101
|
Poon SHL, Wong WHL, Lo ACY, Yuan H, Chen CF, Jhanji V, Chan YK, Shih KC. A systematic review on advances in diagnostics for herpes simplex keratitis. Surv Ophthalmol 2021; 66:514-530. [PMID: 33186564 DOI: 10.1016/j.survophthal.2020.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 11/30/2022]
Abstract
Herpes simplex keratitis (HSK) is a significant cause of vision impairment worldwide. Currently, there are no set diagnostic criteria, and popular diagnostic methods, including clinical examination of the eye via slit lamp examination, could lead to false-negatives and misdiagnoses. Molecular testing with polymerase chain reaction (PCR) may lack concordance with clinical findings, posing a great challenge to ophthalmologists. We evaluate recent studies on techniques for the diagnosis of HSK. We included a total of 23 studies published between 2010 and 2020 in English on diagnostic techniques, including in vivo confocal microscopy, polymerase PCR testing, protein detection in tear film with enzyme-linked immunosorbent assay, and various other protein assays. Although PCR has been widely used as one of the current diagnostic methods for HSK, most studies evaluated its efficacy after including alterations to its normal protocol. Tear sample analysis was performed using multiple tools, although corneal scrapings demonstrated a higher positive detection rate. Diagnostic tools identified were able to detect HSK with varying accuracy. Newer diagnostic techniques like multiplex dot hybridization assay and immunochromatographic assays may be considered as the point-of-care preliminary diagnostic tools. More reliable results may be generated by developing a standardized diagnostic protocol.
Collapse
Affiliation(s)
- Stephanie Hiu Ling Poon
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR
| | - William Ho Lam Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Hao Yuan
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yau Kei Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Kendrick Co Shih
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR.
| |
Collapse
|
102
|
Rahimi H, Salehiabar M, Barsbay M, Ghaffarlou M, Kavetskyy T, Sharafi A, Davaran S, Chauhan SC, Danafar H, Kaboli S, Nosrati H, Yallapu MM, Conde J. CRISPR Systems for COVID-19 Diagnosis. ACS Sens 2021; 6:1430-1445. [PMID: 33502175 PMCID: PMC7860143 DOI: 10.1021/acssensors.0c02312] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
The emergence of the new coronavirus 2019 (COVID-19) was first seen in December 2019, which has spread rapidly and become a global pandemic. The number of cases of COVID-19 and its associated mortality have raised serious concerns worldwide. Early diagnosis of viral infection undoubtedly allows rapid intervention, disease management, and substantial control of the rapid spread of the disease. Currently, the standard approach for COVID-19 diagnosis globally is the RT-qPCR test; however, the limited access to kits and associated reagents, the need for specialized lab equipment, and the need for highly skilled personnel has led to a detection slowdown. Recently, the development of clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic systems has reshaped molecular diagnosis. The benefits of the CRISPR system such as speed, precision, specificity, strength, efficiency, and versatility have inspired researchers to develop CRISPR-based diagnostic and therapeutic methods. With the global COVID-19 outbreak, different groups have begun to design and develop diagnostic and therapeutic programs based on the efficient CRISPR system. CRISPR-based COVID-19 diagnostic systems have advantages such as a high detection speed (i.e., 30 min from raw sample to reach a result), high sensitivity and precision, portability, and no need for specialized laboratory equipment. Here, we review contemporary studies on the detection of COVID-19 based on the CRISPR system.
Collapse
Affiliation(s)
- Hossein Rahimi
- Department of Medical Biotechnology, School of
Medicine, Zanjan University of Medical Sciences, Zanjan,
Iran
- Zanjan Pharmaceutical Biotechnology Research Center,
Zanjan University of Medical Sciences, Zanjan,
Iran
| | - Marziyeh Salehiabar
- Drug Applied Research Center, Tabriz
University of Medical Sciences, P.O. Box 51656-65811, Tabriz,
Iran
- Joint Ukraine−Azerbaijan
International Research and Education Center of Nanobiotechnology and Functional
Nanosystems, Drohobych, Ukraine; Baku, Azerbaijan
| | - Murat Barsbay
- Hacettepe University,
Department of Chemistry, Beytepe, Ankara 06800, Turkey
| | | | - Taras Kavetskyy
- Joint Ukraine−Azerbaijan
International Research and Education Center of Nanobiotechnology and Functional
Nanosystems, Drohobych, Ukraine; Baku, Azerbaijan
- Department of Surface Engineering, The
John Paul II Catholic University of Lublin, 20-950 Lublin,
Poland
- Drohobych Ivan Franko State Pedagogical
University, 82100 Drohobych, Ukraine
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center,
Zanjan University of Medical Sciences, Zanjan,
Iran
- Joint Ukraine−Azerbaijan
International Research and Education Center of Nanobiotechnology and Functional
Nanosystems, Drohobych, Ukraine; Baku, Azerbaijan
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz
University of Medical Sciences, P.O. Box 51656-65811, Tabriz,
Iran
- Joint Ukraine−Azerbaijan
International Research and Education Center of Nanobiotechnology and Functional
Nanosystems, Drohobych, Ukraine; Baku, Azerbaijan
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of
Medicine, University of Texas Rio Grande Valley, McAllen, Texas
78504, United States
- South Texas Center of Excellence in Cancer Research,
School of Medicine, University of Texas Rio Grande Valley,
McAllen, Texas 78504, United States
| | - Hossein Danafar
- Zanjan Pharmaceutical Biotechnology Research Center,
Zanjan University of Medical Sciences, Zanjan,
Iran
- Joint Ukraine−Azerbaijan
International Research and Education Center of Nanobiotechnology and Functional
Nanosystems, Drohobych, Ukraine; Baku, Azerbaijan
| | - Saeed Kaboli
- Department of Medical Biotechnology, School of
Medicine, Zanjan University of Medical Sciences, Zanjan,
Iran
| | - Hamed Nosrati
- Zanjan Pharmaceutical Biotechnology Research Center,
Zanjan University of Medical Sciences, Zanjan,
Iran
- Joint Ukraine−Azerbaijan
International Research and Education Center of Nanobiotechnology and Functional
Nanosystems, Drohobych, Ukraine; Baku, Azerbaijan
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of
Medicine, University of Texas Rio Grande Valley, McAllen, Texas
78504, United States
- South Texas Center of Excellence in Cancer Research,
School of Medicine, University of Texas Rio Grande Valley,
McAllen, Texas 78504, United States
| | - João Conde
- NOVA Medical School, Faculdade de Ciências
Médicas, Universidade Nova de Lisboa, Lisboa,
Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics),
Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências
Médicas, Universidade Nova de Lisboa, Lisboa,
Portugal
| |
Collapse
|
103
|
Li C, Hu L, Que B, Hu Y, Guo Y, Zhang M, Wang Z, Wang X, Liu H, Wang J, Tian H, Li X. Expression profiles of genes involved in fatty acid and lipid biosynthesis in developing seeds of Paeonia ostii. Genes Genomics 2021; 43:885-896. [PMID: 33884569 DOI: 10.1007/s13258-021-01102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Paeonia ostii seeds were identified as novel sources of edible plant oil with a high proportion of α-linolenic acid, a type of n-3 fatty acid with many health benefits. Due to the unreliability of seed oil content and quality, it is necessary to discover the mechanism underlying lipid biosynthesis in Paeonia ostii seeds. OBJECTIVES This study aimed to identify the key genes involved in lipid biosynthesis in Paeonia ostii seeds by analyzing the relationship among the seed characteristics and the expression patterns of lipid genes in Paeonia ostii during seed development. METHODS Preliminary research on Paeonia ostii seed development was carried out from 10 days after pollination until maturity, focusing on phenology, oil content and lipid profiles. In addition, we investigated the spatiotemporal expression of 36 lipid biosynthetic genes in Paeonia ostii by using quantitative real-time PCR. RESULTS The results suggested that the development of Paeonia ostii seeds from pollination to maturity could be divided into three periods. The 36 lipid genes showed various spatiotemporal expression patterns and five gene groups with distinct temporal patterns during seed development were identified by clustering analysis of expression data. Furthermore, the relationships between gene expression and lipid/fatty acid accumulation and some candidate key lipid genes were discussed. CONCLUSIONS This study provided the global patterns of fatty acid and lipid biosynthesis-related gene expression, which are critical to understanding the molecular basis of lipid biosynthesis and identifying the lipid accumulation rate-limiting genes during seed development.
Collapse
Affiliation(s)
- Chaoqiong Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China. .,Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou, 466001, Henan, China.
| | - Lizong Hu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Beibei Que
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Yueran Hu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Yuanyuan Guo
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Minghui Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Zenan Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Xueqin Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Hongzhan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Junsheng Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Huihui Tian
- College of Journalism and Media, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Xiaoli Li
- Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou, 466001, Henan, China.
| |
Collapse
|
104
|
Cassedy A, Parle-McDermott A, O’Kennedy R. Virus Detection: A Review of the Current and Emerging Molecular and Immunological Methods. Front Mol Biosci 2021; 8:637559. [PMID: 33959631 PMCID: PMC8093571 DOI: 10.3389/fmolb.2021.637559] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Viruses are ubiquitous in the environment. While many impart no deleterious effects on their hosts, several are major pathogens. This risk of pathogenicity, alongside the fact that many viruses can rapidly mutate highlights the need for suitable, rapid diagnostic measures. This review provides a critical analysis of widely used methods and examines their advantages and limitations. Currently, nucleic-acid detection and immunoassay methods are among the most popular means for quickly identifying viral infection directly from source. Nucleic acid-based detection generally offers high sensitivity, but can be time-consuming, costly, and require trained staff. The use of isothermal-based amplification systems for detection could aid in the reduction of results turnaround and equipment-associated costs, making them appealing for point-of-use applications, or when high volume/fast turnaround testing is required. Alternatively, immunoassays offer robustness and reduced costs. Furthermore, some immunoassay formats, such as those using lateral-flow technology, can generate results very rapidly. However, immunoassays typically cannot achieve comparable sensitivity to nucleic acid-based detection methods. Alongside these methods, the application of next-generation sequencing can provide highly specific results. In addition, the ability to sequence large numbers of viral genomes would provide researchers with enhanced information and assist in tracing infections.
