101
|
The ubiquitin-proteasome system and its crosstalk with mitochondria as therapeutic targets in medicine. Pharmacol Res 2020; 163:105248. [PMID: 33065283 DOI: 10.1016/j.phrs.2020.105248] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
The ubiquitin-proteasome system constitutes a major pathway for protein degradation in the cell. Therefore the crosstalk of this pathway with mitochondria is a major topic with direct relevance to many mitochondrial diseases. Proteasome dysfunction triggers not only protein toxicity, but also mitochondrial dysfunction. The involvement of proteasomes in the regulation of protein transport into mitochondria contributes to an increase in mitochondrial function defects. On the other hand, mitochondrial impairment stimulates reactive oxygen species production, which increases protein damage, and protein misfolding and aggregation leading to proteasome overload. Concurrently, mitochondrial dysfunction compromises cellular ATP production leading to reduced protein ubiquitination and proteasome activity. In this review we discuss the complex relationship and interdependence of the ubiquitin-proteasome system and mitochondria. Furthermore, we describe pharmacological inhibition of proteasome activity as a novel strategy to treat a group of mitochondrial diseases.
Collapse
|
102
|
Merry TL, Chan A, Woodhead JST, Reynolds JC, Kumagai H, Kim SJ, Lee C. Mitochondrial-derived peptides in energy metabolism. Am J Physiol Endocrinol Metab 2020; 319:E659-E666. [PMID: 32776825 PMCID: PMC7750512 DOI: 10.1152/ajpendo.00249.2020] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022]
Abstract
Mitochondrial-derived peptides (MDPs) are small bioactive peptides encoded by short open-reading frames (sORF) in mitochondrial DNA that do not necessarily have traditional hallmarks of protein-coding genes. To date, eight MDPs have been identified, all of which have been shown to have various cyto- or metaboloprotective properties. The 12S ribosomal RNA (MT-RNR1) gene harbors the sequence for MOTS-c, whereas the other seven MDPs [humanin and small humanin-like peptides (SHLP) 1-6] are encoded by the 16S ribosomal RNA gene. Here, we review the evidence that endogenous MDPs are sensitive to changes in metabolism, showing that metabolic conditions like obesity, diabetes, and aging are associated with lower circulating MDPs, whereas in humans muscle MDP expression is upregulated in response to stress that perturbs the mitochondria like exercise, some mtDNA mutation-associated diseases, and healthy aging, which potentially suggests a tissue-specific response aimed at restoring cellular or mitochondrial homeostasis. Consistent with this, treatment of rodents with humanin, MOTS-c, and SHLP2 can enhance insulin sensitivity and offer protection against a range of age-associated metabolic disorders. Furthermore, assessing how mtDNA variants alter the functions of MDPs is beginning to provide evidence that MDPs are metabolic signal transducers in humans. Taken together, MDPs appear to form an important aspect of a retrograde signaling network that communicates mitochondrial status with the wider cell and to distal tissues to modulate adaptative responses to metabolic stress. It remains to be fully determined whether the metaboloprotective properties of MDPs can be harnessed into therapies for metabolic disease.
Collapse
Affiliation(s)
- Troy L Merry
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Alex Chan
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jonathan S T Woodhead
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Joseph C Reynolds
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| | - Hiroshi Kumagai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
- Japan Society for the Promotion of Science, Tokyo, Japan
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
- Biomedical Science, Graduate School, Ajou University, Suwon, South Korea
| |
Collapse
|
103
|
Brown JA, Sammy MJ, Ballinger SW. An evolutionary, or "Mitocentric" perspective on cellular function and disease. Redox Biol 2020; 36:101568. [PMID: 32512469 PMCID: PMC7281786 DOI: 10.1016/j.redox.2020.101568] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
The incidence of common, metabolic diseases (e.g. obesity, cardiovascular disease, diabetes) with complex genetic etiology has been steadily increasing nationally and globally. While identification of a genetic model that explains susceptibility and risk for these diseases has been pursued over several decades, no clear paradigm has yet been found to disentangle the genetic basis of polygenic/complex disease development. Since the evolution of the eukaryotic cell involved a symbiotic interaction between the antecedents of the mitochondrion and nucleus (which itself is a genetic hybrid), we suggest that this history provides a rational basis for investigating whether genetic interaction and co-evolution of these genomes still exists. We propose that both mitochondrial and Mendelian, or "mito-Mendelian" genetics play a significant role in cell function, and thus disease risk. This paradigm contemplates the natural variation and co-evolution of both mitochondrial and nuclear DNA backgrounds on multiple mitochondrial functions that are discussed herein, including energy production, cell signaling and immune response, which collectively can influence disease development. At the nexus of these processes is the economy of mitochondrial metabolism, programmed by both mitochondrial and nuclear genomes.
Collapse
Affiliation(s)
- Jamelle A Brown
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Melissa J Sammy
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Scott W Ballinger
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
104
|
Rochette L. Humanin: A mitochondria-derived peptide with emerging properties. Ann Cardiol Angeiol (Paris) 2020; 69:155-157. [PMID: 32800320 DOI: 10.1016/j.ancard.2020.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/21/2020] [Indexed: 11/25/2022]
Affiliation(s)
- L Rochette
- Physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), UFR des sciences de santé (médecine-pharmacie), université de Bourgogne, 7, boulevard Jeanne-d'Arc, BP 87900, 21079 Dijon cedex, France.
| |
Collapse
|
105
|
Miller B, Kim SJ, Kumagai H, Mehta HH, Xiang W, Liu J, Yen K, Cohen P. Peptides derived from small mitochondrial open reading frames: Genomic, biological, and therapeutic implications. Exp Cell Res 2020; 393:112056. [PMID: 32387288 PMCID: PMC7778388 DOI: 10.1016/j.yexcr.2020.112056] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/20/2020] [Accepted: 05/02/2020] [Indexed: 12/15/2022]
Abstract
Mitochondrial-derived peptides (MDPs) are a novel class of bioactive microproteins that modify cell metabolism. The the eight MDPs that been characterized (e.g., humanin, MOTS-c, SHLPs1-6) attenuate disease pathology including Alzheimer's disease, prostate cancer, macular degeneration, cardiovascular disease, and diabetes. The association between disease and human genetic variation in MDPs is underexplored, although two polymorphisms in humanin and MOTS-c associate with cognitive decline and diabetes, respectively, suggesting a precise role for MDPs in disease-modification. There could be hundreds of additional MDPs that have yet to be discovered. Altogether, MDPs could explain unanswered biological and metabolic questions and are part of a growing field of novel microproteins encoded by small open reading frames. In this review, the current state of MDPs are summarized with an emphasis on biological and therapeutic implications.
Collapse
Affiliation(s)
- Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hiroshi Kumagai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Wang Xiang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jiali Liu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
106
|
Mitochondria, immunosenescence and inflammaging: a role for mitokines? Semin Immunopathol 2020; 42:607-617. [PMID: 32757036 PMCID: PMC7666292 DOI: 10.1007/s00281-020-00813-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023]
Abstract
A global reshaping of the immune responses occurs with ageing, indicated as immunosenescence, where mitochondria and mitochondrial metabolism play an important role. However, much less is known about the role of mitochondrial stress response in this reshaping and in particular of the molecules induced by such response, collectively indicated as mitokines. In this review, we summarize the current knowledge on the role of mitokines in modulating immune response and inflammation focusing on GDF15, FGF21 and humanin and their possible involvement in the chronic age-related low-grade inflammation dubbed inflammaging. Although many aspects of their biology are still controversial, available data suggest that these mitokines have an anti-inflammatory role and increase with age. Therefore, we hypothesize that they can be considered part of an adaptive and integrated immune-metabolic mechanism activated by mitochondrial dysfunction that acts within the framework of a larger anti-inflammatory network aimed at controlling both acute inflammation and inflammaging.
Collapse
|
107
|
Sreekumar PG, Kannan R. Mechanisms of protection of retinal pigment epithelial cells from oxidant injury by humanin and other mitochondrial-derived peptides: Implications for age-related macular degeneration. Redox Biol 2020; 37:101663. [PMID: 32768357 PMCID: PMC7767738 DOI: 10.1016/j.redox.2020.101663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/18/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial-derived peptides (MDPs) are a new class of small open reading frame encoded polypeptides with pleiotropic properties. The prominent members are Humanin (HN) and small HN-like peptide (SHLP) 2, which encode 16S rRNA, while mitochondrial open reading frame of the twelve S c (MOTS-c) encodes 12S rRNA of the mitochondrial genome. While the multifunctional properties of HN and its analog 14-HNG have been well documented, their protective role in the retinal pigment epithelium (RPE)/retina has been investigated only recently. In this review, we have summarized the multiple effects of HN and its analogs, SHLP2 and MOTS-c in oxidatively stressed human RPE and the regulatory pathways of signaling, mitochondrial function, senescence, and inter-organelle crosstalk. Emphasis is given to the mitochondrial functions such as biogenesis, bioenergetics, and autophagy in RPE undergoing oxidative stress. Further, the potential use of HN and its analogs in the prevention of age-related macular degeneration (AMD) are also presented. In addition, the role of novel, long-acting HN elastin-like polypeptides in nanotherapy of AMD and other ocular diseases stemming from oxidative damage is discussed. It is expected MDPs will become a promising group of mitochondrial peptides with valuable therapeutic applications in the treatment of retinal diseases.
Collapse
Affiliation(s)
- Parameswaran G Sreekumar
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, CA, 90033, USA
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, CA, 90033, USA; Stein Eye Institute, Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
108
|
Rochette L, Meloux A, Zeller M, Cottin Y, Vergely C. Role of humanin, a mitochondrial-derived peptide, in cardiovascular disorders. Arch Cardiovasc Dis 2020; 113:564-571. [PMID: 32680738 DOI: 10.1016/j.acvd.2020.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 11/29/2022]
Abstract
The mitochondria produce specific peptides-mitochondrial-derived peptides-that mediate the transcriptional stress response by their translocation into the nucleus and interaction with deoxyribonucleic acid. Mitochondrial-derived peptides are regulators of metabolism. This class of peptides comprises humanin, mitochondrial open reading frame of the 12S ribosomal ribonucleic acid type c (MOTS-c) and small humanin-like peptides (SHLPs). Humanin inhibits mitochondrial complex 1 activity and limits the level of oxidative stress in the cell. Data show that mitochondrial-derived peptides have a role in improving metabolic diseases, such as type 2 diabetes. Perhaps humanin can be used as a marker for mitochondrial function in cardiovascular disease or as a pharmacological strategy in patients with endothelial dysfunction. The goal of this review is to discuss the newly emerging functions of humanin, and its biological role in cardiovascular disorders.
