101
|
André VM, Cepeda C, Vinters HV, Huynh M, Mathern GW, Levine MS. Pyramidal cell responses to gamma-aminobutyric acid differ in type I and type II cortical dysplasia. J Neurosci Res 2009; 86:3151-62. [PMID: 18615638 DOI: 10.1002/jnr.21752] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abnormalities in the gamma-aminobutyric acid (GABA)-ergic system could be responsible for seizures in cortical dysplasia (CD). We examined responses of pyramidal neurons to exogenous application of GABA, as well as alterations of GABAergic interneuron number and size in pediatric epilepsy surgery patients with non-CD, type I CD, and type II CD pathologies. We used the dissociated cell preparation for electrophysiology along with immunohistochemistry to identify number and size of GABAergic cells. Pyramidal neurons from type I CD tissue showed increased EC(50) and faster kinetics compared with cells from non-CD and type II CD tissue. Cytomegalic pyramidal neurons showed increased GABA peak currents and decreased peak current densities, longer kinetics, and decreased sensitivity to zolpidem and zinc compared with normal pyramidal cells from non-CD and type I CD. There were fewer but larger glutamic acid decarboxylase (GAD)-containing cells in type II CD tissue with cytomegalic neurons compared with non-CD, type I CD, and type II CD without cytomegalic neurons. In addition, GABA transporters (VGAT and GAT-1) showed increased staining surrounding cytomegalic neurons in type II CD tissue. These results indicate that there are differences in GABA(A) receptor-mediated pyramidal cell responses in type I and type II CD. Alterations in zolpidem and zinc sensitivities also suggest that cytomegalic neurons have altered GABA(A) receptor subunit composition. These findings support the hypothesis that patients with type I and type II CD will respond differently to GABA-mediated antiepileptic drugs and that cytomegalic neurons have features similar to immature neurons with prolonged GABA(A) receptor open channel times.
Collapse
Affiliation(s)
- Véronique M André
- Mental Retardation Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | | | |
Collapse
|
102
|
Napolioni V, Moavero R, Curatolo P. Recent advances in neurobiology of Tuberous Sclerosis Complex. Brain Dev 2009; 31:104-13. [PMID: 19028034 DOI: 10.1016/j.braindev.2008.09.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 09/26/2008] [Indexed: 10/21/2022]
Abstract
Tuberous Sclerosis Complex (TSC) is a multisystem genetic disorder with variable phenotypic expression, due to a mutation in one of the two genes, TSC1 and TSC2, and a subsequent hyperactivation of the downstream mTOR pathway, resulting in increased cell growth and proliferation. The central nervous system is consistently involved in TSC, with 90% of individuals affected showing structural abnormalities, and almost all having some degree of CNS clinical manifestations, including seizures, cognitive impairment and behavioural problems. TSC is proving to be a particularly informative model for studying contemporary issues in developmental neurosciences. Recent advances in the neurobiology of TSC from molecular biology, molecular genetics, and animal model studies provide a better understanding of the pathogenesis of TSC-related neurological symptoms. Rapamycin normalizes the dysregulated mTOR pathway, and recent clinical trials have demonstrated its efficacy in various TSC manifestations, suggesting the possibility that rapamycin may have benefit in the treatment of TSC brain disease.
Collapse
Affiliation(s)
- Valerio Napolioni
- Laboratory of Human Genetics, Department of Molecular, Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | | | | |
Collapse
|
103
|
Ackman JB, Aniksztejn L, Crépel V, Becq H, Pellegrino C, Cardoso C, Ben-Ari Y, Represa A. Abnormal network activity in a targeted genetic model of human double cortex. J Neurosci 2009; 29:313-27. [PMID: 19144832 PMCID: PMC6664957 DOI: 10.1523/jneurosci.4093-08.2009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 11/13/2008] [Accepted: 12/02/2008] [Indexed: 12/29/2022] Open
Abstract
In human patients, cortical dysplasia produced by Doublecortin (DCX) mutations lead to mental retardation and intractable infantile epilepsies, but the underlying mechanisms are not known. DCX(-/-) mice have been generated to investigate this issue. However, they display no neocortical abnormality, lessening their impact on the field. In contrast, in utero knockdown of DCX RNA produces a morphologically relevant cortical band heterotopia in rodents. On this preparation we have now compared the neuronal and network properties of ectopic, overlying, and control neurons in an effort to identify how ectopic neurons generate adverse patterns that will impact cortical activity. We combined dynamic calcium imaging and anatomical and electrophysiological techniques and report now that DCX(-/-)EGFP(+)-labeled ectopic neurons that fail to migrate develop extensive axonal subcortical projections and retain immature properties, and most of them display a delayed maturation of GABA-mediated signaling. Cortical neurons overlying the heterotopia, in contrast, exhibit a massive increase of ongoing glutamatergic synaptic currents reflecting a strong reactive plasticity. Neurons in both experimental fields are more frequently coactive in coherent synchronized oscillations than control cortical neurons. In addition, both fields displayed network-driven oscillations during evoked epileptiform burst. These results show that migration disorders produce major alterations not only in neurons that fail to migrate but also in their programmed target areas. We suggest that this duality play a major role in cortical dysfunction of DCX brains.
Collapse
Affiliation(s)
- James B. Ackman
- Inmed, Inserm, Université de la Méditerranée, 13009 Marseille, France
| | | | - Valérie Crépel
- Inmed, Inserm, Université de la Méditerranée, 13009 Marseille, France
| | - Hélène Becq
- Inmed, Inserm, Université de la Méditerranée, 13009 Marseille, France
| | | | - Carlos Cardoso
- Inmed, Inserm, Université de la Méditerranée, 13009 Marseille, France
| | - Yehezkel Ben-Ari
- Inmed, Inserm, Université de la Méditerranée, 13009 Marseille, France
| | - Alfonso Represa
- Inmed, Inserm, Université de la Méditerranée, 13009 Marseille, France
| |
Collapse
|
104
|
Expression of layer-specific markers in the adult neocortex of BCNU-Treated rat, a model of cortical dysplasia. Neuroscience 2009; 159:682-91. [PMID: 19174181 DOI: 10.1016/j.neuroscience.2008.12.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/22/2008] [Accepted: 12/24/2008] [Indexed: 11/20/2022]
Abstract
The experimental model of cortical dysplasia (CD) obtained by administering carmustine (1-3-bis-chloroethyl-nitrosurea [BCNU]) in pregnant rat uterus mimics the histopathological abnormalities observed in human CD patients: altered cortical layering, and presence of heterotopia and dysmorphic/heterotopic neurons. To investigate further the cortical layering disruption and the neuronal composition of heterotopia in BCNU-exposed cortex, we analyzed the expression pattern of the transcription factors Nurr1, Er81, Ror-beta, and Cux2 (respectively specific markers of layers VI, V, IV and superficial layers) in the cortical areas of BCNU-treated rats by means of in situ hybridization, and compared the findings with those observed in adult control rats. Combining in situ hybridization and immunohistochemistry we also investigated the origin of dysmorphic or heterotopic neurons. The main results of the present study are (i) the analysis of cortical layer thickness revealed that the cortical thinning in the BCNU model was prevalently restricted to the superficial layers; (ii) in cortical and periventricular heterotopia, the prevalent presence of superficial layer neurons in the internal areas, and deeper layer neurons in a more peripheral region, demonstrated a rudimentary pattern of laminar organization in nodule formation; and (iii) the Er81 signal in the dysmorphic and heterotopic pyramidal neurons located in layers I/II showed that they belong to layer V. These results shed light on the disorganization of the laminar architecture of the BCNU model by providing correlations with normal cortical layering and revealing the ontogenesis of heterotopia and heterotopic/dysmorphic neurons. They also provide strong evidence of the usefulness of layer-specific markers in investigating the neuropathology of CD, thus opening up the possibility of expanding their application to human neuropathology.
