101
|
Hudson BD. Using Biosensors to Study Free Fatty Acid Receptor Pharmacology and Function. Handb Exp Pharmacol 2016; 236:79-100. [PMID: 27757763 DOI: 10.1007/164_2016_58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The free fatty acid (FFA) family of G protein coupled receptors (GPCRs) has generated significant interest for exploiting its members as potential drug targets. However, unravelling the complex pharmacology of this family of receptors has proven challenging. In recent years the use of biosensor technologies capable of assessing biological functions in living cells, and in real time, has greatly enhanced our ability to study GPCR pharmacology and function. These include genetically encoded sensors that change the intensity or wavelength of light emitted from a bioluminescent or fluorescent protein in response to a stimulus, as well as non-genetically encoded sensors able to measure more global cellular changes, such as mass redistribution within a cell. This chapter will examine how these sensors can be used to study GPCRs, and in particular how they are helping uncover the pharmacology of the FFA family of receptors.
Collapse
Affiliation(s)
- Brian D Hudson
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
102
|
Lu J, Li J. Label-Free Imaging of Dynamic and Transient Calcium Signaling in Single Cells. Angew Chem Int Ed Engl 2015; 54:13576-80. [PMID: 26337802 DOI: 10.1002/anie.201505991] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 01/12/2023]
Abstract
Cell signaling consists of diverse events that occur at various temporal and spatial scales, ranging from milliseconds to hours and from single biomolecules to cell populations. The pathway complexities require the development of new techniques that detect the overall signaling activities and are not limited to quantifying a single event. A plasmonic-based electrochemical impedance microscope (P-EIM) that can provide such data with excellent temporal and spatial resolution and does not require the addition of any labels for detection has now been developed. The highly dynamic and transient calcium signaling activities at the early stage of G-protein-coupled receptor (GPCR) stimulation were thus studied. It could be shown that a subpopulation of cells is more responsive towards agonist stimulation, and the heterogeneity of the local distributions and the transient activities of the ion channels during agonist-activated calcium flux in single HeLa cells were investigated.
Collapse
Affiliation(s)
- Jin Lu
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084 (China)
| | - Jinghong Li
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084 (China).
| |
Collapse
|
103
|
Lu J, Li J. Label-Free Imaging of Dynamic and Transient Calcium Signaling in Single Cells. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
104
|
Zhuo Y, Cunningham BT. Label-Free Biosensor Imaging on Photonic Crystal Surfaces. SENSORS 2015; 15:21613-35. [PMID: 26343684 PMCID: PMC4610529 DOI: 10.3390/s150921613] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 12/22/2022]
Abstract
We review the development and application of nanostructured photonic crystal surfaces and a hyperspectral reflectance imaging detection instrument which, when used together, represent a new form of optical microscopy that enables label-free, quantitative, and kinetic monitoring of biomaterial interaction with substrate surfaces. Photonic Crystal Enhanced Microscopy (PCEM) has been used to detect broad classes of materials which include dielectric nanoparticles, metal plasmonic nanoparticles, biomolecular layers, and live cells. Because PCEM does not require cytotoxic stains or photobleachable fluorescent dyes, it is especially useful for monitoring the long-term interactions of cells with extracellular matrix surfaces. PCEM is only sensitive to the attachment of cell components within ~200 nm of the photonic crystal surface, which may correspond to the region of most interest for adhesion processes that involve stem cell differentiation, chemotaxis, and metastasis. PCEM has also demonstrated sufficient sensitivity for sensing nanoparticle contrast agents that are roughly the same size as protein molecules, which may enable applications in "digital" diagnostics with single molecule sensing resolution. We will review PCEM's development history, operating principles, nanostructure design, and imaging modalities that enable tracking of optical scatterers, emitters, absorbers, and centers of dielectric permittivity.
Collapse
Affiliation(s)
- Yue Zhuo
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA.
| | - Brian T Cunningham
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA.
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA.
| |
Collapse
|
105
|
Abe H, Narimatsu M, Watanabe T, Furumoto T, Yokouchi Y, Nishijima Y, Kita S, Tomitaka A, Ota S, Takemura Y, Baba T. Living-cell imaging using a photonic crystal nanolaser array. OPTICS EXPRESS 2015; 23:17056-17066. [PMID: 26191714 DOI: 10.1364/oe.23.017056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We proposed and demonstrated a label-free imaging method for living cells using a GaInAsP H0-type photonic crystal nanolaser array. We integrated 441 nanolasers in an arrayed configuration and achieved photopumped lasing with a 100% yield. Then, we attached HeLa cells on it, measured the wavelengths of all nanolasers and used them as pixel information. We acquired cell images, which partially corresponds to optical micrographs and probably reflects the attachment condition of the cells. We improved the refractive index resolution from ~10(-2) to 2 × 10(-3) by incorporating a nanoslot into each nanolaser and compensating the nonuniformity of each index sensitivity.
Collapse
|
106
|
Camp ND, Lee KS, Wacker-Mhyre JL, Kountz TS, Park JM, Harris DA, Estrada M, Stewart A, Wolf-Yadlin A, Hague C. Individual protomers of a G protein-coupled receptor dimer integrate distinct functional modules. Cell Discov 2015; 1. [PMID: 26617989 PMCID: PMC4658663 DOI: 10.1038/celldisc.2015.11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent advances in proteomic technology reveal G-protein-coupled receptors (GPCRs) are organized as large, macromolecular protein complexes in cell membranes, adding a new layer of intricacy to GPCR signaling. We previously reported the α1D-adrenergic receptor (ADRA1D)—a key regulator of cardiovascular, urinary and CNS function—binds the syntrophin family of PDZ domain proteins (SNTA, SNTB1, and SNTB2) through a C-terminal PDZ ligand interaction, ensuring receptor plasma membrane localization and G-protein coupling. To assess the uniqueness of this novel GPCR complex, 23 human GPCRs containing Type I PDZ ligands were subjected to TAP/MS proteomic analysis. Syntrophins did not interact with any other GPCRs. Unexpectedly, a second PDZ domain protein, scribble (SCRIB), was detected in ADRA1D complexes. Biochemical, proteomic, and dynamic mass redistribution analyses indicate syntrophins and SCRIB compete for the PDZ ligand, simultaneously exist within an ADRA1D multimer, and impart divergent pharmacological properties to the complex. Our results reveal an unprecedented modular dimeric architecture for the ADRA1D in the cell membrane, providing unexpected opportunities for fine-tuning receptor function through novel protein interactions in vivo, and for intervening in signal transduction with small molecules that can stabilize or disrupt unique GPCR:PDZ protein interfaces.
Collapse
Affiliation(s)
- Nathan D Camp
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Kyung-Soon Lee
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Timothy S Kountz
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ji-Min Park
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | - Dorathy-Ann Harris
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | - Marianne Estrada
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | - Aaron Stewart
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | - Alejandro Wolf-Yadlin
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Chris Hague
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
107
|
Wegener J. Cell-Based Microarrays for In Vitro Toxicology. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:335-358. [PMID: 26077916 DOI: 10.1146/annurev-anchem-071213-020051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
DNA/RNA and protein microarrays have proven their outstanding bioanalytical performance throughout the past decades, given the unprecedented level of parallelization by which molecular recognition assays can be performed and analyzed. Cell microarrays (CMAs) make use of similar construction principles. They are applied to profile a given cell population with respect to the expression of specific molecular markers and also to measure functional cell responses to drugs and chemicals. This review focuses on the use of cell-based microarrays for assessing the cytotoxicity of drugs, toxins, or chemicals in general. It also summarizes CMA construction principles with respect to the cell types that are used for such microarrays, the readout parameters to assess toxicity, and the various formats that have been established and applied. The review ends with a critical comparison of CMAs and well-established microtiter plate (MTP) approaches.
Collapse
Affiliation(s)
- Joachim Wegener
- Institute for Analytical Chemistry, University of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
108
|
Ku YF, Li HY, Hsieh WH, Chau LK, Chang GE. Enhanced sensitivity in injection-molded guided-mode-resonance sensors via low-index cavity layers. OPTICS EXPRESS 2015; 23:14850-9. [PMID: 26072843 DOI: 10.1364/oe.23.014850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We present an investigation on the use of low-index cavity layers to enhance the sensitivity of injection-molded guided-mode resonance (GMR) sensors. By adjusting the sputtering parameters, a low-index cavity layer is created at the interface between the waveguide layer and the substrate. Refractive index measurements show that a sensitivity enhancement of up to 220% is achieved with a cavity layer, in comparison to a reference GMR sensor without a cavity layer. Finite-element-method simulations were performed, and the results indicate that the cavities significantly redistribute the resonance mode profile and thus enhances the sensitivity. The present investigation demonstrates a new method for enhancing the sensitivity of injection-molded GMR sensors for high-sensitivity label-free biosensing.
