101
|
Lourenço BN, Schmiedt CW, Alabady MS, Stanton JB, Coleman AE, Brown CA, Rissi DR, Brown SA, Tarigo JL. Analysis of genes associated with proinflammatory and profibrotic pathways upregulated in ischemia-induced chronic kidney disease in cats. Am J Vet Res 2021; 82:589-597. [PMID: 34166083 DOI: 10.2460/ajvr.82.7.589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To use RNA sequencing (RNAseq) to characterize renal transcriptional activities of genes associated with proinflammatory and profibrotic pathways in ischemia-induced chronic kidney disease (CKD) in cats. SAMPLES Banked renal tissues from 6 cats with experimentally induced CKD (renal ischemia [RI] group) and 9 healthy cats (control group). PROCEDURES Transcriptome analysis with RNAseq, followed by gene ontology and cluster analyses, were performed on banked tissue samples of the right kidneys (control kidneys) from cats in the control group and of both kidneys from cats in the RI group, in which unilateral (right) RI had been induced 6 months before the cats were euthanized and the ischemic kidneys (IKs) and contralateral nonischemic kidneys (CNIKs) were harvested. Results for the IKs, CNIKs, and control kidneys were compared to identify potential differentially expressed genes and overrepresented proinflammatory and profibrotic pathways. RESULTS Genes from the gene ontology pathways of collagen binding (eg, transforming growth factor-β1), metalloendopeptidase activity (eg, metalloproteinase [MMP]-7, MMP-9, MMP-11, MMP-13, MMP-16, MMP-23B, and MMP-28), chemokine activity, and T-cell migration were overrepresented as upregulated in tissue samples of the IKs versus control kidneys. Genes associated with the extracellular matrix (eg, TIMP-1, fibulin-1, secreted phosphoprotein-1, matrix Gla protein, and connective tissue growth factor) were upregulated in tissue samples from both the IKs and CNIKs, compared with tissues from the control kidneys. CONCLUSIONS AND CLINICAL RELEVANCE Unilateral ischemic injury differentially altered gene expression in both kidneys, compared with control kidneys. Fibulin-1, secreted phosphoprotein-1, and matrix Gla protein may be candidate biomarkers of active kidney injury in cats.
Collapse
Affiliation(s)
- Bianca N Lourenço
- From the Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Chad W Schmiedt
- From the Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Magdy S Alabady
- From the Department of Plant Biology, Franklin College of Arts and Sciences, and Georgia Genomics and Bioinformatics Core, University of Georgia, Athens, GA 30602
| | - James B Stanton
- From the Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Amanda E Coleman
- From the Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Cathy A Brown
- From the Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Daniel R Rissi
- From the Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Scott A Brown
- From the Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
- From the Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Jaime L Tarigo
- From the Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| |
Collapse
|
102
|
Lindford A, Juteau S, Jaks V, Klaas M, Lagus H, Vuola J, Kankuri E. Case Report: Unravelling the Mysterious Lichtenberg Figure Skin Response in a Patient With a High-Voltage Electrical Injury. Front Med (Lausanne) 2021; 8:663807. [PMID: 34179045 PMCID: PMC8226253 DOI: 10.3389/fmed.2021.663807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/18/2021] [Indexed: 11/18/2022] Open
Abstract
We describe a case of Lichtenberg Figures (LFs) following an electrical injury from a high-voltage switchgear in a 47 year-old electrician. LFs, also known as ferning pattern or keraunographic markings, are a pathognomonic skin sign for lightning strike injuries. Their true pathophysiology has remained a mystery and only once before described following an electical injury. The aim was to characterise the tissue response of LFs by performing untargeted non-labelled proteomics and immunohistochemistry on paraffin-embedded sections of skin biopsies taken from the area of LFs at presentation and at 3 months follow-up. Our results demonstrated an increase in dermal T-cells and greatly increased expression of the iron-binding glycoprotein lactoferrin by keratinocytes and lymphocytes. These changes in the LF-affected skin were associated with extravasation of red blood cells from dermal vessels. Our results provide an initial molecular and cellular insight into the tissue response associated with LFs.
Collapse
Affiliation(s)
- Andrew Lindford
- Department of Plastic Surgery, Helsinki Burn Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Susanna Juteau
- Department of Pathology, Haartman Institute, University of Helsinki and Helsinki University Hospital Diagnostic Center, HUSLAB, Helsinki, Finland
| | - Viljar Jaks
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mariliis Klaas
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Helsinki Wound Healing Centre, Helsinki University Hospital, Helsinki, Finland
| | - Jyrki Vuola
- Department of Plastic Surgery, Helsinki Burn Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
103
|
Investigation of Immunomodulatory and Gut Microbiota-Altering Properties of Multicomponent Nutraceutical Prepared from Lactic Acid Bacteria, Bovine Colostrum, Apple Production By-Products and Essential Oils. Foods 2021; 10:foods10061313. [PMID: 34200426 PMCID: PMC8229151 DOI: 10.3390/foods10061313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 01/10/2023] Open
Abstract
Dietary components, such as lactic acid bacteria (LAB), bovine colostrum, apple production by-products, and essential oils, can favorably alter the host immune system and gut microbiota, however, their cumulative effect as multicomponent nutraceutical supplement has not been investigated. Therefore, the present study is the first one to evaluate a combination of LAB, bovine colostrum, dehydrated apple pomace, and essential oils for their immunomodulatory and prebiotic properties in the swine model. This study shows that supplementary feeding of pigs using multicomponent nutraceutical resulted in a statistically significant decrease in proportions of T cytotoxic and double-positive (CD4+CD8+low) cells within the CD3+ cell population at 28 DPI, compared to the beginning of the experiment (0DPI). Conversely, a statistically significant increase in proportions of B cells (accompanied by an increase in IgG concentration) and macrophage/monocyte cells within viable cell population at 28 DPI, compared to the beginning of the experiments, was observed. Furthermore, changes in the bacterial composition of gut microbiota in pigs fed with multicomponent nutraceutical changed significantly, with a 1.78 times higher number of probiotic strains (Bifidobacterium, Streptococcus, Faecilbacterium) at the end of the experiment, compared to control group animals. This study shows a positive effect of the nutraceutical formula used on the changes of gut microbiota by facilitating an increase in probiotic bacteria strains and possible anti-inflammatory properties.
Collapse
|
104
|
Zimecki M, Actor JK, Kruzel ML. The potential for Lactoferrin to reduce SARS-CoV-2 induced cytokine storm. Int Immunopharmacol 2021; 95:107571. [PMID: 33765614 PMCID: PMC7953442 DOI: 10.1016/j.intimp.2021.107571] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic is a serious global health threat caused by severe acute respiratory syndrome of coronavirus 2 (SARS-CoV-2). Symptoms of COVID-19 are highly variable with common hyperactivity of immune responses known as a "cytokine storm". In fact, this massive release of inflammatory cytokines into in the pulmonary alveolar structure is a main cause of mortality during COVID-19 infection. Current management of COVID-19 is supportive and there is no common clinical protocol applied to suppress this pathological state. Lactoferrin (LF), an iron binding protein, is a first line defense protein that is present in neutrophils and excretory fluids of all mammals, and is well recognized for its role in maturation and regulation of immune system function. Also, due to its ability to sequester free iron, LF is known to protect against insult-induced oxidative stress and subsequent "cytokine storm" that results in dramatic necrosis within the affected tissue. Review of the literature strongly suggests utility of LF to silence the "cytokine storm", giving credence to both prophylactic and therapeutic approaches towards combating COVID-19 infection.