Collapse
Affiliation(s)
- A. Cassedy
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | | | - R. O’Kennedy
- School of Biotechnology, Dublin City University, Dublin, Ireland
- Hamad Bin Khalifa University, Doha, Qatar
- Qatar Foundation, Doha, Qatar
| |
Collapse
|
105
|
Prediction of PCR amplification from primer and template sequences using recurrent neural network. Sci Rep 2021; 11:7493. [PMID: 33820936 PMCID: PMC8021588 DOI: 10.1038/s41598-021-86357-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 03/09/2021] [Indexed: 11/09/2022] Open
Abstract
We have developed a novel method to predict the success of PCR amplification for a specific primer set and DNA template based on the relationship between the primer sequence and the template. To perform the prediction using a recurrent neural network, the usual double-stranded formation between the primer and template nucleotide sequences was herein expressed as a five-lettered word. The set of words (pseudo-sentences) was placed to indicate the success or failure of PCR targeted to learn recurrent neural network (RNN). After learning pseudo-sentences, RNN predicted PCR results from pseudo-sentences which were created by primer and template sequences with 70% accuracy. These results suggest that PCR results could be predicted using learned RNN and the trained RNN could be used as a replacement for preliminary PCR experimentation. This is the first report which utilized the application of neural network for primer design and prediction of PCR results.
Collapse
|
106
|
Full pathogen characterisation: species identification including the detection of virulence factors and antibiotic resistance genes via multiplex DNA-assays. Sci Rep 2021; 11:6001. [PMID: 33727586 PMCID: PMC7966752 DOI: 10.1038/s41598-021-85438-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/19/2021] [Indexed: 11/08/2022] Open
Abstract
Antibiotic resistances progressively cause treatment failures, and their spreading dynamics reached an alarming level. Some strains have already been classified as highly critical, e.g. the ones summarised by the acronym ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.). To restrain this trend and enable effective medication, as much information as possible must be obtained in the least possible time. Here, we present a DNA microarray-based assay that screens for the most important sepsis-relevant 44 pathogenic species, 360 virulence factors (mediate pathogenicity in otherwise non-pathogenic strains), and 409 antibiotic resistance genes in parallel. The assay was evaluated with 14 multidrug resistant strains, including all ESKAPE pathogens, mainly obtained from clinical isolates. We used a cost-efficient ligation-based detection platform designed to emulate the highly specific multiplex detection of padlock probes. Results could be obtained within one day, requiring approximately 4 h for amplification, application to the microarray, and detection.
Collapse
|
107
|
Abstract
The majority of biological processes are regulated by enzymes, precise control over specific enzymes could create the potential for controlling cellular processes remotely. We show that the thermophilic enzyme thermolysin can be remotely activated in 17.76 MHz radiofrequency (RF) fields when covalently attached to 6.1 nm gold coated magnetite nanoparticles. Without raising the bulk solution temperature, we observe enzyme activity as if the solution was 16 ± 2 °C warmer in RF fields-an increase in enzymatic rate of 129 ± 8%. Kinetics studies show that the activity increase of the enzyme is consistent with the induced fit of a hot enzyme with cold substrate.
Collapse
|
108
|
Wang Y, Zhao B, Lu Z, Shi Y, Li J. The complete chloroplast genome provides insight into the polymorphism and adaptive evolution of Garcinia paucinervis. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1879676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Yifei Wang
- Department of Pharmacognosy, College of Pharmacy, Guilin Medical University, Guilin, China
| | - Bo Zhao
- Department of Pharmacognosy, College of Pharmacy, Guilin Medical University, Guilin, China
| | - Zhaocen Lu
- Department of Characteristic Economic Plant Research Center, Guangxi Institute of Botany, The Chinese Academy of Sciences, Guilin, China
| | - Yancai Shi
- Department of Characteristic Economic Plant Research Center, Guangxi Institute of Botany, The Chinese Academy of Sciences, Guilin, China
| | - Jingjian Li
- Department of Pharmacognosy, College of Pharmacy, Guilin Medical University, Guilin, China
| |
Collapse
|
109
|
Comparative Study of Eleven Mechanical Pretreatment Protocols for Cryptosporidium parvum DNA Extraction from Stool Samples. Microorganisms 2021; 9:microorganisms9020297. [PMID: 33540520 PMCID: PMC7912823 DOI: 10.3390/microorganisms9020297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
Nowadays, many commercial kits allow the polymerase chain reaction (PCR) detection of Cryptosporidium deoxyribonucleic acid (DNA) in stool samples, the efficiency of which relies on the extraction method used. Mechanical pretreatment of the stools using grinding beads has been reported to greatly improve this extraction step. However, optimization of this key step remains to be carried out. Indeed, many parameters could influence the pretreatment performances, among which the modulation of the speed and duration of the grinding step, in addition to the physicochemical features of the grinding beads, have never been evaluated to date. In this study, eleven commercial mechanical pretreatment matrixes (Lysis matrix tubes®, MP Biomedical, Irvine, CA, USA) composed of beads with different sizes, shapes, and molecular compositions, were evaluated for their performances in improving Cryptosporidium parvum oocyst DNA extraction before amplification by using our routinely used real-time PCR method. As expected, the eleven commercial mechanical pretreatment matrixes showed varying performances depending on the composition, size, and shape. All in all, the best performances were obtained when using the Lysing matrix, including ceramic beads with a median size (diameter of 1.4 mm).
Collapse
|
110
|
Kim GS, Oh SH, Jang CS. Development of molecular markers to distinguish between morphologically similar edible plants and poisonous plants using a real-time PCR assay. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1030-1037. [PMID: 32767363 DOI: 10.1002/jsfa.10711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/10/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND As a result of similar appearances between edible and poisonous plants, 42 patients have ingested poisonous plants from 2013 to 2017 in Korea. We have developed species-specific primer sets of three of edible and poisonous plants sets (Ligularia fischeri & Caltha palustris, Artemisia annua & Ambrosia artemisiifolia and Hemerocallis fulva & Veratrum maackii) for distinguishing both plants using a real-time polymerase chain reaction assay. RESULTS The efficiencies of the developed primer sets ranged from 87.8% to 102.0%. The developed primer sets have significant correlation coefficient values between the Ct values and the log DNA concentration for their target species (r2 > 0.99). The cut-off lines as the crossing point values of the limit of quantitation of the target species were determined, and all non-target species were amplified later than the cut-off cycles. Then, the effectiveness of the developed primer sets was evaluated using commercial food products and digested samples with simulated gastric juice. CONCLUSION All of the developed species-specific primer sets were able to detect target DNA successfully in commercial food products and the digested samples. Therefore, the developed species-specific primer sets in the present study would be useful tools for distinguishing between poisonous plants and edible plants. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Geum Sol Kim
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Su Hong Oh
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
111
|
Toxicogenomic Analysis. Methods Mol Biol 2021; 2240:139-174. [PMID: 33423233 DOI: 10.1007/978-1-0716-1091-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The biological functions of a cell may change in response to exposure to toxic agents. Toxicogenomics employs the recent developments in genomics, transcriptomics, and proteomics to study how a chemical impacts gene/protein expression and cell functions. We describe a method for transcriptomic analysis by RNA sequencing based on Illumina HiSeq, NextSeq, or NovaSeq Systems followed by real-time qPCR validation. We also depict a method for proteomic analysis by "one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis" (1D SDS-PAGE) and a sample preparation procedure for "liquid chromatography in tandem with mass spectrometry" (LC-MS/MS), and we present some generic points to consider during LC-MS/MS.
Collapse
|
112
|
Gao J, Wu L, Yang D, Gong W, Wang J. A One-Pot CRISPR/Cas9-Typing PCR for DNA Detection and Genotyping. J Mol Diagn 2021; 23:46-60. [PMID: 33127524 DOI: 10.1016/j.jmoldx.2020.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/05/2020] [Accepted: 10/06/2020] [Indexed: 12/26/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated endonuclease Cas9 (Cas9) has high specificity to its target DNA as a gene editing tool. This characteristic makes it useful for DNA detection. Combining the advantages of CRISPR/Cas9 and PCR, this study establishes a novel CRISPR/Cas9-based DNA detection method, named CRISPR/Cas9-typing PCR version 4.0 (ctPCR4.0). This method can detect target DNA in one pot with high specificity and sensitivity. In a homogenous reaction, the target DNA is first cleaved by a pair of Cas9- single-guide RNA complexes and thus releases two single strands with free 3' ends, allowing a pair of oligonucleotides to anneal with the strands. The annealed oligonucleotides provide templates for DNA polymerization from the free 3' ends. A universal primer annealing site is thus produced at the end of two single strands. The target DNA is then amplified by PCR using a universal primer. This method was first verified by accurately detecting the cloned L1 fragments of 10 genotypes of high-risk human papilloma viruses (HPVs). This method was then validated by detecting the L1 fragments of two highest-risk HPVs, HPV 16 and HPV 18, in the genomic DNA of two HPV-positive cervical carcinoma cells, HeLa and SiHa. Finally, this method was further validated by accurately detecting 10 high-risk HPVs in 30 clinical samples.
