101
|
Epitope-Based Peptide Vaccine Design against Fructose Bisphosphate Aldolase of Candida glabrata: An Immunoinformatics Approach. J Immunol Res 2021; 2021:8280925. [PMID: 34036109 PMCID: PMC8116159 DOI: 10.1155/2021/8280925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Background Candida glabrata is a human opportunistic pathogen that can cause life-threatening systemic infections. Although there are multiple effective vaccines against fungal infections and some of these vaccines are engaged in different stages of clinical trials, none of them have yet been approved by the FDA. Aim Using immunoinformatics approach to predict the most conserved and immunogenic B- and T-cell epitopes from the fructose bisphosphate aldolase (Fba1) protein of C. glabrata. Material and Method. 13 C. glabrata fructose bisphosphate aldolase protein sequences (361 amino acids) were retrieved from NCBI and presented in several tools on the IEDB server for prediction of the most promising epitopes. Homology modeling and molecular docking were performed. Result The promising B-cell epitopes were AYFKEH, VDKESLYTK, and HVDKESLYTK, while the promising peptides which have high affinity to MHC I binding were AVHEALAPI, KYFKRMAAM, QTSNGGAAY, RMAAMNQWL, and YFKEHGEPL. Two peptides, LFSSHMLDL and YIRSIAPAY, were noted to have the highest affinity to MHC class II that interact with 9 alleles. The molecular docking revealed that the epitopes QTSNGGAAY and LFSSHMLDL have the lowest binding energy to MHC molecules. Conclusion The epitope-based vaccines predicted by using immunoinformatics tools have remarkable advantages over the conventional vaccines in that they are more specific, less time consuming, safe, less allergic, and more antigenic. Further in vivo and in vitro experiments are needed to prove the effectiveness of the best candidate's epitopes (QTSNGGAAY and LFSSHMLDL). To the best of our knowledge, this is the first study that has predicted B- and T-cell epitopes from the Fba1 protein by using in silico tools in order to design an effective epitope-based vaccine against C. glabrata.
Collapse
|
102
|
Teo YJ, Ng SL, Mak KW, Setiagani YA, Chen Q, Nair SK, Sheng J, Ruedl C. Renal CD169 ++ resident macrophages are crucial for protection against acute systemic candidiasis. Life Sci Alliance 2021; 4:e202000890. [PMID: 33608410 PMCID: PMC7918719 DOI: 10.26508/lsa.202000890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/07/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
Disseminated candidiasis remains as the most common hospital-acquired bloodstream fungal infection with up to 40% mortality rate despite the advancement of medical and hygienic practices. While it is well established that this infection heavily relies on the innate immune response for host survival, much less is known for the protective role elicited by the tissue-resident macrophage (TRM) subsets in the kidney, the prime organ for Candida persistence. Here, we describe a unique CD169++ TRM subset that controls Candida growth and inflammation during acute systemic candidiasis. Their absence causes severe fungal-mediated renal pathology. CD169++ TRMs, without being actively involved in direct fungal clearance, increase host resistance by promoting IFN-γ release and neutrophil ROS activity.
Collapse
Affiliation(s)
- Yi Juan Teo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - See Liang Ng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Keng Wai Mak
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Qi Chen
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sajith Kumar Nair
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jianpeng Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
103
|
Ahmed MM, Fatima F, Anwer MK, Ibnouf EO, Kalam MA, Alshamsan A, Aldawsari MF, Alalaiwe A, Ansari MJ. Formulation and in vitro evaluation of topical nanosponge-based gel containing butenafine for the treatment of fungal skin infection. Saudi Pharm J 2021; 29:467-477. [PMID: 34135673 PMCID: PMC8180615 DOI: 10.1016/j.jsps.2021.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
In the current study, four formulae (BNS1-BNS4) of butenafine (BTF) loaded nanosponges (NS) were fabricated by solvent emulsification technology, using different concentration of ethyl cellulose (EC) and polyvinyl alcohol (PVA) as a rate retarding polymer and surfactant, respectively. Prepared NS were characterized for particle size (PS), polydispersity index (PDI), zeta potential (ZP), entrapment efficiency (EE) and drug loading (DL). Nanocarrier BNS3 was optimized based on the particle characterizations and drug encapsulation. It was further evaluated for physicochemical characterizations; FTIR, DSC, XRD and SEM. Selected NS BNS3 composed of BTF (100 mg), EC (200 mg) and 0.3% of PVA showed, PS (543 ± 0.67 nm), PDI (0.330 ± 0.02), ZP (-33.8 ± 0.89 mV), %EE (71.3 ± 0.34%) and %DL (22.8 ± 0.67%), respectively. Fabricated NS also revealed; polymer-drug compatibility, drug-encapsulation, non-crystalline state of the drug in the spherical NS as per the physicochemical evaluations. Optimized NS (BNS3) with equivalent amount of (1%, w/w or w/v) BTF was incorporated into the (1%, w/w or w/v) carbopol gel. BTF loaded NS based gel was then evaluated for viscosity, spreadability, flux, drug diffusion, antifungal, stability and skin irritation studies. BNS3 based topical gels exhibited a flux rate of 0.18 (mg/cm2.h), drug diffusion of 89.90 ± 0.87% in 24 h with Higuchi model following anomalous non-Fickian drug release. The BNS3 based-gel could be effective against pathogenic fungal strains.
Collapse
Affiliation(s)
- Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, AlKharj 11942, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, AlKharj 11942, Saudi Arabia
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, AlKharj 11942, Saudi Arabia
| | - Elmutasim Osman Ibnouf
- Department of Pharmaceutical Microbiology College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, AlKharj 11942, Saudi Arabia
| | - Mohd Abul Kalam
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Aws Alshamsan
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, AlKharj 11942, Saudi Arabia
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, AlKharj 11942, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, AlKharj 11942, Saudi Arabia
| |
Collapse
|
104
|
Atriwal T, Azeem K, Husain FM, Hussain A, Khan MN, Alajmi MF, Abid M. Mechanistic Understanding of Candida albicans Biofilm Formation and Approaches for Its Inhibition. Front Microbiol 2021; 12:638609. [PMID: 33995297 PMCID: PMC8121174 DOI: 10.3389/fmicb.2021.638609] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, the demand for novel antifungal therapies has increased several- folds due to its potential to treat severe biofilm-associated infections. Biofilms are made by the sessile microorganisms attached to the abiotic or biotic surfaces, enclosed in a matrix of exopolymeric substances. This results in new phenotypic characteristics and intrinsic resistance from both host immune response and antimicrobial drugs. Candida albicans biofilm is a complex association of hyphal cells that are associated with both abiotic and animal tissues. It is an invasive fungal infection and acts as an important virulent factor. The challenges linked with biofilm-associated diseases have urged scientists to uncover the factors responsible for the formation and maturation of biofilm. Several strategies have been developed that could be adopted to eradicate biofilm-associated infections. This article presents an overview of the role of C. albicans biofilm in its pathogenicity, challenges it poses and threats associated with its formation. Further, it discusses strategies that are currently available or under development targeting prostaglandins, quorum-sensing, changing surface properties of biomedical devices, natural scaffolds, and small molecule-based chemical approaches to combat the threat of C. albicans biofilm. This review also highlights the recent developments in finding ways to increase the penetration of drugs into the extracellular matrix of biofilm using different nanomaterials against C. albicans.
Collapse
Affiliation(s)
- Tanu Atriwal
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Kashish Azeem
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammed Nadeem Khan
- Department of Tashreehul Badan, Faculty of Unani Medicine, Aligarh Muslim University, Aligarh, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
105
|
Zhang AY, Shrum S, Williams S, Petnic S, Nadle J, Johnston H, Barter D, Vonbank B, Bonner L, Hollick R, Marceaux K, Harrison L, Schaffner W, Tesini BL, Farley MM, Pierce RA, Phipps E, Mody RK, Chiller TM, Jackson BR, Vallabhaneni S. The Changing Epidemiology of Candidemia in the United States: Injection Drug Use as an Increasingly Common Risk Factor-Active Surveillance in Selected Sites, United States, 2014-2017. Clin Infect Dis 2021; 71:1732-1737. [PMID: 31676903 DOI: 10.1093/cid/ciz1061] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/29/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Injection drug use (IDU) is a known, but infrequent risk factor on candidemia; however, the opioid epidemic and increases in IDU may be changing the epidemiology of candidemia. METHODS Active population-based surveillance for candidemia was conducted in selected US counties. Cases of candidemia were categorized as IDU cases if IDU was indicated in the medical records in the 12 months prior to the date of initial culture. RESULTS During 2017, 1191 candidemia cases were identified in patients aged >12 years (incidence: 6.9 per 100 000 population); 128 (10.7%) had IDU history, and this proportion was especially high (34.6%) in patients with candidemia aged 19-44. Patients with candidemia and IDU history were younger than those without (median age, 35 vs 63 years; P < .001). Candidemia cases involving recent IDU were less likely to have typical risk factors including malignancy (7.0% vs 29.4%; relative risk [RR], 0.2 [95% confidence interval {CI}, .1-.5]), abdominal surgery (3.9% vs 17.5%; RR, 0.2 [95% CI, .09-.5]), and total parenteral nutrition (3.9% vs 22.5%; RR, 0.2 [95% CI, .07-.4]). Candidemia cases with IDU occurred more commonly in smokers (68.8% vs 18.5%; RR, 3.7 [95% CI, 3.1-4.4]), those with hepatitis C (54.7% vs 6.4%; RR, 8.5 [95% CI, 6.5-11.3]), and in people who were homeless (13.3% vs 0.8%; RR, 15.7 [95% CI, 7.1-34.5]). CONCLUSIONS Clinicians should consider injection drug use as a risk factor in patients with candidemia who lack typical candidemia risk factors, especially in those with who are 19-44 years of age and have community-associated candidemia.
Collapse
Affiliation(s)
- Alexia Y Zhang
- Oregon Public Health Division, Oregon Health Authority, Portland, Oregon, USA
| | - Sarah Shrum
- New Mexico Department of Health, Santa Fe, New Mexico, USA
| | - Sabrina Williams
- Mycotic Disease Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sarah Petnic
- California Emerging Infections Program, Oakland, California, USA
| | - Joelle Nadle
- California Emerging Infections Program, Oakland, California, USA
| | - Helen Johnston
- Colorado Department of Public Health and Environment, Denver, Colorado, USA
| | - Devra Barter
- Colorado Department of Public Health and Environment, Denver, Colorado, USA
| | | | - Lindsay Bonner
- Maryland Emerging Infections Program, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| | - Rosemary Hollick
- Maryland Emerging Infections Program, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| | - Kaytlynn Marceaux
- Maryland Emerging Infections Program, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| | - Lee Harrison
- Maryland Emerging Infections Program, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| | | | - Brenda L Tesini
- University of Rochester School of Medicine, Rochester, New York, USA
| | - Monica M Farley
- Emory University School of Medicine and Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
| | - Rebecca A Pierce
- Oregon Public Health Division, Oregon Health Authority, Portland, Oregon, USA
| | - Erin Phipps
- New Mexico Emerging Infections Program, University of New Mexico, Albuquerque, New Mexico, USA
| | - Rajal K Mody
- Minnesota Department of Health, St Paul, Minnesota, USA.,Division of State and Local Readiness, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Tom M Chiller
- Mycotic Disease Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Brendan R Jackson
- Mycotic Disease Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Snigdha Vallabhaneni
- Mycotic Disease Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
106
|
De Rosa FG, Busca A, Capparella MR, Yan JL, Aram JA. Invasive Candidiasis in Patients with Solid Tumors Treated with Anidulafungin: A Post Hoc Analysis of Efficacy and Safety of Six Pooled Studies. Clin Drug Investig 2021; 41:539-548. [PMID: 33891293 PMCID: PMC8195786 DOI: 10.1007/s40261-021-01024-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2021] [Indexed: 11/25/2022]
Abstract
Background Solid tumors are a common predisposing factor for invasive candidiasis (IC) or candidemia due to IC. Objectives Post hoc analysis of patient-level efficacy and safety data from six studies of anidulafungin (with similar protocols/endpoints) in adults with IC/candidemia summarized by past or recent diagnosis of solid tumors. Patients/methods Patients received a single intravenous (IV) dose of anidulafungin 200 mg, followed by 100 mg once daily. After ≥ 5 to ≥ 10 days of IV treatment, switch to oral voriconazole/fluconazole was permitted in all but one study. Time of solid tumor diagnosis was defined as past, ≥ 6; and recent, < 6 months prior to study entry. Primary endpoint: global response of success (GRS) rate at the end of IV therapy (EOIVT). Secondary endpoints included the GRS rate at the end of all therapy (EOT), all-cause mortality, and safety. Results The GRS rate in the overall population was 73.4% at EOIVT and 65.5% at EOT. Past or recent solid tumor diagnosis did not affect GRS at EOIVT or EOT (past: 75.5% and 71.4%; recent: 72.2% and 62.2%, respectively). All-cause mortality was 14.4% on day 14 and 20.1% at day 28. Most treatment-emergent adverse events were mild/moderate in severity (81.6%). Conclusions Treatment of IC was effective regardless of the time of solid tumor diagnosis. Trial Registration Data were pooled from six studies: NCT00496197 (first posted on ClinicalTrials.gov on July 4, 2007); NCT00548262 (first posted on ClinicalTrials.gov on October 23, 2007); NCT00537329 (first posted on ClinicalTrials.gov on October 1, 2007); NCT00689338 (first posted on ClinicalTrials.gov on June 3, 2008); NCT00806351 (first posted on ClinicalTrials.gov on December 10, 2008); NCT00805740 (first posted on ClinicalTrials.gov on December 10, 2008). Patients with solid tumor cancers (cancer of internal organs) have increased risk of fungal infections that can spread in the body through the blood. Infection with Candida species, known as invasive candidiasis (IC) (Candida invades the body in places normally free from germs) or candidemia (Candida infection in the blood), can cause severe illness and/or death. Anidulafungin is an antifungal drug recommended to treat IC/candidemia. This post hoc analysis looked at how effective and safe anidulafungin was in adult patients with IC/candidemia with ‘recent’ or ‘past’ history of solid tumors. The analysis included patients diagnosed with cancer less than 6 months before (recent history) or more than 6 months before (past history) they first received anidulafungin. Patients received anidulafungin by injection (intravenously [IV]) into the veins and, for continued treatment, were able to take a different antifungal drug orally. Of 539 patients from six studies, 139 had confirmed IC/candidemia and a history of solid tumors. Approximately 7 out of 10 (72%) patients were cured or no longer had signs of Candida infection at the end of IV anidulafungin treatment. Results were similar in patients with past or recent diagnosis of solid tumors. Treatment side effects reported in approximately 8 out of 10 (82%) patients were mild-to-moderate in severity. This analysis suggests anidulafungin was well tolerated and effective at treating IC/candidemia in patients with solid tumors, whether diagnosed recently or in the past.