Collapse
Affiliation(s)
- Michał Zimecki
- The Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jeffrey K Actor
- University of Texas, Health Science Center Houston, Texas, USA.
| | - Marian L Kruzel
- University of Texas, Health Science Center Houston, Texas, USA
| |
Collapse
|
105
|
Yan M, Rodgers M, Harbhajanka A, Gilmore H. Lactotransferrin-Related Breast Amyloidosis: Report of a First Case. Int J Surg Pathol 2021; 30:50-54. [PMID: 33939557 DOI: 10.1177/10668969211016053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Breast amyloidosis is a rare condition which is mostly associated with hematological disorders or hereditary genetic disorders. Imaging findings of breast amyloidosis can mimic malignancy, which often leads to biopsy or excision of the lesion. Here, we presented a case of localized lactotransferrin-related breast amyloidosis in an elderly female patient. Histologic examination revealed extensive involvement of breast lobules by amorphous amyloid materials, with attenuation of lobular structures and prominent calcifications. Positive immunostains for myoepithelial cells helped to exclude the possibility of invasive carcinoma. The patient had no hematologic malignancy besides immunoglobulin G lambda monoclonal gammopathy of undetermined significance. Mass spectrometry of the breast amyloid identified lactotransferrin and no immunoglobulin or its light chain. On follow-up, the patient showed no recurrence of the breast lesion after local excision nor showed other systematic comorbidities, indicating the benign nature of the lesion. This first report of lactotransferrin-related amyloidosis may represent a special type of localized breast amyloidosis that has no correlation with systematic disorders.
Collapse
Affiliation(s)
- Mingfei Yan
- 24575University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Mark Rodgers
- 24575University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | | | - Hannah Gilmore
- 24575University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
106
|
Chen K, Jin S, Chen H, Cao Y, Dong X, Li H, Zhou Z, Liu C. Dose effect of bovine lactoferrin fortification on diarrhea and respiratory tract infections in weaned infants with anemia: A randomized, controlled trial. Nutrition 2021; 90:111288. [PMID: 34102559 DOI: 10.1016/j.nut.2021.111288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 01/26/2023]
Abstract
OBJECTIVE The aim of this study was to explore the dose effect of bovine lactoferrin (bLF) fortification on the morbidity of diarrhea and respiratory tract infections in weaned infants with anemia. METHODS A total of 108 infants with anemia, who were exclusively breast fed at 4 to 6 mo and weaned and formula fed at 6 to 9 mo, were recruited. The eligible infants were randomly assigned to fortified group 0 (FG0), fortified group 1 (FG1), or fortified group 2 (FG2) and were given formula fortified with 0 mg/100 g, 38 mg/100 g, and 76 mg/100 g of bLF, respectively, for 3 mo. The morbidity of diarrhea and respiratory tract infections (RTIs), the duration of respiratory and diarrhea-related illnesses, and the levels of fecal human beta-defensin 2 (HBD-2), cathelicidin LL-37 (LL-37), secretory IgA (sIgA), butyrate, and calprotectin were assessed. RESULTS After the exclusion of 12 dropouts, the primary outcome measures, including episodes and duration of diarrhea and RTIs during the intervention, were obtained from 96 infants (35, 33, and 28 in FG0, FG1, and FG2, respectively). Compared with infants in FG0, there was a lower morbidity of rhinorrhea, wheezing, and skin rash among infants in FG1 (P < 0.05) and a lower morbidity of respiratory-related illness and wheezing among infants in FG2 (P < 0.05). Furthermore, a lower morbidity of diarrhea-related illness, diarrhea, vomiting, and nausea was observed among infants in FG2 than those in the other two groups (P < 0.05). In addition, the FG1 infants had a lower morbidity of vomiting and nausea than the FG0 infants (P < 0.05). The HBD-2, LL-37, sIgA, and calprotectin levels were significantly higher whereas the butyrate level was significantly lower in the FG2 infants than in infants in the other two groups after 3 mo of intervention (P < 0.05). CONCLUSIONS The bLF-fortified formula was effective in reducing the morbidity of diarrhea and RTIs in infants with anemia, with the 76 mg/100 g bLF-fortified formula exhibiting a stronger effect. The bLF fortification could be a new strategy for the prevention of diarrhea and RTIs in infants with anemia.
Collapse
Affiliation(s)
- Ke Chen
- Department of Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Department of Child Health Care, New Century Women's and Children's Hospital, Chengdu, China.
| | - Shanshan Jin
- Department of Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Haixia Chen
- Department of Disease Prevention and Control, Center for Disease Control and Prevention of Baoxing County, Ya'an, China
| | - Yanmei Cao
- Department of Child Health Care, Dayi Maternal and Child Health Care Hospital, Chengdu, China
| | - Xiaobing Dong
- Department of Child Health Care, Hehuachi Community Health Service Center, Chengdu, China
| | - Hua Li
- Department of Child Hygiene, Qingbaijiang Maternal and Child Health Care Hospital, Chengdu, China
| | - Zengyuan Zhou
- Department of Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, California, USA
| |
Collapse
|
107
|
Nakamura-Bencomo S, Gutierrez DA, Robles-Escajeda E, Iglesias-Figueroa B, Siqueiros-Cendón TS, Espinoza-Sánchez EA, Arévalo-Gallegos S, Aguilera RJ, Rascón-Cruz Q, Varela-Ramirez A. Recombinant human lactoferrin carrying humanized glycosylation exhibits antileukemia selective cytotoxicity, microfilament disruption, cell cycle arrest, and apoptosis activities. Invest New Drugs 2021; 39:400-415. [PMID: 33063290 PMCID: PMC8939434 DOI: 10.1007/s10637-020-01020-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/09/2020] [Indexed: 02/08/2023]
Abstract
Lactoferrin has gained extensive attention due to its ample biological properties. In this study, recombinant human lactoferrin carrying humanized glycosylation (rhLf-h-glycan) expressed in the yeast Pichia pastoris SuperMan5, which is genetically glycoengineered to efficiently produce functional humanized glycoproteins inclosing (Man)5(GlcNAc)2 Asn-linked glycans, was analyzed, inspecting its potential toxicity against cancer cells. The live-cell differential nuclear staining assay was used to quantify the rhLf-h-glycan cytotoxicity, which was examined in four human cell lines: acute lymphoblastic leukemia (ALL) CCRF-CEM, T-cell lymphoblastic lymphoma SUP-T1, cervical adenocarcinoma HeLa, and as control, non-cancerous Hs27 cells. The defined CC50 values of rhLf-h-glycan in CCRF-CEM, SUP-T1, HeLa, and Hs27 cells were 144.45 ± 4.44, 548.47 ± 64.41, 350 ± 14.82, and 3359.07 ± 164 µg/mL, respectively. The rhLf-h-glycan exhibited a favorable selective cytotoxicity index (SCI), preferentially killing cancer cells: 23.25 for CCRF-CEM, 9.59 for HeLa, and 6.12 for SUP-T1, as compared with Hs27 cells. Also, rhLf-h-glycan showed significant antiproliferative activity (P < 0.0001) at 24, 48, and 72 h of incubation on CCRF-CEM cells. Additionally, it was observed via fluorescent staining and confocal microscopy that rhLf-h-glycan elicited apoptosis-associated morphological changes, such as blebbing, nuclear fragmentation, chromatin condensation, and apoptotic bodies in ALL cells. Furthermore, rhLf-h-glycan-treated HeLa cells revealed shrinkage of the microfilament structures, generating a speckled/punctuated pattern and also caused PARP-1 cleavage, a hallmark of apoptosis. Moreover, in ALL cells, rhLf-h-glycan altered cell cycle progression inducing the G2/M phase arrest, and caused apoptotic DNA fragmentation. Overall, our findings revealed that rhLf-h-glycan has potential as an anticancer agent and therefore deserves further in vivo evaluation.