Collapse
Affiliation(s)
- Luc Rochette
- Equipe d'Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne - Franche Comté, Faculté des Sciences de Santé, 7, boulevard Jeanne-d'Arc, 21000 Dijon, France.
| | - Alexandre Meloux
- Equipe d'Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne - Franche Comté, Faculté des Sciences de Santé, 7, boulevard Jeanne-d'Arc, 21000 Dijon, France
| | - Marianne Zeller
- Equipe d'Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne - Franche Comté, Faculté des Sciences de Santé, 7, boulevard Jeanne-d'Arc, 21000 Dijon, France
| | - Yves Cottin
- Equipe d'Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne - Franche Comté, Faculté des Sciences de Santé, 7, boulevard Jeanne-d'Arc, 21000 Dijon, France; Department of Cardiology, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Catherine Vergely
- Equipe d'Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne - Franche Comté, Faculté des Sciences de Santé, 7, boulevard Jeanne-d'Arc, 21000 Dijon, France
| |
Collapse
|
109
|
Kim SJ, Miller B, Mehta HH, Xiao J, Wan J, Arpawong TE, Yen K, Cohen P. The mitochondrial-derived peptide MOTS-c is a regulator of plasma metabolites and enhances insulin sensitivity. Physiol Rep 2020; 7:e14171. [PMID: 31293078 PMCID: PMC6640593 DOI: 10.14814/phy2.14171] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022] Open
Abstract
MOTS‐c is an exercise mimetic and improves insulin sensitivity in aged and diet‐induced obese mice. Although plasma markers are good markers for the metabolic condition, whether MOTS‐c changes plasma markers in diet‐induced obese mice has not been examined. Here, we used an unbiased metabolomics approach to examine the effect of MOTS‐c on plasma markers of metabolic dysfunction. We found that three pathways – sphingolipid metabolism, monoacylglycerol metabolism, and dicarboxylate metabolism – were reduced in MOTS‐c–injected mice. Interestingly, these pathways are upregulated in obese and T2D models. MOTS‐c improves insulin sensitivity and increases beta‐oxidation to prevent fat accumulation in DIO mice through these pathways. These results provide us a better understanding of the mechanism of how MOTS‐c improves insulin sensitivity and reduces the body weight and fatty liver and opens a new venue for further study.
Collapse
Affiliation(s)
- Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Jialin Xiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Thalida E Arpawong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| |
Collapse
|
110
|
Yen K, Mehta HH, Kim SJ, Lue Y, Hoang J, Guerrero N, Port J, Bi Q, Navarrete G, Brandhorst S, Lewis KN, Wan J, Swerdloff R, Mattison JA, Buffenstein R, Breton CV, Wang C, Longo V, Atzmon G, Wallace D, Barzilai N, Cohen P. The mitochondrial derived peptide humanin is a regulator of lifespan and healthspan. Aging (Albany NY) 2020; 12:11185-11199. [PMID: 32575074 PMCID: PMC7343442 DOI: 10.18632/aging.103534] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022]
Abstract
Humanin is a member of a new family of peptides that are encoded by short open reading frames within the mitochondrial genome. It is conserved in animals and is both neuroprotective and cytoprotective. Here we report that in C. elegans the overexpression of humanin is sufficient to increase lifespan, dependent on daf-16/Foxo. Humanin transgenic mice have many phenotypes that overlap with the worm phenotypes and, similar to exogenous humanin treatment, have increased protection against toxic insults. Treating middle-aged mice twice weekly with the potent humanin analogue HNG, humanin improves metabolic healthspan parameters and reduces inflammatory markers. In multiple species, humanin levels generally decline with age, but here we show that levels are surprisingly stable in the naked mole-rat, a model of negligible senescence. Furthermore, in children of centenarians, who are more likely to become centenarians themselves, circulating humanin levels are much greater than age-matched control subjects. Further linking humanin to healthspan, we observe that humanin levels are decreased in human diseases such as Alzheimer's disease and MELAS (Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like episodes). Together, these studies are the first to demonstrate that humanin is linked to improved healthspan and increased lifespan.
Collapse
Affiliation(s)
- Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Hemal H. Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - YanHe Lue
- Department of Medicine, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - James Hoang
- Department of Medicine, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Noel Guerrero
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jenna Port
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Qiuli Bi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Gerardo Navarrete
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sebastian Brandhorst
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Kaitlyn Noel Lewis
- Department of Physiology, The Barshop Institute, University of Texas Health at San Antonio, TX 78229, USA
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Ronald Swerdloff
- Department of Medicine, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Julie A. Mattison
- Translational Gerontology Branch, National Institute on Aging, Dickerson, MD 20892, USA
| | - Rochelle Buffenstein
- Department of Physiology, The Barshop Institute, University of Texas Health at San Antonio, TX 78229, USA
- Calico Life Sciences, South San Francisco, CA 94080, USA
| | - Carrie V. Breton
- Department of Preventive Medicine, Keck School of Medicine, USC, Los Angeles, CA 90089, USA
| | - Christina Wang
- Department of Medicine, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Valter Longo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Gil Atzmon
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, Israel
| | - Douglas Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nir Barzilai
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
111
|
Efficacy of a Novel Mitochondrial-Derived Peptide in a Porcine Model of Myocardial Ischemia/Reperfusion Injury. JACC Basic Transl Sci 2020; 5:699-714. [PMID: 32760857 PMCID: PMC7393416 DOI: 10.1016/j.jacbts.2020.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 12/27/2022]
Abstract
A mitochondrial-derived peptide therapy, HNG, was safe and was delivered as adjunctive therapy with standard-of-care reperfusion in a translational large animal model of myocardial ischemia/reperfusion injury. HNG reduced infarct size per area-at-risk by 41% with an ischemic time of 60 min followed by 48 h of reperfusion. The infarct-sparing effects of HNG were abolished when the ischemic time was increased to 75 min followed by 48 h of reperfusion. The use of rigorous translational large animal models that account for clinically relevant variables is a prerequisite to better predict the clinical efficacy and outcomes of novel therapeutic strategies.
With the complexities that surround myocardial ischemia/reperfusion (MI/R) injury, therapies adjunctive to reperfusion that elicit beneficial pleiotropic effects and do not overlap with standard of care are necessary. This study found that the mitochondrial-derived peptide S14G-humanin (HNG) (2 mg/kg), an analogue of humanin, reduced infarct size in a large animal model of MI/R. However, when ischemic time was increased, the infarct-sparing effects were abolished with the same dose of HNG. Thus, although the 60-min MI/R study showed that HNG cardioprotection translates beyond small animal models, further studies are needed to optimize HNG therapy for longer, more patient-relevant periods of cardiac ischemia.
Collapse
Key Words
- AAR, area-at-risk
- Bax, Bcl-2–associated X protein
- DAPI, 4′,6-diamidino-2-phenylindole
- ELISA, enzyme-linked immunoadsorbent assay
- HNG, S14G-humanin analogue
- IGFBP3, insulin-like growth factor–binding protein-3
- IV, intravenously
- LAD, left anterior coronary artery
- LV, left ventricular
- MDP, mitochondrial-derived peptide
- MI, myocardial infarction
- MI/R, myocardial ischemia/reperfusion
- NIZ, nonischemic zone
- RMBF, regional myocardial blood flow
- STAT, signal transducer and activator of transcription
- TBARS, thiobarbituric acid–reactive substances
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling
- acute myocardial infarction
- adjunctive therapy
- cTnI, cardiac troponin I
- h-FABP, heart fatty acid–binding protein
- large animal model
- mitochondrial-derived peptide
- myocardial ischemia-reperfusion injury
Collapse
|
112
|
Bravo JI, Nozownik S, Danthi PS, Benayoun BA. Transposable elements, circular RNAs and mitochondrial transcription in age-related genomic regulation. Development 2020; 147:dev175786. [PMID: 32527937 PMCID: PMC10680986 DOI: 10.1242/dev.175786] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Our understanding of the molecular regulation of aging and age-related diseases is still in its infancy, requiring in-depth characterization of the molecular landscape shaping these complex phenotypes. Emerging classes of molecules with promise as aging modulators include transposable elements, circRNAs and the mitochondrial transcriptome. Analytical complexity means that these molecules are often overlooked, even though they exhibit strong associations with aging and, in some cases, may directly contribute to its progress. Here, we review the links between these novel factors and age-related phenotypes, and we suggest tools that can be easily incorporated into existing pipelines to better understand the aging process.
Collapse
Affiliation(s)
- Juan I Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | - Séverine Nozownik
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Magistère européen de Génétique, Université Paris Diderot-Paris 7, Paris 75014, France
| | - Prakroothi S Danthi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA
- USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
113
|
Humanin Promotes Tumor Progression in Experimental Triple Negative Breast Cancer. Sci Rep 2020; 10:8542. [PMID: 32444831 PMCID: PMC7244539 DOI: 10.1038/s41598-020-65381-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Humanin (HN) is a mitochondrial-derived peptide with cytoprotective effect in many tissues. Administration of HN analogs has been proposed as therapeutic approach for degenerative diseases. Although HN has been shown to protect normal tissues from chemotherapy, its role in tumor pathogenesis is poorly understood. Here, we evaluated the effect of HN on the progression of experimental triple negative breast cancer (TNBC). The meta-analysis of transcriptomic data from The Cancer Genome Atlas indicated that HN and its receptors are expressed in breast cancer specimens. By immunohistochemistry we observed up-regulation of HN in TNBC biopsies when compared to mammary gland sections from healthy donors. Addition of exogenous HN protected TNBC cells from apoptotic stimuli whereas shRNA-mediated HN silencing reduced their viability and enhanced their chemo-sensitivity. Systemic administration of HN in TNBC-bearing mice reduced tumor apoptotic rate, impaired the antitumor and anti-metastatic effect of chemotherapy and stimulated tumor progression, accelerating tumor growth and development of spontaneous lung metastases. These findings suggest that HN may exert pro-tumoral effects and thus, caution should be taken when using exogenous HN to treat degenerative diseases. In addition, our study suggests that HN blockade could constitute a therapeutic strategy to improve the efficacy of chemotherapy in breast cancer.