Collapse
Affiliation(s)
| | - Alessandro Busca
- Department of Oncology and Hematology, Stem Cell Transplant Centre, Turin, Italy
| | | | | | | |
Collapse
|
107
|
Wang JM, Woodruff AL, Dunn MJ, Fillinger RJ, Bennett RJ, Anderson MZ. Intraspecies Transcriptional Profiling Reveals Key Regulators of Candida albicans Pathogenic Traits. mBio 2021; 12:e00586-21. [PMID: 33879584 PMCID: PMC8092256 DOI: 10.1128/mbio.00586-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/17/2021] [Indexed: 12/27/2022] Open
Abstract
The human commensal and opportunistic fungal pathogen Candida albicans displays extensive genetic and phenotypic variation across clinical isolates. Here, we performed RNA sequencing on 21 well-characterized isolates to examine how genetic variation contributes to gene expression differences and to link these differences to phenotypic traits. C. albicans adapts primarily through clonal evolution, and yet hierarchical clustering of gene expression profiles in this set of isolates did not reproduce their phylogenetic relationship. Strikingly, strain-specific gene expression was prevalent in some strain backgrounds. Association of gene expression with phenotypic data by differential analysis, linear correlation, and assembly of gene networks connected both previously characterized and novel genes with 23 C. albicans traits. Construction of de novo gene modules produced a gene atlas incorporating 67% of C. albicans genes and revealed correlations between expression modules and important phenotypes such as systemic virulence. Furthermore, targeted investigation of two modules that have novel roles in growth and filamentation supported our bioinformatic predictions. Together, these studies reveal widespread transcriptional variation across C. albicans isolates and identify genetic and epigenetic links to phenotypic variation based on coexpression network analysis.IMPORTANCE Infectious fungal species are often treated uniformly despite clear evidence of genotypic and phenotypic heterogeneity being widespread across strains. Identifying the genetic basis for this phenotypic diversity is extremely challenging because of the tens or hundreds of thousands of variants that may distinguish two strains. Here, we use transcriptional profiling to determine differences in gene expression that can be linked to phenotypic variation among a set of 21 Candida albicans isolates. Analysis of this transcriptional data set uncovered clear trends in gene expression characteristics for this species and new genes and pathways that were associated with variation in pathogenic processes. Direct investigation confirmed functional predictions for a number of new regulators associated with growth and filamentation, demonstrating the utility of these approaches in linking genes to important phenotypes.
Collapse
Affiliation(s)
- Joshua M Wang
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Andrew L Woodruff
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Matthew J Dunn
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Robert J Fillinger
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Matthew Z Anderson
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
108
|
Van Bang BN, Thanh Xuan N, Xuan Quang D, Ba Loi C, Thai Ngoc Minh N, Nhu Lam N, Ngoc Anh D, Thi Thu Hien T, Xuan Su H, Tran-Anh L. Prevalence, species distribution, and risk factors of fungal colonization and infection in patients at a burn intensive care unit in Vietnam. Curr Med Mycol 2021; 6:42-49. [PMID: 33834142 PMCID: PMC8018815 DOI: 10.18502/cmm.6.3.4664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background and Purpose : Burn patients are at a higher risk of infections caused by different organisms. This study aimed to address the prevalence, causative species, and factors related to fungal colonization or infection in patients with acute severe injuries admitted to the intensive care unit (ICU) of a burn hospital in northern Vietnam. Materials and Methods: This prospective study was conducted on 400 patients in a burn ICU between 2017 and 2019. Clinical samples were weekly collected and screened for fungi, and relevant clinical information was obtained from medical records. Results: According to the results, 90% of the patients were colonized with fungi. Out of this group, 12.75% of the cases had
invasive fungal infection (IFI). Eleven yeasts and six mold species were isolated from the patients, with the most
common species being Candida tropicalis (45.56%) and C. albicans (41.94%). Among the eleven species causing
fungal wound infection (FWI), the most common agents were Candida (66.7% of FWI patients) and Aspergillus (38.5%) species.
Three Candida species isolated from blood were C. tropicalis (66.7%), C. albicans (20.0%),
and C. parapsilosis (14.3%). No factors were found to expose the patients to a higher risk of fungal colonization.
However, hyperglycemia, prolonged ICU stay, and heavy Candida species colonization were found to be independently predictive of IFI. Conclusion: Burn patients are at the risk of fungal infection with Candida species (especially C. tropicalis)
and Aspergillus as the most frequently responsible agents. Continuous surveillance of fungi and appropriate management
of pathophysiological consequences are essential to prevent fungal infection in burn patients.
Collapse
Affiliation(s)
- Be Nguyen Van Bang
- Department of Hamatology, Toxicology, Radiation, and Occupational Diseases, Military Hospital 103, Vietnam Military Medical University, Ha Dong, Ha Noi, Vietnam
| | - Nguyen Thanh Xuan
- Department of Medical Education, Military Hospital 103, Vietnam Military Medical University, Ha Dong, Ha Noi, Vietnam
| | - Dinh Xuan Quang
- Department of Scientific and Training Management, National Institute of Malaria, Parasitology, and Entomology, Nam Tu Liem, Ha Noi, Vietnam
| | - Cao Ba Loi
- Department of Scientific and Training Management, National Institute of Malaria, Parasitology, and Entomology, Nam Tu Liem, Ha Noi, Vietnam
| | - Nguyen Thai Ngoc Minh
- Intensive Care Unit, National Hospital of Burn, Vietnam Military Medical University, Ha Dong, Ha Noi, Vietnam
| | - Nguyen Nhu Lam
- Intensive Care Unit, National Hospital of Burn, Vietnam Military Medical University, Ha Dong, Ha Noi, Vietnam
| | - Do Ngoc Anh
- Department of Parasitology, Vietnam Military Medical University, Ha Dong, Ha Noi, Vietnam
| | - Truong Thi Thu Hien
- Department of Microbiology, National Hospital of Burn, Vietnam Military Medical University, Ha Dong, Ha Noi, Vietnam
| | - Hoang Xuan Su
- Department of Microbiology and Pathogens, Institute of Biomedicine and Pharmacy, National Hospital of Burn, Vietnam Military Medical University, Ha Dong, Ha Noi, Vietnam These authors contributed equally to this work and acted as joint first authors
| | - Le Tran-Anh
- Department of Parasitology, Vietnam Military Medical University, Ha Dong, Ha Noi, Vietnam
| |
Collapse
|
109
|
The in vivo anti-Candida albicans activity of flavonoids. J Oral Biosci 2021; 63:120-128. [PMID: 33839266 DOI: 10.1016/j.job.2021.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Emerging drug-resistant strains of Candida albicans have led to the recurrence of fungal disease, rendering conventional drug therapies ineffective. Although in vitro studies on flavonoids as novel antifungal products have shown promising results, there is currently limited information regarding their in vivo effects. The aim of this review is to evaluate in vivo studies on the antifungal activity of flavonoids against C. albicans, as novel therapeutic agents. In this regard, we conducted broad searches of PubMed, Web of Science, and Embase covering the years 2009-2020. HIGHLIGHT Flavonoids represent new natural therapeutic compounds to treat oral candidiasis. Among subclasses of flavonoids, flavonols and chalcones appear to have the most significant antifungal activities. Oral administration of Canthin-6-one, a flavonol, has the potential to damage fungal cell membrane while having minimal toxic effects on mice. Similarly, topical oral application of lichochalcone-A, a chalcone, reduces oral candidiasis in mice. There appears to be structural similarities in the hydroxyl residues among compounds within the same subclass of flavonoids, which may contribute to antibiofilm activity. Oral topical application of flavonoids shows low toxicity and has clinical relevance as potential novel antifungal treatments. CONCLUSION Flavonoids are a group of natural products exhibiting antifungal activity. The subclasses flavonols and chalcones appear to have the most significant in vivo antifungal activity against C. albicans infections in mouse models. Specifically, quercetin (flavonol) has been applied via vaginal gavage in a murine vulvovaginal candidiasis model, whereas lichochalcone-A (chalcone) has shown topical oral application in C. albicans-inoculated mice. Both compounds show efficacy in fungal elimination via biofilm inhibition for their respective subclasses. The translational significance of these in vivo studies should be examined in clinical trials of selected potent compounds for the treatment of oral candidiasis. Further studies are necessary to elucidate the specific mechanisms of flavonoids as antifungal agents.
Collapse
|
110
|
Dishwashers as an Extreme Environment of Potentially Pathogenic Yeast Species. Pathogens 2021; 10:pathogens10040446. [PMID: 33917934 PMCID: PMC8068352 DOI: 10.3390/pathogens10040446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/26/2021] [Accepted: 04/04/2021] [Indexed: 11/25/2022] Open
Abstract
The study aimed to compare the yeast species diversity in the specific environment of dishwashers, taking into account the potential risk for users. Yeasts were isolated from ten dishwashers and from tap water supplied to the appliances. Samples were collected for mycological analyses at the beginning of each month, from February to May 2016. Four dishwasher sites (rubber seals, detergent dispensers, sprinklers, and water drains) were analyzed. The microfungi were identified by the standard procedures applied in mycological diagnostics. To confirm species identification, molecular analysis was performed based on the sequences of the D1/D2 region. The presence of microfungi was detected in 70% of the investigated appliances. Rubber seals, detergent dispensers, and water drains were the most frequently colonized elements. Thirty-five yeast strains were isolated in this study, of which twenty-seven were obtained from dishwashers and eight from tap water. The strains belonged to six genera and six species (Candida parapsilosis, Clavispora lusitaniae, Dipodascus capitatus, Exophiala dermatitidis, Meyerozyma guilliermondii, and Rhodotorula mucilaginosa). Most of the strains came from rubber seals. In this way, it was demonstrated that the dishwashers’ condition is sufficient as an ecological niche for microfungi.
Collapse
|
111
|
Cicuéndez M, Casarrubios L, Feito MJ, Madarieta I, Garcia-Urkia N, Murua O, Olalde B, Briz N, Diez-Orejas R, Portolés MT. Effects of Human and Porcine Adipose Extracellular Matrices Decellularized by Enzymatic or Chemical Methods on Macrophage Polarization and Immunocompetence. Int J Mol Sci 2021; 22:ijms22083847. [PMID: 33917732 PMCID: PMC8068109 DOI: 10.3390/ijms22083847] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/05/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
The decellularized extracellular matrix (ECM) obtained from human and porcine adipose tissue (AT) is currently used to prepare regenerative medicine bio-scaffolds. However, the influence of these natural biomaterials on host immune response is not yet deeply understood. Since macrophages play a key role in the inflammation/healing processes due to their high functional plasticity between M1 and M2 phenotypes, the evaluation of their response to decellularized ECM is mandatory. It is also necessary to analyze the immunocompetence of macrophages after contact with decellularized ECM materials to assess their functional role in a possible infection scenario. In this work, we studied the effect of four decellularized adipose matrices (DAMs) obtained from human and porcine AT by enzymatic or chemical methods on macrophage phenotypes and fungal phagocytosis. First, a thorough biochemical characterization of these biomaterials by quantification of remnant DNA, lipids, and proteins was performed, thus indicating the efficiency and reliability of both methods. The proteomic analysis evidenced that some proteins are differentially preserved depending on both the AT origin and the decellularization method employed. After exposure to the four DAMs, specific markers of M1 proinflammatory and M2 anti-inflammatory macrophages were analyzed. Porcine DAMs favor the M2 phenotype, independently of the decellularization method employed. Finally, a sensitive fungal phagocytosis assay allowed us to relate the macrophage phagocytosis capability with specific proteins differentially preserved in certain DAMs. The results obtained in this study highlight the close relationship between the ECM biochemical composition and the macrophage’s functional role.