Collapse
Affiliation(s)
- Jinliang Gao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing
| | - Lin Wu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing
| | - Daidi Yang
- Clinical Laboratory, Yixing Tumor Hospital, Yixing, China
| | - Weida Gong
- Clinical Laboratory, Yixing Tumor Hospital, Yixing, China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing.
| |
Collapse
|
113
|
Xu X, Luo T, Gao J, Lin N, Li W, Xia X, Wang J. CRISPR-Assisted DNA Detection: A Novel dCas9-Based DNA Detection Technique. CRISPR J 2020; 3:487-502. [PMID: 33346711 DOI: 10.1089/crispr.2020.0041] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nucleic acid detection techniques are always critical to diagnosis, especially in the background of the present coronavirus disease 2019 pandemic. Simple and rapid detection techniques with high sensitivity and specificity are always urgently needed. However, current nucleic acid detection techniques are still limited by traditional amplification and hybridization. To overcome this limitation, here we developed CRISPR-Cas9-assisted DNA detection (CADD). In this detection, a DNA sample is incubated with a pair of capture single guide RNAs (sgRNAs; sgRNAa and sgRNAb) specific to a target DNA, dCas9, a signal readout-related probe, and an oligo-coated solid support beads or microplate at room temperature (RT) for 15 min. During this incubation, the dCas9-sgRNA-DNA complex is formed and captured on solid support by the capture sequence of sgRNAa, and the signal readout-related probe is captured by the capture sequence of sgRNAb. Finally, the detection result is reported by a fluorescent or colorimetric signal readout. This detection was verified by detecting DNA of bacteria, cancer cells, and viruses. In particular, by designing a set of sgRNAs specific to 15 high-risk human papillomaviruses (HPVs), the HPV infection in 64 clinical cervical samples was successfully detected by the method. All detections can be finished in 30 min at RT. This detection holds promise for rapid on-the-spot detection or point-of-care testing.
Collapse
Affiliation(s)
- Xinhui Xu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, PR China
| | - Tao Luo
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, PR China
| | - Jinliang Gao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, PR China
| | - Na Lin
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, PR China
| | - Weiwei Li
- Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| | - Xinyi Xia
- Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, PR China
| |
Collapse
|
114
|
Corpuz MVA, Buonerba A, Vigliotta G, Zarra T, Ballesteros F, Campiglia P, Belgiorno V, Korshin G, Naddeo V. Viruses in wastewater: occurrence, abundance and detection methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140910. [PMID: 32758747 PMCID: PMC7368910 DOI: 10.1016/j.scitotenv.2020.140910] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 04/14/2023]
Abstract
This paper presents an updated and comprehensive review on the different methods used for detection and quantification of viruses in wastewater treatment systems. The analysis of viability of viruses in wastewater and sludge is another thrust of this review. Recent studies have mostly focused on determining the abundance and diversity of viruses in wastewater influents, in samples from primary, secondary, and tertiary treatment stages, and in final effluents. A few studies have also examined the occurrence and diversity of viruses in raw and digested sludge samples. Recent efforts to improve efficiency of virus detection and quantification methods in the complex wastewater and sludge matrices are highlighted in this review. A summary and a detailed comparison of the pre-treatment methods that have been utilized for wastewater and sludge samples are also presented. The role of metagenomics or sequencing analysis in monitoring wastewater systems to predict disease outbreaks, to conduct public health surveillance, to assess the efficiency of existing treatment systems in virus removal, and to re-evaluate current regulations regarding pathogenic viruses in wastewater is discussed in this paper. Challenges and future perspectives in the detection of viruses, including emerging and newly emerged viruses such as the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), in wastewater systems are discussed in this review.
Collapse
Affiliation(s)
- Mary Vermi Aizza Corpuz
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines.
| | - Antonio Buonerba
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy; Inter-University Centre for Prediction and Prevention of Major Hazards (C.U.G.RI.), Via Giovanni Paolo II, 84084, Fisciano (SA), Italy.
| | - Giovanni Vigliotta
- Laboratory of Microbiology, University of Salerno, 84084 Fisciano, Italy.
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy; Inter-University Centre for Prediction and Prevention of Major Hazards (C.U.G.RI.), Via Giovanni Paolo II, 84084, Fisciano (SA), Italy.
| | - Florencio Ballesteros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines; Department of Chemical Engineering, College of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines.
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy.
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy; Inter-University Centre for Prediction and Prevention of Major Hazards (C.U.G.RI.), Via Giovanni Paolo II, 84084, Fisciano (SA), Italy.
| | - Gregory Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98105-2700, United States.
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy; Inter-University Centre for Prediction and Prevention of Major Hazards (C.U.G.RI.), Via Giovanni Paolo II, 84084, Fisciano (SA), Italy.
| |
Collapse
|
115
|
Multiplexed Diagnosis of Four Serotypes of Dengue Virus by Real-time RT-PCR. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-020-4409-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
116
|
Bonny SQ, Hossain MAM, Uddin SMK, Pulingam T, Sagadevan S, Johan MR. Current trends in polymerase chain reaction based detection of three major human pathogenic vibrios. Crit Rev Food Sci Nutr 2020; 62:1317-1335. [DOI: 10.1080/10408398.2020.1841728] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sharmin Quazi Bonny
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - M. A. Motalib Hossain
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Syed Muhammad Kamal Uddin
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Thiruchelvi Pulingam
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
117
|
Rui X, Song S, Wang W, Zhou J. Applications of electrowetting-on-dielectric (EWOD) technology for droplet digital PCR. BIOMICROFLUIDICS 2020; 14:061503. [PMID: 33312327 PMCID: PMC7719047 DOI: 10.1063/5.0021177] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/24/2020] [Indexed: 05/25/2023]
Abstract
Digital microfluidics is an elegant technique based on single droplets for the design, composition, and manipulation of microfluidic systems. In digital microfluidics, especially in the electrowetting on dielectric (EWOD) system, each droplet acts as an independent reactor, which enables a wide range of multiple parallel biological and chemical reactions at the microscale. EWOD digital microfluidics reduces reagent and energy consumption, accelerates analysis, enables point-of-care diagnostic, simplifies integration with sensors, etc. Such a digital microfluidic system is especially relevant for droplet digital PCR (ddPCR), thanks to its nanoliter droplets and well-controlled volume distribution. At low DNA concentration, these small volumes allow less than one DNA strand per droplet on average (limited dilution) so that after a fixed number of PCR cycles (endpoint PCR), only the DNA in droplets containing the sequence of interest has been amplified and can be detected by fluorescence to yield an accurate count of the sequences of interest using statistical models. Focusing on ddPCR, this article summarizes the latest development and research on EWOD technology for droplet PCR over the last decade.
Collapse
Affiliation(s)
| | | | | | - Jia Zhou
- Author to whom correspondence should be addressed:
| |
Collapse
|
118
|
Afzal A. Molecular diagnostic technologies for COVID-19: Limitations and challenges. J Adv Res 2020; 26:149-159. [PMID: 32837738 PMCID: PMC7406419 DOI: 10.1016/j.jare.2020.08.002] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND To curb the spread of the COVID-19 (coronavirus disease 2019) pandemic, the world needs diagnostic systems capable of rapid detection and quantification of the novel coronavirus (SARS-CoV-2). Many biomedical companies are rising to the challenge and developing COVID-19 diagnostics. In the last few months, some of these diagnostics have become commercially available for healthcare workers and clinical laboratories. However, the diagnostic technologies have specific limitations and reported several false-positive and false-negative cases, especially during the early stages of infection. AIM This article aims to review recent developments in the field of COVID-19 diagnostics based on molecular technologies and analyze their clinical performance data. KEY CONCEPTS The literature survey and performance-based analysis of the commercial and pre-commercial molecular diagnostics address several questions and issues related to the limitations of current technologies and highlight future research and development challenges to enable timely, rapid, low-cost, and accurate diagnosis of emerging infectious diseases.
Collapse
Affiliation(s)
- Adeel Afzal
- Department of Chemistry, College of Science, University of Hafr Al Batin, PO Box 1803, Hafr Al Batin 39524, Saudi Arabia
| |
Collapse
|
119
|
Wang M, Zhang R, Li J. CRISPR/cas systems redefine nucleic acid detection: Principles and methods. Biosens Bioelectron 2020; 165:112430. [PMID: 32729545 PMCID: PMC7341063 DOI: 10.1016/j.bios.2020.112430] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
Methods that enable rapid, sensitive and specific analyses of nucleic acid sequences have positive effects on precise disease diagnostics and effective clinical treatments by providing direct insight into clinically relevant genetic information. Thus far, many CRISPR/Cas systems have been repurposed for diagnostic functions and are revolutionizing the accessibility of robust diagnostic tools due to their high flexibility, sensitivity and specificity. As RNA-guided targeted recognition effectors, Cas9 variants have been utilized for a variety of diagnostic applications, including biosensing assays, imaging assays and target enrichment for next-generation sequencing (NGS), thereby enabling the development of flexible and cost-effective tests. In addition, the ensuing discovery of Cas proteins (Cas12 and Cas13) with collateral cleavage activities has facilitated the development of numerous diagnostic tools for rapid and portable detection, and these tools have great potential for point-of-care settings. However, representative reviews proposed on this topic are mainly confined to classical biosensing applications; thus, a comprehensive and systematic description of this fast-developing field is required. In this review, based on the detection principle, we provide a detailed classification and comprehensive discussion of recent works that harness these CRISPR-based diagnostic tools from a new perspective. Furthermore, current challenges and future perspectives of CRISPR-based diagnostics are outlined.