Collapse
|
105
|
Fujimoto A, Ochi A, Imai K, Chan D, Sharma R, Viljoen A, Chu B, Holowka S, Kemp SM, Chuang SH, Matsumura A, Ayuzawa S, Snead OC, Otsubo H. Magnetoencephalography using total intravenous anesthesia in pediatric patients with intractable epilepsy: lesional vs nonlesional epilepsy. Brain Dev 2009; 31:34-41. [PMID: 18842368 DOI: 10.1016/j.braindev.2008.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/12/2008] [Accepted: 07/28/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE Magnetoencephalography (MEG) provides source localization of interictal spikes. We use total intravenous anesthesia (TIVA) with propofol to immobilize uncooperative children. We evaluate the effect of TIVA on interictal spikes in children who have intractable epilepsy with or without MRI lesions. METHODS We studied 28 children (3-14 years; mean, 6.6). We intravenously administered propofol (30-60 microg/kg/min) to record MEG with simultaneous EEG. We evaluated MEG spike sources (MEGSSs). We compared spikes on simultaneous EEG under TIVA with those on scalp video-EEG without TIVA. RESULTS There was a significant decrease in frequent spikes (10 patients, 36%) on simultaneous EEG under TIVA compared to those (22 patients, 79%) on scalp video-EEG without TIVA (P<0.01). MEGSSs were present in 21 (75%) of 28 patients. Clustered MEGSSs occurred in 15 (83%) of 18 lesional patients but in 3 (30%) of 10 nonlesional patients (P<0.05). MEGSSs were more frequently absent in nonlesional (6 patients, 60%) than lesional (one patient, 5%) patients (P<0.01). Thirteen patients with MRI and/or histopathologically confirmed neuronal migration disorder most frequently showed clustered MEGSSs (11 patients, 85%) compared to those of other lesional and nonlesional patients. CONCLUSION Propofol-based TIVA reduced interictal spikes on simultaneous EEG. TIVA for MEG still had utility in identifying spike sources in a subset of pediatric patients with intractable epilepsy who were uncooperative and surgical candidates. In lesional patients, MEG under TIVA frequently localized the clustered MEGSSs. Neuronal migration disorders were intrinsically epileptogenic and produced clustered MEGSSs under TIVA. Nonlesional patients often had no MEGSS under TIVA.
Collapse
Affiliation(s)
- Ayataka Fujimoto
- The Division of Neurology, Department of Paediatrics, The Hospital for Sick Children and The University of Toronto, Toronto, Ont., Canada M5G 1X8
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Abstract
Tuberous sclerosis is a genetic multisystem disorder characterised by widespread hamartomas in several organs, including the brain, heart, skin, eyes, kidney, lung, and liver. The affected genes are TSC1 and TSC2, encoding hamartin and tuberin respectively. The hamartin-tuberin complex inhibits the mammalian-target-of-rapamycin pathway, which controls cell growth and proliferation. Variations in the distribution, number, size, and location of lesions cause the clinical syndrome to vary, even between relatives. Most features of tuberous sclerosis become evident only in childhood after 3 years of age, limiting their usefulness for early diagnosis. Identification of patients at risk for severe manifestations is crucial. Increasing understanding of the molecular abnormalities caused by tuberous sclerosis may enable improved management of this disease.
Collapse
Affiliation(s)
- Paolo Curatolo
- Department of Neurosciences, Paediatric Neurology Unit, Tor Vergata University, Rome, Italy
| | | | | |
Collapse
|
107
|
Jansen LA, Peugh LD, Ojemann JG. GABA(A) receptor properties in catastrophic infantile epilepsy. Epilepsy Res 2008; 81:188-97. [PMID: 18650066 DOI: 10.1016/j.eplepsyres.2008.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Revised: 05/28/2008] [Accepted: 05/30/2008] [Indexed: 10/21/2022]
Abstract
Catastrophic epilepsy due to cortical dysplasia is often intractable to anticonvulsant treatment. Many of the medications used unsuccessfully in treating this disorder are thought to exert at least a portion of their action through enhancement of inhibitory GABA(A) neurotransmission. In the present study, GABA(A) receptor properties in resected brain tissue from four infants with infantile spasms and intractable epilepsy due to cortical dysplasia were measured to determine if this clinical resistance to pharmacologic treatment correlates with alterations in receptor function. Results from epileptic cortex were compared with those from autopsy control samples. To perform these studies, we utilized the technique of injection of brain cellular membrane preparations into the Xenopus oocyte, which results in the incorporation of human GABA(A) receptors in their native configuration into the oocyte plasma membrane. Two-electrode voltage-clamp electrophysiology analysis was then performed to assess GABA(A) receptor pharmacologic properties. The intrinsic properties of affinity, reversal potential, current decay, and current rundown were unchanged in the epileptic infants. Current enhancement by benzodiazepines was also unaltered, as was the response to barbiturates. However, a significant decrease was found in the degree of GABA(A) current enhancement by neurosteroids in the epileptic infants, along with an increase in current inhibition by zinc. These findings may contribute to the mechanisms of intractability in catastrophic infantile epilepsy due to cortical dysplasia, and suggest alternative therapeutic approaches.
Collapse
Affiliation(s)
- Laura A Jansen
- Seattle Children's Hospital Research Institute, University of Washington, Division of Pediatric Neurology, 1900 Ninth Avenue, 8th Floor, Seattle, WA 98101, United States.
| | | | | |
Collapse
|
108
|
Moroni RF, Inverardi F, Regondi MC, Panzica F, Spreafico R, Frassoni C. Altered spatial distribution of PV-cortical cells and dysmorphic neurons in the somatosensory cortex of BCNU-treated rat model of cortical dysplasia. Epilepsia 2008; 49:872-87. [DOI: 10.1111/j.1528-1167.2007.01440.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
109
|
Sen A, Thom M, Nikolić M, Sisodiya SM. The potential role of cyclin-dependent kinase 5 in focal cortical dysplasia. Dev Neurosci 2008; 30:96-104. [PMID: 18075258 DOI: 10.1159/000109855] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 03/12/2007] [Indexed: 11/19/2022] Open
Abstract
Focal cortical dysplasia (FCD) is the most common malformation of cortical development found in epilepsy surgical series. Characterised by cortical mislamination, dysplastic neurons and, in a subgroup of cases, balloon cells, FCD is potently epileptogenic. Despite decades of study, the underlying aetiology of FCD remains uncertain and research has been hampered by the lack of a good animal model in which to simulate the condition. In this article we review some of the potential molecular mechanisms that might underpin human FCD. In particular we examine the potential role of cyclin-dependent kinase 5 and its principal activator p35 in FCD and estimate the contribution that deregulation of cyclin-dependent kinase 5 might make to the pathogenesis of this condition.