Collapse
Affiliation(s)
- Sayuri Nakamura-Bencomo
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, C. P. 31125, Chihuahua, Chih, México
| | - Denisse A Gutierrez
- The Cellular Characterization and Biorepository (CCB) Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso, 79968-0519, TX, USA
| | - Elisa Robles-Escajeda
- The Cellular Characterization and Biorepository (CCB) Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso, 79968-0519, TX, USA
| | - Blanca Iglesias-Figueroa
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, C. P. 31125, Chihuahua, Chih, México
| | - Tania S Siqueiros-Cendón
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, C. P. 31125, Chihuahua, Chih, México
| | - Edward A Espinoza-Sánchez
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, C. P. 31125, Chihuahua, Chih, México
| | - Sigifredo Arévalo-Gallegos
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, C. P. 31125, Chihuahua, Chih, México
| | - Renato J Aguilera
- The Cellular Characterization and Biorepository (CCB) Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso, 79968-0519, TX, USA.
| | - Quintín Rascón-Cruz
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, C. P. 31125, Chihuahua, Chih, México.
| | - Armando Varela-Ramirez
- The Cellular Characterization and Biorepository (CCB) Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso, 79968-0519, TX, USA.
| |
Collapse
|
108
|
Thirumdas R, Kothakota A, Pandiselvam R, Bahrami A, Barba FJ. Role of food nutrients and supplementation in fighting against viral infections and boosting immunity: A review. Trends Food Sci Technol 2021; 110:66-77. [PMID: 33558789 PMCID: PMC7857987 DOI: 10.1016/j.tifs.2021.01.069] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/19/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The viral infections can be highly contagious and easily transmissible, which even can lead to a pandemic, like the recent COVID-19 outbreak, causing massive deaths worldwide. While, still the best practical way to prevent the transmission of viruses is to practice self-sanitation and follow social distancing principles, enhancing the individual's immunity through the consumption of proper foods containing balanced nutrients can have significant result against viral infections. Foods containing nutrients such as vitamins, minerals, fatty acids, few polysaccharides, and some non-nutrients (i.e. polyphenols) have shown therapeutic potential against the function of viruses and can increase the immunity of people. SCOPE AND APPROACH The results of conducted works aiming for studying the potential antiviral characteristics of diverse groups of foods and food's nutrients (in terms of polysaccharides, proteins, lipids, vitamins, and minerals) are critically discussed. KEY FINDINGS AND CONCLUSION Nutrients, besides playing an important role in maintaining normal physiology of human's body and healthiness, are also required for enhancing the immunity of the body and can be effective against viral infections. They can present antiviral capacity either by entering into the defensive mechanism directly through interfering with the target viruses, or indirectly through activating the cells associated with the adaptive immune system. During the current situation of COVID-19 pandemic (the lack of proper curative viral drug), enhancing the immunity of individual's body through proposing the appropriate diet (rich in both macro and micro-nutrients) is one of few practical preventive measures available in fighting against Coronaviruses, this significant health-threatening virus, as well as other viruses in general.
Collapse
Affiliation(s)
- Rohit Thirumdas
- Department of Food Process Technology, College of Food Science & Technology, PJTSAU, Telangana, India
| | - Anjinelyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, 695 019, Kerala, India
| | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, 671 124, Kerala, India
| | - Akbar Bahrami
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, València, Spain
| |
Collapse
|
109
|
Habib HM, Ibrahim S, Zaim A, Ibrahim WH. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators. Biomed Pharmacother 2021; 136:111228. [PMID: 33454595 PMCID: PMC7836924 DOI: 10.1016/j.biopha.2021.111228] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Iron overload is increasingly implicated as a contributor to the pathogenesis of COVID-19. Indeed, several of the manifestations of COVID-19, such as inflammation, hypercoagulation, hyperferritinemia, and immune dysfunction are also reminiscent of iron overload. Although iron is essential for all living cells, free unbound iron, resulting from iron dysregulation and overload, is very reactive and potentially toxic due to its role in the generation of reactive oxygen species (ROS). ROS react with and damage cellular lipids, nucleic acids, and proteins, with consequent activation of either acute or chronic inflammatory processes implicated in multiple clinical conditions. Moreover, iron-catalyzed lipid damage exerts a direct causative effect on the newly discovered nonapoptotic cell death known as ferroptosis. Unlike apoptosis, ferroptosis is immunogenic and not only leads to amplified cell death but also promotes a series of reactions associated with inflammation. Iron chelators are generally safe and are proven to protect patients in clinical conditions characterized by iron overload. There is also an abundance of evidence that iron chelators possess antiviral activities. Furthermore, the naturally occurring iron chelator lactoferrin (Lf) exerts immunomodulatory as well as anti-inflammatory effects and can bind to several receptors used by coronaviruses thereby blocking their entry into host cells. Iron chelators may consequently be of high therapeutic value during the present COVID-19 pandemic.
Collapse
Affiliation(s)
- Hosam M Habib
- Functional Foods and Nutraceuticals Laboratory (FFNL), Dairy Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt.
| | - Sahar Ibrahim
- Weldon School of Biomedical Engineering, Purdue University, USA
| | - Aamnah Zaim
- Weldon School of Biomedical Engineering, Purdue University, USA
| | - Wissam H Ibrahim
- Office of Institutional Effectiveness, United Arab Emirates University, P. O. Box 15551, Al Ain, UAE.
| |
Collapse
|
110
|
Mouritzen MV, Petkovic M, Qvist K, Poulsen SS, Alarico S, Leal EC, Dalgaard LT, Empadinhas N, Carvalho E, Jenssen H. Improved diabetic wound healing by LFcinB is associated with relevant changes in the skin immune response and microbiota. Mol Ther Methods Clin Dev 2021; 20:726-739. [PMID: 33738327 PMCID: PMC7940703 DOI: 10.1016/j.omtm.2021.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/05/2021] [Indexed: 12/12/2022]
Abstract
Bovine lactoferricin (LFcinB) has antimicrobial and immunomodulatory properties; however, the effects on diabetic wound healing remain poorly understood. The wound healing potential of LFcinB was investigated with in vitro, ex vivo, and in vivo models. Cell migration and proliferation were tested on keratinocytes and on porcine ears. A type 1 diabetic mouse model was also used to evaluate wound healing kinetics, bacterial diversity patterns, and the effect of LFcinB on oxidative stress, macrophage phenotype, angiogenesis, and collagen deposition. LFcinB increased keratinocyte migration in vitro (p < 0.05) and ex vivo (p < 0.001) and improved wound healing in diabetic mice (p < 0.05), though not in normoglycemic control mice. In diabetic mouse wounds, LFcinB treatment led to the eradication of Bacillus pumilus, a decrease in Staphylococcus aureus, and an increase in the Staphylococcus xylosus prevalence. LFcinB increased angiogenesis in diabetic mice (p < 0.01), but this was decreased in control mice (p < 0.05). LFcinB improved collagen deposition in both diabetic and control mice (p < 0.05). Both oxidative stress and the M1-to-M2 macrophage ratios were decreased in LFcinB-treated wounds of diabetic animals (p < 0.001 and p < 0.05, respectively) compared with saline, suggesting a downregulation of inflammation in diabetic wounds. In conclusion, LFcinB treatment demonstrated noticeable positive effects on diabetic wound healing.
Collapse
Affiliation(s)
| | - Marija Petkovic
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Katrine Qvist
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Steen S. Poulsen
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Susana Alarico
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ermelindo C. Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Louise T. Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Nuno Empadinhas
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- Department of Geriatrics, University of Arkansas for Medical Sciences, and Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
111
|
Sienkiewicz M, Jaśkiewicz A, Tarasiuk A, Fichna J. Lactoferrin: an overview of its main functions, immunomodulatory and antimicrobial role, and clinical significance. Crit Rev Food Sci Nutr 2021; 62:6016-6033. [PMID: 33685299 DOI: 10.1080/10408398.2021.1895063] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lactoferrin (LF), a glycoprotein found in mucosal secretions, is characterized by a wide range of functions, including immunomodulatory and anti-inflammatory activities. Moreover, several investigations confirmed that LF displays high effectiveness against multiple bacteria and viruses and may be regarded as a potential inhibitor of enveloped viruses, such as presently prevailing SARS-CoV-2. In our review, we discuss available studies about LF functions and bioavailability of different LF forms in in vitro and in vivo models. Moreover, we characterize the potential benefits and side effects of LF use; we also briefly summarize the latest clinical trials examining LF application. Finally, we point potential role of LF in inflammatory bowel disease and indicate its use as a marker for disease severity.
Collapse
Affiliation(s)
- Michał Sienkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andrzej Jaśkiewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
112
|
Brink LR, Chichlowski M, Pastor N, Thimmasandra Narayanappa A, Shah N. In the Age of Viral Pandemic, Can Ingredients Inspired by Human Milk and Infant Nutrition Be Repurposed to Support the Immune System? Nutrients 2021; 13:870. [PMID: 33800961 PMCID: PMC7999376 DOI: 10.3390/nu13030870] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
In 2020, with the advent of a pandemic touching all aspects of global life, there is a renewed interest in nutrition solutions to support the immune system. Infants are vulnerable to infection and breastfeeding has been demonstrated to provide protection. As such, human milk is a great model for sources of functional nutrition ingredients, which may play direct roles in protection against viral diseases. This review aims to summarize the literature around human milk (lactoferrin, milk fat globule membrane, osteopontin, glycerol monolaurate and human milk oligosaccharides) and infant nutrition (polyunsaturated fatty acids, probiotics and postbiotics) inspired ingredients for support against viral infections and the immune system more broadly. We believe that the application of these ingredients can span across all life stages and thus apply to both pediatric and adult nutrition. We highlight the opportunities for further research in this field to help provide tangible nutrition solutions to support one's immune system and fight against infections.