Collapse
|
114
|
Woodhead JST, D'Souza RF, Hedges CP, Wan J, Berridge MV, Cameron-Smith D, Cohen P, Hickey AJR, Mitchell CJ, Merry TL. High-intensity interval exercise increases humanin, a mitochondrial encoded peptide, in the plasma and muscle of men. J Appl Physiol (1985) 2020; 128:1346-1354. [PMID: 32271093 PMCID: PMC7717117 DOI: 10.1152/japplphysiol.00032.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/03/2020] [Accepted: 04/04/2020] [Indexed: 12/19/2022] Open
Abstract
Humanin is a small regulatory peptide encoded within the 16S ribosomal RNA gene (MT-RNR2) of the mitochondrial genome that has cellular cyto- and metabolo-protective properties similar to that of aerobic exercise training. Here we investigated whether acute high-intensity interval exercise or short-term high-intensity interval training (HIIT) impacted skeletal muscle and plasma humanin levels. Vastus lateralis muscle biopsies and plasma samples were collected from young healthy untrained men (n = 10, 24.5 ± 3.7 yr) before, immediately following, and 4 h following the completion of 10 × 60 s cycle ergometer bouts at V̇o2peak power output (untrained). Resting and postexercise sampling was also performed after six HIIT sessions (trained) completed over 2 wk. Humanin protein abundance in muscle and plasma were increased following an acute high-intensity exercise bout. HIIT trended (P = 0.063) to lower absolute humanin plasma levels, without effecting the response in muscle or plasma to acute exercise. A similar response in the plasma was observed for the small humanin-like peptide 6 (SHLP6), but not SHLP2, indicating selective regulation of peptides encoded by MT-RNR2 gene. There was a weak positive correlation between muscle and plasma humanin levels, and contraction of isolated mouse EDL muscle increased humanin levels ~4-fold. The increase in muscle humanin levels with acute exercise was not associated with MT-RNR2 mRNA or humanin mRNA levels (which decreased following acute exercise). Overall, these results suggest that humanin is an exercise-sensitive mitochondrial peptide and acute exercise-induced humanin responses in muscle are nontranscriptionally regulated and may partially contribute to the observed increase in plasma concentrations.NEW & NOTEWORTHY Small regulatory peptides encoded within the mitochondrial genome (mitochondrial derived peptides) have been shown to have cellular cyto- and metabolo-protective roles that parallel those of exercise. Here we provide evidence that humanin and SHLP6 are exercise-sensitive mitochondrial derived peptides. Studies to determine whether mitochondrial derived peptides play a role in regulating exercise-induced adaptations are warranted.
Collapse
Affiliation(s)
- Jonathan S T Woodhead
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Randall F D'Souza
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Christopher P Hedges
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| | | | - David Cameron-Smith
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Innovation, Singapore
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| | - Anthony J R Hickey
- School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - Cameron J Mitchell
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Troy L Merry
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
115
|
Effects of Mitochondrial-Derived Peptides (MDPs) on Mitochondrial and Cellular Health in AMD. Cells 2020; 9:cells9051102. [PMID: 32365540 PMCID: PMC7290668 DOI: 10.3390/cells9051102] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023] Open
Abstract
Substantive evidence demonstrates the contribution of mitochondrial dysfunction in the etiology and pathogenesis of Age-related Macular Degeneration (AMD). Recently, extensive characterization of Mitochondrial-Derived Peptides (MDPs) has revealed their cytoprotective role in several diseases, including AMD. Here we summarize the varied effects of MDPs on cellular and mitochondrial health, which establish the merit of MDPs as therapeutic targets for AMD. We argue that further research to delve into the mechanisms of action and delivery of MDPs may advance the field of AMD therapy.
Collapse
|
116
|
Kim K, Kim KH. Targeting of Secretory Proteins as a Therapeutic Strategy for Treatment of Nonalcoholic Steatohepatitis (NASH). Int J Mol Sci 2020; 21:ijms21072296. [PMID: 32225108 PMCID: PMC7177791 DOI: 10.3390/ijms21072296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is defined as a progressive form of nonalcoholic fatty liver disease (NAFLD) and is a common chronic liver disease that causes significant worldwide morbidity and mortality, and has no approved pharmacotherapy. Nevertheless, growing understanding of the molecular mechanisms underlying the development and progression of NASH has suggested multiple potential therapeutic targets and strategies to treat this disease. Here, we review this progress, with emphasis on the functional role of secretory proteins in the development and progression of NASH, in addition to the change of expression of various secretory proteins in mouse NASH models and human NASH subjects. We also highlight secretory protein-based therapeutic approaches that influence obesity-associated insulin resistance, liver steatosis, inflammation, and fibrosis, as well as the gut–liver and adipose–liver axes in the treatment of NASH.
Collapse
Affiliation(s)
- Kyeongjin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Inha-ro 100, Michuhol-gu, Incheon 22212, Korea
- Correspondence: (K.K.); (K.H.K.)
| | - Kook Hwan Kim
- Metabolic Diseases Research Center, GI Cell, Inc., B-1014, Tera Tower, Songpa-daero 167, Songpa-gu, Seoul 05855, Korea
- Correspondence: (K.K.); (K.H.K.)
| |
Collapse
|
117
|
D'Souza RF, Woodhead JST, Hedges CP, Zeng N, Wan J, Kumagai H, Lee C, Cohen P, Cameron-Smith D, Mitchell CJ, Merry TL. Increased expression of the mitochondrial derived peptide, MOTS-c, in skeletal muscle of healthy aging men is associated with myofiber composition. Aging (Albany NY) 2020; 12:5244-5258. [PMID: 32182209 PMCID: PMC7138593 DOI: 10.18632/aging.102944] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria putatively regulate the aging process, in part, through the small regulatory peptide, mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) that is encoded by the mitochondrial genome. Here we investigated the regulation of MOTS-c in the plasma and skeletal muscle of healthy aging men. Circulating MOTS-c reduced with age, but older (70-81 y) and middle-aged (45-55 y) men had ~1.5-fold higher skeletal muscle MOTS-c expression than young (18-30 y). Plasma MOTS-c levels only correlated with plasma in young men, was associated with markers of slow-type muscle, and associated with improved muscle quality in the older group (maximal leg-press load relative to thigh cross-sectional area). Using small mRNA assays we provide evidence that MOTS-c transcription may be regulated independently of the full length 12S rRNA gene in which it is encoded, and expression is not associated with antioxidant response element (ARE)-related genes as previously seen in culture. Our results suggest that plasma and muscle MOTS-c are differentially regulated with aging, and the increase in muscle MOTS-c expression with age is consistent with fast-to-slow type muscle fiber transition. Further research is required to determine the molecular targets of endogenous MOTS-c in human muscle but they may relate to factors that maintain muscle quality.
Collapse
Affiliation(s)
- Randall F D'Souza
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Jonathan S T Woodhead
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Christopher P Hedges
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Nina Zeng
- Liggins Institute, The University of Auckland, Auckland, New Zealand.,Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Hiroshi Kumagai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.,Japan Society for the Promotion of Science, Tokyo, Japan.,Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.,USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA.,Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Cameron J Mitchell
- Liggins Institute, The University of Auckland, Auckland, New Zealand.,School of Kinesiology, University of British Colombia, Vancouver, BC V6T 1Z1, Canada
| | - Troy L Merry
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
118
|
Reynolds JC, Bwiza CP, Lee C. Mitonuclear genomics and aging. Hum Genet 2020; 139:381-399. [PMID: 31997134 PMCID: PMC7147958 DOI: 10.1007/s00439-020-02119-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/17/2020] [Indexed: 12/25/2022]
Abstract
Our cells operate based on two distinct genomes that are enclosed in the nucleus and mitochondria. The mitochondrial genome presumably originates from endosymbiotic bacteria. With time, a large portion of the original genes in the bacterial genome is considered to have been lost or transferred to the nuclear genome, leaving a reduced 16.5 Kb circular mitochondrial DNA (mtDNA). Traditionally only 37 genes, including 13 proteins, were thought to be encoded within mtDNA, its genetic repertoire is expanding with the identification of mitochondrial-derived peptides (MDPs). The biology of aging has been largely unveiled to be regulated by genes that are encoded in the nuclear genome, whereas the mitochondrial genome remained more cryptic. However, recent studies position mitochondria and mtDNA as an important counterpart to the nuclear genome, whereby the two organelles constantly regulate each other. Thus, the genomic network that regulates lifespan and/or healthspan is likely constituted by two unique, yet co-evolved, genomes. Here, we will discuss aspects of mitochondrial biology, especially mitochondrial communication that may add substantial momentum to aging research by accounting for both mitonuclear genomes to more comprehensively and inclusively map the genetic and molecular networks that govern aging and age-related diseases.
Collapse
Affiliation(s)
- Joseph C Reynolds
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Conscience P Bwiza
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
- USC Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA.
- Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea.
| |
Collapse
|
119
|
Blasiak J. Senescence in the pathogenesis of age-related macular degeneration. Cell Mol Life Sci 2020; 77:789-805. [PMID: 31897543 PMCID: PMC11105088 DOI: 10.1007/s00018-019-03420-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 01/07/2023]
Abstract
Age-related macular degeneration (AMD) is a complex eye disease underlined by the death of photoreceptors and degeneration of retinal pigment epithelium (RPE) and choriocapillaris (CC). The mechanism(s) responsible for massive and progressive retinal degeneration is not completely known. Senescence, a state of permanent inhibition of cell growth, may be induced by many factors important for AMD pathogenesis and results in senescence-associated secretory phenotype (SASP) that releases growth factors, cytokines, chemokines, proteases and other molecules inducing inflammation and other AMD-related effects. These effects can be induced in the affected cell and neighboring cells, leading to progression of AMD phenotype. Senescent cells also release reactive oxygen species that increase SASP propagation. Many other pathways of senescence-related AMD pathogenesis, including autophagy, the cGAS-STING signaling, degeneration of CC by membrane attack complex, can be considered. A2E, a fluorophore present in lipofuscin, amyloid-beta peptide and humanin, a mitochondria-derived peptide, may link AMD with senescence. Further studies on senescence in AMD pathogenesis to check the possibility of opening a perspective of the use of drugs killing senescent cells (senolytics) and terminating SASP bystander effects (senostatics) might be beneficial for AMD that at present is an incurable disease.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz, Poland.
| |
Collapse
|
120
|
Gusic M, Prokisch H. ncRNAs: New Players in Mitochondrial Health and Disease? Front Genet 2020; 11:95. [PMID: 32180794 PMCID: PMC7059738 DOI: 10.3389/fgene.2020.00095] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
The regulation of mitochondrial proteome is unique in that its components have origins in both mitochondria and nucleus. With the development of OMICS technologies, emerging evidence indicates an interaction between mitochondria and nucleus based not only on the proteins but also on the non-coding RNAs (ncRNAs). It is now accepted that large parts of the non‐coding genome are transcribed into various ncRNA species. Although their characterization has been a hot topic in recent years, the function of the majority remains unknown. Recently, ncRNA species microRNA (miRNA) and long-non coding RNAs (lncRNA) have been gaining attention as direct or indirect modulators of the mitochondrial proteome homeostasis. These ncRNA can impact mitochondria indirectly by affecting transcripts encoding for mitochondrial proteins in the cytoplasm. Furthermore, reports of mitochondria-localized miRNAs, termed mitomiRs, and lncRNAs directly regulating mitochondrial gene expression suggest the import of RNA to mitochondria, but also transcription from the mitochondrial genome. Interestingly, ncRNAs have been also shown to hide small open reading frames (sORFs) encoding for small functional peptides termed micropeptides, with several examples reported with a role in mitochondria. In this review, we provide a literature overview on ncRNAs and micropeptides found to be associated with mitochondrial biology in the context of both health and disease. Although reported, small study overlap and rare replications by other groups make the presence, transport, and role of ncRNA in mitochondria an attractive, but still challenging subject. Finally, we touch the topic of their potential as prognosis markers and therapeutic targets.