Collapse
Affiliation(s)
- Arjune Sen
- Department of Clinical and Experimental Epilepsy, University College London, London, UK.
| | | | | | | |
Collapse
|
110
|
Vigabatrin and epilepsy: Further lessons in early childhood. Epilepsia 2008; 49:177-8. [DOI: 10.1111/j.1528-1167.2007.01329_2.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
111
|
KADAM SHILPAD, DUDEK FEDWARD. Neuropathogical features of a rat model for perinatal hypoxic-ischemic encephalopathy with associated epilepsy. J Comp Neurol 2007; 505:716-37. [PMID: 17948865 PMCID: PMC4607042 DOI: 10.1002/cne.21533] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypoxic-ischemic (HI) encephalopathy is an important neurological problem of the perinatal period. Little is known of the long-term progression of HI insults or the maladaptive changes that lead to epilepsy. Using rats with unilateral carotid occlusion followed by hypoxia at postnatal day 7, this study provides an initial analysis of the epilepsy caused by a perinatal HI insult with chronic and continuous behavioral monitoring. The histopathology was investigated at postnatal day 30 and later at > or =6 months of age using cresyl violet, Timm, and rapid Golgi staining and immunocytochemistry. The resultant epilepsy showed an increase in seizure frequency over time, with a preponderance for seizure clusters and behavioral features of an ipsilateral cerebral syndrome. In addition to parasagittal infarcts and porencephalic cysts in severe lesions, columnar neuronal death was found with cytomegaly in isolated groups of dysmorphic cortical neurons. Cortical dysgenesis was seen in the form of deep laminar cell loss, microgyri, white matter hypercellularity, and blurring of the white and gray matter junction. Mossy fiber sprouting was not only detected in the atrophied ipsilateral dorsal hippocampus of HI rats with chronic epilepsy, but was also found in comparable grades in spared ipsi- and contralateral ventral hippocampi. The cortical lesions in this animal model show histological similarities with those found in humans after perinatal HI. The occurrence of cortical abnormalities that are associated with epilepsy in humans correlates with the consequent detection of spontaneous recurrent seizures.
Collapse
Affiliation(s)
- SHILPA D. KADAM
- Department of Biomedical Sciences, Neurosciences Division, Colorado State University, Fort Collins, Colorado 80523, and Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah 84108
| | - F. EDWARD DUDEK
- Department of Biomedical Sciences, Neurosciences Division, Colorado State University, Fort Collins, Colorado 80523, and Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah 84108
| |
Collapse
|
112
|
Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 2007; 87:1215-84. [PMID: 17928584 DOI: 10.1152/physrev.00017.2006] [Citation(s) in RCA: 902] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Developing networks follow common rules to shift from silent cells to coactive networks that operate via thousands of synapses. This review deals with some of these rules and in particular those concerning the crucial role of the neurotransmitter gamma-aminobuytric acid (GABA), which operates primarily via chloride-permeable GABA(A) receptor channels. In all developing animal species and brain structures investigated, neurons have a higher intracellular chloride concentration at an early stage leading to an efflux of chloride and excitatory actions of GABA in immature neurons. This triggers sodium spikes, activates voltage-gated calcium channels, and acts in synergy with NMDA channels by removing the voltage-dependent magnesium block. GABA signaling is also established before glutamatergic transmission, suggesting that GABA is the principal excitatory transmitter during early development. In fact, even before synapse formation, GABA signaling can modulate the cell cycle and migration. The consequence of these rules is that developing networks generate primitive patterns of network activity, notably the giant depolarizing potentials (GDPs), largely through the excitatory actions of GABA and its synergistic interactions with glutamate signaling. These early types of network activity are likely required for neurons to fire together and thus to "wire together" so that functional units within cortical networks are formed. In addition, depolarizing GABA has a strong impact on synaptic plasticity and pathological insults, notably seizures of the immature brain. In conclusion, it is suggested that an evolutionary preserved role for excitatory GABA in immature cells provides an important mechanism in the formation of synapses and activity in neuronal networks.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Insititut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U. 29, Marseille, France.
| | | | | | | |
Collapse
|
113
|
Parisi P, Bombardieri R, Curatolo P. Current role of vigabatrin in infantile spasms. Eur J Paediatr Neurol 2007; 11:331-6. [PMID: 17625936 DOI: 10.1016/j.ejpn.2007.03.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 03/25/2007] [Accepted: 03/26/2007] [Indexed: 11/22/2022]
Abstract
Vigabatrin (VGB), a selective irreversible inhibitor of gamma-aminobutyric acid transaminase, has proved to be effective against cryptogenic and symptomatic infantile spasms (IS). Unfortunately, reports of serious visual field defects have led to a drastic reduction in the use of the drug. This review is based on a systematic search in the literature for evidence regarding efficacy and safety of VGB in IS. Based on a specific mechanism of action, there is a solid evidence of clinical efficacy of VGB in children with Tuberous Sclerosis. Similarly, VGB could represent a potential effective therapy also for spasms due to focal cortical dysplasia. In infants with spasms due to other causes, the risk of ophthalmologic toxicity should be carefully weighted against the benefit of controlling spasms.
Collapse
Affiliation(s)
- Pasquale Parisi
- Child Neurology & Paediatric Sleep Centre, La Sapienza II University c/o Sant'Andrea Hospital, Rome, Italy
| | | | | |
Collapse
|
114
|
Jones DL, Baraban SC. Characterization of inhibitory circuits in the malformed hippocampus of Lis1 mutant mice. J Neurophysiol 2007; 98:2737-46. [PMID: 17881479 DOI: 10.1152/jn.00938.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heterozygous mutation or deletion of a lissencephaly gene (Lis1) in humans is associated with a severe disruption of cortical and hippocampal lamination, cognitive deficit, and severe seizures. Mice with one null allele of Lis1 (Lis1(+/-) mice) exhibit significant brain malformations and slowed migration of interneuron precursors. Although hyperexcitability was demonstrated in dysplastic hippocampal slices from Lis1(+/-) mice, little is known about synaptic function in these animals. Here we analyzed GABA-mediated synaptic inhibition. We recorded isolated whole cell inhibitory postsynaptic currents (IPSCs) on visually identified pyramidal neurons in disorganized CA1 regions of hippocampal slices prepared from Lis1(+/-) mice. We observed a 32% increase in spontaneous IPSC frequency in Lis1(+/-) mice compared with normotopic CA1 pyramidal neurons in age-matched controls. This increase was not associated with a change in spontaneous IPSC decay or miniature IPSC frequency. Mean IPSC amplitude was increased, and event histograms indicated a greater number of large (>125 pA) events. Tonic inhibition, response to paired-pulse stimulation and evoked IPSC decay kinetics were not altered. Consistent with increased synaptic inhibition, Lis1(+/-) interneurons also exhibited more spontaneous firing in cell-attached recordings and increased excitation as measured by voltage-clamp recording of spontaneous excitatory postsynaptic currents (EPSCs) onto interneurons. Our results reveal a significant alteration in the function of inhibitory circuits within the malformed Lis1(+/-) hippocampus. Given that precisely coordinated GABAergic activity is vital to generation of oscillatory activity and place field precision in hippocampus, these alterations in synaptic inhibition may contribute to seizures and altered cognitive function in type I Lissencephaly.