Collapse
|
109
|
Triggs GJ, Fischer M, Stellinga D, Scullion MG, Evans GJO, Krauss TF. Spatial Resolution and Refractive Index Contrast of Resonant Photonic Crystal Surfaces for Biosensing. IEEE PHOTONICS JOURNAL 2015; 7:6801810. [PMID: 26356353 PMCID: PMC4561521 DOI: 10.1109/jphot.2015.2435699] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
By depositing a resolution test pattern on top of a Si3N4 photonic crystal resonant surface, we have measured the dependence of spatial resolution on refractive index contrast Δn. Our experimental results and finite-difference time-domain (FDTD) simulations at different refractive index contrasts show that the spatial resolution of our device reduces with reduced contrast, which is an important consideration in biosensing, where the contrast may be of order 10-2. We also compare 1-D and 2-D gratings, taking into account different incidence polarizations, leading to a better understanding of the excitation and propagation of the resonant modes in these structures, as well as how this contributes to the spatial resolution. At Δn = 0.077, we observe resolutions of 2 and 6 μm parallel to and perpendicular to the grooves of a 1-D grating, respectively, and show that for polarized illumination of a 2-D grating, resolution remains asymmetrical. Illumination of a 2-D grating at 45° results in symmetric resolution. At very low index contrast, the resolution worsens dramatically, particularly for Δn < 0.01, where we observe a resolution exceeding 10 μm for our device. In addition, we measure a reduction in the resonance linewidth as the index contrast becomes lower, corresponding to a longer resonant mode propagation length in the structure and contributing to the change in spatial resolution.
Collapse
Affiliation(s)
- G. J. Triggs
- Department of Physics, University of York, York YO24 1UB, U.K
| | - M. Fischer
- Department of Physics, University of York, York YO24 1UB, U.K
| | - D. Stellinga
- Department of Physics, University of York, York YO24 1UB, U.K
| | - M. G. Scullion
- Department of Physics, University of York, York YO24 1UB, U.K
| | - G. J. O. Evans
- Department of Biology and Hull York Medical School, University of York, York, YO24 1UB, U.K
| | - T. F. Krauss
- Department of Physics, University of York, York YO24 1UB, U.K
| |
Collapse
|
110
|
Fang Y. Total internal reflection fluorescence quantification of receptor pharmacology. BIOSENSORS-BASEL 2015; 5:223-40. [PMID: 25922915 PMCID: PMC4493547 DOI: 10.3390/bios5020223] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 12/30/2022]
Abstract
Total internal reflection fluorescence (TIRF) microscopy has been widely used as a single molecule imaging technique to study various fundamental aspects of cell biology, owing to its ability to selectively excite a very thin fluorescent volume immediately above the substrate on which the cells are grown. However, TIRF microscopy has found little use in high content screening due to its complexity in instrumental setup and experimental procedures. Inspired by the recent demonstration of label-free evanescent wave biosensors for cell phenotypic profiling and drug screening with high throughput, we had hypothesized and demonstrated that TIRF imaging is also amenable to receptor pharmacology profiling. This paper reviews key considerations and recent applications of TIRF imaging for pharmacology profiling.
Collapse
Affiliation(s)
- Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA.
| |
Collapse
|
111
|
Fang Y. Combining label-free cell phenotypic profiling with computational approaches for novel drug discovery. Expert Opin Drug Discov 2015; 10:331-43. [DOI: 10.1517/17460441.2015.1020788] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ye Fang
- Corning Inc., Biochemical Technologies, Science and Technology Division, Corning, NY 14831, USA
| |
Collapse
|
112
|
Chandrasekaran S, Deng H, Fang Y. PTEN deletion potentiates invasion of colorectal cancer spheroidal cells through 3D Matrigel. Integr Biol (Camb) 2015; 7:324-34. [PMID: 25625883 DOI: 10.1039/c4ib00298a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PTEN (phosphatase and tensin homolog), a tumour suppressor negatively regulating the PI3K signalling pathway, is the second most frequently mutated gene in human cancers. Decreased PTEN expression is correlated with colorectal cancer metastases and poor patient survival. Three dimensional (3D) multicellular spheroid models have been postulated to bridge the gap between 2D cell models and animal models for cancer research and drug discovery. However, little is known about the impact of PTEN deletion on the invasion of colon cancer spheroidal cells through a 3D extracellular matrix, and current techniques are limited in their ability to study in vitro 3D cell models in real-time. Here, we investigated the migration and invasion behaviours of the colon cancer cell line HCT116 and its PTEN-/- isogenic cell line using three different in vitro assays, wound healing, transwell invasion, and label-free single cell 3D(2) invasion assays enabled by a resonant waveguide grating (RWG) biosensor. Light microscopic and RWG imaging showed that PTEN deletion influences the spheroid formation of HCT116 cells at high seeding density, and accelerates the spontaneous transfer from the spheroid to substrate surfaces. In vitro migration and invasion assays showed that PTEN knockout increases the 2D migration speed of HCT116 cells, and the invasion rate of individual cells through Matrigel or cells in the spheroid through 3D Matrigel; moreover, the PI3K inhibitor treatment drastically reduces the invasiveness of both cell lines. This study suggests that PTEN knockout potentiates the invasiveness of colorectal cancer spheroidal cells through a 3D extracellular matrix, and the label-free single cell assay is a powerful tool for investigating cancer cell invasion, in particular using 3D cell models.
Collapse
Affiliation(s)
- Siddarth Chandrasekaran
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA.
| | | | | |
Collapse
|
113
|
Multiplexing Label-Free and Fluorescence-Based Methods for Pharmacological Characterization of GPCR Ligands. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2015. [DOI: 10.1007/978-1-4939-2617-6_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
114
|
Abstract
About one third of currently marketed drugs target G protein-coupled receptors (GPCRs), which form the largest group of transmembrane proteins in the human proteome. GPCRs are ubiquitously expressed throughout the human body and play a pivotal role in a vast number of physiological and pathophysiological processes. Because of their intriguing complexity, their relevance, and yet unexploited potential in the treatment of diseases, GPCRs are studied intensively by both academic and industrial research labs.Classical biochemical and molecular biology techniques, including traditional second messenger assays, took biomedical research to the next level and represent the fascinating power of in vitro pharmacology. While extremely efficient in capturing one clearly defined cellular readout, those methods do not authentically portray the events taking place in living cells as a whole; hence the process of drug discovery runs the risk to lose sight of a wider context already in early stages. Label-free cell-based assays hold the promise to overcome these shortcomings by considering cellular processes holistically. If combined with diligent assay adjustments, dynamic mass redistribution (DMR) technology is an excellent tool to investigate GPCR signaling. In this article we aim to provide guidance for scientists seeking for information on how to set up and optimize DMR assays with the objective to establish a knowledge base on deciphering integrated cellular readouts. For this reason we focus on a basic DMR protocol for the investigation of the long-chain fatty acid FFA1 receptor as a model family A GPCR and complement it with information that allow a sophisticated approach to more specialized scientific questions with the use of this comparatively novel method.
Collapse
Affiliation(s)
- Manuel Grundmann
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany,
| | | |
Collapse
|
115
|
Wu M, Li M. Resonant waveguide grating for monitoring biomolecular interactions. Methods Mol Biol 2015; 1278:139-152. [PMID: 25859947 DOI: 10.1007/978-1-4939-2425-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Label-free detection technologies have been widely used to characterize biomolecular interactions without having to label the target molecules. These technologies exhibit considerable potential in facilitating assay development and enabling new integrated readouts. When combined with high-throughput capability, label-free detection may be applied to small molecule screens for drug candidates. Based on the resonant waveguide grating biosensors, a label-free high-throughput detection system, the Epic(®) System, has been applied to monitor molecular interactions. Here we describe a generic label-free assay to quantitatively measure phospho-specific interactions between a trafficking signal-phosphorylated SWTY peptide and 14-3-3 proteins or anti-phosphopeptide antibodies. Compared with the solution-based fluorescence anisotropy assay, our results support that the high-throughput resonant waveguide grating biosensor system has shown the capability not only for high-throughput characterization of binding rank and affinity but also for the exploration of potential interacting kinases for the substrates. Hence, it provides a new generic HTS platform for phospho-detection.