Collapse
Affiliation(s)
- Mirjana Gusic
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| |
Collapse
|
121
|
Ikonomidis I, Katogiannis K, Kyriakou E, Taichert M, Katsimaglis G, Tsoumani M, Andreadou I, Maratou E, Lambadiari V, Kousathana F, Papadopoulou A, Varlamos C, Plotas P, Parissis J, Stamatelopoulos K, Alexopoulos D, Dimitriadis G, Tsantes AE. β-Amyloid and mitochondrial-derived peptide-c are additive predictors of adverse outcome to high-on-treatment platelet reactivity in type 2 diabetics with revascularized coronary artery disease. J Thromb Thrombolysis 2020; 49:365-376. [PMID: 32052315 DOI: 10.1007/s11239-020-02060-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Increased β-amyloid and decreased mitochondrial-derived peptide (MOTS-c), are reported in diabetes. We investigated their additive value to high on-clopidogrel platelet reactivity (HPR) for adverse outcome in type 2 diabetics after recent revascularization. PATIENTS AND METHODS In 121 type II diabetics, treated with clopidogrel and aspirin, (93 males, mean age 67.2 years) we measured: (a) maximum platelet aggregation to adenosine diphosphate (ADP) by light transmission aggregometry (LTAmax), (b) malondialdehyde (MDA), as oxidative stress marker, (c) MOTS-c, (d) β-amyloid blood levels. Cardiac death and acute coronary syndromes (MACE) were recorded during 2 years of follow-up. RESULTS Out of 121 patients, 32 showed HPR (LTAmax > 48%,). At baseline, HPR was associated with β-amyloid > 51 pg/ml (p = 0.006) after adjusting clinical variables, HbA1c, MOTS-c, MDA and medication. During follow-up, 22 patients suffered a MACE. HPR, β-amyloid > 51 pg/ml and MOTS-c < 167 ng/ml were predictors of MACE (relative risk 3.1, 3.5 and 3.8 respectively, p < 0.05) after adjusting for confounders and medication. There was significant interaction between HPR and β-amyloid or MOTS-c for the prediction of MACE (p < 0.05). Patients with HPR and β-amyloid > 51 mg/dl or HPR and MOTS-c concentration < 167 ng/ml had a fourfold higher risk for MACE than patients without these predictors (relative risk 4.694 and 4.447 respectively p < 0.01). The above results were confirmed in an external validation cohort of 90 patients with diabetes and CAD. CONCLUSIONS Increased β-amyloid or low MOTS-c are additive predictors to high on-clopidogrel platelet reactivity for adverse outcome in diabetics with CAD during 2-years follow-up. Clinical Trial Registration-URL: https://www.clinicaltrials.gov. Unique identifier: NCT04027712.
Collapse
Affiliation(s)
- Ignatios Ikonomidis
- Second Cardiology Department, 'Attikon University Hospital', School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Konstantinos Katogiannis
- Second Cardiology Department, 'Attikon University Hospital', School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Elias Kyriakou
- Laboratory of Haematology & Blood Bank Unit, 'Attikon University Hospital', School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Taichert
- Laboratory of Haematology & Blood Bank Unit, 'Attikon University Hospital', School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Maria Tsoumani
- Department of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Andreadou
- Department of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Eirini Maratou
- Second Department of Internal Medicine, 'Attikon University Hospital', School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vaia Lambadiari
- Second Department of Internal Medicine, 'Attikon University Hospital', School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Kousathana
- Second Department of Internal Medicine, 'Attikon University Hospital', School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Papadopoulou
- Second Department of Internal Medicine, 'Attikon University Hospital', School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalampos Varlamos
- Second Cardiology Department, 'Attikon University Hospital', School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Plotas
- Second Department of Internal Medicine, 'Attikon University Hospital', School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - John Parissis
- Second Cardiology Department, 'Attikon University Hospital', School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Alexopoulos
- Second Cardiology Department, 'Attikon University Hospital', School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - George Dimitriadis
- Second Department of Internal Medicine, 'Attikon University Hospital', School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Argirios E Tsantes
- Laboratory of Haematology & Blood Bank Unit, 'Attikon University Hospital', School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
122
|
Li Z, Sreekumar PG, Peddi S, Hinton DR, Kannan R, MacKay JA. The humanin peptide mediates ELP nanoassembly and protects human retinal pigment epithelial cells from oxidative stress. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2020; 24:102111. [PMID: 31655204 PMCID: PMC7263384 DOI: 10.1016/j.nano.2019.102111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/27/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022]
Abstract
Humanin (HN) is a hydrophobic 24-amino acid peptide derived from mitochondrial DNA that modulates cellular responses to oxidative stress and protects human retinal pigment epithelium (RPE) cells from apoptosis. To solubilize HN, this report describes two genetically-encoded fusions between HN and elastin-like polypeptides (ELP). ELPs provide steric stabilization and/or thermo-responsive phase separation. Fusions were designed to either remain soluble or phase separate at the physiological temperature of the retina. Interestingly, the soluble fusion assembles stable colloids with a hydrodynamic radius of 39.1 nm at 37°C. As intended, the thermo-responsive fusion forms large coacervates (>1,000 nm) at 37°C. Both fusions bind human RPE cells and protect against oxidative stress-induction of apoptosis (TUNEL, caspase-3 activation). Their activity is mediated through STAT3; furthermore, STAT3 inhibition eliminates their protection. These findings suggest that HN polypeptides may facilitate cellular delivery of biodegradable nanoparticles with potential protection against age-related diseases, including macular degeneration.
Collapse
Affiliation(s)
- Zhe Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy of the University of Southern California, Los Angeles, CA 90089, USA
| | | | - Santosh Peddi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy of the University of Southern California, Los Angeles, CA 90089, USA
| | - David R Hinton
- Department Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Ram Kannan
- Doheny Eye Institute, Los Angeles, CA 90033, USA
| | - John Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy of the University of Southern California, Los Angeles, CA 90089, USA; Department Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, Viterbi School of Engineering of the University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
123
|
Thairu MW, Hansen AK. It's a small, small world: unravelling the role and evolution of small RNAs in organelle and endosymbiont genomes. FEMS Microbiol Lett 2019; 366:5371121. [PMID: 30844054 DOI: 10.1093/femsle/fnz049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/05/2019] [Indexed: 12/19/2022] Open
Abstract
Organelles and host-restricted bacterial symbionts are characterized by having highly reduced genomes that lack many key regulatory genes and elements. Thus, it has been hypothesized that the eukaryotic nuclear genome is primarily responsible for regulating these symbioses. However, with the discovery of organelle- and symbiont-expressed small RNAs (sRNAs) there is emerging evidence that these sRNAs may play a role in gene regulation as well. Here, we compare the diversity of organelle and bacterial symbiont sRNAs recently identified using genome-enabled '-omic' technologies and discuss their potential role in gene regulation. We also discuss how the genome architecture of small genomes may influence the evolution of these sRNAs and their potential function. Additionally, these new studies suggest that some sRNAs are conserved within organelle and symbiont taxa and respond to changes in the environment and/or their hosts. In summary, these results suggest that organelle and symbiont sRNAs may play a role in gene regulation in addition to nuclear-encoded host mechanisms.
Collapse
Affiliation(s)
- Margaret W Thairu
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
124
|
Kotrys AV, Szczesny RJ. Mitochondrial Gene Expression and Beyond-Novel Aspects of Cellular Physiology. Cells 2019; 9:cells9010017. [PMID: 31861673 PMCID: PMC7017415 DOI: 10.3390/cells9010017] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are peculiar organelles whose proper function depends on the crosstalk between two genomes, mitochondrial and nuclear. The human mitochondrial genome (mtDNA) encodes only 13 proteins; nevertheless, its proper expression is essential for cellular homeostasis, as mtDNA-encoded proteins are constituents of mitochondrial respiratory complexes. In addition, mtDNA expression results in the production of RNA molecules, which influence cell physiology once released from the mitochondria into the cytoplasm. As a result, dysfunctions of mtDNA expression may lead to pathologies in humans. Here, we review the mechanisms of mitochondrial gene expression with a focus on recent findings in the field. We summarize the complex turnover of mitochondrial transcripts and present an increasing body of evidence indicating new functions of mitochondrial transcripts. We discuss mitochondrial gene regulation in different cellular contexts, focusing on stress conditions. Finally, we highlight the importance of emerging aspects of mitochondrial gene regulation in human health and disease.
Collapse
|
125
|
Dubin A, Jørgensen TE, Jakt LM, Johansen SD. The mitochondrial transcriptome of the anglerfish Lophius piscatorius. BMC Res Notes 2019; 12:800. [PMID: 31823814 PMCID: PMC6905026 DOI: 10.1186/s13104-019-4835-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/29/2019] [Indexed: 01/22/2023] Open
Abstract
Objective Analyze key features of the anglerfish Lophius piscatorius mitochondrial transcriptome based on high-throughput total RNA sequencing. Results We determined the complete mitochondrial DNA and corresponding transcriptome sequences of L. piscatorius. Key features include highly abundant mitochondrial ribosomal RNAs (10–100 times that of mRNAs), and that cytochrome oxidase mRNAs appeared > 5 times more abundant than both NADH dehydrogenase and ATPase mRNAs. Unusual for a vertebrate mitochondrial mRNA, the polyadenylated COI mRNA was found to harbor a 75 nucleotide 3′ untranslated region. The mitochondrial genome expressed several non-canonical genes, including the long noncoding RNAs lncCR-H, lncCR-L and lncCOI. Whereas lncCR-H and lncCR-L mapped to opposite strands in a non-overlapping organization within the control region, lncCOI appeared novel among vertebrates. We found lncCOI to be a highly abundant mitochondrial RNA in antisense to the COI mRNA. Finally, we present the coding potential of a humanin-like peptide within the large subunit ribosomal RNA.