Collapse
Affiliation(s)
- Mónica Cicuéndez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (M.C.); (L.C.); (M.J.F.)
| | - Laura Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (M.C.); (L.C.); (M.J.F.)
| | - María José Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (M.C.); (L.C.); (M.J.F.)
| | - Iratxe Madarieta
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain; (I.M.); (N.G.-U.); (O.M.); (N.B.)
| | - Nerea Garcia-Urkia
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain; (I.M.); (N.G.-U.); (O.M.); (N.B.)
| | - Olatz Murua
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain; (I.M.); (N.G.-U.); (O.M.); (N.B.)
| | - Beatriz Olalde
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain; (I.M.); (N.G.-U.); (O.M.); (N.B.)
- Correspondence: (B.O.); (R.D.-O.); (M.T.P.)
| | - Nerea Briz
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain; (I.M.); (N.G.-U.); (O.M.); (N.B.)
| | - Rosalía Diez-Orejas
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (B.O.); (R.D.-O.); (M.T.P.)
| | - María Teresa Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (M.C.); (L.C.); (M.J.F.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
- Correspondence: (B.O.); (R.D.-O.); (M.T.P.)
| |
Collapse
|
112
|
Fungi of the human gut microbiota: Roles and significance. Int J Med Microbiol 2021; 311:151490. [DOI: 10.1016/j.ijmm.2021.151490] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/04/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
|
113
|
Elbahnasawy MA, Shehabeldine AM, Khattab AM, Amin BH, Hashem AH. Green biosynthesis of silver nanoparticles using novel endophytic Rothia endophytica: Characterization and anticandidal activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102401] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
114
|
Raj S, Vinod V, Jayakumar J, Suresh P, Kumar A, Biswas R. Antifungal activity of Syzygium samarangense leaf extracts against Candida. Lett Appl Microbiol 2021; 73:31-38. [PMID: 33735468 DOI: 10.1111/lam.13471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/26/2022]
Abstract
Candida species are opportunistic human fungal pathogens that cause acute and chronic infections against which only few antifungal agents are available. Here we have elucidated the antifungal effect of Syzygium samarangense leaf extracts (SSLE). Antifungal activity of SSLE was studied against Candida albicans, C. krusei, C. parapsilosis, C. glabrata, C. auris and C. tropicalis. Following experiments were performed: minimum fungicidal concentration (MFC) determination, agar well disc diffusion assays, fungal morphology analysis using scanning electron microscope (SEM), ex vivo fungal survival assays on porcine tongue and skin and in vivo fungal survival assays using Drosophila melanogaster fly model. Results demonstrated MFC of SSLE ranges between 100 and 125 mg ml-1 . SEM images showed cell wall degradation of C. albicans when treated with SSLE. Around 75% decrease in C. albicans viability was observed when infected porcine tongue and skin were treated using SSLE. The C. albicans infected D. melanogaster when fed with SSLE showed significant decrease (around 80%) of fungal count than the infected control. Furthermore, agar plate disc diffusion assays demonstrated that the antifungal activity of SSLE could be due to chalcone, which is one of the active constituents in SSLE. Our study demonstrated that SSLE could be used for the topical treatment of Candida infections.
Collapse
Affiliation(s)
- S Raj
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - V Vinod
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - J Jayakumar
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - P Suresh
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - A Kumar
- Department of Microbiology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - R Biswas
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
115
|
Rossow JA, Gharpure R, Brennan J, Relan P, Williams SR, Vallabhaneni S, Jackson BR, Graber CR, Hillis SR, Schaffner W, Dunn JR, Jones TF. Injection Drug Use-Associated Candidemia: Incidence, Clinical Features, and Outcomes, East Tennessee, 2014-2018. J Infect Dis 2021; 222:S442-S450. [PMID: 32877559 DOI: 10.1093/infdis/jiaa024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Injection drug use (IDU) is an established but uncommon risk factor for candidemia. Surveillance for candidemia is conducted in East Tennessee, an area heavily impacted by the opioid crisis and IDU. We evaluated IDU-associated candidemia to characterize the epidemiology and estimate the burden. METHODS We assessed the proportion of candidemia cases related to IDU during January 1, 2014-September 30, 2018, estimated candidemia incidence in the overall population and among persons who inject drugs (PWID), and reviewed medical records to compare clinical features and outcomes among IDU-associated and non-IDU candidemia cases. RESULTS The proportion of IDU-associated candidemia cases in East Tennessee increased from 6.1% in 2014 to 14.5% in 2018. Overall candidemia incidence in East Tennessee was 13.5/100 000, and incidence among PWID was 402-1895/100 000. Injection drug use-associated cases were younger (median age, 34.5 vs 60 years) and more frequently had endocarditis (39% vs 3%). All-cause 30-day mortality was 8% among IDU-associated cases versus 25% among non-IDU cases. CONCLUSIONS A growing proportion of candidemia in East Tennessee is associated with IDU, posing an additional burden from the opioid crisis. The lower mortality among IDU-associated cases likely reflects in part the younger demographic; however, Candida endocarditis seen among approximately 40% underscores the seriousness of the infection and need for prevention.
Collapse
Affiliation(s)
- John A Rossow
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Radhika Gharpure
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,Waterborne Disease Prevention Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Julia Brennan
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,Tennessee Department of Health, Nashville, Tennessee, USA
| | - Pryanka Relan
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,Waterborne Disease Prevention Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sabrina R Williams
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Snigdha Vallabhaneni
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Brendan R Jackson
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Caroline R Graber
- Tennessee Department of Health, Nashville, Tennessee, USA.,Tennessee Emerging Infections Program, Nashville, Tennessee, USA.,Vanderbilt University School of Medicine, Department of Health Policy, Nashville, Tennessee, USA
| | - Sherry R Hillis
- Tennessee Emerging Infections Program, Nashville, Tennessee, USA.,Vanderbilt University Medical Center, Nashville, Tennesse, USA
| | | | - John R Dunn
- Tennessee Department of Health, Nashville, Tennessee, USA
| | | |
Collapse
|
116
|
Ceruloplasmin as a source of Cu for a fungal pathogen. J Inorg Biochem 2021; 219:111424. [PMID: 33765639 DOI: 10.1016/j.jinorgbio.2021.111424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022]
Abstract
Copper is an essential metal for virtually all organisms, yet little is known about the extracellular sources of this micronutrient. In serum, the most abundant extracellular Cu-binding molecule is the multi‑copper oxidase ceruloplasmin (Cp). Cp levels increase during infection and inflammation, and pathogens can be exposed to high Cp at sites of infection. It is not known whether Cp might serve as a Cu source for microbial pathogens and we tested this using the opportunistic fungal pathogen Candida albicans. We find that C. albicans can use whole serum as a Cu source and that this Cu is sensed by the transcription factor protein Mac1. Mac1 activates expression of Mn-SOD3 superoxide dismutase and represses Cu/Zn-SOD1 during Cu starvation and both responses are regulated by serum Cu. We also show that purified human Cp can act as a sole source of Cu for the fungus and likewise modulates the Mac1 Cu stress response. To investigate whether Cp is a Cu source in serum, we compared the ability of C. albicans to use serum from wild type versus Cp-/- mutant mice. We find that serum lacking Cp is deficient in its ability to trigger the Mac1 Cu response. C. albicans did accumulate Cu from Cp-/- serum, but this Cu was not efficiently sensed by Mac1. We conclude that Cp and non-Cp Cu sources are not equivalent and are handled differently by the fungal cell. Overall, these studies are the first to show that Cp is a preferred source of Cu for a pathogen.
Collapse
|
117
|
Thompson A, da Fonseca DM, Walker L, Griffiths JS, Taylor PR, Gow NAR, Orr SJ. Dependence on Mincle and Dectin-2 Varies With Multiple Candida Species During Systemic Infection. Front Microbiol 2021; 12:633229. [PMID: 33717025 PMCID: PMC7951061 DOI: 10.3389/fmicb.2021.633229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
More than 95% of invasive Candida infections are caused by four Candida spp. (C. albicans, C. glabrata, C. tropicalis, C. parapsilosis). C-type lectin-like receptors (CLRs), such as Dectin-1, Dectin-2, and Mincle mediate immune responses to C. albicans. Dectin-1 promotes clearance of C. albicans, C. glabrata, C. tropicalis, and C. parapsilosis, however, dependence on Dectin-1 for specific immune responses varies with the different Candida spp. Dectin-2 is important for host immunity to C. albicans and C. glabrata, and Mincle is important for the immune response to C. albicans. However, whether Dectin-2 drives host immunity to C. tropicalis or C. parapsilosis, and whether Mincle mediates host immunity to C. glabrata, C. tropicalis or C. parapsilosis is unknown. Therefore, we compared the roles of Dectin-2 and Mincle in response to these four Candida spp. We demonstrate that these four Candida spp. cell walls have differential mannan contents. Mincle and Dectin-2 play a key role in regulating cytokine production in response to these four Candida spp. and Dectin-2 is also important for clearance of all four Candida spp. during systemic infection. However, Mincle was only important for clearance of C. tropicalis during systemic infection. Our data indicate that multiple Candida spp. have different mannan contents, and dependence on the mannan-detecting CLRs, Mincle, and Dectin-2 varies between different Candida spp. during systemic infection.
Collapse
Affiliation(s)
- Aiysha Thompson
- Division of Infection and Immunity, Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
- UK Dementia Research Institute, Cardiff, United Kingdom
| | - Diogo M. da Fonseca
- Division of Infection and Immunity, Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
- School of Medicine, Dentistry and Biomedical Science, Wellcome Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Louise Walker
- Aberdeen Fungal Group, University of Aberdeen, Aberdeen, United Kingdom
| | - James S. Griffiths
- Division of Infection and Immunity, Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
- Faculty of Dentistry, Oral & Craniofacial Sciences, Centre for Host-Microbiome Interactions, King’s College London, London, United Kingdom
| | - Philip R. Taylor
- Division of Infection and Immunity, Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
- UK Dementia Research Institute, Cardiff, United Kingdom
| | - Neil A. R. Gow
- Aberdeen Fungal Group, University of Aberdeen, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Selinda J. Orr
- Division of Infection and Immunity, Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
- School of Medicine, Dentistry and Biomedical Science, Wellcome Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
118
|
Shirazian S, Manifar S, Nodehi RS, Shabani M. Oropharyngeal Candida Colonization in Patients with Acute Myeloid Leukemia. Front Dent 2021; 17:1-6. [PMID: 33615304 PMCID: PMC7882205 DOI: 10.18502/fid.v17i1.3966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/28/2019] [Indexed: 12/04/2022] Open
Abstract
Objectives: Oral candidiasis has increased in recent years because of the increasing number of high-risk populations. The prevalence of Candida species is different worldwide because of the difference between population characteristics, sampling protocols, and geographic regions. Therefore, determining the more prevalent Candida species in different geographic regions seems essential. This study aimed to determine the more prevalent Candida species in acute myeloid leukemia (AML) patients in comparison with healthy individuals in Iran in 2016. Materials and Methods: Fifty-one patients with AML and 62 healthy controls participated in this cross-sectional study. Samples were collected using a swab rubbed softly on the dorsal surface of the tongue and the oropharynx. The samples were cultured on CHROMagar Candida for 2 to 4 days. For differentiation between albicans and non-albicans species, positive samples were linearly inoculated on Corn Meal Agar with Tween-80. Candida species were identified using a microscope. Data were analyzed using chi-square and Fisher’s exact tests. Results: Candida colonization was more frequent in AML patients (41.2%) in comparison with healthy participants (38.7%). Candida glabrata (C. glabrata; 27.5%) and Candida albicans (C. albicans; 32.3%) were the most common isolated species in the AML patients and the controls, respectively. There was a significant decrease in the frequency of C. albicans (P=0.022) and a significant increase in the frequency of C. glabrata (P=0.002) in the AML patients in comparison with the controls. Conclusion: AML patients are more susceptible to candidiasis. C. glabrata is the dominant Candida species in AML patients.