Collapse
Affiliation(s)
- Meng Wu
- High Throughput Screening Facility at Univ. of Iowa (UIHTS), Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S. Grand Avenue, 316 PHAR, Iowa City, IA, 52242, USA,
| | | |
Collapse
|
116
|
Wang J, Hou T, Wei L, Shi L, He J, Zhou N, Sun G, Zhang X, Liang X. Discovery of new targets of phenolic acids in danshen using a label-free cell phenotypic assay. RSC Adv 2015. [DOI: 10.1039/c4ra16102e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pharmacological profiling of 10 known phenolic acids in danshen using a label-free cell phenotypic assay in HT-29 and A431 cells revealed that lithospermic acid, salvianolic acid A, B, C and danshensu all displayed agonistic activity towards GPR35.
Collapse
Affiliation(s)
- Jixia Wang
- Key Lab of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Tao Hou
- Institute of Materia Medica
- Dalian University
- Dalian
- China
| | - Lai Wei
- Key Lab of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Liying Shi
- Institute of Materia Medica
- Dalian University
- Dalian
- China
| | - Jian He
- Key Lab of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Nan Zhou
- Department of Oral Pathology
- College of Stomatology
- Dalian Medical University
- Dalian
- China
| | - Guangwei Sun
- Key Lab of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Xiuli Zhang
- Key Lab of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| |
Collapse
|
117
|
Abstract
G protein-coupled receptors (GPCRs) represent the largest class of drug targets. Ligand-directed functional selectivity or biased agonism opens new possibility for discovering GPCR drugs with better efficacy and safety profiles. However, quantification of ligand bias is challenging. Herein, we present five different label-free dynamic mass redistribution (DMR) approaches to assess ligand bias acting at the β2-adrenergic receptor (β2AR). Multiparametric analysis of the DMR agonist profiles reveals divergent pharmacology of a panel of β2AR agonists. DMR profiling using catechol as a conformational probe detects the presence of multiple conformations of the β2AR. DMR assays under microfluidics, together with chemical biology tools, discover ligand-directed desensitization of the receptor. DMR antagonist reverse assays manifest biased antagonism. DMR profiling using distinct probe-modulated cells detects the biased agonism in the context of self-referenced pharmacological activity map.
Collapse
|
118
|
Brust TF, Hayes MP, Roman DL, Burris KD, Watts VJ. Bias analyses of preclinical and clinical D2 dopamine ligands: studies with immediate and complex signaling pathways. J Pharmacol Exp Ther 2014; 352:480-93. [PMID: 25539635 DOI: 10.1124/jpet.114.220293] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
G protein-coupled receptors (GPCRs) often activate multiple signaling pathways, and ligands may evoke functional responses through individual pathways. These unique responses provide opportunities for biased or functionally selective ligands to preferentially modulate one signaling pathway over another. Studies with several GPCRs have suggested that selective activation of signaling pathways downstream of a GPCR may lead to safer and more effective drug therapies. The dopamine D2 receptor (D2R) is one of the main drug targets in the therapies for Parkinson's disease and schizophrenia. Recent studies suggest that selective modulation of individual signaling pathways downstream of the D2R may lead to safer antipsychotic drugs. In the present study, immediate effectors of the D2R (i.e., Gαi/o, Gβγ, β-arrestin recruitment) and more complex signaling pathways (i.e., extracellular signal-regulated kinase phosphorylation, heterologous sensitization, and dynamic mass redistribution) were examined in response to a series of D2R ligands. This was accomplished using Chinese hamster ovary cells stably expressing the human D2L dopamine receptor in the PathHunter β-Arrestin GPCR Assay Platform. The use of a uniform cellular background was designed to eliminate potential confounds associated with cell-to-cell variability, including expression levels of receptor as well as other components of signal transduction, including G protein subunits. Several well characterized and clinically relevant D2R ligands were evaluated across each signaling pathway in this cellular model. The most commonly used methods to measure ligand bias were compared. Functional selectivity analyses were also used as tools to explore the relative contribution of immediate D2R effectors for the activation of more complex signaling pathways.
Collapse
Affiliation(s)
- Tarsis F Brust
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana (T.F.B., V.J.W.); Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa (M.P.H., D.L.R.); and Quantitative Biology, Eli Lilly and Company, Indianapolis, Indiana (K.D.B.)
| | - Michael P Hayes
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana (T.F.B., V.J.W.); Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa (M.P.H., D.L.R.); and Quantitative Biology, Eli Lilly and Company, Indianapolis, Indiana (K.D.B.)
| | - David L Roman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana (T.F.B., V.J.W.); Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa (M.P.H., D.L.R.); and Quantitative Biology, Eli Lilly and Company, Indianapolis, Indiana (K.D.B.)
| | - Kevin D Burris
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana (T.F.B., V.J.W.); Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa (M.P.H., D.L.R.); and Quantitative Biology, Eli Lilly and Company, Indianapolis, Indiana (K.D.B.)
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana (T.F.B., V.J.W.); Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa (M.P.H., D.L.R.); and Quantitative Biology, Eli Lilly and Company, Indianapolis, Indiana (K.D.B.)
| |
Collapse
|
119
|
Febles NK, Ferrie AM, Fang Y. Label-free single cell kinetics of the invasion of spheroidal colon cancer cells through 3D Matrigel. Anal Chem 2014; 86:8842-9. [PMID: 25118958 DOI: 10.1021/ac502269v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This article reports label-free, real-time, and single-cell quantification of the invasion of spheroidal colon cancer cells through three-dimensional (3D) Matrigel using a resonant waveguide grating (RWG) imager. This imager employs a time-resolved swept wavelength interrogation scheme to monitor cell invasion and adhesion with a temporal resolution up to 3 s and a spatial resolution of 12 μm. As the model system, spheroids of human colorectal adenocarcinoma HT-29 cells are generated by culturing the cells in 96-well round-bottom ultralow attachment plates. 3D Matrigel is formed by its gelation in 384-well RWG biosensor microplates. The invasion and adhesion of spheroidal HT29 cells is initiated by placing individual spheroids onto the Matrigel-coated biosensors. The time series RWG images are obtained and used to extract the optical signatures arising from the adhesion after the cells are dissociated from the spheroids and invade through the 3D Matrigel. Compound profiling shows that epidermal growth factor accelerates cancer cell invasion, while vandetanib, a multitarget kinase inhibitor, dose-dependently inhibits invasion. This study demonstrates that the label-free imager can monitor in real-time the invasion of spheroidal cancer cells through 3D matrices.
Collapse
Affiliation(s)
- Nicole K Febles
- Biochemical Technologies, Science and Technology Division, Corning Incorporated , Corning, New York 14831, United States
| | | | | |
Collapse
|
120
|
Fang Y. Live cell optical sensing for high throughput applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 118:153-63. [PMID: 19475370 DOI: 10.1007/10_2009_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Live cell optical sensing employs label-free optical biosensors to non-invasively measure stimulus-induced dynamic mass redistribution (DMR) in live cells within the sensing volume of the biosensor. The resultant DMR signal is an integrated cellular response, and reflects cell signaling mediated through the cellular target(s) with which the stimulus intervenes. This article describes the uses of live cell optical sensing for probing cell biology and ligand pharmacology, with an emphasis of resonant waveguide grating biosensor cellular assays for high throughput applications.
Collapse
Affiliation(s)
- Ye Fang
- Biochemical Department, Science and Technology Division, Corning Incorporated, Corning, New York, 14831, USA,
| |
Collapse
|
121
|
Shevchenko Y, Camci-Unal G, Cuttica DF, Dokmeci MR, Albert J, Khademhosseini A. Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior. Biosens Bioelectron 2014; 56:359-67. [PMID: 24549115 PMCID: PMC3977152 DOI: 10.1016/j.bios.2014.01.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 01/03/2023]
Abstract
This paper reports on the application of an optical fiber biosensor for real-time analysis of cellular behavior. Our findings illustrate that a fiber sensor fabricated from a traditional telecommunication fiber can be integrated into conventional cell culture equipment and used for real-time and label-free monitoring of cellular responses to chemical stimuli. The sensing mechanism used for the measurement of cellular responses is based on the excitation of surface plasmon resonance (SPR) on the surface of the optical fiber. In this proof of concept study, the sensor was utilized to investigate the influence of a number of different stimuli on cells-we tested the effects of trypsin, serum and sodium azide. These stimuli induced detachment of cells from the sensor surface, uptake of serum and inhibition of cellular metabolism, accordingly. The effects of different stimuli were confirmed with alamar blue assay, phase contrast and fluorescence microscopy. The results indicated that the fiber biosensor can be successfully utilized for real-time and label-free monitoring of cellular response in the first 30 min following the introduction of a stimulus. Furthermore, we demonstrated that the optical fiber biosensors can be easily regenerated for repeated use, proving this platform as a versatile and cost-effective sensing tool.