Collapse
Affiliation(s)
- Lauren R. Brink
- Medical and Scientific Affairs, Nutrition, Reckitt Benckiser, Evansville, IN 47721, USA; (M.C.); (N.P.)
| | - Maciej Chichlowski
- Medical and Scientific Affairs, Nutrition, Reckitt Benckiser, Evansville, IN 47721, USA; (M.C.); (N.P.)
| | - Nitida Pastor
- Medical and Scientific Affairs, Nutrition, Reckitt Benckiser, Evansville, IN 47721, USA; (M.C.); (N.P.)
| | | | - Neil Shah
- Medical and Scientific Affairs, Nutrition, Reckitt Benckiser, Slough SL1 3UH, UK;
- University College London, Great Ormond Street, London WC1N 3JH, UK
| |
Collapse
|
113
|
Krupińska AM, Bogucki Z. Clinical aspects of the use of lactoferrin in dentistry. J Oral Biosci 2021; 63:129-133. [PMID: 33662566 DOI: 10.1016/j.job.2021.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Lactoferrin (Lf) is a natural iron-binding protein involved in coordinating specific and non-specific immune responses in humans. It exhibits broad spectrum antimicrobial properties against bacteria, viruses, and fungi. Owing to its high affinity for ferric (Fe+++) ions, Lf is responsible for controlling the oxidative stress in the body, and thus protects cells from oxygen injury. In addition, Lf is a natural immunomodulatory molecule that regulates the activity of the immune system. HIGHLIGHT Lactoferrin present in saliva plays an important role in maintaining oral hygiene. It exhibits protective function on mucosal surfaces, which constitute a barrier between the host and the external environment. Thus, Lf may be considered as the first line of defense protein that is associated with oral mucosal immunity. CONCLUSION Many studies indicate that lactoferrin supplementation is safe and beneficial for human health. The aim of this review is to discuss the effects of Lf on oral microflora, highlighting the potential significance of this protein in dental therapy and prevention of oral diseases.
Collapse
Affiliation(s)
- Anna M Krupińska
- Department and Division of Dental Prosthetics, Wroclaw Medical University, Wyb. Ludwika Pasteura 1, 50-367 Wrocław, Poland.
| | - Zdzisław Bogucki
- Department and Division of Dental Prosthetics, Wroclaw Medical University, Wyb. Ludwika Pasteura 1, 50-367 Wrocław, Poland
| |
Collapse
|
114
|
Quitadamo PA, Comegna L, Cristalli P. Anti-Infective, Anti-Inflammatory, and Immunomodulatory Properties of Breast Milk Factors for the Protection of Infants in the Pandemic From COVID-19. Front Public Health 2021; 8:589736. [PMID: 33738273 PMCID: PMC7960784 DOI: 10.3389/fpubh.2020.589736] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
COVID-19 pandemic since the end of 2019 spreads worldwide, counting millions of victims. The viral invasion, systemic inflammation, and consequent organ failure are the gravest features of coronavirus disease 2019 (COVID-19), and they are associated with a high mortality rate. The aim of this study is to evaluate the role of breast milk in the COVID-19 pandemic, analyzing its antiviral, anti-inflammatory, and immunoregulatory effects due to its bioactive components, so numerous and important for the protection of infants. The study tried to demonstrate that all the components of human milk are capable of performing functions on all the pathogenic events recognized and described in COVID-19 disease. Those human milk factors are well-tolerated and practically free of side effects, so breast milk should become a research topic to discover therapies even in this epidemic. In the first part, the mechanisms of protection and defense of the breast milk elements will be delineated; in the second section, it will describe the human milk effects in viral infections and it will be hypothesized how the known mechanisms could act in COVID infection.
Collapse
Affiliation(s)
- Pasqua Anna Quitadamo
- NICU “Casa Sollievo della Sofferenza” Foundation, Scientific Research and Care Institute, San Giovanni Rotondo, Italy
| | | | | |
Collapse
|
115
|
Buck E, Lee S, Stone LS, Cerruti M. Protein Adsorption on Surfaces Functionalized with COOH Groups Promotes Anti-inflammatory Macrophage Responses. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7021-7036. [PMID: 33539069 DOI: 10.1021/acsami.0c16509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Implants can induce a foreign body reaction that leads to chronic inflammation and fibrosis in the surrounding tissue. Macrophages help detect the foreign material, play a role in the inflammatory response, and may promote fibrosis instead of the desired tissue regeneration around implants. Implant surface properties impact macrophage responses by changing the nature of the adsorbed protein layer, but conflicting studies highlight the complexity of this relationship. In this study, the effect of surface chemistry on macrophage behavior was investigated with poly(styrene) surfaces containing common functional groups at similar surface densities. The protein layer was characterized to identify the proteins that adsorbed on the surfaces from the medium and the proteins secreted onto the surfaces by adherent macrophages. Of the surface chemistries studied, carboxylic acid (COOH) groups promoted anti-inflammatory responses from unstimulated macrophages and did not exacerbate inflammation upon stimulation. These surfaces also enhanced the adsorption of proteins involved in integrin signaling and promoted the secretion of proteins related to angiogenesis, integrin signaling, and cytokine signaling, which have been previously associated with improved biomaterial integration. Therefore, this study suggests that surface modification with COOH groups may help improve the integration of implants in the body by enhancing anti-inflammatory macrophage responses through altered protein adsorption.
Collapse
Affiliation(s)
- Emily Buck
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| | - Seunghwan Lee
- Faculty of Dentistry, McGill University, Montreal, QC H3A 1G1, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QC H3A 0G1, Canada
| | - Laura S Stone
- Faculty of Dentistry, McGill University, Montreal, QC H3A 1G1, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QC H3A 0G1, Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| |
Collapse
|
116
|
Hao Y, Wang J, Teng D, Wang X, Mao R, Yang N, Ma X. A prospective on multiple biological activities of lactoferrin contributing to piglet welfare. Biochem Cell Biol 2021; 99:66-72. [DOI: 10.1139/bcb-2020-0078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Piglets, especially weaning piglets, show a lower level of immunity and higher morbidity and mortality, owing to their rapid growth, physiological immaturity, and gradual reduction of maternal antibodies, which seriously affects their growth and thus, value. It is important that piglets adapt to nutrient digestion and absorption and develop sound intestinal function and colonization with gut microbiota as soon as possible during their early life stage. Lactoferrin is a natural glycoprotein polypeptide that is part of the transferrin family. It is widely found in mucosal secretions such as saliva and tears, and most highly in milk and colostrum. As a multifunctional bioactive protein and a recommended food additive, lactoferrin is a potential alternative therapy to antibiotics and health promoting additive for piglet nutrition and development. It is expected that lactoferrin, as a natural food additive, could play an important role in maintaining pig health and development. This review examines the following known beneficial effects of lactoferrin: improves the digestion and capacity for absorption in the intestinal tract; promotes the absorption of iron and reduces the incidence of iron deficiency anemia; regulates intestinal function and helps to balance the microbial biota; and enhances the resistance to disease of the piglets via modulating and enhancing the immune system.