Collapse
Affiliation(s)
- Meng Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China.
| |
Collapse
|
120
|
Performance of Lactobacillus paracasei 90 as an adjunct culture in soft cheese under cold chain interruption. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
121
|
Sethi I, Bhat GR, Kumar R, Rai E, Sharma S. Dual labeled fluorescence probe based qPCR assay to measure the telomere length. Gene 2020; 767:145178. [PMID: 33007378 DOI: 10.1016/j.gene.2020.145178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/23/2020] [Indexed: 01/22/2023]
Abstract
Telomeres are highly repetitive regions capping the chromosomes and composed of multiple units of hexa-nucleotides, TTAGGG, making their quantification difficult. Most of the methods developed to estimate telomeres are extensively cumbersome or expensive. The quantitative polymerase chain reaction (qPCR) based assay is relatively easy and cheaper method that applies SyBr Green dye chemistry to measure telomere length. SyBr Green dye fluoresces after intercalation into the double stranded DNA (dsDNA), thus detection of unspecific products has been a limitation as it may affect quantitation of telomeres. To overcome this limitation of SyBr Green dye, we developed a dual labeled fluorescence probe based quantitative polymerase chain reaction (qPCR) to measure the telomere length. This highly efficient, yet cost effective and easy method, utilizes a probe that targets primarily the telomeric DNA and this increases accuracy of an existing qPCR method.
Collapse
Affiliation(s)
- Itty Sethi
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra 182320, India
| | - Gh Rasool Bhat
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra 182320, India
| | - Rakesh Kumar
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra 182320, India
| | - Ekta Rai
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra 182320, India
| | - Swarkar Sharma
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra 182320, India.
| |
Collapse
|
122
|
Sajali N, Wong SC, Abu Bakar S, Khairil Mokhtar NF, Manaf YN, Yuswan MH, Mohd Desa MN. Analytical approaches of meat authentication in food. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nurhayatie Sajali
- School of Engineering and Technology University College of Technology Sarawak Sibu Sarawak Malaysia
- Halal Products Research Institute Universiti Putra Malaysia Serdang Selangor Darul Ehsan Malaysia
| | - Sie Chuong Wong
- Department of Basic Science and Engineering Faculty of Agriculture and Food Sciences UPM Bintulu Sarawak Campus Bintulu Sarawak Malaysia
| | - Suhaili Abu Bakar
- Department of Biomedical Science Faculty of Medicine and Health Sciences Universiti Putra Malaysia Serdang Selangor Darul Ehsan Malaysia
| | - Nur Fadhilah Khairil Mokhtar
- Halal Products Research Institute Universiti Putra Malaysia Serdang Selangor Darul Ehsan Malaysia
- Konsortium Institut Halal IPT Malaysia (KIHIM), Ministry of Higher Education Malaysia, Federal Government Administrative Centre Putrajaya Malaysia
| | - Yanty Noorzianna Manaf
- Halal Products Research Institute Universiti Putra Malaysia Serdang Selangor Darul Ehsan Malaysia
- Konsortium Institut Halal IPT Malaysia (KIHIM), Ministry of Higher Education Malaysia, Federal Government Administrative Centre Putrajaya Malaysia
| | - Mohd Hafis Yuswan
- Halal Products Research Institute Universiti Putra Malaysia Serdang Selangor Darul Ehsan Malaysia
- Konsortium Institut Halal IPT Malaysia (KIHIM), Ministry of Higher Education Malaysia, Federal Government Administrative Centre Putrajaya Malaysia
| | - Mohd Nasir Mohd Desa
- Halal Products Research Institute Universiti Putra Malaysia Serdang Selangor Darul Ehsan Malaysia
- Department of Biomedical Science Faculty of Medicine and Health Sciences Universiti Putra Malaysia Serdang Selangor Darul Ehsan Malaysia
- Konsortium Institut Halal IPT Malaysia (KIHIM), Ministry of Higher Education Malaysia, Federal Government Administrative Centre Putrajaya Malaysia
| |
Collapse
|
123
|
Hossain MAM, Uddin SMK, Sultana S, Wahab YA, Sagadevan S, Johan MR, Ali ME. Authentication of Halal and Kosher meat and meat products: Analytical approaches, current progresses and future prospects. Crit Rev Food Sci Nutr 2020; 62:285-310. [DOI: 10.1080/10408398.2020.1814691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- M. A. Motalib Hossain
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Syed Muhammad Kamal Uddin
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Sharmin Sultana
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Yasmin Abdul Wahab
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Md. Eaqub Ali
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
124
|
Aufdembrink LM, Khan P, Gaut NJ, Adamala KP, Engelhart AE. Highly specific, multiplexed isothermal pathogen detection with fluorescent aptamer readout. RNA (NEW YORK, N.Y.) 2020; 26:1283-1290. [PMID: 32482894 PMCID: PMC7430665 DOI: 10.1261/rna.075192.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Isothermal, cell-free, synthetic biology-based approaches to pathogen detection leverage the power of tools available in biological systems, such as highly active polymerases compatible with lyophilization, without the complexity inherent to live-cell systems, of which nucleic acid sequence based amplification (NASBA) is well known. Despite the reduced complexity associated with cell-free systems, side reactions are a common characteristic of these systems. As a result, these systems often exhibit false positives from reactions lacking an amplicon. Here we show that the inclusion of a DNA duplex lacking a promoter and unassociated with the amplicon fully suppresses false positives, enabling a suite of fluorescent aptamers to be used as NASBA tags (Apta-NASBA). Apta-NASBA has a 1 pM detection limit and can provide multiplexed, multicolor fluorescent readout. Furthermore, Apta-NASBA can be performed using a variety of equipment, for example, a fluorescence microplate reader, a qPCR instrument, or an ultra-low-cost Raspberry Pi-based 3D-printed detection platform using a cell phone camera module, compatible with field detection.
Collapse
Affiliation(s)
- Lauren M Aufdembrink
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Pavana Khan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Nathaniel J Gaut
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Aaron E Engelhart
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
125
|
Sharma A, Lee S, Park YS. Molecular typing tools for identifying and characterizing lactic acid bacteria: a review. Food Sci Biotechnol 2020; 29:1301-1318. [PMID: 32995049 PMCID: PMC7492335 DOI: 10.1007/s10068-020-00802-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023] Open
Abstract
Identification and classification of beneficial microbes is of the highest significance in food science and related industries. Conventional phenotypic approaches pose many challenges, and they may misidentify a target, limiting their use. Genotyping tools show comparatively better prospects, and they are widely used for distinguishing microorganisms. The techniques already employed in genotyping of lactic acid bacteria (LAB) are slightly different from one another, and each tool has its own advantages and disadvantages. This review paper compiles the comprehensive details of several fingerprinting tools that have been used for identifying and characterizing LAB at the species, sub-species, and strain levels. Notably, most of these approaches are based on restriction digestion, amplification using polymerase chain reaction, and sequencing. Nowadays, DNA sequencing technologies have made considerable progress in terms of cost, throughput, and methodology. A research journey to develop improved versions of generally applicable and economically viable tools for fingerprinting analysis is ongoing globally.
Collapse
Affiliation(s)
- Anshul Sharma
- Department of Food and Nutrition, Gachon University, Seongnam, 13120 Republic of Korea.,Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229 India
| | - Sulhee Lee
- Research Group of Healthcare, Korea Food Research Institute, Wanju, 55365 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| |
Collapse
|
126
|
Wu S, Yang T, Cen K, Zou Y, Shi X, Zhou D, Gao Y, Chai L, Zhao Y, Sun Y, Zhu L. In Vitro Evaluation of the Neuroprotective Effect of Panax notoginseng Saponins by Activating the EGFR/PI3K/AKT Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:1403572. [PMID: 32802113 PMCID: PMC7415117 DOI: 10.1155/2020/1403572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/27/2020] [Accepted: 05/08/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This study investigated whether Panax notoginseng saponins (PNS) extracted from Panax notoginseng (Bruk.) F. H. Chen played a neuroprotective role by affecting the EGFR/PI3K/AKT pathway in oxygen-glucose deprived (OGD) SH-SY5Y cells. MATERIALS AND METHODS Different groups of OGD SH-SY5Y cells were treated with varying doses of PNS, PNS + AG1478 (a specific inhibitor of EGFR), or AG1478 for 16 hours. CCK8, Annexin V-FITC/PI apoptosis analysis, and LDH release analysis were used to determine cell viability, apoptosis rate, and amounts of LDH. Quantitative real-time PCR (q-RT-PCR) and western blotting were used to measure mRNA and proteins levels of p-EGFR/EGFR, p-PI3K/PI3K, and p-AKT/AKT in SH-SY5Y cells subjected to OGD. RESULTS PNS significantly enhanced cell viability, reduced apoptosis, and weakened cytotoxicity by inhibiting the release of LDH. The mRNA expression profiles of EGFR, PI3K, and AKT showed no difference between model and other groups. Additionally, ratios of p-EGFR, p-PI3K, and p-AKT to EGFR, PI3K, and AKT proteins expression, respectively, all increased significantly. CONCLUSIONS These findings indicate that PNS enhanced neuroprotective effects by activating the EGFR/PI3K/AKT pathway and elevating phosphorylation levels in OGD SH-SY5Y cells.