Collapse
Affiliation(s)
- Shiva Shirazian
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Manifar
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Safaei Nodehi
- Department of Oncology-Hematology and Bone Marrow Transplantation, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohaddeseh Shabani
- Department of Restorative and Cosmetic Dentistry, Dental Faculty, Islamic Azad University of Medical Sciences, Tehran, Iran
| |
Collapse
|
119
|
Halder LD, Babych S, Palme DI, Mansouri-Ghahnavieh E, Ivanov L, Ashonibare V, Langenhorst D, Prusty B, Rambach G, Wich M, Trinks N, Blango MG, Kornitzer D, Terpitz U, Speth C, Jungnickel B, Beyersdorf N, Zipfel PF, Brakhage AA, Skerka C. Candida albicans Induces Cross-Kingdom miRNA Trafficking in Human Monocytes To Promote Fungal Growth. mBio 2021; 13:e0356321. [PMID: 35132877 PMCID: PMC8822622 DOI: 10.1128/mbio.03563-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 12/16/2022] Open
Abstract
In response to infections, human immune cells release extracellular vesicles (EVs) that carry a situationally adapted cocktail of proteins and nucleic acids, including microRNAs (miRNAs), to coordinate the immune response. In this study, we identified hsa-miR-21-5p and hsa-miR-24-3p as the most common miRNAs in exosomes released by human monocytes in response to the pathogenic fungus Candida albicans. Functional analysis of miRNAs revealed that hsa-miR-24-3p, but not hsa-miR-21-5p, acted across species and kingdoms, entering C. albicans and inducing fungal cell growth by inhibiting translation of the cyclin-dependent kinase inhibitor Sol1. Packaging of hsa-miR-24-3p into monocyte exosomes required binding of fungal soluble β-glucan to complement receptor 3 (CR3) and binding of mannan to Toll-like receptor 4 (TLR4), resulting in receptor colocalization. Together, our in vitro and in vivo findings reveal a novel cross-species evasion mechanism by which C. albicans exploits a human miRNA to promote fungal growth and survival in the host. IMPORTANCE Over the last decade, communication between immune cells by extracellular vesicle-associated miRNAs has emerged as an important regulator of the coordinated immune response. Therefore, a thorough understanding of the conversation occurring via miRNAs, especially during infection, may provide novel insights into both the host reaction to the microbe as well as the microbial response. This study provides evidence that the pathogenic fungus C. albicans communicates with human monocytes and induces the release of a human miRNA that promotes fungal growth. This mechanism represents an unexpected cross-species interaction and implies that an inhibition of specific miRNAs offers new possibilities for the treatment of human fungal infections.
Collapse
Affiliation(s)
- Luke D. Halder
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Svitlana Babych
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Diana I. Palme
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Elham Mansouri-Ghahnavieh
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Lia Ivanov
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Victory Ashonibare
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Daniela Langenhorst
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Bhupesh Prusty
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Günter Rambach
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Melissa Wich
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Friedrich Schiller University, Jena, Germany
| | - Nora Trinks
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Matthew G. Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Daniel Kornitzer
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Cornelia Speth
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Berit Jungnickel
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Friedrich Schiller University, Jena, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| | - Axel A. Brakhage
- Friedrich Schiller University, Jena, Germany
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| |
Collapse
|
120
|
Yapıcı M, Gürsu BY, Dağ İ. In vitro antibiofilm efficacy of farnesol against Candida species. Int Microbiol 2021; 24:251-262. [PMID: 33604754 DOI: 10.1007/s10123-021-00162-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/12/2021] [Accepted: 01/29/2021] [Indexed: 01/18/2023]
Abstract
Candida species are opportunistic fungi that can cause mucosal or invasive infections. Especially in biofilm-related infections, resistance is very high to anifungals; therefore more effective treatment strategies are needed. Farnesol(3,7,11-trimethyl-2,6,10-dodecatriene-1-ol) is the quorum sensing (QS) signal molecule and can interact with Candida species both as a QS molecule and as an exogenous agent. The aim of this study was to investigate the effects of farnesol on both the planktonic and biofilm forms of Candida species by colorimetric, microbiological, and electron microscopic methods. Obtained results demonstrated the inhibitory effect of farnesol on the planktonic and biofilm forms of Candida. Farnesol showed a biofilm-enhancing effect at lower concentrations. TEM findings showed the membrane and wall damage, vacuolization, or granulation in cells. SEM images confirmed biofilm reduction in pre-/post-biofilm applications as a result of farnesol treatment. In conclusion, farnesol can be used as an alternative agent to reduce the Candida biofilms, with future studies.
Collapse
Affiliation(s)
- Mihrinur Yapıcı
- Department of Biotechology and Biosafety, Institute of Life Science, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Bükay Yenice Gürsu
- Central Research Laboratory Application and Research Center, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - İlknur Dağ
- Central Research Laboratory Application and Research Center, Eskisehir Osmangazi University, Eskisehir, Turkey.,Vocational Health Services High School, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
121
|
Di Pilato V, Codda G, Ball L, Giacobbe DR, Willison E, Mikulska M, Magnasco L, Crea F, Vena A, Pelosi P, Bassetti M, Marchese A. Molecular Epidemiological Investigation of a Nosocomial Cluster of C. auris: Evidence of Recent Emergence in Italy and Ease of Transmission during the COVID-19 Pandemic. J Fungi (Basel) 2021; 7:140. [PMID: 33672021 PMCID: PMC7919374 DOI: 10.3390/jof7020140] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 01/15/2023] Open
Abstract
Candida auris is an emerging MDR pathogen raising major concerns worldwide. In Italy, it was first and only identified in July 2019 in our hospital (San Martino Hospital, Genoa), where infection or colonization cases have been increasingly recognized during the following months. To gain insights into the introduction, transmission dynamics, and resistance traits of this fungal pathogen, consecutive C. auris isolates collected from July 2019 to May 2020 (n = 10) were subjected to whole-genome sequencing (WGS) and antifungal susceptibility testing (AST); patients' clinical and trace data were also collected. WGS resolved all isolates within the genetic clade I (South Asian) and showed that all but one were part of a cluster likely stemming from the index case. Phylogenetic molecular clock analyses predicted a recent introduction (May 2019) in the hospital setting and suggested that most transmissions were associated with a ward converted to a COVID-19-dedicated ICU during the pandemic. All isolates were resistant to amphotericin B, voriconazole, and fluconazole at high-level, owing to mutations in ERG11(K143R) and TACB1(A640V). Present data demonstrated that the introduction of MDR C. auris in Italy was a recent event and suggested that its spread could have been facilitated by the COVID-19 pandemic. Continued efforts to implement stringent infection prevention and control strategies are warranted to limit the spread of this emerging pathogen within the healthcare system.
Collapse
Affiliation(s)
- Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy; (G.C.); (L.B.); (P.P.); (A.M.)
| | - Giulia Codda
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy; (G.C.); (L.B.); (P.P.); (A.M.)
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy; (G.C.); (L.B.); (P.P.); (A.M.)
- Anesthesia and Intensive Care, San Martino Policlinico Hospital—IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital—IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy; (D.R.G.); (M.M.); (L.M.); (A.V.); (M.B.)
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy
| | - Edward Willison
- Clinical Microbiology Unit, San Martino Policlinico Hospital—IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy; (E.W.); (F.C.)
| | - Malgorzata Mikulska
- Infectious Diseases Unit, San Martino Policlinico Hospital—IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy; (D.R.G.); (M.M.); (L.M.); (A.V.); (M.B.)
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy
| | - Laura Magnasco
- Infectious Diseases Unit, San Martino Policlinico Hospital—IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy; (D.R.G.); (M.M.); (L.M.); (A.V.); (M.B.)
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy
| | - Francesca Crea
- Clinical Microbiology Unit, San Martino Policlinico Hospital—IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy; (E.W.); (F.C.)
| | - Antonio Vena
- Infectious Diseases Unit, San Martino Policlinico Hospital—IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy; (D.R.G.); (M.M.); (L.M.); (A.V.); (M.B.)
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy; (G.C.); (L.B.); (P.P.); (A.M.)
- Anesthesia and Intensive Care, San Martino Policlinico Hospital—IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy
| | - Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital—IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy; (D.R.G.); (M.M.); (L.M.); (A.V.); (M.B.)
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy
| | - Anna Marchese
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy; (G.C.); (L.B.); (P.P.); (A.M.)
- Clinical Microbiology Unit, San Martino Policlinico Hospital—IRCCS for Oncology and Neuroscience, 16132 Genoa, Italy; (E.W.); (F.C.)
| |
Collapse
|
122
|
Mulet Bayona JV, Salvador García C, Tormo Palop N, Gimeno Cardona C. Validation and implementation of a commercial real-time PCR assay for direct detection of Candida auris from surveillance samples. Mycoses 2021; 64:612-615. [PMID: 33529398 DOI: 10.1111/myc.13250] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Rapid and reliable laboratory methods are required for detecting the nosocomial yeast Candida auris. AurisID® (Olm Diagnostics) is a real-time PCR assay approved for detecting C. auris in fungal cultures and directly from blood samples, involving a nucleic acid extraction as a prior step. OBJECTIVES The purpose of this study is to validate the AurisID® kit for direct detection of C. auris from surveillance samples without prior DNA extraction and to analyse the results of implementing this methodology to our daily laboratory routine protocol for C. auris surveillance studies. METHODS Our PCR method using the AurisID® kit was compared with our routine protocol, consisting of culture in CHROMagar® Candida and identification by mass spectrometry. A total of 113 swabs were used for validation and 136 pair of surveillance samples were tested. Limit of detection (LOD) was determined by using swabs in Amies transport medium, which were spiked in a series of dilutions of a C. auris standardised suspension (0.5 McFarland). RESULTS The PCR method showed high sensitivity, specificity, predictive positive value and predictive negative value (96.6%, 100%, 100% and 98.2%, respectively) when compared with the routine protocol. LOD was 500 CFU/ml, which corresponds to approximately 1 CFU/PCR. CONCLUSIONS Our PCR method using the AurisID® kit allows a reduction in the turnaround time for surveillance of C. auris compared with other methods. These results are expected to contribute to control C. auris outbreaks, allowing isolation of patients and cleaning of environmental surfaces in advance.
Collapse
Affiliation(s)
- Juan V Mulet Bayona
- Microbiology Department, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Carme Salvador García
- Microbiology Department, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Nuria Tormo Palop
- Microbiology Department, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Concepción Gimeno Cardona
- Microbiology Department, Consorcio Hospital General Universitario de Valencia, Valencia, Spain.,Microbiology and Ecology Department, University of Valencia, Burjassot, Spain
| |
Collapse
|
123
|
Aghili SR, Abastabar M, Soleimani A, Haghani I, Azizi S. High prevalence of asymptomatic nosocomial candiduria due to Candida glabrata among hospitalized patients with heart failure: a matter of some concern? Curr Med Mycol 2021; 6:1-8. [PMID: 34195453 PMCID: PMC8226045 DOI: 10.18502/cmm.6.4.5327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background and Purpose: Heart failure is a leading cause of hospitalization, and asymptomatic candiduria is common in hospitalized patients with low morbidity.
However, in most patients, it is resolved spontaneously on the removal of the catheter. Despite the publication of guidelines,
there are still controversies over the diagnosis and management of candiduria.
However, in hospitalized patients with heart failure, the decision to treat candiduria is especially important since
the nosocomial infections are associated with an increase in morbidity, mortality, length of hospital stay, and healthcare costs.
Some species of Candida, such as Candida glabrata, are increasingly resistant to the first-line and second-line antifungal medications.
The present study aimed to investigate the incidence of asymptomatic Candida urinary tract infection due to C.
glabrata and antifungal susceptibility of Candida isolates in hospitalized patients with heart failure. Materials and Methods: In total, 305 hospitalized patients with heart failure were studied to identify asymptomatic nosocomial candiduria during 2016-17
in one private hospital in the north of Iran.
The Sabouraud’s dextrose agar culture plates with a colony count of >104 colony-forming
unit/ml of urine sample were considered as Candida urinary tract infection.
Candida species were identified based on the morphology of CHROMagar Candida (manufactured by CHROMagar, France) and
PCR-RFLP method with MspI restriction enzyme.
Antifungal susceptibility testing of the isolates was performed using five mediations, including itraconazole, voriconazole,
fluconazole, amphotericin B, and caspofungin by broth
microdilution method according to CLSI M27-S4. Results: In this study, the rate of asymptomatic Candida urinary tract infection was 18.8%, which was more common in people above 51
years old and females (70%).
In addition to the urinary and intravascular catheter, the occurrence of candiduria in hospitalized patients had significant relationships
with a history of
surgical intervention, diastolic heart failure, and use of systemic antibiotics (P>0.05). Among Candida spp., non-albicans Candida
species was the most common
infectious agent (59.7%). Moreover, C. glabrata (n=27, 40.3%) (alone or with other species) and Candida albicans (n=27, 40.3%) were the most
common agents isolated in
Candida urinary tract infection. Based on the results of the in vitro susceptibility test, the C. glabrata isolates were 15%, 59%, 70%, 74%,
and 85% susceptible to
caspofungin, amphotericin B, itraconazole, voriconazole, and fluconazole, respectively. Conclusion: According to the findings, there was a high prevalence of asymptomatic Candida urinary tract infection in hospitalized patients with heart failure.
Besides, it was suggested that there was a shift towards non-albicans Candida, especially C. glabrata, in these patients.