Collapse
Affiliation(s)
- Yanina Shevchenko
- Department of Electronics, Carleton University, Ottawa, Canada. Fax: +1-613-5205708; Tel: +1-613-5202600 x5578;
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Gulden Camci-Unal
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Davide F. Cuttica
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Mehmet R. Dokmeci
- Department of Electronics, Carleton University, Ottawa, Canada. Fax: +1-613-5205708; Tel: +1-613-5202600 x5578;
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Jacques Albert
- Department of Electronics, Carleton University, Ottawa, Canada. Fax: +1-613-5205708; Tel: +1-613-5202600 x5578;
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| |
Collapse
|
122
|
Bourassa P, Tudashki HB, Pineyro G, Grandbois M, Gendron L. Label-free monitoring of μ-opioid receptor-mediated signaling. Mol Pharmacol 2014; 86:138-49. [PMID: 24874699 DOI: 10.1124/mol.114.093450] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In this study, we used a combination of traditional signaling investigation approaches, bioluminescence resonance energy transfer (BRET) biosensors, and the label-free approach surface plasmon resonance (SPR) spectroscopy to monitor the signaling cascades of the μ-opioid receptor (MOP). In human embryonic kidney cells stably expressing a Flag-tagged version of human MOP, we compared the signals triggered by the noninternalizing and internalizing MOP agonists morphine and DAMGO (Tyr-D-Ala-Gly-N-methyl-Phe-Gly-ol), respectively. We studied three major and well described components of MOP signaling: receptor internalization, G protein coupling, and activation of extracellular signal-regulated kinase ERK1/ERK2. Our results show that morphine and DAMGO display different profiles of receptor internalization and a similar ability to trigger the phosphorylation of ERK1/ERK2. Our SPR analyses revealed that morphine and DAMGO evoke similar SPR signatures and that Gαi, cAMP-dependent pathways, and ERK1/ERK2 have key roles in morphine- and DAMGO-mediated signaling. Most interestingly, we found that the so-called MOP neutral antagonists CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2)), naloxone, and naltrexone behave like partial agonists. Even more intriguing, BRET experiments indicate that CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2)) induces similar conformational changes as naltrexone at the Gαi-βγ interface, whereas it appears as an inverse agonist based on its SPR response thus indicating distinct signaling mechanisms for the two ligands. Taken together, our results support the usefulness of label-free methods such as SPR to study whole-cell responses and signaling cascades triggered by G protein-coupled receptors and complement the conventional approaches by revealing cellular responses that would have been otherwise undetectable.
Collapse
Affiliation(s)
- Philippe Bourassa
- Départements de Physiologie et Biophysique (P.B., L.G.), Pharmacologie (H.B.T., M.G.), and Psychiatrie (G.P.), Centre de Recherche du CHU Ste-Justine (H.B.T, G.P.), Université de Montréal, Montreal, Quebec, Canada; Institut de Pharmacologie de Sherbrooke (M.G., L.G.), Centre de Recherche du CHU Sherbrooke (P.B., M.G., L.G.), Université de Sherbrooke (P.B., M.G., L.G.), Sherbrooke, Quebec, Canada; and Quebec Pain Research Network, Quebec City, Quebec, Canada (L.G.)
| | - Hanieh Bagheri Tudashki
- Départements de Physiologie et Biophysique (P.B., L.G.), Pharmacologie (H.B.T., M.G.), and Psychiatrie (G.P.), Centre de Recherche du CHU Ste-Justine (H.B.T, G.P.), Université de Montréal, Montreal, Quebec, Canada; Institut de Pharmacologie de Sherbrooke (M.G., L.G.), Centre de Recherche du CHU Sherbrooke (P.B., M.G., L.G.), Université de Sherbrooke (P.B., M.G., L.G.), Sherbrooke, Quebec, Canada; and Quebec Pain Research Network, Quebec City, Quebec, Canada (L.G.)
| | - Graciela Pineyro
- Départements de Physiologie et Biophysique (P.B., L.G.), Pharmacologie (H.B.T., M.G.), and Psychiatrie (G.P.), Centre de Recherche du CHU Ste-Justine (H.B.T, G.P.), Université de Montréal, Montreal, Quebec, Canada; Institut de Pharmacologie de Sherbrooke (M.G., L.G.), Centre de Recherche du CHU Sherbrooke (P.B., M.G., L.G.), Université de Sherbrooke (P.B., M.G., L.G.), Sherbrooke, Quebec, Canada; and Quebec Pain Research Network, Quebec City, Quebec, Canada (L.G.)
| | - Michel Grandbois
- Départements de Physiologie et Biophysique (P.B., L.G.), Pharmacologie (H.B.T., M.G.), and Psychiatrie (G.P.), Centre de Recherche du CHU Ste-Justine (H.B.T, G.P.), Université de Montréal, Montreal, Quebec, Canada; Institut de Pharmacologie de Sherbrooke (M.G., L.G.), Centre de Recherche du CHU Sherbrooke (P.B., M.G., L.G.), Université de Sherbrooke (P.B., M.G., L.G.), Sherbrooke, Quebec, Canada; and Quebec Pain Research Network, Quebec City, Quebec, Canada (L.G.)
| | - Louis Gendron
- Départements de Physiologie et Biophysique (P.B., L.G.), Pharmacologie (H.B.T., M.G.), and Psychiatrie (G.P.), Centre de Recherche du CHU Ste-Justine (H.B.T, G.P.), Université de Montréal, Montreal, Quebec, Canada; Institut de Pharmacologie de Sherbrooke (M.G., L.G.), Centre de Recherche du CHU Sherbrooke (P.B., M.G., L.G.), Université de Sherbrooke (P.B., M.G., L.G.), Sherbrooke, Quebec, Canada; and Quebec Pain Research Network, Quebec City, Quebec, Canada (L.G.)
| |
Collapse
|
123
|
Fang Y, French J, Zhao H, Benkovic S. G-protein-coupled receptor regulation of de novo purine biosynthesis: a novel druggable mechanism. Biotechnol Genet Eng Rev 2014; 29:31-48. [PMID: 24568251 DOI: 10.1080/02648725.2013.801237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Spatial organization of metabolic enzymes may represent a general cellular mechanism to regulate metabolic flux. One recent example of this type of cellular phenomenon is the purinosome, a newly discovered multi-enzyme metabolic assembly that includes all of the enzymes within the de novo purine biosynthetic pathway. Our understanding of the components and regulation of purinosomes has significantly grown in recent years. This paper reviews the purine de novo biosynthesis pathway and its regulation, and presents the evidence supporting the purinosome assembly and disassembly processes under the control of G-protein-coupled receptor (GPCR) signaling. This paper also discusses the implications of purinosome and GPCR regulation in drug discovery.
Collapse
Affiliation(s)
- Ye Fang
- a Biochemical Technologies, Science and Technology Division , Corning Incorporated , Corning , New York , USA
| | | | | | | |
Collapse
|
124
|
Label-free cell phenotypic profiling decodes the composition and signaling of an endogenous ATP-sensitive potassium channel. Sci Rep 2014; 4:4934. [PMID: 24816792 PMCID: PMC4017216 DOI: 10.1038/srep04934] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/24/2014] [Indexed: 11/27/2022] Open
Abstract
Current technologies for studying ion channels are fundamentally limited because of their inability to functionally link ion channel activity to cellular pathways. Herein, we report the use of label-free cell phenotypic profiling to decode the composition and signaling of an endogenous ATP-sensitive potassium ion channel (KATP) in HepG2C3A, a hepatocellular carcinoma cell line. Label-free cell phenotypic agonist profiling showed that pinacidil triggered characteristically similar dynamic mass redistribution (DMR) signals in A431, A549, HT29 and HepG2C3A, but not in HepG2 cells. Reverse transcriptase PCR, RNAi knockdown, and KATP blocker profiling showed that the pinacidil DMR is due to the activation of SUR2/Kir6.2 KATP channels in HepG2C3A cells. Kinase inhibition and RNAi knockdown showed that the pinacidil activated KATP channels trigger signaling through Rho kinase and Janus kinase-3, and cause actin remodeling. The results are the first demonstration of a label-free methodology to characterize the composition and signaling of an endogenous ATP-sensitive potassium ion channel.