Collapse
Affiliation(s)
- Shuang Wu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tiantian Yang
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kai Cen
- Department of Stomatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yihuai Zou
- Department of Neurology and Stroke Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaowei Shi
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Dongrui Zhou
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yizhou Zhao
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lingqun Zhu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
127
|
Pinchon E, Leon F, Temurok N, Morvan F, Vasseur JJ, Clot M, Foulongne V, Cantaloube JF, Perre PV, Daynès A, Molès JP, Fournier-Wirth C. Rapid and specific DNA detection by magnetic field-enhanced agglutination assay. Talanta 2020; 219:121344. [PMID: 32887073 DOI: 10.1016/j.talanta.2020.121344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
The detection of DNA molecules by agglutination assays has suffered from a lack of specificity. The specificity can be improved by introducing a hybridization step with a specific probe. We developed a setting that captured biotinylated DNA targets between magnetic nanoparticles (MNPs) grafted with tetrathiolated probes and anti-biotin antibodies. The agglutination assay was enhanced using a series of magnetization cycles. This setting allowed to successfully detect a synthetic single stranded DNA with a sensitivity as low as 9 pM. We next adapted this setting to the detection of PCR products. We first developed an asymmetric pan-flavivirus amplification. Then, we demonstrated its ability to detect dengue virus with a limit of detection of 100 TCID50/mL. This magnetic field-enhanced agglutination assay is an endpoint readout, which benefits from the advantages of using nanoparticles that result in particular from a very reduced duration of the test; in our case it lasts less than 5 min. This approach provides a solution to develop new generation platforms for molecular diagnostics.
Collapse
Affiliation(s)
- Elena Pinchon
- Pathogénèse et Contrôle des infections chroniques, EFS, Université de Montpellier, Inserm, 60 rue de Navacelles, 34 394 Montpellier, Cedex 5, France.
| | - Fanny Leon
- Pathogénèse et Contrôle des infections chroniques, EFS, Université de Montpellier, Inserm, 60 rue de Navacelles, 34 394 Montpellier, Cedex 5, France.
| | - Nevzat Temurok
- HORIBA Medical ABX SAS, Parc Euromedecine, Rue Du Caducée BP 7290, 34184, Montpellier, France.
| | - François Morvan
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France.
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France.
| | - Martine Clot
- HORIBA Medical ABX SAS, Parc Euromedecine, Rue Du Caducée BP 7290, 34184, Montpellier, France.
| | - Vincent Foulongne
- Pathogénèse et Contrôle des infections chroniques, EFS, Université de Montpellier, Inserm, 60 rue de Navacelles, 34 394 Montpellier, Cedex 5, France.
| | - Jean-François Cantaloube
- Pathogénèse et Contrôle des infections chroniques, EFS, Université de Montpellier, Inserm, 60 rue de Navacelles, 34 394 Montpellier, Cedex 5, France.
| | - Philippe Vande Perre
- Pathogénèse et Contrôle des infections chroniques, EFS, Université de Montpellier, Inserm, 60 rue de Navacelles, 34 394 Montpellier, Cedex 5, France.
| | - Aurélien Daynès
- HORIBA Medical ABX SAS, Parc Euromedecine, Rue Du Caducée BP 7290, 34184, Montpellier, France.
| | - Jean-Pierre Molès
- Pathogénèse et Contrôle des infections chroniques, EFS, Université de Montpellier, Inserm, 60 rue de Navacelles, 34 394 Montpellier, Cedex 5, France.
| | - Chantal Fournier-Wirth
- Pathogénèse et Contrôle des infections chroniques, EFS, Université de Montpellier, Inserm, 60 rue de Navacelles, 34 394 Montpellier, Cedex 5, France.
| |
Collapse
|
128
|
Oh SH, Jang CS. Development and Validation of a Real-Time PCR Based Assay to Detect Adulteration with Corn in Commercial Turmeric Powder Products. Foods 2020; 9:foods9070882. [PMID: 32635672 PMCID: PMC7404567 DOI: 10.3390/foods9070882] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 01/21/2023] Open
Abstract
Turmeric, or Curcuma longa, is commonly consumed in the South East Asian countries as a medical product and as food due to its therapeutic properties. However, with increasing demand for turmeric powder, adulterated turmeric powders mixed with other cheap starch powders, such as from corn or cassava, are being distributed by food suppliers for economic benefit. Here, we developed molecular markers using quantitative real-time PCR to identify adulteration in commercial turmeric powder products. Chloroplast genes, such as matK, atpF, and ycf2, were used to design species-specific primers for C. longa and Zea mays. Of the six primer pairs designed and tested, the correlation coefficients (R2) were higher than 0.99 and slopes were -3.136 to -3.498. The efficiency of the primers was between 93.14 and 108.4%. The specificity of the primers was confirmed with ten other species, which could be intentionally added to C. longa powders or used as ingredients in complex turmeric foods. In total, 20 blind samples and 10 commercial C. longa food products were tested with the designed primer sets to demonstrate the effectiveness of this approach to detect the addition of Z. mays products in turmeric powders. Taken together, the real-time PCR assay developed here has the potential to contribute to food safety and the protection of consumer's rights.
Collapse
|
129
|
Artika IM, Wiyatno A, Ma'roef CN. Pathogenic viruses: Molecular detection and characterization. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 81:104215. [PMID: 32006706 PMCID: PMC7106233 DOI: 10.1016/j.meegid.2020.104215] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
Abstract
Pathogenic viruses are viruses that can infect and replicate within human cells and cause diseases. The continuous emergence and re-emergence of pathogenic viruses has become a major threat to public health. Whenever pathogenic viruses emerge, their rapid detection is critical to enable implementation of specific control measures and the limitation of virus spread. Further molecular characterization to better understand these viruses is required for the development of diagnostic tests and countermeasures. Advances in molecular biology techniques have revolutionized the procedures for detection and characterization of pathogenic viruses. The development of PCR-based techniques together with DNA sequencing technology, have provided highly sensitive and specific methods to determine virus circulation. Pathogenic viruses potentially having global catastrophic consequences may emerge in regions where capacity for their detection and characterization is limited. Development of a local capacity to rapidly identify new viruses is therefore critical. This article reviews the molecular biology of pathogenic viruses and the basic principles of molecular techniques commonly used for their detection and characterization. The principles of good laboratory practices for handling pathogenic viruses are also discussed. This review aims at providing researchers and laboratory personnel with an overview of the molecular biology of pathogenic viruses and the principles of molecular techniques and good laboratory practices commonly implemented for their detection and characterization.
Collapse
Affiliation(s)
- I Made Artika
- Biosafety Level 3 Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta 10430, Indonesia; Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Darmaga Campus, Bogor 16680, Indonesia.
| | - Ageng Wiyatno
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta 10430, Indonesia
| | - Chairin Nisa Ma'roef
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta 10430, Indonesia
| |
Collapse
|
130
|
He L, Sang B, Wu W. Battery-Powered Portable Rotary Real-Time Fluorescent qPCR with Low Energy Consumption, Low Cost, and High Throughput. BIOSENSORS-BASEL 2020; 10:bios10050049. [PMID: 32397069 PMCID: PMC7277348 DOI: 10.3390/bios10050049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 12/19/2022]
Abstract
The traditional qPCR instrument is bulky, expensive, and inconvenient to carry, so we report a portable rotary real-time fluorescent PCR (polymerase chain reaction) that completes the PCR amplification of DNA in the field, and the reaction can be observed in real-time. Through the analysis of a target gene, namely pGEM-3Zf (+), the gradient amplification and melting curves are compared to commercial devices. The results confirm the stability of our device. This is the first use of a mechanical rotary structure to achieve gradient amplification curves and melting curves comparable to commercial instruments. The average power consumption of our system is about 7.6 W, which is the lowest energy consumption for real-time fluorescence quantification in shunting PCR and enables the use of our device in the field thanks to its self-contained power supply based on a lithium battery. In addition, all of the equipment costs only about 710 dollars, which is far lower than the cost of a commercial PCR instrument because the control system through mechanical displacement replaces the traditional TEC (thermoelectric cooler) temperature control. Moreover, the equipment has a low technical barrier, which can suit the needs of non-professional settings, with strong repeatability.
Collapse
Affiliation(s)
- Limin He
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China; (L.H.); (B.S.)
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Benliang Sang
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China; (L.H.); (B.S.)
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Wenming Wu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China; (L.H.); (B.S.)