Therefore, asymptomatic candiduria in hospitalized patients with heart failure should be considered significant.
Furthermore, the identification of Candida species along with antifungal susceptibility is essential and helps the clinicians to
select the appropriate antifungal agent for better management of such cases.
Collapse
Affiliation(s)
- Seyed Reza Aghili
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ameneh Soleimani
- Department of Medical Mycology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Iman Haghani
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Soheil Azizi
- Department of Laboratory Medicine, Faculty of Allied Medical Sciences, Mazandaran University of Medical Science, Sari, Iran
| |
Collapse
|
124
|
Cesaro S, Tridello G, Knelange NS, Blijlevens N, Martin M, Snowden JA, Malladi R, Ljungman P, Deconinck E, Gedde-Dahl T, Byrne J, Xhaard A, Chevallier P, Maertens J, Zuckerman T, Lioure B, Petersen E, Cornelissen JJ, Arcese W, Blaise D, Milpied N, Cahn JY, Aljurf M, de Wreede L, Mauro M, de la Camara R, Averbuch D, Mikulska M, Styczynski J. Impact of early candidemia on the long-term outcome of allogeneic hematopoietic stem cell transplant in non-leukemic patients: an outcome analysis on behalf of IDWP-EBMT. Bone Marrow Transplant 2021; 56:1563-1572. [PMID: 33514919 DOI: 10.1038/s41409-021-01212-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 11/09/2022]
Abstract
We assessed the incidence and outcome of early candidemia after hematopoietic stem cell transplant (HSCT). The analysis included all first HSCTs performed from 2000 to 2015 in adult and pediatric patients with a non-leukemic disease and recorded in the EBMT registry. Overall survival (OS), non-relapse mortality (NRM), and relapse mortality (RM) were evaluated. Candidemia was diagnosed in 420 of 49,852 patients at a median time of 17 days post HSCT (range 0-100), the cumulative incidence being 0.85%. In 65.5% of episodes, candidemia occurred by day 30 after HSCT. The mortality rate by day 7 was 6.2%, whereas 100-day NRM was higher (HR 3.47, p < 0.0001), and 100-day OS was lower (HR 3.22, p < 0.0001) than that of patients without candidemia. After a median follow-up of 4.3 years, 5-year OS, NRM, and RM for patients with and without candidemia were 50.5% vs. 60.8%, p < 0.0001, 28.2% vs.18.8%, p < 0.0001, and 25.3% vs. 27.2%, p = 0.4, respectively. In conclusion, in non-leukemic transplant patients, the occurrence of an early episode of candidemia is rare but it is still associated with a negative effect on the outcome.
Collapse
Affiliation(s)
- Simone Cesaro
- Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy.
| | - Gloria Tridello
- Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | | | | | | | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Ram Malladi
- University Hospital Birmingham NHS Trust, Birmingham, UK
| | - Per Ljungman
- Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | | | | | - Jennifer Byrne
- Nottingham University Hospital NHS Trust, Nottingham, UK
| | | | | | | | | | - Bruno Lioure
- Techniciens d'Etude Clinique suivi de patients greffes, Strasbourg, France
| | - Eefke Petersen
- University Medical Centre Regensburg, Utrecht, Netherlands
| | | | - William Arcese
- Hematopoietic Stem cell Transplant Unit, Tor Vergata University of Rome, Rome, Italy
| | - Didier Blaise
- Programme de Transplantation &Therapie Cellulaire, Marseille, France
| | | | - Jean Yves Cahn
- CHU Grenoble Alpes-Université Grenoble Alpes, Grenoble, France
| | - Mahmoud Aljurf
- King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | | | - Margherita Mauro
- Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | | | - Diana Averbuch
- 5Pediatric Infectious Diseases, Hadassah University Hospital, Jerusalem, Israel
| | | | - Jan Styczynski
- Department of Pediatric Hematology and Oncology, Collegium Medicum UMK Torun, Bydgoszcz, Poland
| |
Collapse
|
125
|
Pál SE, Tóth R, Nosanchuk JD, Vágvölgyi C, Németh T, Gácser A. A Candida parapsilosis Overexpression Collection Reveals Genes Required for Pathogenesis. J Fungi (Basel) 2021; 7:jof7020097. [PMID: 33572958 PMCID: PMC7911391 DOI: 10.3390/jof7020097] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 01/07/2023] Open
Abstract
Relative to the vast data regarding the virulence mechanisms of Candida albicans, there is limited knowledge on the emerging opportunistic human pathogen Candida parapsilosis. The aim of this study was to generate and characterize an overexpression mutant collection to identify and explore virulence factors in C. parapsilosis. With the obtained mutants, we investigated stress tolerance, morphology switch, biofilm formation, phagocytosis, and in vivo virulence in Galleria mellonella larvae and mouse models. In order to evaluate the results, we compared the data from the C. parapsilosis overexpression collection analysis to the results derived from previous deletion mutant library characterizations. Of the 37 overexpression C. parapsilosis mutants, we identified eight with altered phenotypes compared to the controls. This work is the first report to identify CPAR2_107240, CPAR2_108840, CPAR2_302400, CPAR2_406400, and CPAR2_602820 as contributors to C. parapsilosis virulence by regulating functions associated with host-pathogen interactions and biofilm formation. Our findings also confirmed the role of CPAR2_109520, CPAR2_200040, and CPAR2_500180 in pathogenesis. This study was the first attempt to use an overexpression strategy to systematically assess gene function in C. parapsilosis, and our results demonstrate that this approach is effective for such investigations.
Collapse
Affiliation(s)
- Sára E. Pál
- Department of Microbiology, University of Szeged, Közép Fasor, 6726 Szeged, Hungary; (S.E.P.); (R.T.); (C.V.); (T.N.)
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Közép Fasor, 6726 Szeged, Hungary; (S.E.P.); (R.T.); (C.V.); (T.N.)
| | - Joshua D. Nosanchuk
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged, Közép Fasor, 6726 Szeged, Hungary; (S.E.P.); (R.T.); (C.V.); (T.N.)
| | - Tibor Németh
- Department of Microbiology, University of Szeged, Közép Fasor, 6726 Szeged, Hungary; (S.E.P.); (R.T.); (C.V.); (T.N.)
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Közép Fasor, 6726 Szeged, Hungary; (S.E.P.); (R.T.); (C.V.); (T.N.)
- MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, 6726 Szeged, Hungary
- Correspondence:
| |
Collapse
|
126
|
Culbertson EM, Khan AA, Muchenditsi A, Lutsenko S, Sullivan DJ, Petris MJ, Cormack BP, Culotta VC. Changes in mammalian copper homeostasis during microbial infection. Metallomics 2021; 12:416-426. [PMID: 31976503 DOI: 10.1039/c9mt00294d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Animals carefully control homeostasis of Cu, a metal that is both potentially toxic and an essential nutrient. During infection, various shifts in Cu homeostasis can ensue. In mice infected with Candida albicans, serum Cu progressively rises and at late stages of infection, liver Cu rises, while kidney Cu declines. The basis for these changes in Cu homeostasis was poorly understood. We report here that the progressive rise in serum Cu is attributable to liver production of the multicopper oxidase ceruloplasmin (Cp). Through studies using Cp-/- mice, we find this elevated Cp helps recover serum Fe levels at late stages of infection, consistent with a role for Cp in loading transferrin with Fe. Cp also accounts for the elevation in liver Cu seen during infection, but not for the fluctuations in kidney Cu. The Cu exporting ATPase ATP7B is one candidate for kidney Cu control, but we find no change in the pattern of kidney Cu loss during infection of Atp7b-/- mice, implying alternative mechanisms. To test whether fungal infiltration of kidney tissue was required for kidney Cu loss, we explored other paradigms of infection. Infection with the intravascular malaria parasite Plasmodium berghei caused a rise in serum Cu and decrease in kidney Cu similar to that seen with C. albicans. Thus, dynamics in kidney Cu homeostasis appear to be a common feature among vastly different infection paradigms. The implications for such Cu homeostasis control in immunity are discussed.
Collapse
Affiliation(s)
- Edward M Culbertson
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Aslam A Khan
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Abigael Muchenditsi
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Svetlana Lutsenko
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David J Sullivan
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Brendan P Cormack
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valeria C Culotta
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
127
|
Talapko J, Juzbašić M, Matijević T, Pustijanac E, Bekić S, Kotris I, Škrlec I. Candida albicans-The Virulence Factors and Clinical Manifestations of Infection. J Fungi (Basel) 2021; 7:79. [PMID: 33499276 PMCID: PMC7912069 DOI: 10.3390/jof7020079] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Candida albicans is a common commensal fungus that colonizes the oropharyngeal cavity, gastrointestinal and vaginal tract, and healthy individuals' skin. In 50% of the population, C. albicans is part of the normal flora of the microbiota. The various clinical manifestations of Candida species range from localized, superficial mucocutaneous disorders to invasive diseases that involve multiple organ systems and are life-threatening. From systemic and local to hereditary and environmental, diverse factors lead to disturbances in Candida's normal homeostasis, resulting in a transition from normal flora to pathogenic and opportunistic infections. The transition in the pathophysiology of the onset and progression of infection is also influenced by Candida's virulence traits that lead to the development of candidiasis. Oral candidiasis has a wide range of clinical manifestations, divided into primary and secondary candidiasis. The main supply of C. albicans in the body is located in the gastrointestinal tract, and the development of infections occurs due to dysbiosis of the residential microbiota, immune dysfunction, and damage to the muco-intestinal barrier. The presence of C. albicans in the blood is associated with candidemia-invasive Candida infections. The commensal relationship exists as long as there is a balance between the host immune system and the virulence factors of C. albicans. This paper presents the virulence traits of Candida albicans and clinical manifestations of specific candidiasis.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| | - Tatjana Matijević
- Department of Dermatology and Venereology, Clinical Hospital Center Osijek, HR-31000 Osijek, Croatia;
| | - Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, HR-52100 Pula, Croatia;
| | - Sanja Bekić
- Family Medicine Practice, HR-31000 Osijek, Croatia;
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Ivan Kotris
- Department of Internal Medicine, General County Hospital Vukovar, HR-3200 Vukovar, Croatia;
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| |
Collapse
|
128
|
Holanda MA, da Silva CR, de A Neto JB, do Av Sá LG, do Nascimento FB, Barroso DD, da Silva LJ, Cândido TM, Leitão AC, Barbosa AD, de Moraes MO, Cc B, Júnior HVN. Evaluation of the antifungal activity in vitro of midazolam against fluconazole-resistant Candida spp. isolates. Future Microbiol 2021; 16:71-81. [PMID: 33459560 DOI: 10.2217/fmb-2020-0080] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: The purpose of this study was to evaluate the antifungal activity of midazolam, alone and in association with azoles, against isolates of clinical Candida spp. in planktonic and biofilm form. Materials & methods: The antifungal activity was observed using the broth microdilution technique. Flow cytometry tests were performed to investigate the probable mechanism of action and the comet test and cytotoxicity test were applied to evaluate DNA damage. Results: Midazolam (MIDAZ) showed antifungal activity against planktonic cells (125-250 μg/ml) and reduced the viability of Candida spp. biofilms (125 a 2500 μg/ml). The interaction of MIDAZ against Candida spp. biofilms was observed through scanning electron microscopy, causing alteration of their appearance. Therefore, MIDAZ has antifungal potential against Candida spp.
Collapse
Affiliation(s)
- Maria Av Holanda
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430 1160, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil
| | - Cecília R da Silva
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430 1160, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil
| | - João B de A Neto
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430 1160, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil.,University Center Christus, Fortaleza, CE 60160 230, Brazil
| | - Lívia G do Av Sá
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430 1160, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil
| | - Francisca Bsa do Nascimento
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430 1160, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil
| | - Daiana D Barroso
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430 1160, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil
| | - Lisandra J da Silva
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430 1160, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil
| | - Thiago M Cândido
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430 1160, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil.,University Center Christus, Fortaleza, CE 60160 230, Brazil
| | - Amanda C Leitão
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430 1160, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil
| | - Amanda D Barbosa
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430 1160, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil
| | - Manoel O de Moraes
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil
| | - Bruno Cc
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil
| | - Hélio V Nobre Júnior
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430 1160, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil
| |
Collapse
|
129
|
Culbertson EM, Culotta VC. Copper in infectious disease: Using both sides of the penny. Semin Cell Dev Biol 2021; 115:19-26. [PMID: 33423931 DOI: 10.1016/j.semcdb.2020.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/28/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
The transition metal Cu is an essential micronutrient that serves as a co-factor for numerous enzymes involved in redox and oxygen chemistry. However, Cu is also a potentially toxic metal, especially to unicellular microbes that are in direct contact with their environment. Since 400 BCE, Cu toxicity has been leveraged for its antimicrobial properties and even today, Cu based materials are being explored as effective antimicrobials against human pathogens spanning bacteria, fungi, and viruses, including the SARS-CoV-2 agent of the 2019-2020 pandemic. Given that Cu has the double-edged property of being both highly toxic and an essential micronutrient, it plays an active and complicated role at the host-pathogen interface. Humans have evolved methods of incorporating Cu into innate and adaptive immune processes and both sides of the penny (Cu toxicity and Cu as a nutrient) are employed. Here we review the evolution of Cu in biology and its multi-faceted roles in infectious disease, from the viewpoints of the microbial pathogens as well as the animal hosts they infect.