Collapse
Affiliation(s)
- Arseny Dubin
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Tor Erik Jørgensen
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Lars Martin Jakt
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Steinar Daae Johansen
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway.
| |
Collapse
|
126
|
Klucnika A, Ma H. Mapping and editing animal mitochondrial genomes: can we overcome the challenges? Philos Trans R Soc Lond B Biol Sci 2019; 375:20190187. [PMID: 31787046 DOI: 10.1098/rstb.2019.0187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The animal mitochondrial genome, although small, can have a big impact on health and disease. Non-pathogenic sequence variation among mitochondrial DNA (mtDNA) haplotypes influences traits including fertility, healthspan and lifespan, whereas pathogenic mutations are linked to incurable mitochondrial diseases and other complex conditions like ageing, diabetes, cancer and neurodegeneration. However, we know very little about how mtDNA genetic variation contributes to phenotypic differences. Infrequent recombination, the multicopy nature and nucleic acid-impenetrable membranes present significant challenges that hamper our ability to precisely map mtDNA variants responsible for traits, and to genetically modify mtDNA so that we can isolate specific mutants and characterize their biochemical and physiological consequences. Here, we summarize the past struggles and efforts in developing systems to map and edit mtDNA. We also assess the future of performing forward and reverse genetic studies on animal mitochondrial genomes. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Anna Klucnika
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Hansong Ma
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
127
|
Duan J, Chen Z, Wu Y, Zhu B, Yang L, Yang C. Metabolic remodeling induced by mitokines in heart failure. Aging (Albany NY) 2019; 11:7307-7327. [PMID: 31498116 PMCID: PMC6756899 DOI: 10.18632/aging.102247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/22/2019] [Indexed: 04/11/2023]
Abstract
The prevalence rates of heart failure (HF) are greater than 10% in individuals aged >75 years, indicating an intrinsic link between aging and HF. It has been recognized that mitochondrial dysfunction contributes to the pathology of HF. Mitokines are a type of cytokines, peptides, or signaling pathways produced or activated by the nucleus or the mitochondria through cell non-autonomous responses during cellular stress. In addition to promoting the communication between the mitochondria and the nucleus, mitokines also exert a systemic regulatory effect by circulating to distant tissues. It is noteworthy that increasing evidence has demonstrated that mitokines are capable of reducing the metabolic-related HF risk factors and are associated with HF severity. Consequently, mitokines might represent a potential therapy target for HF.
Collapse
Affiliation(s)
- Jiahao Duan
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Zijun Chen
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yeshun Wu
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Chun Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
128
|
Benayoun BA, Lee C. MOTS-c: A Mitochondrial-Encoded Regulator of the Nucleus. Bioessays 2019; 41:e1900046. [PMID: 31378979 PMCID: PMC8224472 DOI: 10.1002/bies.201900046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/28/2019] [Indexed: 12/25/2022]
Abstract
Mitochondria are increasingly being recognized as information hubs that sense cellular changes and transmit messages to other cellular components, such as the nucleus, the endoplasmic reticulum (ER), the Golgi apparatus, and lysosomes. Nonetheless, the interaction between mitochondria and the nucleus is of special interest because they both host part of the cellular genome. Thus, the communication between genome-bearing organelles would likely include gene expression regulation. Multiple nuclear-encoded proteins have been known to regulate mitochondrial gene expression. On the contrary, no mitochondrial-encoded factors are known to actively regulate nuclear gene expression. MOTS-c (mitochondrial open reading frame of the 12S ribosomal RNA type-c) is a recently identified peptide encoded within the mitochondrial 12S ribosomal RNA gene that has metabolic functions. Notably, MOTS-c can translocate to the nucleus upon metabolic stress (e.g., glucose restriction and oxidative stress) and directly regulate adaptive nuclear gene expression to promote cellular homeostasis. It is hypothesized that cellular fitness requires the coevolved mitonuclear genomes to coordinate adaptive responses using gene-encoded factors that cross-regulate the opposite genome. This suggests that cellular gene expression requires the bipartite split genomes to operate as a unified system, rather than the nucleus being the sole master regulator.
Collapse
Affiliation(s)
- Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation Program, Los Angeles, CA, 90089, USA
- USC Stem Cell Initiative, Los Angeles, CA, 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation Program, Los Angeles, CA, 90089, USA
- Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, Republic of Korea
| |
Collapse
|
129
|
Yan Z, Zhu S, Wang H, Wang L, Du T, Ye Z, Zhai D, Zhu Z, Tian X, Lu Z, Cao X. MOTS-c inhibits Osteolysis in the Mouse Calvaria by affecting osteocyte-osteoclast crosstalk and inhibiting inflammation. Pharmacol Res 2019; 147:104381. [PMID: 31369811 DOI: 10.1016/j.phrs.2019.104381] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 01/04/2023]
Abstract
The Mitochondrial-derived peptide MOTS-c has recently been reported as a 16-amino acid peptide regulating metabolism and homeostasis in different cells. However, its effects on immune cells and bone metabolism are rarely reported. Here we demonstrate that MOTS-c treatment in ultra-high molecular weight polyethylene (UHMWPE) particle-induced osteolysis mouse model alleviated bone erosion and inflammation. MOTS-c increased osteoprotegerin (OPG)/ receptor activator of nuclear factor kappa-B ligand (RANKL) ratio in osteocytes, leading to inhibition of osteoclastogenesis. In primary bone marrow macrophages (BMMs) MOTS-c alleviated STAT1 and NF-κB phosphorylation triggered by UHMWPE particles. Promoting ROS production or suppressing peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) by adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) repression blocked these anti-inflammatory effects of MOTS-c treatment. Taken together, these findings provide evidence that the small peptide inhibits osteoclastogenesis by regulating osteocyte OPG/RANKL secretion and suppressing inflammation via restraining NF-κB and STAT1 pathway. Moreover, its effects on NF-κB activation is dependent on the AMPK-PGC-1α-ROS axis, suggesting its potential use in osteolysis and other inflammation disorders.
Collapse
Affiliation(s)
- Zhao Yan
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Shu Zhu
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Hanli Wang
- 4th Hospital of Yulin, Yulin, 719000, China
| | - Li Wang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an, 710032, China
| | - Tianshu Du
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zichen Ye
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an, 710032, China
| | - Dongsheng Zhai
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an, 710032, China
| | - Zheng Zhu
- Department of Urology, Xijing Hospital, Fourth Military Medical University
| | - Xiaoxi Tian
- Emergency department of Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| | - Zifan Lu
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an, 710032, China.
| | - Xiaorui Cao
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
130
|
Raijmakers RP, Stenos J, Keijmel SP, Ter Horst R, Novakovic B, Nguyen C, Van Der Meer JW, Netea MG, Bleeker-Rovers CP, Joosten LA, Graves SR. Long-Lasting Transcriptional Changes in Circulating Monocytes of Acute Q Fever Patients. Open Forum Infect Dis 2019; 6:5523799. [PMID: 31363773 PMCID: PMC6667718 DOI: 10.1093/ofid/ofz296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/21/2019] [Indexed: 12/17/2022] Open
Abstract
Objective Although most patients recover from acute Q fever, around 20% develop Q fever fatigue syndrome (QFS), a debilitating fatigue syndrome that lasts at least 6 months. This study investigated transcriptional profiles of circulating monocytes and circulating cytokines as a subsequent mirror of myeloid cell function, 1 and 6 months after an acute Q fever infection. Methods Total RNA of circulating monocytes was collected from 11 acute Q fever patients and 15 healthy controls, matched for age (±5 years) and sex. Samples were collected at a median of 27 days (baseline, interquartile range, 15–35 days) after the infection and again 6 months thereafter. Transcriptome analysis was performed using RNA sequencing. Additionally, concentrations of circulating interleukin (IL)-10, IL-1β, IL-1Ra, and IL-6 were measured in serum. Results At baseline, acute Q fever patients clearly show a differential transcriptional program compared with healthy controls. This is still the case at follow-up, albeit to a lesser extent. At baseline, a significant difference in levels of circulating IL-10 (P = .0019), IL-1β (P = .0067), IL-1Ra (P = .0008), and IL-6 (P = .0003) was seen. At follow-up, this difference had decreased for IL-10 (P = .0136) and IL-1Ra (P = .0017) and had become nonsignificant for IL-1β (P = .1139) and IL-6 (P = .2792). Conclusions We show that an acute Q fever infection has a long-term effect on the transcriptional program of circulating monocytes and, therefore, likely their myeloid progenitor cells, as well as concentrations of circulating IL-10, IL-1β, IL-1Ra, and IL-6.
Collapse
Affiliation(s)
- Ruud Ph Raijmakers
- Radboud Expertise Center for Q Fever.,Department of Internal Medicine, Division of Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - John Stenos
- Australian Rickettsial Reference Laboratory, University Hospital Geelong
| | - Stephan P Keijmel
- Radboud Expertise Center for Q Fever.,Department of Internal Medicine, Division of Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rob Ter Horst
- Department of Internal Medicine, Division of Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Boris Novakovic
- Faculty of Science, Department of Molecular Biology, Radboud University, Nijmegen, the Netherlands
| | - Chelsea Nguyen
- Australian Rickettsial Reference Laboratory, University Hospital Geelong
| | - Jos Wm Van Der Meer
- Radboud Expertise Center for Q Fever.,Department of Internal Medicine, Division of Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Radboud Expertise Center for Q Fever.,Department of Internal Medicine, Division of Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Chantal P Bleeker-Rovers
- Radboud Expertise Center for Q Fever.,Department of Internal Medicine, Division of Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo Ab Joosten
- Radboud Expertise Center for Q Fever.,Department of Internal Medicine, Division of Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stephen R Graves
- Australian Rickettsial Reference Laboratory, University Hospital Geelong
| |
Collapse
|
131
|
Mortz M, Dégletagne C, Romestaing C, Duchamp C. Comparative genomic analysis identifies small open reading frames (sORFs) with peptide-encoding features in avian 16S rDNA. Genomics 2019; 112:1120-1127. [PMID: 31247329 DOI: 10.1016/j.ygeno.2019.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/01/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022]
Abstract
The mitochondrial genome (mt-DNA) functional repertoire has recently been enriched in mammals by the identification of functional small open reading frames (sORFs) embedded in ribosomal DNAs. Through comparative genomic analyses the presence of putatively functional sORFs was investigated in birds. Alignment of available avian mt-DNA sequences revealed highly conserved regions containing four putative sORFs that presented low insertion/deletion polymorphism rate (<0.1%) and preserved in frame start/stop codons in >80% of species. Detected sORFs included avian homologs of human Humanin and Short-Humanin-Like-Peptide 6 and two new sORFs not yet described in mammals. The amino-acid sequences of the four putative encoded peptides were strongly conserved among birds, with amino-acid p-distances (5.6 to 25.4%) similar to those calculated for typical avian mt-DNA-encoded proteins (14.8%). Conservation resulted from either drastic conservation of the nucleotide sequence or negative selection pressure. These data extend to birds the possibility that mitochondrial rDNA may encode small bioactive peptides.