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- Correspondence:
| |
Collapse
|
131
|
Sultana S, Hossain MAM, Azlan A, Johan MR, Chowdhury ZZ, Ali ME. TaqMan probe based multiplex quantitative PCR assay for determination of bovine, porcine and fish DNA in gelatin admixture, food products and dietary supplements. Food Chem 2020; 325:126756. [PMID: 32413685 DOI: 10.1016/j.foodchem.2020.126756] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 11/29/2022]
Abstract
Detection of animal materials in gelatin-based products is required to address religious and cultural concerns, because porcine and bovine gelatins are prohibited in Halal, Kosher and Hindus consumer goods. In this paper, multiplex quantitative polymerase chain reaction (qPCR) assay using TaqMan probe was developed to discriminate bovine, porcine and fish gelatin species in a single assay platform. The assay was specific to cattle, pigs and fish, having been tested against 14 non-target species. The limit of detection, under gelatin admixed conditions, was 0.005 ng/µL. Finally, a pilot survey was undertaken testing 35 Halal branded processed food and dietary items. Out of 35 samples, only two were found to be positive for porcine species. The authenticity of these two qPCR products was confirmed by DNA sequencing analysis, which showed 99-100% similarity with Sus scrofa (Wild boar) species.
Collapse
Affiliation(s)
- Sharmin Sultana
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - M A Motalib Hossain
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Azrina Azlan
- Department of Nutrition & Dietetics, Faculty of Medicine & Health Sciences, University Putra Malaysia, Serdang, 43400 Selangor, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Zaira Zaman Chowdhury
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Md Eaqub Ali
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
132
|
Bakhtiari H, Palizban AA, Khanahmad H, Mofid MR. Aptamer-based approaches for in vitro molecular detection of cancer. Res Pharm Sci 2020; 15:107-122. [PMID: 32582351 PMCID: PMC7306249 DOI: 10.4103/1735-5362.283811] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/06/2020] [Accepted: 02/26/2020] [Indexed: 01/08/2023] Open
Abstract
Cancer is typically associated with abnormal production of various tumor-specific molecules known as tumor markers. Probing these markers by utilizing efficient approaches could be beneficial for cancer diagnosis. The current widely-used biorecognition probes, antibodies, suffer from some undeniable shortcomings. Fortunately, novel oligonucleotide-based molecular probes named aptamers are being emerged as alternative detection tools with distinctive advantages compared to antibodies. All of the existing strategies in cancer diagnostics, including those of in vitro detection, can potentially implement aptamers as the detecting moiety. Several studies have been performed in the field of in vitro cancer detection over the last decade. In order to direct future studies, it is necessary to comprehensively summarize and review the current status of the field. Most previous studies involve only a few cancer diagnostic strategies. Here, we thoroughly review recent significant advances on the applications of aptamer in various in vitro detection strategies. Furthermore, we will discuss the status of diagnostic aptamers in clinical trials.
Collapse
Affiliation(s)
- Hadi Bakhtiari
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I. R. Iran
| | - Abbas Ali Palizban
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I. R. Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I. R. Iran
| | - Mohammad Reza Mofid
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I. R. Iran
| |
Collapse
|
133
|
Adams JD, Røise JJ, Lee DS, Murthy N. The methionase chain reaction: an enzyme-based autocatalytic amplification system for the detection of thiols. Chem Commun (Camb) 2020; 56:3175-3178. [PMID: 32065188 DOI: 10.1039/c9cc09136j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present an autocatalytic system for the detection and amplification of thiols termed the Methionase Chain Reaction (MCR). MCR is based on the reversible modification of the thiol producing enzyme Methionine Gamma-Lyase (MGL). MCR was able to amplify the concentration of thiols by a factor of 560 and was able to visually detect thiols at concentrations as low as 50 nM.
Collapse
Affiliation(s)
- Jeremy David Adams
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
134
|
O'Sullivan AM, Samways KM, Perreault A, Hernandez C, Gautreau MD, Curry RA, Bernatchez L. Space invaders: Searching for invasive Smallmouth Bass ( Micropterus dolomieu) in a renowned Atlantic Salmon ( Salmo salar) river. Ecol Evol 2020; 10:2588-2596. [PMID: 32185004 PMCID: PMC7069312 DOI: 10.1002/ece3.6088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 11/11/2022] Open
Abstract
Humans have the ability to permanently alter aquatic ecosystems and the introduction of species is often the most serious alteration. Non-native Smallmouth Bass (Micropterus dolomieu) were identified in Miramichi Lake c. 2008, which is a headwater tributary to the Southwest Miramichi River, a renowned Atlantic Salmon (Salmo salar) river whose salmon population is dwindling. A containment programme managed by the Department of Fisheries and Oceans, Canada (DFO) was implemented in 2009 to confine Smallmouth Bass (SMB) to the lake. We utilized environmental DNA (eDNA) as a detection tool to establish the potential escape of SMB into the Southwest Miramichi River. We sampled at 26 unique sites within Miramichi Lake, the outlet of Miramichi Lake (Lake Brook), which flows into the main stem Southwest Miramichi River, and the main stem Southwest Miramichi River between August and October 2017. We observed n = 6 positive detections located in the lake, Lake Brook, and the main stem Southwest Miramichi downstream of the lake. No detections were observed upstream of the confluence of Lake Brook and the main stem Southwest Miramichi. The spatial pattern of positive eDNA detections downstream of the lake suggests the presence of individual fish versus lake-sourced DNA in the outlet stream discharging to the main river. Smallmouth Bass were later confirmed by visual observation during a snorkeling campaign, and angling. Our results, both eDNA and visual confirmation, definitively show Smallmouth Bass now occupy the main stem of the Southwest Miramichi.
Collapse
Affiliation(s)
- Antóin M. O'Sullivan
- Canadian Rivers InstituteUniversity of New BrunswickFrederictonNBCanada
- Faculty of Forestry and Environmental ManagementUniversity of New BrunswickFrederictonNBCanada
| | - Kurt M. Samways
- Canadian Rivers InstituteUniversity of New BrunswickFrederictonNBCanada
- Department of Biological SciencesUniversity of New BrunswickSaint JohnNBCanada
| | - Alysse Perreault
- Institut de Biologie Intégrative et des Systèmes (IBIS)Pavillon Charles‐Eugène Marchand, Université LavalQuébecQCCanada
| | - Cécilia Hernandez
- Institut de Biologie Intégrative et des Systèmes (IBIS)Pavillon Charles‐Eugène Marchand, Université LavalQuébecQCCanada
| | - Mark D. Gautreau
- Canadian Rivers InstituteUniversity of New BrunswickFrederictonNBCanada
- Department of BiologyUniversity of New BrunswickFrederictonNBCanada
| | - R. Allen Curry
- Canadian Rivers InstituteUniversity of New BrunswickFrederictonNBCanada
- Faculty of Forestry and Environmental ManagementUniversity of New BrunswickFrederictonNBCanada
- Department of BiologyUniversity of New BrunswickFrederictonNBCanada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS)Pavillon Charles‐Eugène Marchand, Université LavalQuébecQCCanada
| |
Collapse
|
135
|
Cao Y, Yu M, Dong G, Chen B, Zhang B. Digital PCR as an Emerging Tool for Monitoring of Microbial Biodegradation. Molecules 2020; 25:E706. [PMID: 32041334 PMCID: PMC7037809 DOI: 10.3390/molecules25030706] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 11/16/2022] Open
Abstract
Biodegradation of contaminants is extremely complicated due to unpredictable microbial behaviors. Monitoring of microbial biodegradation drives us to determine (1) the amounts of specific degrading microbes, (2) the abundance, and (3) expression level of relevant functional genes. To this endeavor, the cultivation independent polymerase chain reaction (PCR)-based monitoring technique develops from endpoint PCR, real-time quantitative PCR, and then into novel digital PCR. In this review, we introduce these three categories of PCR techniques and summarize the timely applications of digital PCR and its superiorities than qPCR for biodegradation monitoring. Digital PCR technique, emerging as the most accurately absolute quantification method, can serve as the most promising and robust tool for monitoring of microbial biodegradation.
Collapse
Affiliation(s)
| | | | | | - Bing Chen
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada; (Y.C.); (M.Y.); (G.D.)
| | - Baiyu Zhang
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada; (Y.C.); (M.Y.); (G.D.)
| |
Collapse
|
136
|
Mussack V, Hermann S, Buschmann D, Kirchner B, Pfaffl MW. MIQE-Compliant Validation of MicroRNA Biomarker Signatures Established by Small RNA Sequencing. Methods Mol Biol 2020; 2065:23-38. [PMID: 31578685 DOI: 10.1007/978-1-4939-9833-3_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs), a class of small non-coding RNAs that modulate gene expression at the post-transcriptional level, are attractive targets in many academic and diagnostic applications. Among them, assessing miRNA biomarkers in minimally invasive liquid biopsies was shown to be a promising tool for managing diseases, particularly cancer. The initial screening of disease-relevant transcripts is often performed by high-throughput next-generation sequencing (NGS), in here RNA sequencing (RNA-Seq). After complex processing of small RNA-Seq data, differential gene expression analysis is performed to evaluate miRNA biomarker signatures. To ensure experimental validity, biomarker candidates are commonly validated by an orthogonal technology such as reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). This chapter outlines in detail the material and methods one can apply to reproducibly identify miRNA biomarker signatures from blood total RNA. After screening miRNA profiles by small RNA-Seq, resulting data is validated in compliance with the "Minimum Information for Publication of Quantitative Real-Time PCR Experiments" (MIQE) guidelines.