Collapse
Affiliation(s)
- Daniel L Jones
- Department of Neurological Surgery, University of California, San Francisco, Box 0520, 533 Parnassus Ave., San Francisco, CA 94143, USA
| | | |
Collapse
|
115
|
Wong M. Mechanisms of epileptogenesis in tuberous sclerosis complex and related malformations of cortical development with abnormal glioneuronal proliferation. Epilepsia 2007; 49:8-21. [PMID: 17727667 PMCID: PMC3934641 DOI: 10.1111/j.1528-1167.2007.01270.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Malformations of cortical development (MCDs) are increasingly recognized as causes of medically intractable epilepsy. In order to develop more effective, rational therapies for refractory epilepsy related to MCDs, it is important to achieve a better understanding of the underlying mechanisms of epileptogenesis, but this is complicated by the wide variety of different radiographic, histopathological, and molecular features of these disorders. A subset of MCDs share a number of characteristic cellular and molecular abnormalities due to early defects in neuronal and glial proliferation and differentiation and have a particularly high incidence of epilepsy, suggesting that this category of MCDs with abnormal glioneuronal proliferation may also share a common set of primary mechanisms of epileptogenesis. This review critically analyzes both clinical and basic science evidence for overlapping mechanisms of epileptogenesis in this group of disorders, focusing on tuberous sclerosis complex, focal cortical dysplasia with balloon cells, and gangliogliomas. Specifically, the role of lesional versus perilesional regions, circuit versus cellular/molecular defects, and nonneuronal factors, such as astrocytes, in contributing to epileptogenesis in these MCDs is examined. An improved understanding of these various factors involved in epileptogenesis has direct clinical implications for optimizing current treatments or developing novel therapeutic approaches for epilepsy in these disorders.
Collapse
Affiliation(s)
- Michael Wong
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
116
|
André VM, Wu N, Yamazaki I, Nguyen ST, Fisher RS, Vinters HV, Mathern GW, Levine MS, Cepeda C. Cytomegalic interneurons: a new abnormal cell type in severe pediatric cortical dysplasia. J Neuropathol Exp Neurol 2007; 66:491-504. [PMID: 17549009 DOI: 10.1097/01.jnen.0000240473.50661.d8] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A defining histopathologic feature of Taylor-type cortical dysplasia (CD) is the presence of cytomegalic neurons and balloon cells. Most cytomegalic neurons appear to be pyramidal-shaped and glutamatergic. The present study demonstrates the presence of cytomegalic GABAergic interneurons in a subset of pediatric patients with severe CD. Cortical tissue samples from children with mild, severe, and non-CD pathologies were examined using morphologic and electrophysiologic techniques. By using in vitro slices, cytomegalic cells with characteristics consistent with interneurons were found in 6 of 10 patients with severe CD. Biocytin labeling demonstrated that cytomegalic interneurons had more dendrites than normal-appearing interneurons. Whole-cell patch clamp recordings showed that cytomegalic interneurons had increased membrane capacitance and time constant compared with normal-appearing interneurons. They also displayed signs of cellular hyperexcitability, evidenced by increased firing rates, decreased action potential inactivation, and the occurrence of spontaneous membrane depolarizations. Single-cell reverse transcription-polymerase chain reaction and immunohistochemistry for GABAergic markers provided further evidence that these cells were probably cytomegalic interneurons. The pathophysiologic significance of GABAergic cytomegalic interneurons in severe CD tissue is unknown, but they could inhibit glutamatergic cytomegalic pyramidal neurons, or contribute to the synchronization of neuronal networks and the propagation of ictal activity in a subset of pediatric patients with severe CD.
Collapse
Affiliation(s)
- Véronique M André
- Mental Retardation Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
REORGANIZATION OF BARREL CIRCUITS LEADS TO THALAMICALLY-EVOKED CORTICAL EPILEPTIFORM ACTIVITY. ACTA ACUST UNITED AC 2007; 3:261-273. [PMID: 18185849 DOI: 10.1017/s1472928807000283] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We studied circuit activities in layer IV of rat somatosensory barrel cortex containing microgyri induced by neonatal freeze lesions. Structural abnormalities in GABAergic interneurons are present in the epileptogenic paramicrogyral area (PMG) and we therefore tested the hypothesis that decreased postsynaptic inhibition within barrel microcircuits occurs in the PMG and contributes to epileptogenesis when thalamocortical afferents are activated. In thalamocortical (TC) slices from naïve animals, single electrical stimuli within the thalamic ventrobasal (VB) nucleus evoked transient cortical multi-unit activity lasting 65±42 ms. Similar stimuli in TC slices from lesioned barrel cortex elicited prolonged 850 ±100 ms paroxysmal discharges that originated in the PMG and propagated laterally over several mm. Paroxysmal discharges were shortened in duration by ~70 % when APV was applied, and were totally abolished by CNQX. The cortical paroxysmal discharges did not evoke thalamic oscillations. Whole cell patch clamp recordings showed that there was a shift in the balance of TC evoked responses in the PMG that favored excitation over inhibition. Dual whole-cell recordings in layer IV of the PMG indicated that there was selective loss of inhibition from fast-spiking interneurons to spiny neurons in the barrel circuits that likely contributed to unconstrained cortical recurrent excitation with generation and spread of paroxysmal discharges.