Collapse
Affiliation(s)
- Edward M Culbertson
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Valeria C Culotta
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
130
|
Kim EJ, Lee E, Kwak YG, Yoo HM, Choi JY, Kim SR, Shin MJ, Yoo SY, Cho NH, Choi YH. Trends in the Epidemiology of Candidemia in Intensive Care Units From 2006 to 2017: Results From the Korean National Healthcare-Associated Infections Surveillance System. Front Med (Lausanne) 2020; 7:606976. [PMID: 33392229 PMCID: PMC7773785 DOI: 10.3389/fmed.2020.606976] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022] Open
Abstract
Candidemia is an important healthcare-associated infection (HAI) in intensive care units (ICUs). However, limited research has been conducted on candidemia in the Republic of Korea. We aimed to analyze the secular trends in the incidence and distribution of candidemia in ICUs over 12-years using data from the Korean National Healthcare-Associated Infections Surveillance System (KONIS). KONIS was established in 2006 and has performed prospective surveillance of HAIs including bloodstream infections (BSIs) in ICUs. We evaluated the trends in the distribution of causative pathogens and the incidence of candidemia. From 2006 to 2017, 2,248 candidemia cases occurred in 9,184,264 patient-days (PDs). The pooled mean incidence rates of candidemia significantly decreased from 3.05 cases/10,000 PDs in 2006 to 2.5 cases/10,000 PDs in 2017 (P = 0.001). Nevertheless, the proportion of candidemia gradually increased from 15.2% in 2006 to 16.6% in 2017 (P = 0.001). The most frequent causative pathogen of BSIs from 2006 to 2012 was Staphylococcus aureus; however, Candida spp. emerged as the most frequent causative pathogen since 2013. C. albicans (39.9%) was the most common among Candida spp. causing BSIs, followed by Candida tropicalis (20.2%) and Candida parapsilosis (18.2%). The proportion of candidemia caused by C. glabrata significantly increased from 8.9% in 2006 to 17.9% in 2017 (P < 0.001). There was no significant change in the distribution of Candida spp. by year (P = 0.285). The most common source of BSIs was central lines associated BSI (92.5%). There was a significant increase in the proportion of candidemia by year in hospitals with organ transplant wards (from 18.9% in 2006 to 21.1% in 2017, P = 0.003), hospitals with <500 beds (from 2.7% in 2006 to 13.6% in 2017, P < 0.001), and surgical ICUs (from 16.2% in 2006 to 21.7% in 2017, P = 0.003). The proportion of candidemia has increased in Korea, especially in hospitals with <500 beds and surgical ICUs. Thus, appropriate infection control programs are needed.
Collapse
Affiliation(s)
- Eun Jin Kim
- Department of Infectious Diseases, Ajou University School of Medicine, Suwon, South Korea
| | - Eunyoung Lee
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, South Korea.,Office of Biostatistics, Medical Research Collaborating Center, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, South Korea
| | - Yee Gyung Kwak
- Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang, South Korea
| | - Hyeon Mi Yoo
- Infection Control Office, Inje University Sanggye Paik Hospital, Seoul, South Korea
| | - Ji Youn Choi
- Infection Control Unit, Chung-Ang University Healthcare System, Seoul, South Korea
| | - Sung Ran Kim
- Infection Control Office, Korea University Guro Hospital, Seoul, South Korea
| | - Myoung Jin Shin
- Infection Control Office, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - So-Yeon Yoo
- Adjunct Assistant Professor, College of Nursing, The Catholic University of Korea, Seoul, South Korea
| | - Nan-Hyoung Cho
- Department of Infection Control, Gangnam Severance Hospital, Yonsei University, Seoul, South Korea
| | - Young Hwa Choi
- Department of Infectious Diseases, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
131
|
Poopedi E, Marimani M, AlOmar SY, Aldahmash B, Ahmad A. Modulation of antioxidant defence system in response to berberine in Candida albicans. Yeast 2020; 38:157-169. [PMID: 33141949 DOI: 10.1002/yea.3531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Emergence of multidrug resistant species of Candida is evolving, which advocates an urgent need for the development of new therapeutic strategies and antifungal drugs. Activation of antioxidant defence system in Candida albicans is known as forefront mechanism to escape drug toxicity. This study evaluated the role of antioxidant defence genes in the susceptibility to fluconazole in C. albicans and also determined the effect of berberine on growth, antioxidant enzymes and the expression of their genes in C. albicans isolates. Expression of major antioxidant genes was significantly increased in fluconazole-resistant isolates in comparison with the susceptible group. Antifungal susceptibility against berberine showed MIC values ranging from 125 to 500 μg/ml. Berberine treatment caused upregulation of mRNA expression and enzymatic activities of the targeted major antioxidants. Interestingly, C. albicans exhibited efficient antioxidant response at lower concentrations but could not sufficiently alleviate berberine-induced oxidative stress occurring at concentrations greater than 250 μg/ml. Therefore, berberine could serve as a potent Reactive Oxygen Species (ROS)-inducing agent, disrupting the antioxidant system especially in fluconazole-resistant C. albicans to overcome antifungal drug resistance. TAKE AWAYS: Evaluated the role of antioxidant enzymes in FLC resistance in C. albicans Studied the effect of berberine on growth of different C. albicans isolates Investigated the modulation of antioxidant enzymes by berberine in C. albicans Studied the effect of berberine on antioxidant gene expression in C. albicans.
Collapse
Affiliation(s)
- Evida Poopedi
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Musa Marimani
- Department of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Suliman Yousef AlOmar
- Doping Research, Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Badr Aldahmash
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa.,Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, 2193, South Africa
| |
Collapse
|
132
|
Gupta P, Pruthi V, Poluri KM. Mechanistic insights into Candida biofilm eradication potential of eucalyptol. J Appl Microbiol 2020; 131:105-123. [PMID: 33226719 DOI: 10.1111/jam.14940] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
AIM Candida-associated fungal infections are prevalent in hospitalized and immune-compromised patients. Their biofilm architecture and high rate of antifungal resistance make treatment challenging. Eucalyptol (EPTL), a monoterpene majorly present in the essential oil of eucalyptus is well known for curing respiratory infections. Hence, the present study investigated the anti-biofilm efficacy of EPTL against the laboratory strains and clinical isolates of Candida to delineate its mode of action. METHODS The effect of EPTL on the viability, biofilm formation, and mature biofilm of Candida strains was studied. Furthermore, its effect on cell cycle arrest, mitochondrial membrane potential (MMP), ROS generation, germ tube formation, ergosterol content and transcriptional expression of selected genes was also investigated. RESULTS EPTL exhibited anti-biofilm activity against mature and developing biofilm of Candida albicans and Candida glabrata along with their clinical isolates. The biochemical components and enzyme activity were differentially modulated in EPTL-treated biofilm extracellular matrix. EPTL generated ROS and arrested cell cycle at the G1 /S phase in both the species, while altered MMP was recorded in C. glabrata. Transcriptional analysis evidenced for differential gene expression of selected ABC transporters, secreted hydrolytic enzymes, and cell wall biogenesis in C. albicans/C. glabrata upon treating with EPTL. CONCLUSION The current data on anti-biofilm activity of EPTL establish its candidacy for drug development or as an adjuvant with existing antifungal formulations. SIGNIFICANCE AND IMPACT OF THE STUDY Present investigation elucidates the mode of action of Eucalyptol as antifungal agent and would stand as a candidate for management of topical fungal infection.
Collapse
Affiliation(s)
- P Gupta
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - V Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - K M Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.,Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
133
|
Romera D, Aguilera-Correa JJ, García-Coca M, Mahillo-Fernández I, Viñuela-Sandoval L, García-Rodríguez J, Esteban J. The Galleria mellonella infection model as a system to investigate the virulence of Candida auris strains. Pathog Dis 2020; 78:5937422. [PMID: 33098293 DOI: 10.1093/femspd/ftaa067] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Candida auris is a multiresistant pathogenic yeast commonly isolated from bloodstream infections in immunocompromised patients. In this work, we infected Galleria mellonella larvae with 105 CFU of a reference strains and two clinical isolates of C. albicans and C. auris and we compared the outcomes of infection between both species. Larvae were evaluated every 24 h for a total of 120 h following the G. mellonella Health Index Scoring System, and survival, activity, melanization and cocoon formation were monitored. Our results showed that clinical isolates were significantly more pathogenic than reference strains independently of the tested species, producing lower survival and activity scores and higher melanization scores and being C. albicans strains more virulent than C. auris strains. We did not find differences in mortality between aggregative and non-aggregative C. auris strains, although non-aggregative strains produced significantly lower activity scores and higher melanization scores than aggregative ones. Survival assays using Galleria mellonella have been previously employed to examine and classify strains of this and other microbial species based on their virulence before scaling the experiments to a mammal model. Taken together, these results show how a more complete evaluation of the model can improve the study of C. auris isolates.
Collapse
Affiliation(s)
- David Romera
- Department of Clinical Microbiology, IIS Fundación Jiménez Díaz, UAM. Avda. Reyes Católicos 2, 28040 Madrid, Spain
| | - John-Jairo Aguilera-Correa
- Department of Clinical Microbiology, IIS Fundación Jiménez Díaz, UAM. Avda. Reyes Católicos 2, 28040 Madrid, Spain
| | - Marta García-Coca
- Department of Clinical Microbiology, IIS Fundación Jiménez Díaz, UAM. Avda. Reyes Católicos 2, 28040 Madrid, Spain
| | - Ignacio Mahillo-Fernández
- Epidemiology and Biostatistics Service, Fundación Jiménez Díaz University Hospital, Av. Reyes Católicos, 2. 28040 Madrid, Spain
| | | | - Julio García-Rodríguez
- Department of Microbiology, La Paz University Hospital, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, IIS Fundación Jiménez Díaz, UAM. Avda. Reyes Católicos 2, 28040 Madrid, Spain
| |
Collapse
|
134
|
Antifungal Susceptibility of Non-albicans Candida Species in A Tertiary Care Hospital, Bulgaria. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Emerging non-albicans Candida (NAC) species are a major threat because of their intrinsic or acquired resistance to routinely applied antifungal agents. Objectives: The purpose of our study was to reveal in vitro activity of nine antifungal agents against NAC isolates. Methods: A total of 67 NAC (27 Candida glabrata, 10 C. tropicalis, 6 C. krusei, 6 C. parapsilosis, 4 C. lusitaniae, 4 C. lipolytica, etc.) were identified and tested. The antifungal susceptibility was estimated on the basis of minimum inhibitory concentrations (MIC). Results: Overall, 13 species were determined, of which C. glabrata was the most common (40.3%), followed by C. tropicalis (14.9%), C. krusei, and C. parapsilosis (8.9 % each). Forty-nine NAC isolates (73.13%) demonstrated decreased susceptibility to one or more antifungals, and 18 of them were resistant to all azoles. Out of 27 C. glabrata, 12 (44.4%) were resistant to fluconazole with MICs: 32 - >128 µg/mL and 15 (55.6%) were intermediate with MICs: 8 - 16 µg/mL Non-albicans Candida revealed a good susceptibility to echinocandins. Amphotericin B resistance was found in 5.97% of the isolates. Of particular interest was the detection of 6 (8.95%) multidrug-resistant NAC, which expressed resistance to azoles and echinocandins and/or amphotericin B. Conclusions: About one-fourth of the studied NAC were resistant to all azoles. These findings as well as the detection of several multidrug-resistant isolates determine the necessity of susceptibility testing of clinically important yeast isolates and control of the antifungal drugs in our hospital.
Collapse
|
135
|
Wang X, He H, Liu J, Xie S, Han J. Inhibiting roles of farnesol and HOG in morphological switching of Candida albicans. Am J Transl Res 2020; 12:6988-7001. [PMID: 33312346 PMCID: PMC7724324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/18/2020] [Indexed: 06/12/2023]
Abstract
Candida albicans is a major opportunistic fungal pathogen of humans, especially in the oral cavity it involves in precancerous lesions. Numerous transcriptional regulators and hypha-specific genes involved in the morphogenesis mechanisms have been identified. Its virulence is predominantly attributed to the potentiality of morphological switching from yeast and pseudohyphae to hyphal growth. Giving attention in farnesol for prevention or intervention of its virulence sense and possible etiologic role in some uncovered premalignant diseases, in addition, to be a quorum-sensing signal molecule and relationship with HOG pathway, although its morphological switching inhibiting function has attracted high attention and got great progress in being elucidated, their exact mode of action is not completely understood. This report provides a review of characteristic aspects of farnesol signaling and HOG pathway during hyphal development. It also includes other associated pathways, molecules, and novel drug development based on the latest researches over the last decade. Furthermore, farnesol as immunomodulatory to host is an important inferring.