Collapse
|
125
|
Ferrie AM, Wang C, Deng H, Fang Y. A label-free optical biosensor with microfluidics identifies an intracellular signalling wave mediated through the β(2)-adrenergic receptor. Integr Biol (Camb) 2014; 5:1253-61. [PMID: 23989552 DOI: 10.1039/c3ib40112j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The canonical model of G protein-coupled receptor (GPCR) signalling states that it is solely initiated at the cell surface. In recent years, a handful of evidence has started emerging from high-resolution molecular assays that the internalized receptors can mediate the third wave of signalling, besides G protein- and β-arrestin-mediated signalling both initiating at the cell surface. However, little is known about the functional consequences of distinct waves of GPCR signalling, in particular, at the whole cell system level. We here report the development of label-free biosensor antagonist reverse assays and their use to differentiate the signalling waves of an endogenous β2-adrenergic receptor (β2-AR) in A431 cells. Results showed that the persistent agonist treatment activated the β2-ARs, leading to a long-term sustained dynamic mass redistribution (DMR) signal, a whole cell phenotypic response. Under the persistent treatment scheme in microplates, a panel of known β-blockers all dose-dependently and completely reversed the DMR signal of epinephrine at a relatively low dose (10 nM), except for sotalol which partially reversed the DMR. Under the perfusion conditions with microfluidics, the subsequent perfusion with sotalol only reversed the DMR induced by epinephrine or isoproterenol at 10 nM, but not at 10 μM. Furthermore, the degree of the DMR reversion by sotalol was found to be in an opposite relation with the duration of the initial agonist treatment. Together, these results suggest that the hydrophilic antagonist sotalol is constrained outside the cells throughout the assays, and the early signalling wave initiated at the cell surface dominates the DMR induced by epinephrine or isoproterenol at relatively low doses, while a secondary and late signalling wave is initiated once the receptors are internalized and contributes partially to the long-term sustainability of the DMR of epinephrine or isoproterenol at high doses.
Collapse
Affiliation(s)
- Ann M Ferrie
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA.
| | | | | | | |
Collapse
|
126
|
Abstract
Current drug discovery is dominated by label-dependent molecular approaches, which screen drugs in the context of a predefined and target-based hypothesis in vitro. Given that target-based discovery has not transformed the industry, phenotypic screen that identifies drugs based on a specific phenotype of cells, tissues, or animals has gained renewed interest. However, owing to the intrinsic complexity in drug-target interactions, there is often a significant gap between the phenotype screened and the ultimate molecular mechanism of action sought. This paper presents a label-free strategy for early drug discovery. This strategy combines label-free cell phenotypic profiling with computational approaches, and holds promise to bridge the gap by offering a kinetic and holistic representation of the functional consequences of drugs in disease relevant cells that is amenable to mechanistic deconvolution.
Collapse
Affiliation(s)
- Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning Incorporated Corning, NY, USA
| |
Collapse
|
127
|
Gitschier HJ, Bergeron AB, Randle DH. Label‐Free Cell‐Based Dynamic Mass Redistribution Assays. ACTA ACUST UNITED AC 2014; 6:39-51. [DOI: 10.1002/9780470559277.ch130205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
128
|
Fleming MR, Shamah SM, Kaczmarek LK. Use of label-free optical biosensors to detect modulation of potassium channels by G-protein coupled receptors. J Vis Exp 2014:e51307. [PMID: 24562095 DOI: 10.3791/51307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Ion channels control the electrical properties of neurons and other excitable cell types by selectively allowing ions to flow through the plasma membrane(1). To regulate neuronal excitability, the biophysical properties of ion channels are modified by signaling proteins and molecules, which often bind to the channels themselves to form a heteromeric channel complex(2,3). Traditional assays examining the interaction between channels and regulatory proteins require exogenous labels that can potentially alter the protein's behavior and decrease the physiological relevance of the target, while providing little information on the time course of interactions in living cells. Optical biosensors, such as the X-BODY Biosciences BIND Scanner system, use a novel label-free technology, resonance wavelength grating (RWG) optical biosensors, to detect changes in resonant reflected light near the biosensor. This assay allows the detection of the relative change in mass within the bottom portion of living cells adherent to the biosensor surface resulting from ligand induced changes in cell adhesion and spreading, toxicity, proliferation, and changes in protein-protein interactions near the plasma membrane. RWG optical biosensors have been used to detect changes in mass near the plasma membrane of cells following activation of G protein-coupled receptors (GPCRs), receptor tyrosine kinases, and other cell surface receptors. Ligand-induced changes in ion channel-protein interactions can also be studied using this assay. In this paper, we will describe the experimental procedure used to detect the modulation of Slack-B sodium-activated potassium (KNa) channels by GPCRs.
Collapse
Affiliation(s)
| | | | - Leonard K Kaczmarek
- Department of Pharmacology, Yale School of Medicine; Department of Cellular and Molecular Physiology, Yale School of Medicine;
| |
Collapse
|
129
|
Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor. Sci Rep 2014; 4:4034. [PMID: 24503534 PMCID: PMC3916899 DOI: 10.1038/srep04034] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/23/2014] [Indexed: 12/28/2022] Open
Abstract
A novel high-throughput label-free resonant waveguide grating (RWG) imager biosensor, the Epic® BenchTop (BT), was utilized to determine the dependence of cell spreading kinetics on the average surface density (vRGD) of integrin ligand RGD-motifs. vRGD was tuned over four orders of magnitude by co-adsorbing the biologically inactive PLL-g-PEG and the RGD-functionalized PLL-g-PEG-RGD synthetic copolymers from their mixed solutions onto the sensor surface. Using highly adherent human cervical tumor (HeLa) cells as a model system, cell adhesion kinetic data of unprecedented quality were obtained. Spreading kinetics were fitted with the logistic equation to obtain the spreading rate constant (r) and the maximum biosensor response (Δλmax), which is assumed to be directly proportional to the maximum spread contact area (Amax). r was found to be independent of the surface density of integrin ligands. In contrast, Δλmax increased with increasing RGD surface density until saturation at high densities. Interpreting the latter behavior with a simple kinetic mass action model, a 2D dissociation constant of 1753 ± 243 μm−2 (corresponding to a 3D dissociation constant of ~30 μM) was obtained for the binding between RGD-specific integrins embedded in the cell membrane and PLL-g-PEG-RGD. All of these results were obtained completely noninvasively without using any labels.
Collapse
|
130
|
Ferrie AM, Sun H, Zaytseva N, Fang Y. Divergent label-free cell phenotypic pharmacology of ligands at the overexpressed β₂-adrenergic receptors. Sci Rep 2014; 4:3828. [PMID: 24451999 PMCID: PMC3899747 DOI: 10.1038/srep03828] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/06/2014] [Indexed: 01/14/2023] Open
Abstract
We present subclone sensitive cell phenotypic pharmacology of ligands at the β2-adrenergic receptor (β2-AR) stably expressed in HEK-293 cells. The parental cell line was transfected with green fluorescent protein (GFP)-tagged β2-AR. Four stable subclones were established and used to profile a library of sixty-nine AR ligands. Dynamic mass redistribution (DMR) profiling resulted in a pharmacological activity map suggesting that HEK293 endogenously expresses functional Gi-coupled α2-AR and Gs-coupled β2-AR, and the label-free cell phenotypic activity of AR ligands are subclone dependent. Pathway deconvolution revealed that the DMR of epinephrine is originated mostly from the remodeling of actin microfilaments and adhesion complexes, to less extent from the microtubule networks and receptor trafficking, and certain agonists displayed different efficacy towards the cAMP-Epac pathway. We demonstrate that receptor signaling and ligand pharmacology is sensitive to the receptor expression level, and the organization of the receptor and its signaling circuitry.
Collapse
Affiliation(s)
- Ann M Ferrie
- 1] Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, United States of America [2]
| | - Haiyan Sun
- 1] Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, United States of America [2] [3]
| | - Natalya Zaytseva
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, United States of America
| | - Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, United States of America
| |
Collapse
|
131
|
Zhang X, Deng H, Xiao Y, Xue X, Ferrie AM, Tran E, Liang X, Fang Y. Label-free cell phenotypic profiling identifies pharmacologically active compounds in two traditional Chinese medicinal plants. RSC Adv 2014. [DOI: 10.1039/c4ra03609c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Label-free cell phenotypic profiling with three cell lines identified multiple pharmacologically active compounds including niacin in two TCM plants.