Collapse
|
118
|
John JE, Baptiste SL, Sheffield LG, von Gizycki H, Kuzniecky RI, Devinsky O, Ludvig N. Transmeningeal delivery of GABA to control neocortical seizures in rats. Epilepsy Res 2007; 75:10-7. [PMID: 17478079 DOI: 10.1016/j.eplepsyres.2007.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 03/10/2007] [Accepted: 03/12/2007] [Indexed: 11/16/2022]
Abstract
Transmeningeal drug delivery, using an implanted hybrid neuroprosthesis, has been proposed as a novel therapy for intractable focal epilepsy. As part of a systematic effort to identify the optimal compounds and protocols for such a therapy, this study aimed to determine whether transmeningeal gamma-aminobutyric acid (GABA) delivery can terminate and/or prevent neocortical seizures in rats. Rats were chronically implanted with an epidural cup and an adjacent EEG electrode in the right parietal cortex. While the rat was behaving freely, a seizure-inducing concentration of acetylcholine (Ach) was applied into the cup. In a seizure termination study, either artificial cerebrospinal fluid (ACSF) or GABA (0.25, 2.5, 25 or 50mM) was delivered into the exposed neocortical area during an ongoing seizure. In a seizure prevention study, either ACSF or 50mM GABA was delivered into the epidural cup before the application of Ach. Epidural delivery of 50mM GABA completely terminated ongoing Ach-induced EEG seizures and convulsions within 17-437s after its delivery. ACSF and lower concentrations of GABA did not produce this effect, but 25mM GABA reduced seizure severity. However, the used GABA concentration could not prevent the development, or affect the severity, of Ach-induced EEG seizures and convulsions. This study indicates that transmeningeal GABA delivery can be used for terminating neocortical seizures, but to achieve seizure prevention via this route either a more efficient GABA delivery method needs to be developed or other neurotransmitters/pharmaceuticals should be employed for this purpose.
Collapse
Affiliation(s)
- Jenine E John
- Comprehensive Epilepsy Center, Department of Neurology, NYU School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
119
|
Wu J, Chang Y, Li G, Xue F, DeChon J, Ellsworth K, Liu Q, Yang K, Bahadroani N, Zheng C, Zhang J, Rekate H, Rho JM, Kerrigan JF. Electrophysiological properties and subunit composition of GABAA receptors in patients with gelastic seizures and hypothalamic hamartoma. J Neurophysiol 2007; 98:5-15. [PMID: 17428906 DOI: 10.1152/jn.00165.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abnormalities in GABA(A) receptor structure and/or function have been associated with various forms of epilepsy in both humans and animals. Whether this is true for patients with gelastic seizures and hypothalamic hamartoma (HH) is unknown. In this study, we characterized the pharmacological properties and native subunit composition of GABA(A) receptors on acutely dissociated single neurons from surgically resected HH tissues using patch-clamp, immunocytochemical, and RT-PCR techniques. We found that 1) GABA induced an inward current (I(GABA)) at a holding potential of -60 mV; 2) I(GABA) was mimicked by the GABA(A) receptor agonist muscimol and blocked by the GABA(A) receptor antagonist bicuculline, suggesting that I(GABA) was mediated principally through the GABA(A) receptor; 3) the EC(50) and Hill coefficient derived from the I(GABA) concentration-response curve were 6.8 muM and 1.9, respectively; 4) the current-voltage curve was linear at a reversal potential close to zero; and 5) I(GABA) exhibited low sensitivity to zinc and diazepam but higher sensitivity to pentobarbital and pregnanolone. Additionally, using Xenopus oocytes microtransplanted with normal human hypothalamic tissue, we confirmed that the functional properties of GABA(A) receptors were similar to those seen in small isolated HH neurons. Finally, the expression profile of GABA(A) receptor subunits obtained from normal control human hypothalamic tissue was identical to that from surgically resected human HH tissue. Taken together, our data indicate that GABA(A) receptors on small HH neurons exhibit normal pharmacosensitivity and subunit composition. These findings bear relevance to a broader understanding of inhibitory neurotransmission in human HH tissue.
Collapse
Affiliation(s)
- Jie Wu
- Neurophysiology Lab, Div of Neurology, Barrow Neurological Inst, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013-4496, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Wang Y, Greenwood JSF, Calcagnotto ME, Kirsch HE, Barbaro NM, Baraban SC. Neocortical hyperexcitability in a human case of tuberous sclerosis complex and mice lacking neuronal expression of TSC1. Ann Neurol 2007; 61:139-52. [PMID: 17279540 DOI: 10.1002/ana.21058] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To identify brain regions, cell types, or both that generate abnormal electrical discharge in tuberous sclerosis complex (TSC). Here we examined excitatory and inhibitory synaptic currents in human tissue samples obtained from a TSC patient with no discernible cortical tubers and acute neocortical brain slices from a mouse featuring synapsin-driven conditional deletion of a TSC1 gene. These studies were designed to assess whether TSC gene inactivation alters excitability. METHODS We used visualized patch-clamp (human and mouse) and extracellular field (mouse) recordings. Additional mice were processed for immunohistochemistry or Western blot analysis. RESULTS Detailed anatomic studies in brain tissue sections from synapsin-TSC1 conditional knock-out mice failed to uncover gross anatomic defects, loss of lamination, or frank tuber formation. However, regions of abnormal and potentially activated neocortex were shown using antibodies to nonphosphorylated neurofilaments (SMI-311) and immediate early genes (c-Fos). Extracellular recordings from neocortical slices, examining synaptic activity in these regions, demonstrated clear differences in excitability between conditional knock-out and age-matched control mice. Whole-cell patch-clamp recordings demonstrated excitatory synaptic currents with strikingly long duration and epileptiform discharge patterns, similar to waveforms observed in our human tissue samples. These events were 1-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor mediated and were most prominent in neocortex. Normal-appearing inhibitory postsynaptic currents (human) and intrinsic neuronal firing patterns (mouse) were also recorded. INTERPRETATION This combination of human and mouse tissue studies suggests, for the first time, that synaptic excitation is altered in a direction that favors seizure generation in TSC brain tissue regardless of cortical tubers.
Collapse
Affiliation(s)
- Yanling Wang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
121
|
Aronica E, Redeker S, Boer K, Spliet WGM, van Rijen PC, Gorter JA, Troost D. Inhibitory networks in epilepsy-associated gangliogliomas and in the perilesional epileptic cortex. Epilepsy Res 2007; 74:33-44. [PMID: 17267178 DOI: 10.1016/j.eplepsyres.2006.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Revised: 11/17/2006] [Accepted: 12/19/2006] [Indexed: 01/12/2023]
Abstract
Developmental glioneuronal lesions, such as gangliogliomas (GG) are increasingly recognized causes of chronic pharmaco-resistant epilepsy. It has been postulated that chronic epilepsy in patients with malformations of cortical development is associated with dysfunction of the inhibitory GABA-ergic system. We aimed to identify the subtypes of interneurons present within GG specimens and the expression and cellular distribution patterns of GABA receptors (GABAR) and GABA transporter 1 (GAT1). The expression of the various components of the GABA-ergic system were also analyzed in the perilesional cortex. We investigated the expression of parvalbumin, calbindin, calretinin, GABA(A)R (a1 subunit)(,) GABA(B) (R1 and R2) and GAT-1 using immunocytochemistry in 30 specimens of GG obtained during epilepsy surgery, including 10 cases with sufficient amount of perilesional cortex. Immunocytochemistry for calbindin (CB), calretinin (CR) and parvalbumin (PV) demonstrate the presence of inhibitory neurons of different subtypes within the GG specimens. Calcium-binding protein-positive interneurons represent a small fraction of the total neuronal population. Both GABA(A)R and GABA(B)R (R1 and R2) subtypes were detected within the neuronal component of GG specimens. In addition, GABA(B)R2 immunoreactivity (IR) was observed in glial cells. GG specimens displayed also expression of GAT-1 IR. Compared to normal cortex, the density of PV- and CB-immunoreactive interneurons was reduced in the perilesional cortex of GG patients, whereas CR-labeling was similar to that observed in normal cortex. GAT-1 IR was also significantly reduced in the perilesional specimens. The cellular distribution of components of the GABA-ergic system in GG, together with the perilesional changes suggest that alterations of the GABA-ergic system may contribute to the complex abnormal functional network of these highly epileptogenic developmental lesions.
