affiliation(s)
- Matthew F. Ireland
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia; and
| | - Gregory D. Funk
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Mark C. Bellingham
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia; and
| |
Collapse
|
138
|
Jaeger D. Mini-review: synaptic integration in the cerebellar nuclei--perspectives from dynamic clamp and computer simulation studies. THE CEREBELLUM 2012; 10:659-66. [PMID: 21259124 DOI: 10.1007/s12311-011-0248-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cerebellar nuclei (CN) process inhibition from Purkinje cells (PC) and excitation from mossy and climbing fiber collaterals. CN neurons in slices show intrinsic pacemaking activity, which is easily modulated by synaptic inputs. Our work using dynamic clamping and computer modeling shows that synchronicity between PC inputs is an important factor in determining spike rate and spike timing of CN neurons and that brief pauses in PC inputs provide a potent stimulus to trigger CN spikes. Excitatory input can equally control spike rate, but, due to a large slow, NMDA component also amplifies responses to inhibitory inputs. Intrinsic properties of CN neurons are well suited to provide prolonged responses to strong input transients and could be involved in motor pattern generation. One such specific mechanism is given by fast and slow rebound bursting. Nevertheless, we are just beginning to unravel synaptic integration in the CN, and the outcome of the work to date is best characterized by the generation of new specific questions that lend themselves to a combined experimental and computer modeling approach in future studies.
Collapse
Affiliation(s)
- Dieter Jaeger
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA.
| |
Collapse
|
139
|
Huang H, Tan BZ, Shen Y, Tao J, Jiang F, Sung YY, Ng CK, Raida M, Köhr G, Higuchi M, Fatemi-Shariatpanahi H, Harden B, Yue DT, Soong TW. RNA editing of the IQ domain in Ca(v)1.3 channels modulates their Ca²⁺-dependent inactivation. Neuron 2012; 73:304-16. [PMID: 22284185 DOI: 10.1016/j.neuron.2011.11.022] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2011] [Indexed: 11/29/2022]
Abstract
Adenosine-to-inosine RNA editing is crucial for generating molecular diversity, and serves to regulate protein function through recoding of genomic information. Here, we discover editing within Ca(v)1.3 Ca²⁺ channels, renown for low-voltage Ca²⁺-influx and neuronal pacemaking. Significantly, editing occurs within the channel's IQ domain, a calmodulin-binding site mediating inhibitory Ca²⁺-feedback (CDI) on channels. The editing turns out to require RNA adenosine deaminase ADAR2, whose variable activity could underlie a spatially diverse pattern of Ca(v)1.3 editing seen across the brain. Edited Ca(v)1.3 protein is detected both in brain tissue and within the surface membrane of primary neurons. Functionally, edited Ca(v)1.3 channels exhibit strong reduction of CDI; in particular, neurons within the suprachiasmatic nucleus show diminished CDI, with higher frequencies of repetitive action-potential and calcium-spike activity, in wild-type versus ADAR2 knockout mice. Our study reveals a mechanism for fine-tuning Ca(v)1.3 channel properties in CNS, which likely impacts a broad spectrum of neurobiological functions.
Collapse
Affiliation(s)
- Hua Huang
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, 117597 Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Liu CY, Xiao C, Fraser SE, Lester HA, Koos DS. Electrophysiological characterization of Grueneberg ganglion olfactory neurons: spontaneous firing, sodium conductance, and hyperpolarization-activated currents. J Neurophysiol 2012; 108:1318-34. [PMID: 22649209 DOI: 10.1152/jn.00907.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mammals rely on their acute olfactory sense for their survival. The most anterior olfactory subsystem in the nose, the Grueneberg ganglion (GG), plays a role in detecting alarm pheromone, cold, and urinary compounds. GG neurons respond homogeneously to these stimuli with increases in intracellular [Ca(2+)] or transcription of immediate-early genes. In this electrophysiological study, we used patch-clamp techniques to characterize the membrane properties of GG neurons. Our results offer evidence of functional heterogeneity in the GG. GG neurons fire spontaneously and independently in several stable patterns, including phasic and repetitive single-spike modes of discharge. Whole cell recordings demonstrated two distinct voltage-gated fast-inactivating Na(+) currents with different steady-state voltage dependencies and different sensitivities to tetrodotoxin. Hodgkin-Huxley simulations showed that these Na(+) currents confer dual mechanisms of action potential generation and contribute to different firing patterns. Additionally, GG neurons exhibited hyperpolarization-activated inward currents that modulated spontaneous firing in vitro. Thus, in GG neurons, the heterogeneity of firing patterns is linked to the unusual repertoire of ionic currents. The membrane properties described here will aid the interpretation of chemosensory function in the GG.