Collapse
Affiliation(s)
- Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| | - Xiumin Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| | - Xuanxuan Ma
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| |
Collapse
|
117
|
Salaris C, Scarpa M, Elli M, Bertolini A, Guglielmetti S, Pregliasco F, Blandizzi C, Brun P, Castagliuolo I. Protective Effects of Lactoferrin against SARS-CoV-2 Infection In Vitro. Nutrients 2021; 13:nu13020328. [PMID: 33498631 PMCID: PMC7911668 DOI: 10.3390/nu13020328] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/25/2022] Open
Abstract
SARS-CoV-2 is a newly emerging virus that currently lacks curative treatments. Lactoferrin (LF) is a naturally occurring non-toxic glycoprotein with broad-spectrum antiviral, immunomodulatory and anti-inflammatory effects. In this study, we assessed the potential of LF in the prevention of SARS-CoV-2 infection in vitro. Antiviral immune response gene expression was analyzed by qRT-PCR in uninfected Caco-2 intestinal epithelial cells treated with LF. An infection assay for SARS-CoV-2 was performed in Caco-2 cells treated or not with LF. SARS-CoV-2 titer was determined by qRT-PCR, plaque assay and immunostaining. Inflammatory and anti-inflammatory cytokine production was determined by qRT-PCR. LF significantly induced the expression of IFNA1, IFNB1, TLR3, TLR7, IRF3, IRF7 and MAVS genes. Furthermore, LF partially inhibited SARS-CoV-2 infection and replication in Caco-2 intestinal epithelial cells. Our in vitro data support LF as an immune modulator of the antiviral immune response with moderate effects against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Claudio Salaris
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (C.S.); (A.B.); (I.C.)
| | - Melania Scarpa
- Laboratory of Advanced Translational Research, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Marina Elli
- AAT-Advanced Analytical Technologies S.r.l., Fiorenzuola d’Arda, 29122 Piacenza, Italy;
| | - Alice Bertolini
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (C.S.); (A.B.); (I.C.)
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20122 Milan, Italy;
| | - Fabrizio Pregliasco
- IRCCS Istituto Ortopedico Galeazzi, University of Milan, 20136 Milan, Italy;
| | - Corrado Blandizzi
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Paola Brun
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (C.S.); (A.B.); (I.C.)
- Correspondence:
| | - Ignazio Castagliuolo
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (C.S.); (A.B.); (I.C.)
| |
Collapse
|
118
|
Bosso A, Di Maro A, Cafaro V, Di Donato A, Notomista E, Pizzo E. Enzymes as a Reservoir of Host Defence Peptides. Curr Top Med Chem 2021; 20:1310-1323. [PMID: 32223733 DOI: 10.2174/1568026620666200327173815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/21/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022]
Abstract
Host defence peptides (HDPs) are powerful modulators of cellular responses to various types of insults caused by pathogen agents. To date, a wide range of HDPs, from species of different kingdoms including bacteria, plant and animal with extreme diversity in structure and biological activity, have been described. Apart from a limited number of peptides ribosomally synthesized, a large number of promising and multifunctional HDPs have been identified within protein precursors, with properties not necessarily related to innate immunity, consolidating the fascinating hypothesis that proteins have a second or even multiple biological mission in the form of one or more bio-active peptides. Among these precursors, enzymes constitute certainly an interesting group, because most of them are mainly globular and characterized by a fine specific internal structure closely related to their catalytic properties and also because they are yet little considered as potential HDP releasing proteins. In this regard, the main aim of the present review is to describe a panel of HDPs, identified in all canonical classes of enzymes, and to provide a detailed description on hydrolases and their corresponding HDPs, as there seems to exist a striking link between these structurally sophisticated catalysts and their high content in cationic and amphipathic cryptic peptides.
Collapse
Affiliation(s)
- Andrea Bosso
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Valeria Cafaro
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Alberto Di Donato
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
119
|
Rascón-Cruz Q, Espinoza-Sánchez EA, Siqueiros-Cendón TS, Nakamura-Bencomo SI, Arévalo-Gallegos S, Iglesias-Figueroa BF. Lactoferrin: A Glycoprotein Involved in Immunomodulation, Anticancer, and Antimicrobial Processes. Molecules 2021; 26:molecules26010205. [PMID: 33401580 PMCID: PMC7795860 DOI: 10.3390/molecules26010205] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
Lactoferrin is an iron binding glycoprotein with multiple roles in the body. Its participation in apoptotic processes in cancer cells, its ability to modulate various reactions of the immune system, and its activity against a broad spectrum of pathogenic microorganisms, including respiratory viruses, have made it a protein of broad interest in pharmaceutical and food research and industry. In this review, we have focused on describing the most important functions of lactoferrin and the possible mechanisms of action that lead to its function.
Collapse
|
120
|
Ren G, Cheng G, Wang J. Understanding the role of milk in regulating human homeostasis in the context of the COVID-19 global pandemic. Trends Food Sci Technol 2021; 107:157-160. [PMID: 33012988 PMCID: PMC7521208 DOI: 10.1016/j.tifs.2020.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/07/2020] [Accepted: 09/23/2020] [Indexed: 01/04/2023]
Abstract
Although data from clinical observation have directly shown that children aged 0-14 years are less susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection than those who are between 15 and 64 years old, due to a lack of biological evidence of differences in cell entry receptors between age groups, it remains debatable whether children are actually less susceptible than adults. To date, studies on COVID-19 have consistently shown that pediatric patients generally have relatively milder cytokine release syndrome and lower mortality rates than adults. Interestingly, similar phenomena of relatively mild symptoms in children have been observed in previous outbreaks of coronaviruses, including SARS-CoV and MERS-CoV. In fact, in the early stage of life, there are many mechanisms that spontaneously regulate excessive inflammatory responses. Milk, as the main food of infants, not only provides necessary energy and nutrients but also plays an important role in regulating homeostasis related to the immune system, gut microecology and nutrition balance. This review discusses some roles of milk in regulating human homeostasis, especially in the disease states. These clues provide new insight and references for personal care at home and/or in the hospital during the global COVID-19 pandemic.
Collapse
Affiliation(s)
- Guangxu Ren
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| | - Guangyan Cheng
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| | - Jiaqi Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| |
Collapse
|
121
|
Zhao X, Kruzel M, Ting SM, Sun G, Savitz SI, Aronowski J. Optimized lactoferrin as a highly promising treatment for intracerebral hemorrhage: Pre-clinical experience. J Cereb Blood Flow Metab 2021; 41:53-66. [PMID: 32438861 PMCID: PMC7747168 DOI: 10.1177/0271678x20925667] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Intracerebral hemorrhage (ICH) is the deadliest form of stroke for which there is no effective treatment, despite an endless number of pre-clinical studies and clinical trials. The obvious therapeutic target is the neutralization of toxic products of red blood cell (RBC) lysis that lead to cytotoxicity, inflammation, and oxidative damage. We used rigorous approaches and translationally relevant experimental ICH models to show that lactoferrin-(LTF)-based monotherapy is uniquely robust in reducing brain damage after ICH. Specifically, we designed, produced, and pharmacokinetically/toxicologically characterized an optimized LTF, a fusion of human LTF and the Fc domain of human IgG (FcLTF) that has a 5.8-fold longer half-life in the circulation than native LTF. Following dose-optimization studies, we showed that FcLTF reduces neurological injury caused by ICH in aged male/female mice, and in young male Sprague Dawley (SD) and spontaneously hypertensive rats (SHR). FcLTF showed a remarkably long 24-h therapeutic window. In tissue culture systems, FcLTF protected neurons from the toxic effects of RBCs and promoted microglia toward phagocytosis of RBCs and dead neurons, documenting its pleotropic effect. Our findings indicate that FcLTF is safe and effective in reducing ICH-induced damage in animal models used in this study.