Collapse
Affiliation(s)
- E Aronica
- Department of (Neuro) Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
122
|
Chen HX, Xiang H, Roper SN. Impaired developmental switch of short-term plasticity in pyramidal cells of dysplastic cortex. Epilepsia 2007; 48:141-8. [PMID: 17241221 DOI: 10.1111/j.1528-1167.2006.00896.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSES Human cortical dysplasia (CD) has a strong clinical association with intractable epilepsy. It is believed that neuronal networks of CD are hyperexcitable, which may initiate seizures. The underlying mechanisms are, however, still poorly understood. We have studied the alterations of synaptic properties in a rat model of CD, in utero irradiation. METHODS Pregnant rats on E17 were exposed to 225 cGy of external gamma-irradiation and offspring were used for experiments. Coronal somatosensory brain slices were obtained from 13 - 60-day-old rats. Visualized whole-cell recordings were performed on pyramidal neurons in layer V of control neocortex and the middle region of dysplastic cortex. Short-term plasticity (STP) of evoked excitatory postsynaptic currents (EPSCs) was induced by 5-pulse (20 Hz or 50 Hz) train stimulations. RESULTS STP of EPSCs in pyramidal cells of the normal cortex induced by 5-pulse train stimulation (20 Hz or 50 Hz) switched from depression at P13-15 to facilitation at P28-35 and P55-60. However, STP in CD at P28-35 and P 55-60 still showed depression. The failure rate of synaptic responses to the first pulse of the stimulation tested at P 28-35 was significantly lower in CD than in controls. The depression of STP in CD at P28-35 was altered neither by blocking the desensitization of glutamate receptors nor by blocking postsynaptic Ca(2+) rise. It was also not affected by an antagonist of mGluR2/3, LY341495. CONCLUSIONS Our results indicate that, compared to control cortex, the presynaptic release probability of excitatory synapses in CD pyramidal cells at P28-35 and P55-60 remains abnormally high and reduced tonic activity of presynaptic mGluR2/3 may contribute to this elevated release probability.
Collapse
Affiliation(s)
- Huan-Xin Chen
- Department of Neurological Surgery, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA.
| | | | | |
Collapse
|
123
|
Trotter SA, Kapur J, Anzivino MJ, Lee KS. GABAergic synaptic inhibition is reduced before seizure onset in a genetic model of cortical malformation. J Neurosci 2006; 26:10756-67. [PMID: 17050714 PMCID: PMC6674751 DOI: 10.1523/jneurosci.2323-06.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Malformations of the neocortex are a common cause of human epilepsy; however, the critical issue of how disturbances in cortical organization render neurons epileptogenic remains controversial. The present study addressed this issue by studying inhibitory structure and function before seizure onset in the telencephalic internal structural heterotopia (tish) rat, which is a genetic model of heightened seizure susceptibility associated with a prominent neocortical malformation. Both normally positioned (normotopic) and misplaced (heterotopic) pyramidal neurons in the tish neocortex exhibited lower resting membrane potentials and a tendency toward higher input resistance compared with pyramidal neurons from control brains. GABAergic synaptic transmission was attenuated in the tish cortex, characterized by significant reductions in the frequency of spontaneous IPSCs (sIPSCs) and miniature IPSCs recorded from pyramidal neurons. In addition, the amplitudes of sIPSCs were reduced in the tish neocortex, an effect that was more profound in the normotopic cells. Immunohistochemical assessment of presynaptic GABAergic terminals showed a reduction in terminals surrounding pyramidal cell somata in normotopic and heterotopic tish neocortex. The attenuation of inhibitory innervation was more prominent for normotopic neurons and was associated with a reduction in a subset of GABAergic interneurons expressing the calcium-binding protein parvalbumin. Together, these findings indicate that key facets of inhibitory GABAergic neurotransmission are disturbed before seizure onset in a brain predisposed to developing seizures. Such alterations represent a rational substrate for reduced seizure thresholds associated with certain cortical malformations.
Collapse
Affiliation(s)
- Stacey A Trotter
- Department of Neuroscience, Health Sciences Center, Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
124
|
Cepeda C, André VM, Levine MS, Salamon N, Miyata H, Vinters HV, Mathern GW. Epileptogenesis in pediatric cortical dysplasia: the dysmature cerebral developmental hypothesis. Epilepsy Behav 2006; 9:219-35. [PMID: 16875879 DOI: 10.1016/j.yebeh.2006.05.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 05/22/2006] [Accepted: 05/26/2006] [Indexed: 10/24/2022]
Abstract
Cortical dysplasia (CD) is the most frequent pathology found in pediatric epilepsy surgery patients with a nearly 80% incidence in children younger than 3 years of age. Younger cases are more likely to have multilobar and severe forms of CD compared with older patients with focal and mild CD. Using clinico-pathologic techniques, we have initiated studies that unravel the timing of CD pathogenesis that in turn suggest mechanisms of epileptogenesis. Morphological comparisons provided the first clue when we observed that cytomegalic neurons have similarities with human subplate cells, and balloon cells have features analogous to radial glia. This suggested that failure of prenatal cell degeneration before birth could explain the presence of postnatal dysmorphic cells in CD tissue. Neuronal density and MRI volumes indicate that there were more neurons than expected in CD tissue, and they were probably produced in later neurogenesis cell cycles. Together these findings imply that there is partial failure in later phases of cortical development that might explain the distinctive histopathology of CD. If correct, epileptogenesis should be the consequence of incomplete cellular maturation in CD tissue. In vitro electrophysiological findings are consistent with this notion. They show that balloon cells have glial features, cytomegalic neurons and recently discovered cytomegalic interneurons reveal atypical hyperexcitable intrinsic membrane properties, there are more GABA than glutamate spontaneous synaptic inputs onto neurons, and in a subset of cells NMDA and GABA(A) receptor-mediated responses and subunit expression are similar to those of immature neurons. Our studies support the hypothesis that there are retained prenatal cells and neurons with immature cellular and synaptic properties in pediatric CD tissue. We propose that local interactions of dysmature cells with normal postnatal neurons produce seizures. This hypothesis will drive future studies aimed at elucidating mechanisms of epileptogenesis in pediatric CD tissue.