Collapse
Affiliation(s)
- Veronika Mussack
- Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Stefanie Hermann
- Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Dominik Buschmann
- Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Benedikt Kirchner
- Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Michael W Pfaffl
- Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.
| |
Collapse
|
137
|
Ayatollahi AA, Khandan Del A, Jamalli A, Shahin K, Ahani Azari A. Prevalence of Biofilm Formation and Detection of PSM B Gene in Clinical Isolates of Staphylococcus aureus. MEDICAL LABORATORY JOURNAL 2020. [DOI: 10.29252/mlj.14.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
138
|
Pan Z, Lu J, Wang N, He WT, Zhang L, Zhao W, Su S. Development of a TaqMan-probe-based multiplex real-time PCR for the simultaneous detection of emerging and reemerging swine coronaviruses. Virulence 2020; 11:707-718. [PMID: 32490723 PMCID: PMC7549975 DOI: 10.1080/21505594.2020.1771980] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/23/2020] [Accepted: 05/03/2020] [Indexed: 01/03/2023] Open
Abstract
With the outbreak of the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019, coronaviruses have become a global research hotspot in the field of virology. Coronaviruses mainly cause respiratory and digestive tract diseases, several coronaviruses are responsible for porcine diarrhea, such as porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and emerging swine acute diarrhea syndrome coronavirus (SADS-CoV). Those viruses have caused huge economic losses and are considered as potential public health threats. Porcine torovirus (PToV) and coronaviruses, sharing similar genomic structure and replication strategy, belong to the same order Nidovirales. Here, we developed a multiplex TaqMan-probe-based real-time PCR for the simultaneous detection of PEDV, PDCoV, PToV, and SADS-CoV for the first time. Specific primers and TaqMan fluorescent probes were designed targeting the ORF1a region of PDEV, PToV, and SADS-CoV and the ORF1b region of PDCoV. The method showed high sensitivity and specificity, with a detection limit of 1 × 102 copies/μL for each pathogen. A total of 101 clinical swine samples with signs of diarrhea were analyzed using this method, and the result showed good consistency with conventional reverse transcription PCR (RT-PCR). This method improves the efficiency for surveillance of these emerging and reemerging swine enteric viruses and can help reduce economic losses to the pig industry, which also benefits animal and public health.
Collapse
Affiliation(s)
- Zhongzhou Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiaxuan Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ningning Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wan-Ting He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Letian Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wen Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shuo Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
139
|
Xiong W, Huang X, Chen Y, Fu R, Du X, Chen X, Zhan A. Zooplankton biodiversity monitoring in polluted freshwater ecosystems: A technical review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2019; 1:100008. [PMCID: PMC9488063 DOI: 10.1016/j.ese.2019.100008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 05/26/2023]
Abstract
Freshwater ecosystems harbor a vast diversity of micro-eukaryotes (rotifers, crustaceans and protists), and such diverse taxonomic groups play important roles in ecosystem functioning and services. Unfortunately, freshwater ecosystems and biodiversity therein are threatened by many environmental stressors, particularly those derived from intensive human activities such as chemical pollution. In the past several decades, significant efforts have been devoted to halting biodiversity loss to recover services and functioning of freshwater ecosystems. Biodiversity monitoring is the first and a crucial step towards diagnosing pollution impacts on ecosystems and making conservation plans. Yet, bio-monitoring of ubiquitous micro-eukaryotes is extremely challenging, owing to many technical issues associated with micro-zooplankton such as microscopic size, fuzzy morphological features, and extremely high biodiversity. Here, we review current methods used for monitoring zooplankton biodiversity to advance management of impaired freshwater ecosystems. We discuss the development of traditional morphology-based identification methods such as scanning electron microscope (SEM) and ZOOSCAN and FlowCAM automatic systems, and DNA-based strategies such as metabarcoding and real-time quantitative PCR. In addition, we summarize advantages and disadvantages of these methods when applied for monitoring impacted ecosystems, and we propose practical DNA-based monitoring workflows for studying biological consequences of environmental pollution in freshwater ecosystems. Finally, we propose possible solutions for existing technical issues to improve accuracy and efficiency of DNA-based biodiversity monitoring. Freshwater ecosystems and associated biodiversity have been highly degraded. Biodiversity monitoring is crucial for diagnosing degradation degrees. Here we review available methods for monitoring zooplankton biodiversity. We propose possible solutions for existing technical issues.
Collapse
Affiliation(s)
- Wei Xiong
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Ruiying Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Xun Du
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Xingyu Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
- College of Resources, Environment and Tourism, Capital Normal University, 105 West Third Ring Road, Haidian District, Beijing, 100048, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
140
|
Rapid Subtyping and Pathotyping of Avian Influenza Virus using Chip-based RT-PCR. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-019-3405-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
141
|
Kang TS. Basic principles for developing real-time PCR methods used in food analysis: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
142
|
Gabaldón T. Recent trends in molecular diagnostics of yeast infections: from PCR to NGS. FEMS Microbiol Rev 2019; 43:517-547. [PMID: 31158289 PMCID: PMC8038933 DOI: 10.1093/femsre/fuz015] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022] Open
Abstract
The incidence of opportunistic yeast infections in humans has been increasing over recent years. These infections are difficult to treat and diagnose, in part due to the large number and broad diversity of species that can underlie the infection. In addition, resistance to one or several antifungal drugs in infecting strains is increasingly being reported, severely limiting therapeutic options and showcasing the need for rapid detection of the infecting agent and its drug susceptibility profile. Current methods for species and resistance identification lack satisfactory sensitivity and specificity, and often require prior culturing of the infecting agent, which delays diagnosis. Recently developed high-throughput technologies such as next generation sequencing or proteomics are opening completely new avenues for more sensitive, accurate and fast diagnosis of yeast pathogens. These approaches are the focus of intensive research, but translation into the clinics requires overcoming important challenges. In this review, we provide an overview of existing and recently emerged approaches that can be used in the identification of yeast pathogens and their drug resistance profiles. Throughout the text we highlight the advantages and disadvantages of each methodology and discuss the most promising developments in their path from bench to bedside.
Collapse
Affiliation(s)
- Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- ICREA, Pg Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
143
|
Vaughan A, Stevanovic S, Banks APW, Zare A, Rahman MM, Bowman RV, Fong KM, Ristovski ZD, Yang IA. The cytotoxic, inflammatory and oxidative potential of coconut oil-substituted diesel emissions on bronchial epithelial cells at an air-liquid interface. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:27783-27791. [PMID: 31342346 DOI: 10.1007/s11356-019-05959-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Diesel emissions contain high levels of particulate matter (PM) which can have a severe effect on the airways. Diesel PM can be effectively reduced with the substitution of diesel fuel with a biofuel such as vegetable oil. Unfortunately, very little is known about the cellular effects of these alternative diesel emissions on the airways. The aim of this study was to test whether coconut oil substitution in diesel fuel reduces the adverse effect of diesel emission exposure on human bronchial epithelial cells. Human bronchial epithelial cells were cultured at air-liquid interface for 7 days and exposed to diesel engine emissions from conventional diesel fuel or diesel fuel blended with raw coconut oil at low (10%), moderate (15%) and high (20%) proportions. Cell viability, inflammation, antioxidant production and xenobiotic metabolism were measured. Compared to conventional diesel, low fractional coconut oil substitution (10% and 15%) reduced inflammation and increased antioxidant expression, whereas higher fractional coconut oil (20%) reduced cell viability and increased inflammation. Therefore, cellular responses after exposure to alternative diesel emission are dependent on fuel composition.
Collapse
Affiliation(s)
- Annalicia Vaughan
- The University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, Australia.
| | - Svetlana Stevanovic
- International Laboratory for Air Quality and Health, The Queensland University of Technology, Brisbane, Australia
| | - Andrew P W Banks
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Australia
| | - Ali Zare
- International Laboratory for Air Quality and Health, The Queensland University of Technology, Brisbane, Australia
| | - Md Mostafizur Rahman
- International Laboratory for Air Quality and Health, The Queensland University of Technology, Brisbane, Australia
| | - Rayleen V Bowman
- The University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, Australia
| | - Kwun M Fong
- The University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, Australia
| | - Zoran D Ristovski
- International Laboratory for Air Quality and Health, The Queensland University of Technology, Brisbane, Australia
| | - Ian A Yang
- The University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, Australia
| |
Collapse
|
144
|
Prevalence and Expression of PSM A Gene in Biofilm-Producing Staphylococcus aureus Clinical Isolates. Jundishapur J Microbiol 2019. [DOI: 10.5812/jjm.89610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
145
|
Xiao Q, Yan L, Yao L, Lei J, Bi Z, Hu J, Chen Y, Fang A, Li H, Li Y, Yan Y, Zhou J. Development of oligonucleotide microarray for accurate and simultaneous detection of avian respiratory viral diseases. BMC Vet Res 2019; 15:253. [PMID: 31324180 PMCID: PMC6642548 DOI: 10.1186/s12917-019-1985-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Avian influenza virus (AIV), infectious bronchitis virus (IBV), and Newcastle disease virus (NDV) are important avian pathogens that can cause enormous economic loss on the poultry industry. Different respiratory etiological agents may induce similar clinical signs that make differential diagnosis difficult. Importantly, AIV brings about severe threat to human public health. Therefore, a novel method that can distinguish these viruses quickly and simultaneously is urgently needed. RESULTS In this study, an oligonucleotide microarray system was developed. AIV, including H5, H7, and H9 subtypes; NDV; and IBV were simultaneously detected and differentiated on a microarray. Three probes specific for AIV, NDV, and IBV, as well as three other probes for differentiating H5, H7, and H9 of AIV, were first designed and jet-printed to predetermined locations of initiator-integrated poly(dimethylsiloxane) for the synchronous detection of the six pathogens. The marked multiplex reverse transcription polymerase chain reaction (PCR) products were hybridized with the specific probes, and the results of hybridization were read directly with the naked eyes. No cross-reaction was observed with 10 other subtypes of AIV and infectious bursal disease virus, indicating that the oligonucleotide microarray assay was highly specific. The sensitivity of the method was at least 100 times higher than that of the conventional PCR, and the detection limit of NDV, AIV, H5, H7, and H9 can reach 0.1 EID50 (50% egg infective dose), except that of IBV, which was 1 EID50 per reaction. In the validation of 93 field samples, AIV, IBV, and NDV were detected in 53 (56.99%) samples by oligonucleotide microarray and virus isolation and in 50 (53.76%) samples by conventional PCR. CONCLUSIONS We have successfully developed an approach to differentiate AIV, NDV, IBV, H5, H7, and H9 subtypes of AIV using oligonucleotide microarray. The microarray is an accurate, high-throughput, and relatively simple method for the rapid detection of avian respiratory viral diseases. It can be used for the epidemiological surveillance and diagnosis of AIV, IBV, and NDV.