Collapse
Affiliation(s)
- Mathieu Mortz
- Université de Lyon, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 CNRS, Université Claude Bernard Lyon 1, ENTPE, Villeurbanne Cedex, France
| | - Cyril Dégletagne
- Université de Lyon, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 CNRS, Université Claude Bernard Lyon 1, ENTPE, Villeurbanne Cedex, France
| | - Caroline Romestaing
- Université de Lyon, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 CNRS, Université Claude Bernard Lyon 1, ENTPE, Villeurbanne Cedex, France
| | - Claude Duchamp
- Université de Lyon, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 CNRS, Université Claude Bernard Lyon 1, ENTPE, Villeurbanne Cedex, France.
| |
Collapse
|
132
|
Figueredo CM, Alves JC, de Souza Breves Beiler TFC, Fischer RG. Anti-apoptotic traits in gingival tissue from patients with severe generalized chronic periodontitis. ACTA ACUST UNITED AC 2019; 10:e12422. [PMID: 31192544 DOI: 10.1111/jicd.12422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/16/2019] [Accepted: 04/25/2019] [Indexed: 11/27/2022]
Abstract
AIM In the present study, we aimed to evaluate the cytosolic and nuclear-mitochondrial expression of pro-apoptotic and anti-apoptotic markers in gingival tissue from patients with severe generalized chronic periodontitis (sGCP). METHODS Twenty-four patients participated in the study: 15 (54.3 + 8.3 years) with sGCP and nine (38.2 + 5.4 years) with gingivitis alone. Gingival tissue was collected using a 1.5-mm diameter punch and homogenized using a cell disruptor. The supernatants were analyzed for the cytosolic and nuclear-mitochondrial fractions of caspase-3, Bax, Bak, Smac, lamin B, Bad, Bim, survivin, Bcl-xL, Mcl-1, and of the dimers Bcl-2/Bax, Bcl-xL/Bak and Mcl-1/Bak using a multiplex immunoassay. RESULTS Significantly higher levels of cytosolic Bcl-xL/Bak, nuclear-mitochondrial Mcl-1/Bak, and cytosolic Bcl-xL were observed in gingival tissues from periodontitis patients compared to controls (P = 0.03, 0.03, and 0.05, respectively). The patients with gingivitis presented significantly increased levels of nuclear-mitochondrial Bad, cytosolic and nuclear-mitochondrial Bcl-2/Bax, and cytosolic Bim compared to the patients with periodontitis (P < 0.001, 0.03, 0.05, and 0.04, respectively). CONCLUSION Significantly higher levels of anti-apoptotic markers, such as Bcl-xL/Bak, Mcl-1/Bak, and Bcl-xL, and lower levels of pro-apoptotic markers Bad and Bim in inflamed tissues indicate an anti-apoptotic trait in patients with sGCP.
Collapse
Affiliation(s)
- Carlos Marcelo Figueredo
- Department of Periodontology, Faculty of Odontology, Rio de Janeiro State University, Rio de Janeiro, Brazil.,Department of Periodontology, Faculty of Dentistry and Oral Health, Griffith University, Southport, Queensland, Australia
| | - Juliana Cardoso Alves
- Department of Periodontology, Faculty of Odontology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Ricardo Guimarães Fischer
- Department of Periodontology, Faculty of Odontology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
133
|
Mehta HH, Xiao J, Ramirez R, Miller B, Kim SJ, Cohen P, Yen K. Metabolomic profile of diet-induced obesity mice in response to humanin and small humanin-like peptide 2 treatment. Metabolomics 2019; 15:88. [PMID: 31172328 PMCID: PMC6554247 DOI: 10.1007/s11306-019-1549-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/24/2019] [Indexed: 01/10/2023]
Abstract
INTRODUCTION The mitochondrial-derived peptides (MDPs) are a novel group of natural occurring peptides that have important signaling functions and biological activity. Both humanin and small-humanin-like peptide 2 (SHLP2) have been reported to act as insulin sensitizers and modulate metabolism. OBJECTIVES By using a metabolomic approach, this study explores how the plasma metabolite profile is regulated in response to humanin and SHLP2 treatment in a diet-induced obesity (DIO) mouse model. The results also shed light on the potential mechanism underlying MDPs' insulin sensitization effects. METHODS Plasma samples were obtained from DIO mice subjected to vehicle (water) treatment, or peptide treatment with either humanin analog S14G (HNG) or SHLP2 (n = 6 per group). Vehicle or peptides were given as intraperitoneal (IP) injections twice a day at dose of 2.5 mg/kg/injection for 3 days. Metabolites in plasma samples were comprehensively identified and quantified using UPLC-MS/MS. RESULTS HNG and SHLP2 administration significantly altered the concentrations of amino acid and lipid metabolites in plasma. Among all the metabolic pathways, the glutathione and sphingolipid metabolism responded most strongly to the peptide treatment. CONCLUSIONS The present study indicates that humanin and SHLP2 can lower several markers associated with age-related metabolic disorders. With the previous understanding of the effects of humanin and SHLP2 on cardiovascular function, insulin sensitization, and anti-inflammation, this metabolomic discovery provides a more comprehensive molecular explanation of the mechanism of action for humanin and SHLP2 treatment.
Collapse
Affiliation(s)
- Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jialin Xiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Ricardo Ramirez
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
134
|
Popov LD. Mitochondrial peptides—appropriate options for therapeutic exploitation. Cell Tissue Res 2019; 377:161-165. [DOI: 10.1007/s00441-019-03049-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022]
|
135
|
Raijmakers RPH, Jansen AFM, Keijmel SP, Ter Horst R, Roerink ME, Novakovic B, Joosten LAB, van der Meer JWM, Netea MG, Bleeker-Rovers CP. A possible role for mitochondrial-derived peptides humanin and MOTS-c in patients with Q fever fatigue syndrome and chronic fatigue syndrome. J Transl Med 2019; 17:157. [PMID: 31088495 PMCID: PMC6518812 DOI: 10.1186/s12967-019-1906-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/06/2019] [Indexed: 12/21/2022] Open
Abstract
Background Q fever fatigue syndrome (QFS) is a well-documented state of prolonged fatigue following around 20% of acute Q fever infections. It has been hypothesized that low grade inflammation plays a role in its aetiology. In this study, we aimed to identify transcriptome profiles that could aid to better understand the pathophysiology of QFS. Methods RNA of monocytes was collected from QFS patients (n = 10), chronic fatigue syndrome patients (CFS, n = 10), Q fever seropositive controls (n = 10), and healthy controls (n = 10) who were age- (± 5 years) and sex-matched. Transcriptome analysis was performed using RNA sequencing. Results Mitochondrial-derived peptide (MDP)-coding genes MT-RNR2 (humanin) and MT-RNR1 (MOTS-c) were differentially expressed when comparing QFS (− 4.8 log2-fold-change P = 2.19 × 10−9 and − 4.9 log2-fold-change P = 4.69 × 10−8), CFS (− 5.2 log2-fold-change, P = 3.49 × 10−11 − 4.4 log2-fold-change, P = 2.71 × 10−9), and Q fever seropositive control (− 3.7 log2-fold-change P = 1.78 × 10−6 and − 3.2 log2-fold-change P = 1.12 × 10−5) groups with healthy controls, resulting in a decreased median production of humanin in QFS patients (371 pg/mL; Interquartile range, IQR, 325–384), CFS patients (364 pg/mL; IQR 316–387), and asymptomatic Q fever seropositive controls (354 pg/mL; 292–393). Conclusions Expression of MDP-coding genes MT-RNR1 (MOTS-c) and MT-RNR2 (humanin) is decreased in CFS, QFS, and, to a lesser extent, in Q fever seropositive controls, resulting in a decreased production of humanin. These novel peptides might indeed be important in the pathophysiology of both QFS and CFS. Electronic supplementary material The online version of this article (10.1186/s12967-019-1906-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruud P H Raijmakers
- Radboud Expertise Center for Q Fever, Department of Internal Medicine, Division of Infectious Diseases 463, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands. .,Department of Internal Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Anne F M Jansen
- Radboud Expertise Center for Q Fever, Department of Internal Medicine, Division of Infectious Diseases 463, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Stephan P Keijmel
- Radboud Expertise Center for Q Fever, Department of Internal Medicine, Division of Infectious Diseases 463, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Rob Ter Horst
- Department of Internal Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Megan E Roerink
- Department of Internal Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Boris Novakovic
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Leo A B Joosten
- Radboud Expertise Center for Q Fever, Department of Internal Medicine, Division of Infectious Diseases 463, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jos W M van der Meer
- Radboud Expertise Center for Q Fever, Department of Internal Medicine, Division of Infectious Diseases 463, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Mihai G Netea
- Radboud Expertise Center for Q Fever, Department of Internal Medicine, Division of Infectious Diseases 463, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Chantal P Bleeker-Rovers
- Radboud Expertise Center for Q Fever, Department of Internal Medicine, Division of Infectious Diseases 463, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
136
|
Abstract
Aging is accompanied by a time-dependent progressive deterioration of multiple factors of the cellular system. The past several decades have witnessed major leaps in our understanding of the biological mechanisms of aging using dietary, genetic, pharmacological, and physical interventions. Metabolic processes, including nutrient sensing pathways and mitochondrial function, have emerged as prominent regulators of aging. Mitochondria have been considered to play a key role largely due to their production of reactive oxygen species (ROS), resulting in DNA damage that accumulates over time and ultimately causes cellular failure. This theory, known as the mitochondrial free radical theory of aging (MFRTA), was favored by the aging field, but increasing inconsistent evidence has led to criticism and rejection of this idea. However, MFRTA should not be hastily rejected in its entirety because we now understand that ROS is not simply an undesired toxic metabolic byproduct, but also an important signaling molecule that is vital to cellular fitness. Notably, mitochondrial function, a term traditionally referred to bioenergetics and apoptosis, has since expanded considerably. It encompasses numerous other key biological processes, including the following: (i) complex metabolic processes, (ii) intracellular and endocrine signaling/communication, and (iii) immunity/inflammation. Here, we will discuss shortcomings of previous concepts regarding mitochondria in aging and their emerging roles based on recent advances. We will also discuss how the mitochondrial genome integrates with major theories on the evolution of aging. [BMB Reports 2019; 52(1): 13-23].