Collapse
Affiliation(s)
- Carlos Cepeda
- Division of Neurosurgery, Department of Neurology, The Brain Research Institute and The Mental Retardation Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
125
|
Garbelli R, Meroni A, Magnaghi G, Beolchi MS, Ferrario A, Tassi L, Bramerio M, Spreafico R. Architectural (Type IA) focal cortical dysplasia and parvalbumin immunostaining in temporal lobe epilepsy. Epilepsia 2006; 47:1074-8. [PMID: 16822257 DOI: 10.1111/j.1528-1167.2006.00577.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE We analyzed 26 surgically treated patients operated on for intractable epilepsy associated with type IA (architectural) cortical dysplasia, to investigate neuropathologic and immunocytochemical features, particularly of the gamma-aminobutyric acid (GABA)ergic system, and to compare the findings with those observed in normal cortex. METHODS Routinely stained slides and serial sections immunostained for neurofilaments (SMI 311), microtubule-associated protein-2 (MAP-2), neuron-specific nuclear protein (NeuN), glial fibrillary acidic protein (GFAP), parvalbumin (PV), calbindin (CB), and calretinin (CR) were processed. Some sections were processed by using single-immunoperoxidase procedures; others were processed for double immunofluorescence labelling and observed by confocal microscopy. The density of inhibitory PV-immunoreactive interneurons was quantitatively assessed in all patients and control cases by using a two-dimensional cell-counting technique on PV immunostained sections. RESULTS The density of PV-immunoreactive interneurons was significantly reduced in this group of patients, whereas CB- and CR- positivity appeared similar to those in normal cortex. In five cases, architectural abnormalities, in addition to those that defined type 1A dysplasia, were present and characterized by abnormal clusters of neurons and laminar cellular loss in superficial cortical laminate. CONCLUSIONS The reduction of PV expression in type IA cortical dysplasia suggests an impairment of the GABAergic system as a possible mechanism for the epileptogenicity; in addition, PV immunoreactivity can be helpful in the neuropathologic characterization of this form of cortical dysplasia.
Collapse
Affiliation(s)
- Rita Garbelli
- Department of Experimental Neurophysiology, National Neurological Institute C. Besta,, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Epsztein J, Milh M, Id Bihi R, Jorquera I, Ben-Ari Y, Represa A, Crépel V. Ongoing epileptiform activity in the post-ischemic hippocampus is associated with a permanent shift of the excitatory-inhibitory synaptic balance in CA3 pyramidal neurons. J Neurosci 2006; 26:7082-92. [PMID: 16807337 PMCID: PMC6673908 DOI: 10.1523/jneurosci.1666-06.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ischemic strokes are often associated with late-onset epilepsy, but the underlying mechanisms are poorly understood. In the hippocampus, which is one of the regions most sensitive to ischemic challenge, global ischemia induces a complete loss of CA1 pyramidal neurons, whereas the resistant CA3 pyramidal neurons display a long-term hyperexcitability several months after the insult. The mechanisms of this long-term hyperexcitability remain unknown despite its clinical implication. Using chronic in vivo EEG recordings and in vitro field recordings in slices, we now report spontaneous interictal epileptiform discharges in the CA3 area of the hippocampus from post-ischemic rats several months after the insult. Whole-cell recordings from CA3 pyramidal neurons, revealed a permanent reduction in the frequency of spontaneous and miniature GABAergic IPSCs and a parallel increase in the frequency of spontaneous and miniature glutamatergic postsynaptic currents. Global ischemia also induced a dramatic loss of GABAergic interneurons and terminals together with an increase in glutamatergic terminals in the CA3 area of the hippocampus. Altogether, our results show a morpho-functional reorganization in the CA3 network several months after global ischemia, resulting in a net shift in the excitatory-inhibitory balance toward excitation that may constitute a substrate for the generation of epileptiform discharges in the post-ischemic hippocampus.
Collapse
|
127
|
Kapur J. Disordered migration of interneurons within focal cortical dysplasia. Epilepsy Curr 2006; 6:96-8. [PMID: 16761073 PMCID: PMC1464163 DOI: 10.1111/j.1535-7511.2006.00110.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Dysfunction of Synaptic Inhibition in Epilepsy Associated with Focal Cortical Dysplasia Calcagnotto ME, Paredes MF, Tihan T, Barbaro NM, Baraban SC J Neurosci 2005;25(42):9649–9657 Focal cortical dysplasia (FCD) is a common and important cause of medically intractable epilepsy. In patients with temporal lobe epilepsy and in several animal models, compromised neuronal inhibition, mediated by GABA, contributes to seizure genesis. Although reduction in GABAergic interneuron density has been reported in FCD tissue samples, there is little available information on the resulting physiological changes in synaptic inhibition and the potential contribution of these changes to epileptogenesis in the dysplastic human brain. Using visualized whole-cell patch-clamp recordings from identified neurons in tissue slices obtained from patients with FCD, we demonstrate that GABAA-receptor-mediated inhibition is substantially altered in regions of dysplasia. These alterations include a significant reduction in IPSC frequency and a potentially compensatory decrease in transporter-mediated GABA reuptake function; the latter is marked by a significant increase in the decay-time constant for evoked and spontaneous IPSCs and a lack of effect of the GABA transportinhibitor 1-[2 ([(diphenylmethylene)imino]oxy)ethyl]-1,2,5, 6-tetrahydro-3-pyridinecarboxylic acid hydrochloride on IPSC kinetics. Immunohistochemical staining revealed a scattering of GABAergic interneurons across dysplastic cortex and striking reductions in GABA transporter expression. Together, these results suggest that profound alterations in GABA-mediated synaptic inhibition play an essential role in the process of epileptogenesis in patients with FCD.
Collapse
|
128
|
Palma E, Amici M, Sobrero F, Spinelli G, Di Angelantonio S, Ragozzino D, Mascia A, Scoppetta C, Esposito V, Miledi R, Eusebi F. Anomalous levels of Cl- transporters in the hippocampal subiculum from temporal lobe epilepsy patients make GABA excitatory. Proc Natl Acad Sci U S A 2006; 103:8465-8. [PMID: 16709666 PMCID: PMC1482515 DOI: 10.1073/pnas.0602979103] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mRNA levels of NKCC1, an inwardly directed Na(+), K(+)-2Cl(-) cotransporter that facilitates the accumulation of intracellular Cl(-), and of KCC2, an outwardly directed K(+)-Cl(-) cotransporter that extrudes Cl(-), were studied in surgically resected brain specimens from drug-resistant temporal lobe (TL) epilepsy (TLE) patients. Quantitative RT-PCR analyses of the mRNAs extracted from the human TLE-associated brain regions revealed an up-regulation of NKCC1 mRNA and a down-regulation of KCC2 mRNA in the hippocampal subiculum, compared with the hippocampus proper or the TL neocortex, suggesting an abnormal transcription of Cl(-) transporters in the TLE subiculum. In parallel experiments, cell membranes isolated from the same TLE-associated brain regions were injected into Xenopus oocytes that rapidly incorporated human GABA(A) receptors into their surface membrane. The GABA currents elicited in oocytes injected with membranes from the subiculum had a more depolarized reversal potential (E(GABA)) compared with the hippocampus proper or the neocortex. The NKCC1 blocker bumetanide or a temperature decrease of 10 degrees C shifted the GABA-current E(GABA) more negative in oocytes injected with membranes from TLE hippocampal subiculum, matching the E(GABA) of TL neocortex-injected oocytes. We conclude that the anomalous expression of both Cl(-) transporters, NKCC1 and KCC2 [corrected] in TLE hippocampal subiculum probably causes altered Cl(-) transport in the "epileptic" neurons, as revealed in the microtransplanted Xenopus oocytes, and renders GABA aberrantly "exciting," a feature that may contribute to the precipitation of epileptic seizures.