Collapse
Affiliation(s)
- Xueting Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University, School of Medicine395 Yan’an Road, Hangzhou 310006, Zhejiang, China
| | - Hong He
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University, School of Medicine395 Yan’an Road, Hangzhou 310006, Zhejiang, China
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceHangzhou 310020, Zhejiang, China
| | - Jiamei Liu
- Zhejiang HospitalHangzhou 310013, Zhejiang, China
| | - Shangfeng Xie
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University, School of Medicine395 Yan’an Road, Hangzhou 310006, Zhejiang, China
| | - Jianxin Han
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang UniversityHangzhou 310012, Zhejiang, China
| |
Collapse
|
136
|
Antibiofilm Activity on Candida albicans and Mechanism of Action on Biomembrane Models of the Antimicrobial Peptide Ctn[15-34]. Int J Mol Sci 2020; 21:ijms21218339. [PMID: 33172206 PMCID: PMC7664368 DOI: 10.3390/ijms21218339] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Ctn[15–34], the C-terminal fragment of crotalicidin, an antimicrobial peptide from the South American rattlesnake Crotalus durissus terrificus venom, displays remarkable anti-infective and anti-proliferative activities. Herein, its activity on Candida albicans biofilms and its interaction with the cytoplasmic membrane of the fungal cell and with a biomembrane model in vitro was investigated. A standard C. albicans strain and a fluconazole-resistant clinical isolate were exposed to the peptide at its minimum inhibitory concentration (MIC) (10 µM) and up to 100 × MIC to inhibit biofilm formation and its eradication. A viability test using XTT and fluorescent dyes, confocal laser scanning microscopy, and atomic force microscopy (AFM) were used to observe the antibiofilm effect. To evaluate the importance of membrane composition on Ctn[15–34] activity, C. albicans protoplasts were also tested. Fluorescence assays using di-8-ANEPPS, dynamic light scattering, and zeta potential measurements using liposomes, protoplasts, and C. albicans cells indicated a direct mechanism of action that was dependent on membrane interaction and disruption. Overall, Ctn[15–34] showed to be an effective antifungal peptide, displaying antibiofilm activity and, importantly, interacting with and disrupting fungal plasma membrane.
Collapse
|
137
|
Genotypic and Phenotypic Changes in Candida albicans as a Result of Cold Plasma Treatment. Int J Mol Sci 2020; 21:ijms21218100. [PMID: 33143065 PMCID: PMC7663045 DOI: 10.3390/ijms21218100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 01/12/2023] Open
Abstract
We treated Candida albicans cells with a sublethal dose of nonequilibrium (cold) atmospheric-pressure He plasma and studied alterations in the genome of this fungus as well as changes in the phenotypic traits, such as assimilation of carbon from carbohydrates, hydrolytic enzyme activity, and drug susceptibility. There is a general problem if we use cold plasma to kill microorganism cells and some of them survive the process—whether the genotypic and phenotypic features of the cells are significantly altered in this case, and, if so, whether these changes are environmentally hazardous. Our molecular genetic studies have identified six single nucleotide variants, six insertions, and five deletions, which are most likely significant changes after plasma treatment. It was also found that out of 19 tested hydrolytic enzymes, 10 revealed activity, of which nine temporarily decreased their activity and one (naphthol-AS-BI- phosphohydrolase) permanently increased activity as a result of the plasma treatment. In turn, carbon assimilation and drug susceptibility were not affected by plasma. Based on the performed studies, it can be concluded that the observed changes in C. albicans cells that survived the plasma action are not of significant importance to the environment, especially for the drug resistance and pathogenicity of this fungus.
Collapse
|
138
|
Basso V, Tran DQ, Ouellette AJ, Selsted ME. Host Defense Peptides as Templates for Antifungal Drug Development. J Fungi (Basel) 2020; 6:jof6040241. [PMID: 33113935 PMCID: PMC7711597 DOI: 10.3390/jof6040241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Current treatment for invasive fungal diseases is limited to three classes of antifungal drugs: azoles, polyenes, and echinocandins. The most recently introduced antifungal class, the echinocandins, was first approved nearly 30 years ago. The limited antifungal drug portfolio is rapidly losing its clinical utility due to the inexorable rise in the incidence of invasive fungal infections and the emergence of multidrug resistant (MDR) fungal pathogens. New antifungal therapeutic agents and novel approaches are desperately needed. Here, we detail attempts to exploit the antifungal and immunoregulatory properties of host defense peptides (HDPs) in the design and evaluation of new antifungal therapeutics and discuss historical limitations and recent advances in this quest.
Collapse
Affiliation(s)
- Virginia Basso
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (V.B.); (D.Q.T.); (A.J.O.)
| | - Dat Q. Tran
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (V.B.); (D.Q.T.); (A.J.O.)
- Oryn Therapeutics, Vacaville, CA 95688, USA
| | - André J. Ouellette
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (V.B.); (D.Q.T.); (A.J.O.)
- Norris Comprehensive Cancer Center of the University of Southern California, Los Angeles, CA 90089, USA
| | - Michael E. Selsted
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (V.B.); (D.Q.T.); (A.J.O.)
- Oryn Therapeutics, Vacaville, CA 95688, USA
- Norris Comprehensive Cancer Center of the University of Southern California, Los Angeles, CA 90089, USA
- Correspondence:
| |
Collapse
|
139
|
Survival Strategies of Pathogenic Candida Species in Human Blood Show Independent and Specific Adaptations. mBio 2020; 11:mBio.02435-20. [PMID: 33024045 PMCID: PMC7542370 DOI: 10.1128/mbio.02435-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To ensure their survival, pathogens have to adapt immediately to new environments in their hosts, for example, during the transition from the gut to the bloodstream. Here, we investigated the basis of this adaptation in a group of fungal species which are among the most common causes of hospital-acquired infections, the Candida species. On the basis of a human whole-blood infection model, we studied which genes and processes are active over the course of an infection in both the host and four different Candida pathogens. Remarkably, we found that, while the human host response during the early phase of infection is predominantly uniform, the pathogens pursue largely individual strategies and each one regulates genes involved in largely disparate processes in the blood. Our results reveal that C. albicans, C. glabrata, C. parapsilosis, and C. tropicalis all have developed individual strategies for survival in the host. This indicates that their pathogenicity in humans has evolved several times independently and that genes which are central for survival in the host for one species may be irrelevant in another. Only four species, Candida albicans, C. glabrata, C. parapsilosis, and C. tropicalis, together account for about 90% of all Candida bloodstream infections and are among the most common causes of invasive fungal infections of humans. However, virulence potential varies among these species, and the phylogenetic tree reveals that their pathogenicity may have emerged several times independently during evolution. We therefore tested these four species in a human whole-blood infection model to determine, via comprehensive dual-species RNA-sequencing analyses, which fungal infection strategies are conserved and which are recent evolutionary developments. The ex vivo infection progressed from initial immune cell interactions to nearly complete killing of all fungal cells. During the course of infection, we characterized important parameters of pathogen-host interactions, such as fungal survival, types of interacting immune cells, and cytokine release. On the transcriptional level, we obtained a predominantly uniform and species-independent human response governed by a strong upregulation of proinflammatory processes, which was downregulated at later time points after most of the fungal cells were killed. In stark contrast, we observed that the different fungal species pursued predominantly individual strategies and showed significantly different global transcriptome patterns. Among other findings, our functional analyses revealed that the fungal species relied on different metabolic pathways and virulence factors to survive the host-imposed stress. These data show that adaptation of Candida species as a response to the host is not a phylogenetic trait, but rather has likely evolved independently as a prerequisite to cause human infections.
Collapse
|
140
|
Isoeugenol and Hybrid Acetamides against Candida albicans Isolated from the Oral Cavity. Pharmaceuticals (Basel) 2020; 13:ph13100291. [PMID: 33023068 PMCID: PMC7599878 DOI: 10.3390/ph13100291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022] Open
Abstract
Isougenol is a phytoconstituent found in several essential oils. Since many natural products are potent antimicrobials, the synthesis of hybrid molecules-combining the chemical skeleton of the phytochemical with synthetic groups-can generate substances with enhanced biological activity. Based on this, the objective of this study was to evaluate the antifungal activity of isoeugenol and hybrid acetamides against Candida albicans isolated from the oral cavity. The methodologies used were the determination of minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC), action on fungal micromorphology, interaction test with nystatin by the checkerboard method and molecular docking study with important enzymes in the maintenance of fungal viability. The synthetic molecules did not demonstrate significant antifungal activity in vitro. The isoeugenol MIC and MFC varied between 128 and 256 µg/mL, being the phytoconstituent able to interfere in the formation of blastoconid and chlamydoconid structures, important in the pathogenic process of the species. The molecular docking study revealed that isoeugenol is a potential inhibitor of the enzymes 14-α-demethylase and delta-14-sterol reductase, interfering in the fungal cell membrane biosynthesis. Thus, this research provides clearer expectations for future pharmacological studies with isoeugenol and derived molecules, aiming at its therapeutic application against infections caused by Candida spp.
Collapse
|
141
|
Dudhipala N, AY AA. Amelioration of ketoconazole in lipid nanoparticles for enhanced antifungal activity and bioavailability through oral administration for management of fungal infections. Chem Phys Lipids 2020; 232:104953. [DOI: 10.1016/j.chemphyslip.2020.104953] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022]
|
142
|
Risaliti L, Pini G, Ascrizzi R, Donato R, Sacco C, Bergonzi MC, Salvatici MC, Bilia AR. Artemisia annua essential oil extraction, characterization, and incorporation in nanoliposomes, smart drug delivery systems against Candida species. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101849] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
143
|
Cornely FB, Cornely OA, Salmanton‐García J, Koehler FC, Koehler P, Seifert H, Wingen‐Heimann S, Mellinghoff SC. Attributable mortality of candidemia after introduction of echinocandins. Mycoses 2020; 63:1373-1381. [DOI: 10.1111/myc.13177] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Florian B. Cornely
- Department I of Internal Medicine Faculty of Medicine and University Hospital Cologne Excellence Center for Medical Mycology (ECMM) University of Cologne Cologne Germany
- Medical University of Varna Varna Bulgaria
| | - Oliver A. Cornely
- Department I of Internal Medicine Faculty of Medicine and University Hospital Cologne Excellence Center for Medical Mycology (ECMM) University of Cologne Cologne Germany
- Faculty of Medicine and University Hospital Cologne Chair Translational Research Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
- Clinical Trial Centre Cologne (ZKS Köln) University of Cologne Cologne Germany
- German Center for Infection Research (DZIF)Partner Site Bonn‐Cologne Cologne Germany
| | - Jon Salmanton‐García
- Department I of Internal Medicine Faculty of Medicine and University Hospital Cologne Excellence Center for Medical Mycology (ECMM) University of Cologne Cologne Germany
- Faculty of Medicine and University Hospital Cologne Chair Translational Research Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Felix C. Koehler
- Faculty of Medicine and University Hospital Cologne Chair Translational Research Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
- Department II of Internal Medicine Faculty of Medicine and University Hospital Cologne Center for Molecular Medicine Cologne University of Cologne Cologne Germany
| | - Philipp Koehler
- Department I of Internal Medicine Faculty of Medicine and University Hospital Cologne Excellence Center for Medical Mycology (ECMM) University of Cologne Cologne Germany
- Faculty of Medicine and University Hospital Cologne Chair Translational Research Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Harald Seifert
- German Center for Infection Research (DZIF)Partner Site Bonn‐Cologne Cologne Germany
- Institute for Medical Microbiology, Immunology and Hygiene University of Cologne Cologne Germany
| | - Sebastian Wingen‐Heimann
- Faculty of Medicine and University Hospital Cologne Chair Translational Research Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
- FOM University of Applied Sciences Cologne Germany
| | - Sibylle C. Mellinghoff
- Department I of Internal Medicine Faculty of Medicine and University Hospital Cologne Excellence Center for Medical Mycology (ECMM) University of Cologne Cologne Germany
- Faculty of Medicine and University Hospital Cologne Chair Translational Research Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| |
Collapse
|
144
|
KEÇELİ SA, KURT M, ÖZGÜR D, OTAĞ ZF. Klinik Örneklerden İzole Edilmiş Candi̇da parapsi̇losi̇s Suşlarının Bi̇yofi̇lm Oluşturma, Hemoli̇ti̇k ve Koagülaz Akti̇vi̇teleri̇ ile Anti̇fungal Duyarlılıklarının Karşılaştırılması. KOCAELI ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2020. [DOI: 10.30934/kusbed.777921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
145
|
Viana R, Dias O, Lagoa D, Galocha M, Rocha I, Teixeira MC. Genome-Scale Metabolic Model of the Human Pathogen Candida albicans: A Promising Platform for Drug Target Prediction. J Fungi (Basel) 2020; 6:E171. [PMID: 32932905 PMCID: PMC7559133 DOI: 10.3390/jof6030171] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Candida albicans is one of the most impactful fungal pathogens and the most common cause of invasive candidiasis, which is associated with very high mortality rates. With the rise in the frequency of multidrug-resistant clinical isolates, the identification of new drug targets and new drugs is crucial in overcoming the increase in therapeutic failure. In this study, the first validated genome-scale metabolic model for Candida albicans, iRV781, is presented. The model consists of 1221 reactions, 926 metabolites, 781 genes, and four compartments. This model was reconstructed using the open-source software tool merlin 4.0.2. It is provided in the well-established systems biology markup language (SBML) format, thus, being usable in most metabolic engineering platforms, such as OptFlux or COBRA. The model was validated, proving accurate when predicting the capability of utilizing different carbon and nitrogen sources when compared to experimental data. Finally, this genome-scale metabolic reconstruction was tested as a platform for the identification of drug targets, through the comparison between known drug targets and the prediction of gene essentiality in conditions mimicking the human host. Altogether, this model provides a promising platform for global elucidation of the metabolic potential of C. albicans, possibly guiding the identification of new drug targets to tackle human candidiasis.