Collapse
Affiliation(s)
- Cambrian Y Liu
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | |
Collapse
|
141
|
Bergmann glia modulate cerebellar Purkinje cell bistability via Ca2+-dependent K+ uptake. Proc Natl Acad Sci U S A 2012; 109:7911-6. [PMID: 22547829 DOI: 10.1073/pnas.1120380109] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies have shown that cerebellar Bergmann glia display coordinated Ca(2+) transients in live mice. However, the functional significance of Bergmann glial Ca(2+) signaling remains poorly understood. Using transgenic mice that allow selective stimulation of glial cells, we report here that cytosolic Ca(2+) regulates uptake of K(+) by Bergmann glia, thus providing a powerful mechanism for control of Purkinje cell-membrane potential. The decline in extracellular K(+) evoked by agonist-induced Ca(2+) in Bergmann glia transiently increased spike activity of Purkinje cells in cerebellar slices as well as in live anesthetized mice. Thus, Bergmann glia play a previously unappreciated role in controlling the membrane potential and thereby the activity of adjacent Purkinje cells.
Collapse
|
142
|
Wang Y, Kuehl-Kovarik MC. Estradiol directly attenuates sodium currents and depolarizing afterpotentials in isolated gonadotropin-releasing hormone neurons. Brain Res 2012; 1436:81-91. [PMID: 22209345 DOI: 10.1016/j.brainres.2011.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/23/2011] [Accepted: 12/07/2011] [Indexed: 10/14/2022]
Abstract
The gonadotropin-releasing hormone (GnRH) neuron is the pivotal control center in a tightly regulated reproductive axis. The release of GnRH controls estradiol production by the ovary, and estradiol acts at the hypothalamus to regulate GnRH release. However, the mechanisms of estradiol feedback are just beginning to be understood. We have previously shown that estradiol administered to the female mouse modulates sodium currents in fluorescently-labeled GnRH neurons. In the current studies, estradiol (1 nM) was applied directly, for 16-24h, to hypothalamic cultures from young or aged female ovariectomized mice. The direct application of estradiol modulated a tetrodotoxin-sensitive sodium current in isolated GnRH neurons from both young and aged animals. Estradiol, and the specific estrogen receptor-β agonist DPN, decreased current amplitude measured in the morning (AM), but had no effect on afternoon currents. These compounds also decreased the rise and decay slope of the current response, increased the width of the current, and increased action potential width in AM recordings. In addition, estradiol decreased the amplitude of the depolarizing afterpotential (DAP); this effect was not time-of-day dependent. The ER-β agonist DPN did not mimic the effect of estradiol on DAPs, and the modulation of DAPs by estradiol was no longer present in cells from postreproductive animals. These results indicate that estradiol can affect the physiology of GnRH neurons via multiple pathways that are differentially regulated during the transition to reproductive senescence, suggesting that estradiol regulation of GnRH neuronal output is modulated during the aging process.
Collapse
Affiliation(s)
- Yong Wang
- Department of Biological Engineering, University of Missouri, Dalton Cardiovascular Research Center, 134 Research Park Drive, Columbia, MO 65211, USA
| | | |
Collapse
|
143
|
Kiss T, László Z, Pirger Z. Cellular localization and kinetic properties of NaV1.9-, NaV1.8-, and NaV1.7-like channel subtypes in Helix pomatia. Neuroscience 2012; 203:78-90. [DOI: 10.1016/j.neuroscience.2011.11.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 10/26/2011] [Accepted: 11/18/2011] [Indexed: 12/16/2022]
|
144
|
Park SM, Tara E, Khodakhah K. Efficient generation of reciprocal signals by inhibition. J Neurophysiol 2012; 107:2453-62. [PMID: 22298833 DOI: 10.1152/jn.00083.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Reciprocal activity between populations of neurons has been widely observed in the brain and is essential for neuronal computation. The different mechanisms by which reciprocal neuronal activity is generated remain to be established. A common motif in neuronal circuits is the presence of afferents that provide excitation to one set of principal neurons and, via interneurons, inhibition to a second set of principal neurons. This circuitry can be the substrate for generation of reciprocal signals. Here we demonstrate that this equivalent circuit in the cerebellar cortex enables the reciprocal firing rates of Purkinje cells to be efficiently generated from a common set of mossy fiber inputs. The activity of a mossy fiber is relayed to Purkinje cells positioned immediately above it by excitatory granule cells. The firing rates of these Purkinje cells increase as a linear function of mossy fiber, and thus granule cell, activity. In addition to exciting Purkinje cells positioned immediately above it, the activity of a mossy fiber is relayed to laterally positioned Purkinje cells by a disynaptic granule cell → molecular layer interneuron pathway. Here we show in acutely prepared cerebellar slices that the input-output relationship of these laterally positioned Purkinje cells is linear and reciprocal to the first set. A similar linear input-output relationship between decreases in Purkinje cell firing and strength of stimulation of laterally positioned granule cells was also observed in vivo. Use of interneurons to generate reciprocal firing rates may be a common mechanism by which the brain generates reciprocal signals.