Collapse
Affiliation(s)
- Xiuli Zhang
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian, China
| | - Huayun Deng
- Biochemical Technologies
- Science and Technology Division
- Corning Incorporated
- Corning, USA
| | - Yuansheng Xiao
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian, China
| | - Xingya Xue
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian, China
| | - Ann M. Ferrie
- Biochemical Technologies
- Science and Technology Division
- Corning Incorporated
- Corning, USA
| | - Elizabeth Tran
- Biochemical Technologies
- Science and Technology Division
- Corning Incorporated
- Corning, USA
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian, China
| | - Ye Fang
- Biochemical Technologies
- Science and Technology Division
- Corning Incorporated
- Corning, USA
| |
Collapse
|
132
|
|
133
|
Identification of the molecular mechanisms in cellular processes that elicit a surface plasmon resonance (SPR) response using simultaneous surface plasmon-enhanced fluorescence (SPEF) microscopy. Biosens Bioelectron 2013; 50:125-31. [DOI: 10.1016/j.bios.2013.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/29/2013] [Accepted: 06/07/2013] [Indexed: 11/24/2022]
|
134
|
Zaytseva N, Lynn JG, Wu Q, Mudaliar DJ, Sun H, Kuang PQ, Fang Y. Resonant waveguide grating biosensor-enabled label-free and fluorescence detection of cell adhesion. SENSORS AND ACTUATORS. B, CHEMICAL 2013; 188:10.1016/j.snb.2013.08.012. [PMID: 24319319 PMCID: PMC3852437 DOI: 10.1016/j.snb.2013.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cell adhesion to extracellular matrix (ECM) is fundamental to many distinct aspects of cell biology, and has been an active topic for label-free biosensors. However, little attention has been paid to study the impact of receptor signaling on the cell adhesion process. We here report the development of resonant waveguide grating biosensor-enabled label-free and fluorescent approaches, and their use for investigating the adhesion of an engineered HEK-293 cell line stably expressing green fluorescent protein (GFP) tagged β2-adrenergic receptor (β2-AR) onto distinct surfaces under both ambient and physiological conditions. Results showed that cell adhesion is sensitive to both temperature and ECM coating, and distinct mechanisms govern the cell adhesion process under different conditions. The β2-AR agonists, but not its antagonists or partial agonists, were found to be capable of triggering signaling during the adhesion process, leading to an increase in the adhesion of the engineered cells onto fibronectin-coated biosensor surfaces. These results suggest that the dual approach presented is useful to investigate the mechanism of cell adhesion, and to identify drug molecules and receptor signaling that interfere with cell adhesion.
Collapse
Affiliation(s)
- Natalya Zaytseva
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA
| | - Jeffery G. Lynn
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA
| | - Qi Wu
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA
| | | | | | - Patty Q. Kuang
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA
| | - Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA
| |
Collapse
|
135
|
Real-time sensing of enteropathogenic E. coli-induced effects on epithelial host cell height, cell-substrate interactions, and endocytic processes by infrared surface plasmon spectroscopy. PLoS One 2013; 8:e78431. [PMID: 24194932 PMCID: PMC3806826 DOI: 10.1371/journal.pone.0078431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/19/2013] [Indexed: 12/12/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is an important, generally non-invasive, bacterial pathogen that causes diarrhea in humans. The microbe infects mainly the enterocytes of the small intestine. Here we have applied our newly developed infrared surface plasmon resonance (IR-SPR) spectroscopy approach to study how EPEC infection affects epithelial host cells. The IR-SPR experiments showed that EPEC infection results in a robust reduction in the refractive index of the infected cells. Assisted by confocal and total internal reflection microscopy, we discovered that the microbe dilates the intercellular gaps and induces the appearance of fluid-phase-filled pinocytic vesicles in the lower basolateral regions of the host epithelial cells. Partial cell detachment from the underlying substratum was also observed. Finally, the waveguide mode observed by our IR-SPR analyses showed that EPEC infection decreases the host cell's height to some extent. Together, these observations reveal novel impacts of the pathogen on the host cell architecture and endocytic functions. We suggest that these changes may induce the infiltration of a watery environment into the host cell, and potentially lead to failure of the epithelium barrier functions. Our findings also indicate the great potential of the label-free IR-SPR approach to study the dynamics of host-pathogen interactions with high spatiotemporal sensitivity.
Collapse
|
136
|
Viitala T, Granqvist N, Hallila S, Raviña M, Yliperttula M. Elucidating the signal responses of multi-parametric surface plasmon resonance living cell sensing: a comparison between optical modeling and drug-MDCKII cell interaction measurements. PLoS One 2013; 8:e72192. [PMID: 24015218 PMCID: PMC3754984 DOI: 10.1371/journal.pone.0072192] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/07/2013] [Indexed: 11/18/2022] Open
Abstract
In vitro cell-based assays are widely used during the drug discovery and development process to test the biological activity of new drugs. Most of the commonly used cell-based assays, however, lack the ability to measure in real-time or under dynamic conditions (e.g. constant flow). In this study a multi-parameter surface plasmon resonance approach in combination with living cell sensing has been utilized for monitoring drug-cell interactions in real-time, under constant flow and without labels. The multi-parameter surface plasmon resonance approach, i.e. surface plasmon resonance angle versus intensity plots, provided fully specific signal patterns for various cell behaviors when stimulating cells with drugs that use para- and transcellular absorption routes. Simulated full surface plasmon resonance angular spectra of cell monolayers were compared with actual surface plasmon resonance measurements performed with MDCKII cell monolayers in order to better understand the origin of the surface plasmon resonance signal responses during drug stimulation of cells. The comparison of the simulated and measured surface plasmon resonance responses allowed to better understand and provide plausible explanations for the type of cellular changes, e.g. morphological or mass redistribution in cells, that were induced in the MDCKII cell monolayers during drug stimulation, and consequently to differentiate between the type and modes of drug actions. The multi-parameter surface plasmon resonance approach presented in this study lays the foundation for developing new types of cell-based tools for life science research, which should contribute to an improved mechanistic understanding of the type and contribution of different drug transport routes on drug absorption.
Collapse
Affiliation(s)
- Tapani Viitala
- Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Niko Granqvist
- Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Susanna Hallila
- Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Manuela Raviña
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Marjo Yliperttula
- Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
137
|
Deng H, Sun H, Fang Y. Label-free cell phenotypic assessment of the biased agonism and efficacy of agonists at the endogenous muscarinic M3 receptors. J Pharmacol Toxicol Methods 2013; 68:323-33. [PMID: 23933114 DOI: 10.1016/j.vascn.2013.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/26/2013] [Accepted: 07/30/2013] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Efficacy describes the property of a ligand that enables the receptor to change its behavior towards the host cell, while biased agonism defines the ability of a ligand to differentially activate some of the vectorial pathways over others mediated through the receptor. However, little is known about the molecular basis defining the efficacy of ligands at G protein-coupled receptors. Here we characterize the biased agonism and cell phenotypic efficacy of seven agonists at the endogenous muscarinic M3 receptors in six different cell lines including HT-29, PC-3, HeLa, SF268, CCRF-CEM and HCT-15 cells. METHODS Quantitative real-time PCR and multiple label-free whole cell dynamic mass redistribution (DMR) assays were used to determine the functional muscarinic receptors in each cell line. DMR pathway deconvolution assay was used to determine the pathway biased activity of the muscarinic agonists. Operational agonism model was used to quantify the pathway bias, while macro-kinetic data reported in literature was used to analyze the biochemical mechanism of action of these agonists. RESULTS Quantitative real-time PCR and ligand pharmacology studies showed that all the native cell lines endogenously express functional M3 receptors. Furthermore, different agonists triggered distinct DMR signals in a specific cell line as well as in different cell lines. DMR pathway deconvolution using known G protein modulators revealed that the M3 receptor in all the six cell lines signals through multiple G protein-mediated pathways, and certain agonists display biased agonism in a cell line-dependent manner. The whole cell efficacy and potency of these agonists were found to be sensitive to the assay time as well as the cell background. Correlation analysis suggested that the whole cell efficacy of agonists is correlated well with their macro-dissociation rate constants. DISCUSSION This study implicates that the endogenous M3 receptors are coupled to multiple pathways, and the muscarinic agonists can display distinct biased agonism and whole cell phenotypic efficacy.