Collapse
Affiliation(s)
- E. Palma
- *Istituto Pasteur, Fondazione Cenci Bolognetti and Dipartimento di Fisiologia Umana e Farmacologia, Centro di Eccellenza Biologia e Medicina Molecolare, Università di Roma “La Sapienza,” Piazzale A. Moro 5, 00185 Rome, Italy
- Neuromed Istituto di Ricovero e Cura a Carattere Scientifico, Via Atinese 18, 86077 Pozzilli, Italy
- Istituto di Medicina e Scienza dello Sport, CONI, Via dei Campi Sportivi LG, 00197 Rome, Italy; and
- To whom correspondence may be addressed. E-mail:
or
| | - M. Amici
- *Istituto Pasteur, Fondazione Cenci Bolognetti and Dipartimento di Fisiologia Umana e Farmacologia, Centro di Eccellenza Biologia e Medicina Molecolare, Università di Roma “La Sapienza,” Piazzale A. Moro 5, 00185 Rome, Italy
| | - F. Sobrero
- *Istituto Pasteur, Fondazione Cenci Bolognetti and Dipartimento di Fisiologia Umana e Farmacologia, Centro di Eccellenza Biologia e Medicina Molecolare, Università di Roma “La Sapienza,” Piazzale A. Moro 5, 00185 Rome, Italy
| | - G. Spinelli
- *Istituto Pasteur, Fondazione Cenci Bolognetti and Dipartimento di Fisiologia Umana e Farmacologia, Centro di Eccellenza Biologia e Medicina Molecolare, Università di Roma “La Sapienza,” Piazzale A. Moro 5, 00185 Rome, Italy
| | - S. Di Angelantonio
- *Istituto Pasteur, Fondazione Cenci Bolognetti and Dipartimento di Fisiologia Umana e Farmacologia, Centro di Eccellenza Biologia e Medicina Molecolare, Università di Roma “La Sapienza,” Piazzale A. Moro 5, 00185 Rome, Italy
- Istituto di Medicina e Scienza dello Sport, CONI, Via dei Campi Sportivi LG, 00197 Rome, Italy; and
| | - D. Ragozzino
- *Istituto Pasteur, Fondazione Cenci Bolognetti and Dipartimento di Fisiologia Umana e Farmacologia, Centro di Eccellenza Biologia e Medicina Molecolare, Università di Roma “La Sapienza,” Piazzale A. Moro 5, 00185 Rome, Italy
- Neuromed Istituto di Ricovero e Cura a Carattere Scientifico, Via Atinese 18, 86077 Pozzilli, Italy
| | - A. Mascia
- Neuromed Istituto di Ricovero e Cura a Carattere Scientifico, Via Atinese 18, 86077 Pozzilli, Italy
| | - C. Scoppetta
- Unità Operativa Neurologia 2, Ospedale S. Camillo, 00152 Rome, Italy
| | - V. Esposito
- Neuromed Istituto di Ricovero e Cura a Carattere Scientifico, Via Atinese 18, 86077 Pozzilli, Italy
| | - R. Miledi
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550
- To whom correspondence may be addressed. E-mail:
or
| | - F. Eusebi
- *Istituto Pasteur, Fondazione Cenci Bolognetti and Dipartimento di Fisiologia Umana e Farmacologia, Centro di Eccellenza Biologia e Medicina Molecolare, Università di Roma “La Sapienza,” Piazzale A. Moro 5, 00185 Rome, Italy
- Istituto di Medicina e Scienza dello Sport, CONI, Via dei Campi Sportivi LG, 00197 Rome, Italy; and
| |
Collapse
|
129
|
Xiang H, Chen HX, Yu XX, King MA, Roper SN. Reduced excitatory drive in interneurons in an animal model of cortical dysplasia. J Neurophysiol 2006; 96:569-78. [PMID: 16641376 DOI: 10.1152/jn.01133.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cortical dysplasia (CD) is strongly associated with epilepsy. Enhanced excitability in dysplastic neuronal networks is believed to contribute to epileptogenesis, but the underlying mechanisms for the hyperexcitability are poorly understood. Cortical GABAergic interneurons provide the principal inhibition in the neuronal networks by forming inhibitory synapses on excitatory neurons. The aim of the present study was to determine if the function of interneurons in CD is compromised. In a rat model of CD, in utero irradiation, we studied spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs) in cortical interneurons using whole cell recording techniques. Two types of interneurons, type I and type II, were identified based on their distinctive spike patterns and short-term synaptic plasticity. We found that the frequencies of sEPSCs and mEPSCs were significantly decreased in both types of interneurons in CD. However, the amplitude and kinetics of sEPSCs and mEPSCs were not different. Five-pulse, 20-Hz stimulation produced short-term depression in type I interneurons in both CD and control tissue. Type II interneurons showed a robust short-term facilitation in both CD and control tissue. Morphological analysis of biocytin-filled neurons revealed that dendritic trees of both types of interneurons were not altered in CD. Our results demonstrate that the excitatory drive, namely sEPSCs and mEPSCs, in two main types of interneuron is largely attenuated in CD, probably due to a reduction in the number of excitatory synapses on both types of interneurons in CD.
Collapse
Affiliation(s)
- Hui Xiang
- Department of Neurological Surgery and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, USA
| | | | | | | | | |
Collapse
|
130
|
Wang VY, Chang EF, Barbaro NM. Focal cortical dysplasia: a review of pathological features, genetics, and surgical outcome. Neurosurg Focus 2006; 20:E7. [PMID: 16459997 DOI: 10.3171/foc.2006.20.1.8] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Focal cortical dysplasia (FCD) is found in approximately one-half of patients with medically refractory epilepsy. These lesions may involve only mild disorganization of the cortex, but they may also contain abnormal neuronal elements such as balloon cells. Advances in neuroimaging have allowed better identification of these lesions, and thus more patients have become surgical candidates. Molecular biology techniques have been used to explore the genetics and pathophysiological characteristics of FCD. Data from surgical series have shown that surgery often results in significant reduction or cessation of seizures, especially if the entire lesion is resected.
Collapse
Affiliation(s)
- Vincent Y Wang
- Department of Neurological Surgery, University of California, San Francisco, California 94130, USA
| | | | | |
Collapse
|