Collapse
Affiliation(s)
- Qian Xiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Lu Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jing Lei
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhenwei Bi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jianhua Hu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yuqing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - An Fang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yuan Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yan Yan
- Key Laboratory of Animal Virology, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jiyong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Key Laboratory of Animal Virology, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
146
|
Kong M, Li Z, Wu J, Hu J, Sheng Y, Wu D, Lin Y, Li M, Wang X, Wang S. A wearable microfluidic device for rapid detection of HIV-1 DNA using recombinase polymerase amplification. Talanta 2019; 205:120155. [PMID: 31450450 DOI: 10.1016/j.talanta.2019.120155] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/07/2019] [Accepted: 07/13/2019] [Indexed: 12/26/2022]
Abstract
Although isothermal nucleic acid amplification is advantageous in pathogen detection in resource-limited settings, an electricity-dependent heating module is often required. Here, we developed a wearable microfluidic device combined with recombinase polymerase amplification (RPA) for simple and rapid amplification of HIV-1 DNA using human body heat. The human body temperature at the human wrist varied from 33 to 34 °C in the ambient environment, which is sufficient to perform RPA reactions. With the aid of a cellphone-based fluorescence detection system, this device detected HIV-1 DNA quantitatively ranging from 102 to 105 copies/mL with a log linearity of 0.98 in 24 min. These results demonstrate that this wearable point-of-care (POC) nucleic acid testing method is advantageous over traditional PCR and other isothermal nucleic acid amplification methods in terms of time, portability and independence on electricity. This wearable microfluidic device in conjunction with a cellphone-based fluorescence detection system can be potentially used for the detection of HIV-1 and adapted for POC detection of a broad range of infectious pathogens in resource-limited settings.
Collapse
Affiliation(s)
- Mengqi Kong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China
| | - Zihan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China
| | - Jianguo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China
| | - Jie Hu
- Biomedical Institute for Global Health Research and Technology (BIGHEART), National University of Singapore (NUS), 117599, Singapore
| | - Yefeng Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China
| | - Di Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China
| | - Yong Lin
- College of Science, Ningbo University of Technology, Ningbo, China
| | - Ming Li
- State Key Laboratory of CAD &CG, Zhejiang University, Hangzhou, China
| | - Xiaozhi Wang
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China
| | - ShuQi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China.
| |
Collapse
|
147
|
Tetraplex real-time PCR with TaqMan probes for discriminatory detection of cat, rabbit, rat and squirrel DNA in food products. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03326-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
148
|
Guerrero-Castilla A, Olivero-Verbel J, Sandoval IT, Jones DA. Toxic effects of a methanolic coal dust extract on fish early life stage. CHEMOSPHERE 2019; 227:100-108. [PMID: 30986591 DOI: 10.1016/j.chemosphere.2019.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Coal dust is a contaminant that impacts the terrestrial and aquatic environment with a complex mixture of chemicals, including PAHs and metals. This study aims to evaluate the toxic effect of a methanolic coal dust extract on a fish early life stage by analyzing phenotypic alterations, transcriptome changes, and mortality in zebrafish (ZF) embryos. ZF embryos were exposed to methanolic coal dust extract at 1-5000 mg·L-1 and monitored using bright field microscopy 24 and 48 hpf to determine malformations and mortality. In situ hybridization, RNA sequencing, and qRT-PCR were employed to identify transcriptome changes in malformed embryos. Three malformed phenotypes were generated in a dose-dependent manner. In situ hybridization analysis revealed brain, somite, dorsal cord, and heart tube development biomarker alterations. Gene expression profile analysis identified changes in genes related to structural constituent of muscle, calcium ion binding, actin binding, melanin metabolic process, muscle contraction, sarcomere organization, cardiac myofibril assembly, oxidation-reduction process, pore complex, supramolecular fiber, striated muscle thin filament, Z disc, and intermediate filament. This study shows, for the first time, the malformations generated by a mixture of pollutants from a methanolic coal dust extract on a fish early life stage, constituting a potential risk for normal embryonic development of other aquatic vertebrate organisms. Furthermore, we establish that phenotypes and changes in gene expression induced by the extract constitute a target for future studies about mechanical toxicity and their utility as sensitive tools in environmental risk assessments for biota and humans exposed to coal mining activities.
Collapse
Affiliation(s)
- Angélica Guerrero-Castilla
- Facultad de Ciencias de la Salud, Química y Farmacia, Universidad Arturo Prat, Casilla 121, Iquique, 1100000, Chile; Faculty of Pharmaceutical Sciences, Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, 130015, Colombia.
| | - Jesús Olivero-Verbel
- Faculty of Pharmaceutical Sciences, Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, 130015, Colombia
| | - Imelda T Sandoval
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - David A Jones
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
149
|
Abstract
Real-time PCR (qPCR) is widely used in the life sciences. For quantifying DNA, a standard curve is required. Common methods for standard development are time consuming, costly, necessitate a specific skill set, and pose a contamination risk. Using a targeted synthetic oligonucleotide, such as a gBlocks® Gene Fragment, overcomes these drawbacks and provides researchers an accurate and quick solution to standard development. Here, we demonstrate that using a gBlocks fragment as a standard provides comparable sensitivity, reliability, and assay performance to a purified amplicon standard.
Collapse
|
150
|
Functional Gene Array-Based Ultrasensitive and Quantitative Detection of Microbial Populations in Complex Communities. mSystems 2019; 4:4/4/e00296-19. [PMID: 31213523 PMCID: PMC6581690 DOI: 10.1128/msystems.00296-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The rapid development of metagenomic technologies, including microarrays, over the past decade has greatly expanded our understanding of complex microbial systems. However, because of the ever-expanding number of novel microbial sequences discovered each year, developing a microarray that is representative of real microbial communities, is specific and sensitive, and provides quantitative information remains a challenge. The newly developed GeoChip 5.0 is the most comprehensive microarray available to date for examining the functional capabilities of microbial communities important to biogeochemistry, ecology, environmental sciences, and human health. The GeoChip 5 is highly specific, sensitive, and quantitative based on both computational and experimental assays. Use of the array on a contaminated groundwater sample provided novel insights on the impacts of environmental contaminants on groundwater microbial communities. While functional gene arrays (FGAs) have greatly expanded our understanding of complex microbial systems, specificity, sensitivity, and quantitation challenges remain. We developed a new generation of FGA, GeoChip 5.0, using the Agilent platform. Two formats were created, a smaller format (GeoChip 5.0S), primarily covering carbon-, nitrogen-, sulfur-, and phosphorus-cycling genes and others providing ecological services, and a larger format (GeoChip 5.0M) containing the functional categories involved in biogeochemical cycling of C, N, S, and P and various metals, stress response, microbial defense, electron transport, plant growth promotion, virulence, gyrB, and fungus-, protozoan-, and virus-specific genes. GeoChip 5.0M contains 161,961 oligonucleotide probes covering >365,000 genes of 1,447 gene families from broad, functionally divergent taxonomic groups, including bacteria (2,721 genera), archaea (101 genera), fungi (297 genera), protists (219 genera), and viruses (167 genera), mainly phages. Computational and experimental evaluation indicated that designed probes were highly specific and could detect as little as 0.05 ng of pure culture DNAs within a background of 1 μg community DNA (equivalent to 0.005% of the population). Additionally, strong quantitative linear relationships were observed between signal intensity and amount of pure genomic (∼99% of probes detected; r > 0.9) or soil (∼97%; r > 0.9) DNAs. Application of the GeoChip to a contaminated groundwater microbial community indicated that environmental contaminants (primarily heavy metals) had significant impacts on the biodiversity of the communities. This is the most comprehensive FGA to date, capable of directly linking microbial genes/populations to ecosystem functions. IMPORTANCE The rapid development of metagenomic technologies, including microarrays, over the past decade has greatly expanded our understanding of complex microbial systems. However, because of the ever-expanding number of novel microbial sequences discovered each year, developing a microarray that is representative of real microbial communities, is specific and sensitive, and provides quantitative information remains a challenge. The newly developed GeoChip 5.0 is the most comprehensive microarray available to date for examining the functional capabilities of microbial communities important to biogeochemistry, ecology, environmental sciences, and human health. The GeoChip 5 is highly specific, sensitive, and quantitative based on both computational and experimental assays. Use of the array on a contaminated groundwater sample provided novel insights on the impacts of environmental contaminants on groundwater microbial communities.
Collapse
|