Collapse
Affiliation(s)
- Huayun Deng
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, United States
| | | | | |
Collapse
|
138
|
Zhang LL, Chen X, Wei HT, Li H, Sun JH, Cai HY, Chen JL, Cui DF. An electrochemical surface plasmon resonance imaging system targeting cell analysis. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:085005. [PMID: 24007100 DOI: 10.1063/1.4819027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This paper presents an electrochemical-surface plasmon resonance imaging (EC-SPRI) system, enabling the characterization of optical and electrical properties of cells, simultaneously. The developed surface plasmon resonance (SPR) imaging system was capable of imaging micro cavities with a dimension of 10 μm × 10 μm and differentiated glycerol solutions with a group of refractive indices (RIs). Furthermore, the EC-SPRI system was used to image A549 cells, suggesting corresponding RI and morphology changes during the cell death process. In the end, electrochemical and SPR methods were used in combination, recording oxidation peaks of A549 cells in the cyclic voltage curves and SPR response unit increase, simultaneously.
Collapse
Affiliation(s)
- L L Zhang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Chen M, Zaytseva NV, Wu Q, Li M, Fang Y. Microplate-compatible total internal reflection fluorescence microscopy for receptor pharmacology. APPLIED PHYSICS LETTERS 2013; 102:193702. [PMID: 23825800 PMCID: PMC3669112 DOI: 10.1063/1.4805041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/24/2013] [Indexed: 06/02/2023]
Abstract
We report the use of total internal reflection fluorescence (TIRF) microscopy for analyzing receptor pharmacology and the development of a microplate-compatible TIRF imaging system. Using stably expressed green fluorescence protein tagged β2-adrenergic receptor as the reporter, we found that the activation of different receptors results in distinct kinetic signatures of the TIRF intensity of cells. These TIRF signatures closely resemble the characteristics of their respective label-free dynamic mass redistribution signals in the same cells. This suggests that TIRF in microplate can be used for profiling and screening drugs.
Collapse
Affiliation(s)
- Minghan Chen
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA
| | | | | | | | | |
Collapse
|
140
|
Zhao H, French JB, Fang Y, Benkovic SJ. The purinosome, a multi-protein complex involved in the de novo biosynthesis of purines in humans. Chem Commun (Camb) 2013; 49:4444-52. [PMID: 23575936 DOI: 10.1039/c3cc41437j] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Purine nucleotides are ubiquitous molecules that play vital roles in all kingdoms of life, not only as components of nucleic acids, but also participating in signaling and energy storage. Cellular pools of purines are maintained by the tight control of several complementary and sometimes competing processes including de novo biosynthesis, salvage and catabolism of nucleotides. While great strides have been made over the past sixty years in understanding the biosynthesis of purines, we are experiencing a renaissance in this field. In this feature article we discuss the most recent discoveries relating to purine biosynthesis, with particular emphasis upon the dynamic multi-protein complex called the purinosome. In particular we highlight advances made towards understanding the assembly, control and function of this protein complex and the attempts made to exploit this knowledge for drug discovery.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Chemistry, The Pennsylvania State University, 414 Wartik Laboratory, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
141
|
Geschwindner S, Dekker N, Horsefield R, Tigerström A, Johansson P, Scott CW, Albert JS. Development of a Plate-Based Optical Biosensor Fragment Screening Methodology to Identify Phosphodiesterase 10A Inhibitors. J Med Chem 2013; 56:3228-34. [DOI: 10.1021/jm301665y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Niek Dekker
- Discovery Sciences, AstraZeneca R&D Mölndal, S-43183 Mölndal, Sweden
| | - Rob Horsefield
- Discovery Sciences, AstraZeneca R&D Mölndal, S-43183 Mölndal, Sweden
| | - Anna Tigerström
- Discovery Sciences, AstraZeneca R&D Mölndal, S-43183 Mölndal, Sweden
| | - Patrik Johansson
- Discovery Sciences, AstraZeneca R&D Mölndal, S-43183 Mölndal, Sweden
| | - Clay W. Scott
- CNS Discovery Research, AstraZeneca
Pharmaceuticals, 1800 Concord Pike, PO Box 15437, Wilmington, Delaware
19850, United States
| | - Jeffrey S. Albert
- CNS Discovery Research, AstraZeneca
Pharmaceuticals, 1800 Concord Pike, PO Box 15437, Wilmington, Delaware
19850, United States
| |
Collapse
|
142
|
Deng H, Fang Y. The Three Catecholics Benserazide, Catechol and Pyrogallol are GPR35 Agonists. Pharmaceuticals (Basel) 2013; 6:500-9. [PMID: 24276120 PMCID: PMC3816702 DOI: 10.3390/ph6040500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 03/20/2013] [Accepted: 04/01/2013] [Indexed: 11/16/2022] Open
Abstract
Nearly 1% of all clinically used drugs are catecholics, a family of catechol-containing compounds. Using label-free dynamic mass redistribution and Tango β-arrestin translocation assays, we show that several catecholics, including benserazide, catechol, 3-methoxycatechol, pyrogallol, (+)-taxifolin and fenoldopam, display agonistic activity against GPR35.
Collapse
Affiliation(s)
- Huayun Deng
- Biochemical Technologies, Science and Technology Division, Corning Inc., Corning, NY 14831, USA.
| | | |
Collapse
|
143
|
Rahomäki J, Nuutinen T, Karvonen L, Honkanen S, Vahimaa P. Horizontal slot waveguide channel for enhanced Raman scattering. OPTICS EXPRESS 2013; 21:9060-9068. [PMID: 23571995 DOI: 10.1364/oe.21.009060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Herein we characterize and experimentally demonstrate a new type of a horizontal slot waveguide structure for remarkably enhanced Raman scattering detection in nanometer-scale void channels. As the measurement sensitivity is one of the key limiting factors in nanofluidic detection, it is essential to search advanced solutions for such detection. Combining an all dielectric resonance waveguide grating and a surface enhanced Raman scattering (SERS) substrate in a close proximity it is possible to create high electromagnetic field energy hot zones within an adjustable slot region. This results in a strong enhancement in Raman scattering. We show the theoretical principles and demonstrate, with rhodamine 6G molecules, an approximately 20-fold enhancement compared to a conventional SERS substrate within the corresponding slot arrangement. We foresee potential applications for the proposed approach in the fields of medical, biological and chemical sensing, where the high detection sensitivity is essential due to integration with nanofluidic devices.
Collapse
Affiliation(s)
- Jussi Rahomäki
- University of Eastern Finland, Department of Physics and Mathematics, P.O. Box 111, 80101 Joensuu, Finland.
| | | | | | | | | |
Collapse
|
144
|
McLoughlin D, Bertelli F, Williams C. The A, B, Cs of G-protein-coupled receptor pharmacology in assay development for HTS. Expert Opin Drug Discov 2013; 2:603-19. [PMID: 23488953 DOI: 10.1517/17460441.2.5.603] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
G-protein-coupled receptors represent one of the most important areas of research in the pharmaceutical industry, being one of the largest druggable gene families. Recognising this fact, manufacturers have developed a huge variety of homogeneous assay technologies that facilitate the quantification of receptor ligand binding events and their downstream signalling cascades. However, while early emphasis was placed on the most sensitive, high-throughput and cost-effective screening technologies to enable identification of the most lead matter for further development, in recent years emphasis has shifted to a focus on maximising the identification of compounds that are new and developing assays that are more biologically/pharmacologically relevant. Therefore, this review provides an overview of the binding and functional techniques available for high-throughput screening, with particular attention on how assay application and configuration can be maximised to ensure their successful identification of relevant chemical matter and thereby optimising project success.
Collapse
Affiliation(s)
- Dj McLoughlin
- HTS CoE, Pfizer Global Research and Development, Ramsgate Road, Sandwich, Kent, CT13 9NJ, UK +44(0)1304644616 ; +44(0)1304655592 ;
| | | | | |
Collapse
|
145
|
Morse M, Sun H, Tran E, Levenson R, Fang Y. Label-free integrative pharmacology on-target of opioid ligands at the opioid receptor family. BMC Pharmacol Toxicol 2013; 14:17. [PMID: 23497702 PMCID: PMC3602246 DOI: 10.1186/2050-6511-14-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 10/31/2012] [Indexed: 01/08/2023] Open
Abstract
Background In vitro pharmacology of ligands is typically assessed using a variety of molecular assays based on predetermined molecular events in living cells. Many ligands including opioid ligands pose the ability to bind more than one receptor, and can also provide distinct operational bias to activate a specific receptor. Generating an integrative overview of the binding and functional selectivity of ligands for a receptor family is a critical but difficult step in drug discovery and development. Here we applied a newly developed label-free integrative pharmacology on-target (iPOT) approach to systematically survey the selectivity of a library of fifty-five opioid ligands against the opioid receptor family. All ligands were interrogated using dynamic mass redistribution (DMR) assays in both recombinant and native cell lines that express specific opioid receptor(s). The cells were modified with a set of probe molecules to manifest the binding and functional selectivity of ligands. DMR profiles were collected and translated to numerical coordinates that was subject to similarity analysis. A specific set of opioid ligands were then selected for quantitative pharmacology determination. Results Results showed that among fifty-five opioid ligands examined most ligands displayed agonist activity in at least one opioid receptor expressing cell line under different conditions. Further, many ligands exhibited pathway biased agonism. Conclusion We demonstrate that the iPOT effectively sorts the ligands into distinct clusters based on their binding and functional selectivity at the opioid receptor family.