Collapse
Affiliation(s)
- Sung-min Park
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Kennedy Center, Bronx, NY 10461, USA
| | | | | |
Collapse
|
145
|
Intermediate conductance calcium-activated potassium channels modulate summation of parallel fiber input in cerebellar Purkinje cells. Proc Natl Acad Sci U S A 2012; 109:2601-6. [PMID: 22308379 DOI: 10.1073/pnas.1115024109] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Encoding sensory input requires the expression of postsynaptic ion channels to transform key features of afferent input to an appropriate pattern of spike output. Although Ca(2+)-activated K(+) channels are known to control spike frequency in central neurons, Ca(2+)-activated K(+) channels of intermediate conductance (KCa3.1) are believed to be restricted to peripheral neurons. We now report that cerebellar Purkinje cells express KCa3.1 channels, as evidenced through single-cell RT-PCR, immunocytochemistry, pharmacology, and single-channel recordings. Furthermore, KCa3.1 channels coimmunoprecipitate and interact with low voltage-activated Cav3.2 Ca(2+) channels at the nanodomain level to support a previously undescribed transient voltage- and Ca(2+)-dependent current. As a result, subthreshold parallel fiber excitatory postsynaptic potentials (EPSPs) activate Cav3 Ca(2+) influx to trigger a KCa3.1-mediated regulation of the EPSP and subsequent after-hyperpolarization. The Cav3-KCa3.1 complex provides powerful control over temporal summation of EPSPs, effectively suppressing low frequencies of parallel fiber input. KCa3.1 channels thus contribute to a high-pass filter that allows Purkinje cells to respond preferentially to high-frequency parallel fiber bursts characteristic of sensory input.
Collapse
|
146
|
Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses. Neuroimage 2012; 62:1040-50. [PMID: 22261372 DOI: 10.1016/j.neuroimage.2012.01.040] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/27/2011] [Accepted: 01/01/2012] [Indexed: 12/30/2022] Open
Abstract
Brain's electrical activity correlates strongly to changes in cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO(2)). Subthreshold synaptic processes correlate better than the spike rates of principal neurons to CBF, CMRO(2) and positive BOLD signals. Stimulation-induced rises in CMRO(2) are controlled by the ATP turnover, which depends on the energy used to fuel the Na,K-ATPase to reestablish ionic gradients, while stimulation-induced CBF responses to a large extent are controlled by mechanisms that depend on Ca(2+) rises in neurons and astrocytes. This dichotomy of metabolic and vascular control explains the gap between the stimulation-induced rises in CMRO(2) and CBF, and in turn the BOLD signal. Activity-dependent rises in CBF and CMRO(2) vary within and between brain regions due to differences in ATP turnover and Ca(2+)-dependent mechanisms. Nerve cells produce and release vasodilators that evoke positive BOLD signals, while the mechanisms that control negative BOLD signals by activity-dependent vasoconstriction are less well understood. Activation of both excitatory and inhibitory neurons produces rises in CBF and positive BOLD signals, while negative BOLD signals under most conditions correlate to excitation of inhibitory interneurons, but there are important exceptions to that rule as described in this paper. Thus, variations in the balance between synaptic excitation and inhibition contribute dynamically to the control of metabolic and hemodynamic responses, and in turn the amplitude and polarity of the BOLD signal. Therefore, it is not possible based on a negative or positive BOLD signal alone to decide whether the underlying activity goes on in principal or inhibitory neurons.