Collapse
Affiliation(s)
- Xiurong Zhao
- Department of Neurology and Institute for Stroke and Cerebrovascular Disease, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Marian Kruzel
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Shun-Ming Ting
- Department of Neurology and Institute for Stroke and Cerebrovascular Disease, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | | | - Sean I Savitz
- Department of Neurology and Institute for Stroke and Cerebrovascular Disease, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Jaroslaw Aronowski
- Department of Neurology and Institute for Stroke and Cerebrovascular Disease, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| |
Collapse
|
122
|
Tsatsanis A, McCorkindale AN, Wong BX, Patrick E, Ryan TM, Evans RW, Bush AI, Sutherland GT, Sivaprasadarao A, Guennewig B, Duce JA. The acute phase protein lactoferrin is a key feature of Alzheimer's disease and predictor of Aβ burden through induction of APP amyloidogenic processing. Mol Psychiatry 2021; 26:5516-5531. [PMID: 34400772 PMCID: PMC8758478 DOI: 10.1038/s41380-021-01248-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
Amyloidogenic processing of the amyloid precursor protein (APP) forms the amyloid-β peptide (Aβ) component of pathognomonic extracellular plaques of AD. Additional early cortical changes in AD include neuroinflammation and elevated iron levels. Activation of the innate immune system in the brain is a neuroprotective response to infection; however, persistent neuroinflammation is linked to AD neuropathology by uncertain mechanisms. Non-parametric machine learning analysis on transcriptomic data from a large neuropathologically characterised patient cohort revealed the acute phase protein lactoferrin (Lf) as the key predictor of amyloid pathology. In vitro studies showed that an interaction between APP and the iron-bound form of Lf secreted from activated microglia diverted neuronal APP endocytosis from the canonical clathrin-dependent pathway to one requiring ADP ribosylation factor 6 trafficking. By rerouting APP recycling to the Rab11-positive compartment for amyloidogenic processing, Lf dramatically increased neuronal Aβ production. Lf emerges as a novel pharmacological target for AD that not only modulates APP processing but provides a link between Aβ production, neuroinflammation and iron dysregulation.
Collapse
Affiliation(s)
- Andrew Tsatsanis
- grid.5335.00000000121885934The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ,grid.9909.90000 0004 1936 8403Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire UK
| | - Andrew N. McCorkindale
- grid.1013.30000 0004 1936 834XFaculty of Medicine and Health, Charles Perkins Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW Australia
| | - Bruce X. Wong
- grid.5335.00000000121885934The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ,grid.9909.90000 0004 1936 8403Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire UK ,grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| | - Ellis Patrick
- grid.1013.30000 0004 1936 834XFaculty of Science, School of Mathematics and Statistics, University of Sydney, Camperdown, NSW Australia
| | - Tim M. Ryan
- grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| | - Robert W. Evans
- grid.7728.a0000 0001 0724 6933School of Engineering and Design, Brunel University, London, UK
| | - Ashley I. Bush
- grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| | - Greg T. Sutherland
- grid.1013.30000 0004 1936 834XFaculty of Medicine and Health, Charles Perkins Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW Australia
| | - Asipu Sivaprasadarao
- grid.9909.90000 0004 1936 8403Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire UK
| | - Boris Guennewig
- grid.1013.30000 0004 1936 834XFaculty of Medicine and Health, Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, NSW Australia
| | - James A. Duce
- grid.5335.00000000121885934The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ,grid.9909.90000 0004 1936 8403Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire UK ,grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
123
|
Cutone A, Ianiro G, Lepanto MS, Rosa L, Valenti P, Bonaccorsi di Patti MC, Musci G. Lactoferrin in the Prevention and Treatment of Intestinal Inflammatory Pathologies Associated with Colorectal Cancer Development. Cancers (Basel) 2020; 12:E3806. [PMID: 33348646 PMCID: PMC7766217 DOI: 10.3390/cancers12123806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
The connection between inflammation and cancer is well-established and supported by genetic, pharmacological and epidemiological data. The inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, have been described as important promoters for colorectal cancer development. Risk factors include environmental and food-borne mutagens, dysbalance of intestinal microbiome composition and chronic intestinal inflammation, with loss of intestinal epithelial barrier and enhanced cell proliferation rate. Therapies aimed at shutting down mucosal inflammatory response represent the foundation for IBDs treatment. However, when applied for long periods, they can alter the immune system and promote microbiome dysbiosis and carcinogenesis. Therefore, it is imperative to find new safe substances acting as both potent anti-inflammatory and anti-pathogen agents. Lactoferrin (Lf), an iron-binding glycoprotein essential in innate immunity, is generally recognized as safe and used as food supplement due to its multifunctionality. Lf possesses a wide range of immunomodulatory and anti-inflammatory properties against different aseptic and septic inflammatory pathologies, including IBDs. Moreover, Lf exerts anti-adhesive, anti-invasive and anti-survival activities against several microbial pathogens that colonize intestinal mucosa of IBDs patients. This review focuses on those activities of Lf potentially useful for the prevention/treatment of intestinal inflammatory pathologies associated with colorectal cancer development.
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| |
Collapse
|
124
|
Huang L, Yang Z, Liu R, Xiao X, Zhou C, Yin X, Zou S, Chen J. Lactoferrin promotes osteogenesis of MC3T3-E1 cells induced by mechanical strain in an extracellular signal-regulated kinase 1/2-dependent manner. Am J Orthod Dentofacial Orthop 2020; 159:e113-e121. [PMID: 33280973 DOI: 10.1016/j.ajodo.2020.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 07/01/2020] [Accepted: 08/01/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION This study aimed to investigate the role of lactoferrin (LF) in the mechanical strain-induced osteogenesis of nontransformed osteoblastic cells (MC3T3-E1 cells) and related mechanism. METHODS MC3T3-E1 cells were cultured in vitro and treated with 100 μg/mL LF, followed by a 2000 μ mechanical strain load. U0126 was used to determine the role of extracellular signal-regulated kinase 1/2 (Erk1/2). Alizarin red S staining was performed to observe the cell mineralization potential. The osteogenic results were analyzed by reverse transcription-polymerase chain reaction and western blotting. RESULTS The expression of Col1, Alp, Ocn, Bsp, and Opn mRNA and p-Erk1/2 proteins was significantly upregulated under mechanical strain load. In addition, mineralized nodule formation was increased. After adding LF, the expression of the biomarkers and the formation of mineralized nodules were further promoted. On treatment with the Erk1/2 inhibitor U0126, the expression of Col1, Alp, and p-Erk1/2 mRNA and protein was significantly downregulated. CONCLUSIONS These findings demonstrate that LF promotes osteogenic activity by activating osteogenesis-related biomarkers, corroborating that the effects of mechanical strain depend on Erk1/2 signaling pathway.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhenjin Yang
- Department of Orthodontics, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Ruojing Liu
- State Key Laboratory of Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyue Xiao
- State Key Laboratory of Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases and Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xing Yin
- State Key Laboratory of Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jianwei Chen
- State Key Laboratory of Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
125
|
Zarzosa-Moreno D, Avalos-Gómez C, Ramírez-Texcalco LS, Torres-López E, Ramírez-Mondragón R, Hernández-Ramírez JO, Serrano-Luna J, de la Garza M. Lactoferrin and Its Derived Peptides: An Alternative for Combating Virulence Mechanisms Developed by Pathogens. Molecules 2020; 25:E5763. [PMID: 33302377 PMCID: PMC7762604 DOI: 10.3390/molecules25245763] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022] Open
Abstract
Due to the emergence of multidrug-resistant pathogens, it is necessary to develop options to fight infections caused by these agents. Lactoferrin (Lf) is a cationic nonheme multifunctional glycoprotein of the innate immune system of mammals that provides numerous benefits. Lf is bacteriostatic and/or bactericidal, can stimulate cell proliferation and differentiation, facilitate iron absorption, improve neural development and cognition, promote bone growth, prevent cancer and exert anti-inflammatory and immunoregulatory effects. Lactoferrin is present in colostrum and milk and is also produced by the secondary granules of polymorphonuclear leukocytes, which store this glycoprotein and release it at sites of infection. Lf is also present in many fluids and exocrine secretions, on the surfaces of the digestive, respiratory and reproductive systems that are commonly exposed to pathogens. Apo-Lf (an iron-free molecule) can be microbiostatic due to its ability to capture ferric iron, blocking the availability of host iron to pathogens. However, apo-Lf is mostly microbicidal via its interaction with the microbial surface, causing membrane damage and altering its permeability function. Lf can inhibit viral entry by binding to cell receptors or viral particles. Lf is also able to counter different important mechanisms evolved by microbial pathogens to infect and invade the host, such as adherence, colonization, invasion, production of biofilms and production of virulence factors such as proteases and toxins. Lf can also cause mitochondrial and caspase-dependent regulated cell death and apoptosis-like in pathogenic yeasts. All of these mechanisms are important targets for treatment with Lf. Holo-Lf (the iron-saturated molecule) can contain up to two ferric ions and can also be microbicidal against some pathogens. On the other hand, lactoferricins (Lfcins) are peptides derived from the N-terminus of Lf that are produced by proteolysis with pepsin under acidic conditions, and they cause similar effects on pathogens to those caused by the parental Lf. Synthetic analog peptides comprising the N-terminus Lf region similarly exhibit potent antimicrobial properties. Importantly, there are no reported pathogens that are resistant to Lf and Lfcins; in addition, Lf and Lfcins have shown a synergistic effect with antimicrobial and antiviral drugs. Due to the Lf properties being microbiostatic, microbicidal, anti-inflammatory and an immune modulator, it represents an excellent natural alternative either alone or as adjuvant in the combat to antibiotic multidrug-resistant bacteria and other pathogens. This review aimed to evaluate the data that appeared in the literature about the effects of Lf and its derived peptides on pathogenic bacteria, protozoa, fungi and viruses and how Lf and Lfcins inhibit the mechanisms developed by these pathogens to cause disease.