Collapse
Affiliation(s)
- Megan Morse
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | | | | | | |
Collapse
|
146
|
Troubleshooting and deconvoluting label-free cell phenotypic assays in drug discovery. J Pharmacol Toxicol Methods 2013; 67:69-81. [PMID: 23340025 DOI: 10.1016/j.vascn.2013.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/10/2012] [Accepted: 01/04/2013] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Central to drug discovery and development is to comprehend the target(s), potency, efficacy and safety of drug molecules using pharmacological assays. Owing to their ability to provide a holistic view of drug actions in native cells, label-free biosensor-enabled cell phenotypic assays have been emerging as new generation phenotypic assays for drug discovery. Despite the benefits associated with wide pathway coverage, high sensitivity, high information content, non-invasiveness and real-time kinetics, label-free cell phenotypic assays are often viewed to be a blackbox in the era of target-centric drug discovery. METHODS This article first reviews the biochemical and biological complexity of drug-target interactions, and then discusses the key characteristics of label-free cell phenotypic assays and presents a five-step strategy to troubleshooting and deconvoluting the label-free cell phenotypic profiles of drugs. RESULTS Drug-target interactions are intrinsically complicated. Label-free cell phenotypic signatures of drugs mirror the innate complexity of drug-target interactions, and can be effectively deconvoluted using the five-step strategy. DISCUSSION The past decades have witnessed dramatic expansion of pharmacological assays ranging from molecular to phenotypic assays, which is coincident with the realization of the innate complexity of drug-target interactions. The clinical features of a drug are defined by how it operates at the system level and by its distinct polypharmacology, ontarget, phenotypic and network pharmacology. Approaches to examine the biochemical, cellular and molecular mechanisms of action of drugs are essential to increase the efficiency of drug discovery and development. Label-free cell phenotypic assays and the troubleshooting and deconvoluting approach presented here may hold great promise in drug discovery and development.
Collapse
|
147
|
Deng H, Wang C, Fang Y. Label-free cell phenotypic assessment of the molecular mechanism of action of epidermal growth factor receptor inhibitors. RSC Adv 2013. [DOI: 10.1039/c3ra40426a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
148
|
Holdgate G, Geschwindner S, Breeze A, Davies G, Colclough N, Temesi D, Ward L. Biophysical methods in drug discovery from small molecule to pharmaceutical. Methods Mol Biol 2013; 1008:327-355. [PMID: 23729258 DOI: 10.1007/978-1-62703-398-5_12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Biophysical methods have become established in many areas of drug discovery. Application of these methods was once restricted to a relatively small number of scientists using specialized, low throughput technologies and methods. Now, automated high-throughput instruments are to be found in a growing number of laboratories. Many biophysical methods are capable of measuring the equilibrium binding constants between pairs of molecules crucial for molecular recognition processes, encompassing protein-protein, protein-small molecule, and protein-nucleic acid interactions, and several can be used to measure the kinetic or thermodynamic components controlling these biological processes. For a full characterization of a binding process, determinations of stoichiometry, binding mode, and any conformational changes associated with such interactions are also required. The suite of biophysical methods that are now available represents a powerful toolbox of techniques which can effectively deliver this full characterization.The aim of this chapter is to provide the reader with an overview of the drug discovery process and how biophysical methods, such as surface plasmon resonance (SPR), isothermal titration calorimetry (ITC), nuclear magnetic resonance, mass spectrometry (MS), and thermal unfolding methods can answer specific questions in order to influence project progression and outcomes. The selection of these examples is based upon the experiences of the authors at AstraZeneca, and relevant approaches are highlighted where they have utility in a particular drug discovery scenario.
Collapse
|
149
|
Klein MT, Vinson PN, Niswender CM. Approaches for probing allosteric interactions at 7 transmembrane spanning receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 115:1-59. [PMID: 23415091 PMCID: PMC5482179 DOI: 10.1016/b978-0-12-394587-7.00001-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, allosteric modulation of 7 transmembrane spanning receptors (7TMRs) has become a highly productive and exciting field of receptor pharmacology and drug discovery efforts. Positive and negative allosteric modulators (PAMs and NAMs, respectively) present a number of pharmacological and therapeutic advantages over conventional orthosteric ligands, including improved receptor-subtype selectivity, a lower propensity to induce receptor desensitization, the preservation of endogenous temporal and spatial activation of receptors, greater chemical flexibility for optimization of drug metabolism and pharmacokinetic parameters, and saturability of effect at target receptors, thus improving safety concerns and risk of overdose. Additionally, the relatively new concept of allosteric modulator-mediated receptor signal bias opens up a number of intriguing possibilities for PAMs, NAMs, and allosteric agonists, including the potential to selectively activate therapeutically beneficial signaling cascades, which could yield a superior tissue selectivity and side effect profile of allosteric modulators. However, there are a number of considerations and caveats that must be addressed when screening for and characterizing the properties of 7TMR allosteric modulators. Mode of pharmacology, methodology used to monitor receptor activity, detection of appropriate downstream analytes, selection of orthosteric probe, and assay time-course must all be considered when implementing any high-throughput screening campaign or when characterizing the properties of active compounds. Yet compared to conventional agonist/antagonist drug discovery programs, these elements of assay design are often a great deal more complicated when working with 7TMRs allosteric modulators. Moreover, for classical pharmacological methodologies and analyses, like radioligand binding and the assessment of compound affinity, the properties of allosteric modulators yield data that are more nuanced than orthosteric ligand-receptor interactions. In this review, we discuss the current methodologies being used to identify and characterize allosteric modulators, lending insight into the approaches that have been most successful in accurately and robustly identifying hit compounds. New label-free technologies capable of detecting phenotypic cellular changes in response to receptor activation are powerful tools well suited for assessing subtle or potentially masked cellular responses to allosteric modulation of 7TMRs. Allosteric modulator-induced receptor signal bias and the assay systems available to probe the various downstream signaling outcomes of receptor activation are also discussed.
Collapse
Affiliation(s)
- Michael T Klein
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | |
Collapse
|
150
|
Evaluating Inhibition of the Epidermal Growth Factor (EGF)-Induced Response of Mutant MCF10A Cells with an Acoustic Sensor. BIOSENSORS-BASEL 2012; 2:448-64. [PMID: 25586035 PMCID: PMC4263556 DOI: 10.3390/bios2040448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/08/2012] [Accepted: 11/07/2012] [Indexed: 11/25/2022]
Abstract
Many cancer treatments rely on inhibition of epidermal growth factor (EGF)-induced cellular responses. Evaluating drug effects on such responses becomes critical to the development of new cancer therapeutics. In this report, we have employed a label-free acoustic sensor, the quartz crystal microbalance with dissipation monitoring (QCM-D), to track the EGF-induced response of mutant MCF10A cells under various inhibitory conditions. We have identified a complex cell de-adhesion process, which can be distinctly altered by inhibitors of signaling pathways and cytoskeleton formation in a dose-dependent manner. The dose dependencies of the inhibitors provide IC50 values which are in strong agreement with the values reported in the literature, demonstrating the sensitivity and reliability of the QCM-D as a screening tool. Using immunofluorescence imaging, we have also verified the quantitative relationship between the ΔD-response (change in energy dissipation factor) and the level of focal adhesions quantified with the areal density of immunostained vinculin under those inhibitory conditions. Such a correlation suggests that the dynamic restructuring of focal adhesions can be assessed based on the time-dependent change in ΔD-response. Overall, this report has shown that the QCM-D has the potential to become an effective sensing platform for screening therapeutic agents that target signaling and cytoskeletal proteins.
Collapse
|