Collapse
|
147
|
Christel C, Lee A. Ca2+-dependent modulation of voltage-gated Ca2+ channels. Biochim Biophys Acta Gen Subj 2011; 1820:1243-52. [PMID: 22223119 DOI: 10.1016/j.bbagen.2011.12.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND Voltage-gated (Cav) Ca2+ channels are multi-subunit complexes that play diverse roles in a wide variety of tissues. A fundamental mechanism controlling Cav channel function involves the Ca2+ ions that permeate the channel pore. Ca2+ influx through Cav channels mediates feedback regulation to the channel that is both negative (Ca2+-dependent inactivation, CDI) and positive (Ca2+-dependent facilitation, CDF). SCOPE OF REVIEW This review highlights general mechanisms of CDI and CDF with an emphasis on how these processes have been studied electrophysiologically in native and heterologous expression systems. MAJOR CONCLUSIONS Electrophysiological analyses have led to detailed insights into the mechanisms and prevalence of CDI and CDF as Cav channel regulatory mechanisms. All Cav channel family members undergo some form of Ca2+-dependent feedback that relies on CaM or a related Ca2+ binding protein. Tremendous progress has been made in characterizing the role of CaM in CDI and CDF. Yet, what contributes to the heterogeneity of CDI/CDF in various cell-types and how Ca2+-dependent regulation of Cav channels controls Ca2+ signaling remain largely unexplored. GENERAL SIGNIFICANCE Ca2+ influx through Cav channels regulates diverse physiological events including excitation-contraction coupling in muscle, neurotransmitter and hormone release, and Ca2+-dependent gene transcription. Therefore, the mechanisms that regulate channels, such as CDI and CDF, can have a large impact on the signaling potential of excitable cells in various physiological contexts. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signaling.
Collapse
Affiliation(s)
- Carl Christel
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
148
|
Kim CH, Oh SH, Lee JH, Chang SO, Kim J, Kim SJ. Lobule-specific membrane excitability of cerebellar Purkinje cells. J Physiol 2011; 590:273-88. [PMID: 22083600 DOI: 10.1113/jphysiol.2011.221846] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cerebellar Purkinje cells (PCs) are the sole output of the cerebellar cortex and function as key to a variety of learning-related behaviours by integrating multimodal afferent inputs. Intrinsic membrane excitability of neurons determines the input-output relationship, and therefore governs the functions of neural circuits. Cerebellar vermis consists of ten lobules (lobules I-X), and each lobule receives different sensory information. However, lobule-specific differences of electrophysiological properties of PC are incompletely understood. To address this question, we performed a systematic comparison of membrane properties of PCs from different lobules (lobules III-V vs. X). Two types of firing patterns (tonic firing and complex bursting) were identified in response to depolarizing current injections in lobule III-V PCs, whereas four distinct firing patterns (tonic firing, complex bursting, initial bursting and gap firing) were observed in lobule X. A-type K(+) current and early inactivation of fast Na(+) conductance with activation of 4-aminopyridine-sensitive conductances were shown to be responsible for the formation of gap firing and initial bursting patterns, respectively, which were observed only in lobule X. In response to current injection, PCs in lobule X spiked with wider dynamic range. These differences in firing pattern and membrane properties probably contribute to signal processing of afferent inputs in lobule-specific fashion, and particularly diversity of discharge patterns in lobule X, as a part of the vestibulocerebellum, might be involved in strict coordination of a precise temporal response to a wide range of head movements.
Collapse
Affiliation(s)
- Chang-Hee Kim
- Department of Physiology, Seoul National University College of Medicine, 28 Yeongon-dong, Chongro-gu, Seoul 110-744, Korea
| | | | | | | | | | | |
Collapse
|
149
|
Cruz JS, Silva DF, Ribeiro LA, Araújo IGA, Magalhães N, Medeiros A, Freitas C, Araujo IC, Oliveira FA. Resurgent Na+ current: a new avenue to neuronal excitability control. Life Sci 2011; 89:564-9. [PMID: 21683085 DOI: 10.1016/j.lfs.2011.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 05/04/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
Abstract
Integrative and firing properties are important characteristics of neuronal circuits and these responses are determined in large part by the repertoire of ion channels they express, which can vary considerably between cell types. Recently, a new mode of operation of voltage dependent sodium channels has been described that generates a so-called resurgent Na+ current. Accumulating evidence suggests resurgent Na current participates in the generation of sub-threshold inward Na+ current causing membrane depolarization which provides the necessary drive to fire high-frequency action potentials. Recent studies indicate that resurgent Na+ current could be a more widespread feature than previously thought.
Collapse
Affiliation(s)
- Jader S Cruz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
De Zeeuw CI, Hoebeek FE, Bosman LWJ, Schonewille M, Witter L, Koekkoek SK. Spatiotemporal firing patterns in the cerebellum. Nat Rev Neurosci 2011; 12:327-44. [PMID: 21544091 DOI: 10.1038/nrn3011] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurons are generally considered to communicate information by increasing or decreasing their firing rate. However, in principle, they could in addition convey messages by using specific spatiotemporal patterns of spiking activities and silent intervals. Here, we review expanding lines of evidence that such spatiotemporal coding occurs in the cerebellum, and that the olivocerebellar system is optimally designed to generate and employ precise patterns of complex spikes and simple spikes during the acquisition and consolidation of motor skills. These spatiotemporal patterns may complement rate coding, thus enabling precise control of motor and cognitive processing at a high spatiotemporal resolution by fine-tuning sensorimotor integration and coordination.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|