Collapse
Affiliation(s)
- Jyung Mean Son
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089; USC Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA; Biomedical Science, Graduate School, Ajou University, Suwon 16499, Korea
| |
Collapse
|
137
|
Mello T, Simeone I, Galli A. Mito-Nuclear Communication in Hepatocellular Carcinoma Metabolic Rewiring. Cells 2019; 8:cells8050417. [PMID: 31060333 PMCID: PMC6562577 DOI: 10.3390/cells8050417] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/24/2022] Open
Abstract
As the main metabolic and detoxification organ, the liver constantly adapts its activity to fulfill the energy requirements of the whole body. Despite the remarkable adaptive capacity of the liver, prolonged exposure to noxious stimuli such as alcohol, viruses and metabolic disorders results in the development of chronic liver disease that can progress to hepatocellular carcinoma (HCC), which is currently the second leading cause of cancer-related death worldwide. Metabolic rewiring is a common feature of cancers, including HCC. Altered mito-nuclear communication is emerging as a driving force in the metabolic reprogramming of cancer cells, affecting all aspects of cancer biology from neoplastic transformation to acquired drug resistance. Here, we explore relevant aspects (and discuss recent findings) of mito-nuclear crosstalk in the metabolic reprogramming of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Tommaso Mello
- Clinical Gastroenterology Unit, Department of Biomedical Clinical and Experimental Sciences "Mario Serio", University of Florence, V.le Pieraccini 6, Florence 50129, Italy.
| | - Irene Simeone
- Clinical Gastroenterology Unit, Department of Biomedical Clinical and Experimental Sciences "Mario Serio", University of Florence, V.le Pieraccini 6, Florence 50129, Italy.
- University of Siena, 53100 Siena, Italy.
| | - Andrea Galli
- Clinical Gastroenterology Unit, Department of Biomedical Clinical and Experimental Sciences "Mario Serio", University of Florence, V.le Pieraccini 6, Florence 50129, Italy.
| |
Collapse
|
138
|
Breton CV, Song AY, Xiao J, Kim SJ, Mehta HH, Wan J, Yen K, Sioutas C, Lurmann F, Xue S, Morgan TE, Zhang J, Cohen P. Effects of air pollution on mitochondrial function, mitochondrial DNA methylation, and mitochondrial peptide expression. Mitochondrion 2019; 46:22-29. [PMID: 30980914 DOI: 10.1016/j.mito.2019.04.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/25/2019] [Accepted: 04/01/2019] [Indexed: 12/30/2022]
Abstract
Mitochondrial DNA is sensitive to damage by exogenous reactive oxygen sources, including traffic-related air pollution (TRAP). Given the important role for mitochondria in human disease, we hypothesized that prenatal air pollution exposure may be associated with mitochondrial dysfunction and that mitochondrial-derived peptides (MDPs) might protect against these effects. In in vitro studies, 24-hour exposure to nanoparticulate matter (nPM) increased oxidation of mtDNA, decreased mitochondrial consumption rate (OCR), and decreased mtDNAcn in SH-SY5Y cells. Addition of MDPs rescued these effects to varying degrees. Liver tissue taken from C57Bl/6 males exposed for 10 weeks to nPM had lower OCR, lower mtDNAcn and higher MDP levels, similar to in vitro studies. In newborn cord blood, MDP levels were positively associated with prenatal TRAP exposures. Moreover, DNA methylation of two distinct regions of the D-Loop in the mitochondria genome was associated with levels of several MDPs. Our in vitro and in vivo data indicate that TRAP can directly affect mitochondrial respiratory function and mtDNAcn. Treatment of cells with MDPs can counteract TRAP induced-effects. Lastly, we present evidence that suggests MDPs may be regulated in part by mitochondrial DNA methylation in humans.
Collapse
Affiliation(s)
- Carrie V Breton
- Department of Preventive Medicine, Keck School of Medicine USC, 2001 N Soto St., Los Angeles, CA 90032, United States of America.
| | - Ashley Y Song
- Department of Preventive Medicine, Keck School of Medicine USC, 2001 N Soto St., Los Angeles, CA 90032, United States of America
| | - Jialin Xiao
- USC Leonard School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90089, United States of America
| | - Su-Jeong Kim
- USC Leonard School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90089, United States of America
| | - Hemal H Mehta
- USC Leonard School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90089, United States of America
| | - Junxiang Wan
- USC Leonard School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90089, United States of America
| | - Kelvin Yen
- USC Leonard School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90089, United States of America
| | - Constantinos Sioutas
- USC Viterbi School of Engineering, 3620 South Vermont Ave, Los Angeles, CA 90089, United States of America
| | - Fred Lurmann
- Sonoma Technology, 1450 N. McDowell Blvd., Suite 200, Petaluma, CA 94954, United States of America
| | - Shanyan Xue
- Department of Preventive Medicine, Keck School of Medicine USC, 2001 N Soto St., Los Angeles, CA 90032, United States of America
| | - Todd E Morgan
- USC Leonard School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90089, United States of America
| | - Junfeng Zhang
- Nicholas School of the Enviroment, Duke University, 308 Research Drive LSRC, Durham, NC 27708, United States of America
| | - Pinchas Cohen
- USC Leonard School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90089, United States of America
| |
Collapse
|
139
|
Kim SJ, Miller B, Kumagai H, Yen K, Cohen P. MOTS-c: an equal opportunity insulin sensitizer. J Mol Med (Berl) 2019; 97:487-490. [PMID: 30788534 DOI: 10.1007/s00109-019-01758-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Hiroshi Kumagai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA.
| |
Collapse
|
140
|
Lee C. Nuclear transcriptional regulation by mitochondrial-encoded MOTS-c. Mol Cell Oncol 2019; 6:1549464. [PMID: 31131297 PMCID: PMC6512917 DOI: 10.1080/23723556.2018.1549464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
Cellular stress response is coordinated through the communication between mitochondria and the nucleus. However, whereas mitochondria are regulated by nuclear-encoded proteins, the nucleus was considered ungoverned by mitochondrial-encoded factors. We recently reported that a mitochondrial-encoded peptide directly regulates the nuclear genome upon cellular stress, indicating an integrated bi-genomic cross-communication mechanism.
Collapse
Affiliation(s)
- Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.,USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA.,Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| |
Collapse
|
141
|
Angers A, Ouimet P, Tsyvian-Dzyabko A, Nock T, Breton S. [The underestimated coding potential of mitochondrial DNA]. Med Sci (Paris) 2019; 35:46-54. [PMID: 30672456 DOI: 10.1051/medsci/2018308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are ancient organelles that emerged from the endosymbiosis of free-living proto-bacteria. They still retain a semi-autonomous genetic system with a small genome. Mitochondrial DNA (mtDNA) codes for 13 essential proteins for the production of ATP, the sequences of which are relatively conserved across Metazoans. The discovery of additional mitochondria-derived peptides (MDPs) indicates an underestimated coding potential. Humanin, an anti-apoptotic peptide, is likely independently transcribed from within the 16S rRNA gene, as are recently described SHLPs. MOTS-c, discovered in silico, has been demonstrated to be involved in metabolism and insulin sensitivity. Gau, is a positionally conserved open reading frame (ORF) sequence found in the antisense strand of the COX1 gene and its corresponding peptide is strictly colocalized with mitochondrial markers. In bivalves with doubly uniparental inheritance of mtDNA, male and female mtDNAs each carry a separate additional gene possibly involved in sex determination. Other MDPs likely exist and their investigation will shed light on the underestimated functional repertoire of mitochondria.
Collapse
Affiliation(s)
- Annie Angers
- Département de sciences biologiques, université de Montréal, pavillon Marie-Victorin, faculté des arts et des sciences. CP 6128, succursale centre-ville, Montréal QC, H3C 3J7, Canada
| | - Philip Ouimet
- Département de sciences biologiques, université de Montréal, pavillon Marie-Victorin, faculté des arts et des sciences. CP 6128, succursale centre-ville, Montréal QC, H3C 3J7, Canada
| | - Assia Tsyvian-Dzyabko
- Département de sciences biologiques, université de Montréal, pavillon Marie-Victorin, faculté des arts et des sciences. CP 6128, succursale centre-ville, Montréal QC, H3C 3J7, Canada
| | - Tanya Nock
- Département de sciences biologiques, université de Montréal, pavillon Marie-Victorin, faculté des arts et des sciences. CP 6128, succursale centre-ville, Montréal QC, H3C 3J7, Canada
| | - Sophie Breton
- Département de sciences biologiques, université de Montréal, pavillon Marie-Victorin, faculté des arts et des sciences. CP 6128, succursale centre-ville, Montréal QC, H3C 3J7, Canada
| |
Collapse
|
142
|
Ramanjaneya M, Bettahi I, Jerobin J, Chandra P, Abi Khalil C, Skarulis M, Atkin SL, Abou-Samra AB. Mitochondrial-Derived Peptides Are Down Regulated in Diabetes Subjects. Front Endocrinol (Lausanne) 2019; 10:331. [PMID: 31214116 PMCID: PMC6554664 DOI: 10.3389/fendo.2019.00331] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Mitochondrial dysfunction is implicated in the pathogenesis of Type 2 diabetes (T2D) and the development of diabetes related complications such as cardiovascular disease and stroke. Mitochondria produce several small polypeptides that may influence mitochondrial function and may impact on insulin sensitivity, such as humanin (HN) and the mitochondrial open reading frame of the 12S rRNA type-c (MOTS-c) that are mitochondrial derived proteins (MDP). The aim of this study was to determine MDP in normal, prediabetes and diabetes subjects. Subjects and Measurements: In this cross-sectional study, we analyzed the serum concentrations of MDP and adiponectin (ADP) in 225 subjects: normal (n = 68), pre-diabetes (n = 33), T2D less than (good control; n = 31), and greater than HbA1c 7% (poor control; n = 93) subjects. The relationship of serum MDP and ADP concentrations with biochemical and anthropometric measurements were performed and assessed by multilinear regression. Results: Serum HN concentrations were lower in T2D (p < 0.0001) and negatively correlated with age (p < 0.0001), HbA1c (p < 0.0001), glucose (p < 0.0001), triglycerides (p < 0.003), ALT (p < 0.004), and TG/HDL ratio (p < 0.001). Circulating HN levels were positively correlated to cholesterol (p < 0.017), LDL (p < 0.001), and HDL (p < 0.001). Linear regression analysis showed that HbA1c and ALT were two independent predictors of circulating HN. Similarly, serum MOTS-c was significantly lower in T2D subjects compared to controls (p < 0.007). Circulating MOTS-c positively correlated with BMI (p < 0.035), total cholesterol (p < 0.0001), and LDL (p < 0.001) and negatively correlated with age (p < 0.002), HbA1c (p < 0.001), and glucose (p < 0.002). Serum ADP concentrations were lower in T2D (p < 0.002) and negatively correlated with HbA1c (p < 0.001), weight (p < 0.032) TG (p < 0.0001), and ALT (p < 0.0001); and positively correlated with HDL (p < 0.0001) and HN (p < 0.003). Linear regression analysis showed that HbA1c and weight were two independent predictors of circulating ADP. Multilinear regression showed that HN and MOT-c correlated with each other, and only HN correlated with HbA1c. Conclusion: The MDPs HN and MOT-c, similar to ADP, are decreased in T2D and correlate with HbA1c. The data provide an additional evidence that mitochondrial dysfunction contributes to glycemic dysregulation and metabolic defects in T2D.