Collapse
Affiliation(s)
- Romeu Viana
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (R.V.); (M.G.)
- Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, 1049-001 Lisbon, Portugal
| | - Oscar Dias
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; (O.D.); (D.L.)
| | - Davide Lagoa
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; (O.D.); (D.L.)
| | - Mónica Galocha
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (R.V.); (M.G.)
- Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, 1049-001 Lisbon, Portugal
| | - Isabel Rocha
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; (O.D.); (D.L.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), 2780-157 Oeiras, Portugal
| | - Miguel Cacho Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (R.V.); (M.G.)
- Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, 1049-001 Lisbon, Portugal
| |
Collapse
|
146
|
Rottmann BG, Singh PK, Singh S, Revankar SG, Chandrasekar PH, Kumar A. Evaluation of Susceptibility and Innate Immune Response in C57BL/6 and BALB/c Mice During Candida albicans Endophthalmitis. Invest Ophthalmol Vis Sci 2020; 61:31. [PMID: 32940660 PMCID: PMC7500134 DOI: 10.1167/iovs.61.11.31] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Candida remains the leading cause of fungal endophthalmitis. However, the pathobiology and innate immune responses in this disease are not well characterized. Here, we developed two murine models of candida endophthalmitis and evaluated their disease susceptibility and differential immune response. Methods Endophthalmitis was induced in C57BL/6 (B6) and BALB/c mice by intravitreal injection of Candida albicans (CA). Disease progression was monitored by slit-lamp examination and clinical scoring, followed by retinal function assessment using electroretinography (ERG). Enucleated eyes were used to estimate fungal burden and retinal tissue damage by hematoxylin and eosin and TUNEL staining. The level of inflammatory mediators were determined by quantitative Polymerase Chain Reaction (qPCR) and enzyme-linked immunosorbent assay, whereas neutrophil infiltration was assessed by flow cytometry and immunostaining. Results Intravitreal injection of CA at 6500 colony-forming units resulted in sustained (non-resolving) ocular inflammation in both B6 and BALB/c mice as evidenced by increased levels of inflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and interleukin-6) and chemokine (CXCL2/MIP-2). In both mouse strains, fungal burden peaked at 24 to 48 hours post-infection (hpi) and decreased by 72 to 96 hpi. CA-infected eyes exhibited increased polymorphonuclear neutrophils (PMN) infiltration and retinal tissue damage. Overall retinal function declined rapidly, with a significant reduction in ERG response at 12 hpi and near-total loss by 24 hpi. Differential analyses revealed increased pathology in BALB/c versus B6 mice. Conclusions C. albicans was able to cause endophthalmitis in mice. Although BALB/c mice were found to be more susceptible to CA endophthalmitis, both BALB/c and B6 models could be used to study fungal endophthalmitis and test therapeutic modalities.
Collapse
Affiliation(s)
- Bruce G. Rottmann
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Pawan Kumar Singh
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Sneha Singh
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Sanjay G. Revankar
- Division of Infectious Disease, Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Pranatharthi H. Chandrasekar
- Division of Infectious Disease, Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ashok Kumar
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
147
|
Characteristics and Management of Candidaemia Episodes in an Established Candida auris Outbreak. Antibiotics (Basel) 2020; 9:antibiotics9090558. [PMID: 32872580 PMCID: PMC7559407 DOI: 10.3390/antibiotics9090558] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
The multi-resistant yeast Candida auris has become a global public health threat because of its ease to persist and spread in clinical environments, especially in intensive care units. One of the most severe manifestations of invasive candidiasis is candidaemia, whose epidemiology has evolved to more resistant non-albicansCandida species, such as C. auris. It is crucial to establish infection control policies in order to control an outbreak due to nosocomial pathogens, including the implementation of screening colonisation studies. We describe here our experience in managing a C. auris outbreak lasting more than two and a half years which, despite our efforts in establishing control measures and surveillance, is still ongoing. A total of 287 colonised patients and 47 blood stream infections (candidaemia) have been detected to date. The epidemiology of those patients with candidaemia and the susceptibility of C. auris isolates are also reported. Thirty-five patients with candidaemia (74.5%) were also previously colonised. Forty-three patients (91.5%) were hospitalised (61.7%) or had been hospitalised (29.8%) in the ICU before developing candidaemia. Antifungal therapy for candidaemia consisted of echinocandins in monotherapy or in combination with amphotericin B or isavuconazole. The most common underlying disease was abdominal surgery (29.8%). The thirty-day mortality rate was 23.4% and two cases of endophtalmitis due to C. auris were found. All isolates were resistant to fluconazole and susceptible to echinocandins and amphotericin B. One isolate became resistant to echinocandins two months after the first isolate. Although there are no established clinical breakpoints, minimum inhibitory concentrations for isavuconazole were low (≤ 1 μg/mL).
Collapse
|
148
|
Cartier N, Chesnay A, N'diaye D, Thorey C, Ferreira M, Haillot O, Bailly É, Desoubeaux G. Candida nivariensis: Identification strategy in mycological laboratories. J Mycol Med 2020; 30:101042. [PMID: 32919860 DOI: 10.1016/j.mycmed.2020.101042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
Candida nivariensis is a cryptic fungal species classified within the Candida glabrata complex. It was described for the first time in 2005 by the means of DNA sequencing. We report a rare case of C. nivariensis deep-seated infection occurring in a 77-year-old man hospitalized for cysto-prostatectomy. Phenotypic testing based on the direct examination and the macroscopic features of the in vitro culture initially suggested C. glabrata species, while MALDI-TOF mass spectrometry enables correct identification. The isolate was found resistant to fluconazole, like in almost 20% of the reported cases. Herein, we present our practical strategy to reliably characterize this rare cryptic species. To date, MALDI-TOF mass spectrometry-based analysis showed very good results for such a purpose.
Collapse
Affiliation(s)
- N Cartier
- Parasitologie - mycologie - médecine tropicale, CHRU de Tours, 37044 Tours, France
| | - A Chesnay
- Parasitologie - mycologie - médecine tropicale, CHRU de Tours, 37044 Tours, France; CEPR - Inserm U1100/équipe 3, faculté de médecine, université de Tours, 37032 Tours, France
| | - D N'diaye
- Médecine interne et maladies infectieuses, CHRU de Tours, 37044 Tours, France
| | - C Thorey
- Médecine interne et maladies infectieuses, CHRU de Tours, 37044 Tours, France
| | - M Ferreira
- CEPR - Inserm U1100/équipe 3, faculté de médecine, université de Tours, 37032 Tours, France; Pneumologie, CHRU de Tours, 37044 Tours, France
| | - O Haillot
- Urologie, CHRU de Tours, 37044 Tours, France
| | - É Bailly
- Parasitologie - mycologie - médecine tropicale, CHRU de Tours, 37044 Tours, France
| | - G Desoubeaux
- Parasitologie - mycologie - médecine tropicale, CHRU de Tours, 37044 Tours, France; CEPR - Inserm U1100/équipe 3, faculté de médecine, université de Tours, 37032 Tours, France.
| |
Collapse
|
149
|
Pais P, Califórnia R, Galocha M, Viana R, Ola M, Cavalheiro M, Takahashi-Nakaguchi A, Chibana H, Butler G, Teixeira MC. Candida glabrata Transcription Factor Rpn4 Mediates Fluconazole Resistance through Regulation of Ergosterol Biosynthesis and Plasma Membrane Permeability. Antimicrob Agents Chemother 2020; 64:e00554-20. [PMID: 32571817 PMCID: PMC7449212 DOI: 10.1128/aac.00554-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/13/2020] [Indexed: 01/05/2023] Open
Abstract
The ability to acquire azole resistance is an emblematic trait of the fungal pathogen Candida glabrata Understanding the molecular basis of azole resistance in this pathogen is crucial for designing more suitable therapeutic strategies. This study shows that the C. glabrata transcription factor (TF) CgRpn4 is a determinant of azole drug resistance. RNA sequencing during fluconazole exposure revealed that CgRpn4 regulates the expression of 212 genes, activating 80 genes and repressing, likely in an indirect fashion, 132 genes. Targets comprise several proteasome and ergosterol biosynthesis genes, including ERG1, ERG2, ERG3, and ERG11 The localization of CgRpn4 to the nucleus increases upon fluconazole stress. Consistent with a role in ergosterol and plasma membrane homeostasis, CgRpn4 is required for the maintenance of ergosterol levels upon fluconazole stress, which is associated with a role in the upkeep of cell permeability and decreased intracellular fluconazole accumulation. We provide evidence that CgRpn4 directly regulates ERG11 expression through the TTGCAAA binding motif, reinforcing the relevance of this regulatory network in azole resistance. In summary, CgRpn4 is a new regulator of the ergosterol biosynthesis pathway in C. glabrata, contributing to plasma membrane homeostasis and, thus, decreasing azole drug accumulation.
Collapse
Affiliation(s)
- Pedro Pais
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | - Raquel Califórnia
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | - Mónica Galocha
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | - Romeu Viana
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | - Mihaela Ola
- School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, Dublin, Ireland
| | - Mafalda Cavalheiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | | | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Geraldine Butler
- School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, Dublin, Ireland
| | - Miguel C Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| |
Collapse
|
150
|
Xiao G, Liao W, Zhang Y, Luo X, Zhang C, Li G, Yang Y, Xu Y. Analysis of fungal bloodstream infection in intensive care units in the Meizhou region of China: species distribution and resistance and the risk factors for patient mortality. BMC Infect Dis 2020; 20:599. [PMID: 32795259 PMCID: PMC7427856 DOI: 10.1186/s12879-020-05291-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/26/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Fungal bloodstream infections (FBI) among intensive care unit (ICU) patients are increasing. Our objective was to characterize the fungal pathogens that cause bloodstream infections and determine the epidemiology and risk factors for patient mortality among ICU patients in Meizhou, China. METHODS Eighty-one ICU patients with FBI during their stays were included in the study conducted from January 2008 to December 2017. Blood cultures were performed and the antimicrobial susceptibility profiles of the resulting isolates were determined. Logistic multiple regression and ROC curve analysis were used to assess the risk factors for mortality among the cases. RESULTS The prevalence of FBI in ICU patients was 0.38% (81/21,098) with a mortality rate of 36% (29/81). Ninety-eight strains of bloodstream-infecting fungi, mainly Candida spp., were identified from these patients. Candida albicans was most common (43%). Two strains of C. parapsilosis were no-sensitive to caspofungin, C. glabrata were less than 80% sensitive to azole drugs. Logistic multiple regression showed that age, serum albumin, APACHE II score, three or more underlying diseases, and length of stay in ICU were independent risk factors for mortality in FBI. ROC curve analysis showed that APACHE II scores > 19 and serum albumin ≤25 g/L were the best predictors of mortality. CONCLUSION Candida spp. predominated with high mortality rates among cases of FBI in ICU. Thus, clinical staff should enhance overall patient monitoring and concurrently monitor fungal susceptibility to reduce mortality rates.
Collapse
Affiliation(s)
- Guangwen Xiao
- Medical College, Jiaying University, Meizhou, People's Republic of China.
| | - Wanqing Liao
- Shanghai Key Laboratory of Medical Fungal Molecular Biology, Shanghai, People's Republic of China.
| | - Yuenong Zhang
- The First Department of Anesthesiology, People's Hospital of Meizhou, Meizhou, People's Republic of China
| | - Xiaodong Luo
- Medical College, Jiaying University, Meizhou, People's Republic of China
| | - Cailing Zhang
- Department of Anesthesiology, Chinese Medical Hospital of Meizhou, Meizhou, People's Republic of China
| | - Guodan Li
- Medical College, Jiaying University, Meizhou, People's Republic of China
| | - Yingping Yang
- Medical College, Jiaying University, Meizhou, People's Republic of China
| | - Yunyao Xu
- Department of Cardiology, Yuedong Hospital the Third Affiliated Hospital of Sun Yat-Sen University, Meizhou, People's Republic of China
| |
Collapse
|