Collapse
Affiliation(s)
- Daniela Zarzosa-Moreno
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| | - Christian Avalos-Gómez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Coyoacán 04510, CdMx, Mexico
| | - Luisa Sofía Ramírez-Texcalco
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Erick Torres-López
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Ricardo Ramírez-Mondragón
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Juan Omar Hernández-Ramírez
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| |
Collapse
|
126
|
Oral Bovine Milk Lactoferrin Administration Suppressed Myopia Development through Matrix Metalloproteinase 2 in a Mouse Model. Nutrients 2020; 12:nu12123744. [PMID: 33291388 PMCID: PMC7762016 DOI: 10.3390/nu12123744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Abstract
Recent studies have reported an association between myopia development and local ocular inflammation. Lactoferrin (LF) is an iron-binding protein present in saliva, tears, and mother’s milk. Furthermore, sequestering iron by LF can cause its antibacterial property. Moreover, LF has an anti-inflammatory effect. We aimed to determine the suppressive effect of LF against the development and progress of myopia using a murine lens-induced myopia (LIM) model. We divided male C57BL/6J mice (3 weeks old) into two groups. While the experimental group was orally administered LF (1600 mg/kg/day, from 3-weeks-old to 7-weeks-old), a similar volume of Ringer’s solution was administered to the control group. We subjected the 4-week-old mice to −30 diopter lenses and no lenses on the right and left eyes, respectively. We measured the refraction and the axial length at baseline and 3 weeks after using a refractometer and a spectral domain optical coherence tomography (SD-OCT) system in both eyes. Furthermore, we determined the matrix metalloproteinase-2 (MMP-2) activity, and the amount of interleukin-6 (IL-6), MMP-2, and collagen 1A1 in the choroid or sclera. The eyes with a minus lens showed a refractive error shift and an axial length elongation in the control group, thus indicating the successful induction of myopia. However, there were no significant differences in the aforementioned parameters in the LF group. While LIM increased IL-6 expression and MMP-2 activity, it decreased collagen 1A1 content. However, orally administered LF reversed these effects. Thus, oral administration of LF suppressed lens-induced myopia development by modifying the extracellular matrix remodeling through the IL-6–MMP-2 axis in mice.
Collapse
|
127
|
Wang Y, Wang P, Wang H, Luo Y, Wan L, Jiang M, Chu Y. Lactoferrin for the treatment of COVID-19 (Review). Exp Ther Med 2020; 20:272. [PMID: 33199997 PMCID: PMC7664603 DOI: 10.3892/etm.2020.9402] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) outbreak was caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The clinical outcomes of elderly individuals and those with underlying diseases affected by COVID-19 are serious, and may result in acute respiratory distress syndrome (ARDS) and even mortality. Currently, the clinical treatments for COVID-19 mostly involve symptom alleviation measures and non-specific broad spectrum antiviral drugs, as highly effective antiviral drugs and vaccines are not yet available. Lactoferrin (LF) is a safe iron-binding glycoprotein that is present in the milk of the majority of mammals and exhibits broad-spectrum antiviral activity, including against coronaviruses. In addition, LF also exhibits anti-inflammatory, anti-infective and immune-regulating properties, which are in line with the treatment requirements for SARS-CoV-2 infection. Therefore, the use of LF may be of value in the prevention and/or management of COVID-19. The aim of the present review was to summarize the previous reports on the antiviral properties of LF and compare these with the characteristics of SARS-CoV-2 infection, in order to determine whether LF could be used to assist in the prevention of COVID-19 and to investigate the possible underlying mechanisms governing its mode of action.
Collapse
Affiliation(s)
- Yidan Wang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Puxiu Wang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Haoran Wang
- Neoland Bioscience, Weihai, Shandong 264200, P.R. China
| | - Yifan Luo
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Long Wan
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Mingyan Jiang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Yang Chu
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
128
|
Porcine and Bovine Forms of Lactoferrin Inhibit Growth of Porcine Enterotoxigenic Escherichia coli and Degrade Its Virulence Factors. Appl Environ Microbiol 2020; 86:AEM.00524-20. [PMID: 32631861 DOI: 10.1128/aem.00524-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/07/2020] [Indexed: 12/19/2022] Open
Abstract
Postweaning diarrhea (PWD) is an economically important, multifactorial disease affecting pigs within the first 2 weeks after weaning. The most common agent associated with PWD is enterotoxigenic Escherichia coli (ETEC). Currently, antibiotics are used to control PWD, and this has most likely contributed to an increased prevalence of antibiotic-resistant strains. This puts pressure on veterinarians and farmers to decrease or even abandon the use of antibiotics, but these measures need to be supported by alternative strategies for controlling these infections. Naturally derived molecules, such as lactoferrin, could be potential candidates due to their antibacterial or immune-modulating activities. Here, we analyzed the ability of bovine lactoferrin (bLF), porcine lactoferrin (pLF), and ovotransferrin (ovoTF) to inhibit ETEC growth, degrade ETEC virulence factors, and inhibit adherence of these pathogens to porcine intestinal epithelial cells. Our results revealed that bLF and pLF, but not ovoTF, inhibit the growth of ETEC. Furthermore, bLF and pLF can degrade several virulence factors produced by ETEC strains, more specifically F4 fimbriae, F18 fimbriae, and flagellin. On the other hand, ovoTF degrades F18 fimbriae and flagellin but not F4 fimbriae. An in vitro adhesion assay showed that bLF, ovoTF, and pLF can decrease the number of bacteria adherent to epithelial cells. Our findings demonstrate that lactoferrin can directly affect porcine ETEC strains, which could allow lactoferrin to serve as an alternative to antimicrobials for the prevention of ETEC infections in piglets.IMPORTANCE Currently, postweaning F4+ and F18+ Escherichia coli infections in piglets are controlled by the use of antibiotics and zinc oxide, but the use of these antimicrobial agents most likely contributes to an increase in antibiotic resistance. Our work demonstrates that bovine and porcine lactoferrin can inhibit the growth of porcine enterotoxigenic E. coli strains. In addition, we also show that lactoferrin can reduce the adherence of these strains to small intestinal epithelial cells, even at a concentration that does not inhibit bacterial growth. This research could allow us to develop lactoferrin as an alternative strategy to prevent enterotoxigenic E. coli (ETEC) infections in piglets.
Collapse
|
129
|
Naidu SAG, Clemens RA, Pressman P, Zaigham M, Davies KJA, Naidu AS. COVID-19 during Pregnancy and Postpartum. J Diet Suppl 2020; 19:78-114. [PMID: 33164606 DOI: 10.1080/19390211.2020.1834047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
As the COVID-19 pandemic intensified the global health crisis, the containment of SARS-CoV-2 infection in pregnancies, and the inherent risk of vertical transmission of virus from mother-to-fetus (or neonate) poses a major concern. Most COVID-19-Pregnancy patients showed mild to moderate COVID-19 pneumonia with no pregnancy loss and no congenital transmission of the virus; however, an increase in hypoxia-induced preterm deliveries was apparent. Also, the breastmilk of several mothers with COVID-19 tested negative for the virus. Taken together, the natural barrier function during pregnancy and postpartum seems to deter the SARS-CoV-2 transmission from mother-to-child. This clinical observation warrants to explore the maternal-fetal interface and identify the innate defense factors for prevention and control of COVID-19-Pregnancy. Lactoferrin (LF) is a potent antiviral iron-binding protein present in the maternal-fetal interface. In concert with immune co-factors, maternal-LF modulates chemokine release and lymphocyte migration and amplify host defense during pregnancy. LF levels during pregnancy may resolve hypertension via down-regulation of ACE2; consequently, may limit the membrane receptor access to SARS-CoV-2 for cellular entry. Furthermore, an LF-derived peptide (LRPVAA) has been shown to block ACE receptor activity in vitro. LF may also reduce viral docking and entry into host cells and limit the early phase of COVID-19 infection. An in-depth understanding of LF and other soluble mammalian milk-derived innate antiviral factors may provide insights to reduce co-morbidities and vertical transmission of SARS-CoV-2 infection and may lead to the development of effective nutraceutical supplements.