Collapse
Affiliation(s)
- Manjunath Ramanjaneya
- Hamad Medical Corporation, Department of Medicine, Qatar Metabolic Institute and Interim Translational Research Institute, Academic Health System, Doha, Qatar
- *Correspondence: Manjunath Ramanjaneya
| | - Ilham Bettahi
- Hamad Medical Corporation, Department of Medicine, Qatar Metabolic Institute and Interim Translational Research Institute, Academic Health System, Doha, Qatar
| | - Jayakumar Jerobin
- Hamad Medical Corporation, Department of Medicine, Qatar Metabolic Institute and Interim Translational Research Institute, Academic Health System, Doha, Qatar
| | - Prem Chandra
- Hamad Medical Corporation, Department of Medicine, Qatar Metabolic Institute and Interim Translational Research Institute, Academic Health System, Doha, Qatar
| | - Charbel Abi Khalil
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine Qatar, Doha, Qatar
| | - Monica Skarulis
- Hamad Medical Corporation, Department of Medicine, Qatar Metabolic Institute and Interim Translational Research Institute, Academic Health System, Doha, Qatar
| | - Stephen Lawrence Atkin
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine Qatar, Doha, Qatar
- Research Department, Weill Cornell Medicine Qatar, Doha, Qatar
- Stephen Lawrence Atkin
| | - Abdul-Badi Abou-Samra
- Hamad Medical Corporation, Department of Medicine, Qatar Metabolic Institute and Interim Translational Research Institute, Academic Health System, Doha, Qatar
- Abdul-Badi Abou-Samra
| |
Collapse
|
143
|
Zuccato CF, Asad AS, Nicola Candia AJ, Gottardo MF, Moreno Ayala MA, Theas MS, Seilicovich A, Candolfi M. Mitochondrial-derived peptide humanin as therapeutic target in cancer and degenerative diseases. Expert Opin Ther Targets 2018; 23:117-126. [DOI: 10.1080/14728222.2019.1559300] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Camila Florencia Zuccato
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Antonela Sofia Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Javier Nicola Candia
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | - María Susana Theas
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
144
|
Xiao J, Cohen P, Stern MC, Odedina F, Carpten J, Reams R. Mitochondrial biology and prostate cancer ethnic disparity. Carcinogenesis 2018; 39:1311-1319. [PMID: 30304372 PMCID: PMC6292412 DOI: 10.1093/carcin/bgy133] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/31/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer remains the second most prevalent cancer in men. Its incidence, progression and mortality profiles vary significantly by race and ethnicity, with African-American men having the highest incidence rate and mortality rate in the world. Although these disparities can be partially explained by socioeconomic factors, the underlying molecular causes are complex and require careful research. A considerable amount of literature exists, supporting the association between mitochondrial health and the incidence, aggression and risk of prostate cancer. Genetic alterations in mitochondrial DNA are frequent in prostate cancer; therefore, the resulting mitochondrial dysfunction and metabolic dysregulation may contribute to or indicate oncogenesis. Many of the prominent features of cancer cells are also closely related to mitochondrial functions, such as resistance to apoptosis, excess reactive oxygen species production and altered oxidative phosphorylation. In addition, prostate cancer ethnic disparity is influenced by environmental and lifestyle factors, which involves differences in mitochondrial metabolism and retrograde signaling events.
Collapse
Affiliation(s)
- Jialin Xiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Mariana Carla Stern
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Folakemi Odedina
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - John Carpten
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Renee Reams
- Department of Medicinal Chemistry, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| |
Collapse
|
145
|
Nashine S, Cohen P, Nesburn AB, Kuppermann BD, Kenney MC. Characterizing the protective effects of SHLP2, a mitochondrial-derived peptide, in macular degeneration. Sci Rep 2018; 8:15175. [PMID: 30310092 PMCID: PMC6182005 DOI: 10.1038/s41598-018-33290-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 09/21/2018] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial-derived peptides (MDPs) are rapidly emerging therapeutic targets to combat development of neurodegenerative diseases. SHLP2 (small humanin-like peptide 2) is a newly discovered MDP that is coded from the MT-RNR2 (Mitochondrially encoded 16S rRNA) gene in mitochondrial DNA (mtDNA). In the current study, we examined the biological consequences of treatment with exogenously-added SHLP2 in an in vitro human transmitochondrial age-related macular degeneration (AMD) ARPE-19 cell model. In AMD cells, we observed significant down-regulation of the MDP-coding MT-RNR2 gene, and remarkably reduced levels of all five oxidative phosphorylation (OXPHOS) complex I-V protein subunits that are involved in the electron transport chain; these results suggested mitochondrial toxicity and abnormal OXPHOS complex protein subunits' levels in AMD cells. However, treatment of AMD cells with SHLP2: (1) restored the normal levels of OXPHOS complex protein subunits, (2) prevented loss of viable cells and mitochondria, (3) increased the number of mtDNA copies, (4) induced anti-apoptotic effects, and (5) attenuated amyloid-β-induced cellular and mitochondrial toxicity. Cumulatively, our findings established the protective role of SHLP2 in AMD cells in vitro. In conclusion, this novel study supports the merit of SHLP2 in the treatment of AMD, a primary retinal disease that is a leading cause of blindness among the elderly population in the United States as well as worldwide.
Collapse
Affiliation(s)
- Sonali Nashine
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Anthony B Nesburn
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Baruch D Kuppermann
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA
| | - M Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA.
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
146
|
|
147
|
Abstract
Mitochondria undergo continuous challenges in the course of their life, from their generation to their degradation. These challenges include the management of reactive oxygen species, the proper assembly of mitochondrial respiratory complexes and the need to balance potential mutations in the mitochondrial DNA. The detection of damage and the ability to keep it under control is critical to fine-tune mitochondrial function to the organismal energy needs. In this review, we will analyze the multiple mechanisms that safeguard mitochondrial function in light of in crescendo damage. This sequence of events will include initial defense against excessive reactive oxygen species production, compensation mechanisms by the unfolded protein response (UPRmt), mitochondrial dynamics and elimination by mitophagy.
Collapse
Affiliation(s)
- Miriam Valera-Alberni
- Nestlé Institute of Health Sciences (NIHS), EPFL Innovation Park, 1015 Lausanne.,School of Life Sciences, EPFL, 1015 Lausanne
| | - Carles Canto
- Nestlé Institute of Health Sciences (NIHS), EPFL Innovation Park, 1015 Lausanne.,School of Life Sciences, EPFL, 1015 Lausanne
| |
Collapse
|
148
|
A Mitochondrial Encoded Messenger at the Nucleus. Cells 2018; 7:cells7080105. [PMID: 30104535 PMCID: PMC6115982 DOI: 10.3390/cells7080105] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 12/21/2022] Open
Abstract
Mitochondria–nucleus (mitonuclear) retrograde signaling via nuclear import of otherwise mitochondrial targeted factors occurs during mitochondrial unfolded protein response (UPRmt), a mechanism that counters mitochondrial and cellular stresses. Other than nuclear encoded proteins, mitochondrial DNA (mtDNA)-encoded peptides, such as humanin, are known to have important pro-survival and metabolic regulatory functions. A recent report has indicated that another mtDNA-encoded peptide, the mitochondrial open reading frame of the 12S rRNA-c (MOTS-c), could translocate into the nucleus upon stress induction. In the nucleus, MOTS-c binds to DNA and regulates the transcription of stress response genes in concert with other transcription factors. This is the first clear example of a mitochondria-derived peptide (MDP) acting in the nucleus to affect transcriptional responses to stress. Thus, MOTS-c may bear some characteristics of a ‘mitokine’ factor that mediates mitohormesis, influencing cell survival as well as organismal health and longevity.
Collapse
|
149
|
Mendelsohn AR, Larrick JW. Mitochondrial-Derived Peptides Exacerbate Senescence. Rejuvenation Res 2018; 21:369-373. [DOI: 10.1089/rej.2018.2114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Andrew R. Mendelsohn
- Panorama Research Institute, Sunnyvale, California
- Regenerative Sciences Institute, Sunnyvale, California
| | - James W. Larrick
- Panorama Research Institute, Sunnyvale, California
- Regenerative Sciences Institute, Sunnyvale, California
| |
Collapse
|
150
|
Hill S, Sataranatarajan K, Van Remmen H. Role of Signaling Molecules in Mitochondrial Stress Response. Front Genet 2018; 9:225. [PMID: 30042784 PMCID: PMC6048194 DOI: 10.3389/fgene.2018.00225] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 06/07/2018] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are established essential regulators of cellular function and metabolism. Mitochondria regulate redox homeostasis, maintain energy (ATP) production through oxidative phosphorylation, buffer calcium levels, and control cell death through apoptosis. In addition to these critical cell functions, recent evidence supports a signaling role for mitochondria. For example, studies over the past few years have established that peptides released from the mitochondria mediate stress responses such as the mitochondrial unfolded protein response (UPRMT) through signaling to the nucleus. Mitochondrial damage or danger associated molecular patterns (DAMPs) provide a link between mitochondria, inflammation and inflammatory disease processes. Additionally, a new class of peptides generated by the mitochondria affords protection against age-related diseases in mammals. In this short review, we highlight the role of mitochondrial signaling and regulation of cellular activities through the mitochondrial UPRMT that signals to the nucleus to affect homeostatic responses, DAMPs, and mitochondrial derived peptides.
Collapse
Affiliation(s)
- Shauna Hill
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Cell Systems & Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States.,Department of Pathology, University of Washington, Seattle, WA, United States
| | | | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Oklahoma City VA Medical Center, Oklahoma City, OK, United States
| |
Collapse
|