Collapse
Affiliation(s)
| | - Roger A Clemens
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | | | - Mehreen Zaigham
- Department of Obstetrics & Gynecology, Skåne University Hospital, Malmö, Sweden
| | - Kelvin J A Davies
- Division of Biogerontology, Leonard Davis School of Gerontology, The University of Southern California, Los Angeles, CA, USA.,Division of Molecular & Computational Biology, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA, USA.,Department Biochemistry & Molecular Medicine, Keck School of Medicine of USC, The University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
130
|
Gray JM, Knight K, Nguyen VQ, Rubio MG, Irby L, Boone JH, Sorrentino D. Fecal Lactoferrin and Other Stool Markers during Normal Pregnancy and in Inflammatory Bowel Diseases: A Prospective Study and Review of the Literature. Inflamm Intest Dis 2020; 5:151-157. [PMID: 32999888 DOI: 10.1159/000508970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction Management of inflammatory bowel diseases (IBDs) - both Crohn's disease (CD) and ulcerative colitis (UC) - during pregnancy can be challenging since most monitoring tools available in nonpregnant patients are contraindicated. Objectives The aim of the study was to test whether fecal inflammatory markers - specifically fecal lactoferrin - physiologically change during normal pregnancy as a prerequisite to use them to monitor IBD activity during pregnancy. Methods Fecal lactoferrin was tested in healthy pregnant and nonpregnant women from the same geographic area and age range (18-40 years) - all negative for clinical gastrointestinal tract inflammation. A retrospective review of fecal lactoferrin levels contrasted with the Simple Endoscopic Score for CD, and the Disease Activity Index for UC was also performed in women with active IBDs within the same age range and geographical area. Results In 30 nonpregnant subjects, fecal lactoferrin levels were 0.87 ± 1.08 μg/g. In 49 pregnant subjects, levels were 0.59 ± 0.83, 0.87 ± 1.13, and 0.85 ± 1.06 μg/g during the first, second, and third trimester, respectively (p = 0.64), with average levels for the 3 trimesters of 0.81 ± 1.04 μg/g (p = 0.61 compared to nonpregnant subjects). Sequential fecal lactoferrin levels (n = 26) did not differ from one trimester to the other in the individual subjects (p = 0.80). In 45 female IBD patients (27 with CD and 18 with UC), fecal lactoferrin levels were correlated with disease activity as defined by the endoscopic scores: 218, 688, and 1,175 μg/g for CD and 931, 2,088, and 2,509 μg/g for UC, respectively, for mild, moderate, and severe activity. Conclusions Fecal lactoferrin levels during normal pregnancy are superimposable to those of nonpregnant women and significantly below levels in women of the same childbearing age with active IBDs. Additional published data - reviewed in this atricle - and our own indicate that fecal lactoferrin and other markers can be potentially used to monitor disease activity in pregnant IBD patients.
Collapse
Affiliation(s)
- James M Gray
- IBD Center, Division of Gastroenterology, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Kristin Knight
- IBD Center, Division of Gastroenterology, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Vu Q Nguyen
- IBD Center, Division of Gastroenterology, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Marrieth G Rubio
- IBD Center, Division of Gastroenterology, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Lauren Irby
- TechLab Research and Development, Blacksburg, Virginia, USA
| | - James H Boone
- TechLab Research and Development, Blacksburg, Virginia, USA
| | - Dario Sorrentino
- IBD Center, Division of Gastroenterology, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA.,Department of Clinical and Experimental Medical Sciences, University of Udine School of Medicine, Udine, Italy
| |
Collapse
|
131
|
Al-Horani RA, Kar S. Potential Anti-SARS-CoV-2 Therapeutics That Target the Post-Entry Stages of the Viral Life Cycle: A Comprehensive Review. Viruses 2020; 12:E1092. [PMID: 32993173 PMCID: PMC7600245 DOI: 10.3390/v12101092] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/08/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease-2019 (COVID-19) pandemic continues to challenge health care systems around the world. Scientists and pharmaceutical companies have promptly responded by advancing potential therapeutics into clinical trials at an exponential rate. Initial encouraging results have been realized using remdesivir and dexamethasone. Yet, the research continues so as to identify better clinically relevant therapeutics that act either as prophylactics to prevent the infection or as treatments to limit the severity of COVID-19 and substantially decrease the mortality rate. Previously, we reviewed the potential therapeutics in clinical trials that block the early stage of the viral life cycle. In this review, we summarize potential anti-COVID-19 therapeutics that block/inhibit the post-entry stages of the viral life cycle. The review presents not only the chemical structures and mechanisms of the potential therapeutics under clinical investigation, i.e., listed in clinicaltrials.gov, but it also describes the relevant results of clinical trials. Their anti-inflammatory/immune-modulatory effects are also described. The reviewed therapeutics include small molecules, polypeptides, and monoclonal antibodies. At the molecular level, the therapeutics target viral proteins or processes that facilitate the post-entry stages of the viral infection. Frequent targets are the viral RNA-dependent RNA polymerase (RdRp) and the viral proteases such as papain-like protease (PLpro) and main protease (Mpro). Overall, we aim at presenting up-to-date details of anti-COVID-19 therapeutics so as to catalyze their potential effective use in fighting the pandemic.
Collapse
Affiliation(s)
- Rami A. Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | | |
Collapse
|
132
|
Vagge A, Senni C, Bernabei F, Pellegrini M, Scorcia V, Traverso CE, Giannaccare G. Therapeutic Effects of Lactoferrin in Ocular Diseases: From Dry Eye Disease to Infections. Int J Mol Sci 2020; 21:ijms21186668. [PMID: 32932574 PMCID: PMC7554921 DOI: 10.3390/ijms21186668] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
Lactoferrin is a naturally occurring iron-binding glycoprotein, produced and secreted by mucosal epithelial cells and neutrophils in various mammalian species, including humans. It is typically found in fluids like saliva, milk and tears, where it reaches the maximum concentration. Thanks to its unique anti-inflammatory, antioxidant and antimicrobial activities, topical application of lactoferrin plays a crucial role in the maintenance of a healthy ocular surface system. The present review aims to provide a comprehensive evaluation of the clinical applications of lactoferrin in ocular diseases. Besides the well-known antibacterial effect, novel interest has been rising towards its potential application in the field of dry eye and viral infections. A growing body of evidence supports the antimicrobial efficacy of lactoferrin, which is not limited to its iron-chelating properties but also depends on its capability to directly interact with pathogen particles while playing immunomodulatory effects. Nowadays, lactoferrin antiviral activity is of special interest, since lactoferrin-based eye drops could be adopted to treat/prevent the new severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection, which has conjunctivitis among its possible clinical manifestations. In the future, further data from randomized controlled studies are desirable to confirm the efficacy of lactoferrin in the wide range of ocular conditions where it can be used.
Collapse
Affiliation(s)
- Aldo Vagge
- University Eye Clinic of Genoa, DiNOGMI—University of Genoa IRCCS Ospedale, Policlinico San Martino, Viale Benedetto XV, 5, 16132 Genova (GE), Italy;
- Correspondence: ; Tel.: +39-010-353-8491
| | - Carlotta Senni
- Ophthalmology Unit, S.Orsola-Malpighi University Hospital, University of Bologna, 40138 Bologna, Italy; (C.S.); (F.B.); (M.P.)
| | - Federico Bernabei
- Ophthalmology Unit, S.Orsola-Malpighi University Hospital, University of Bologna, 40138 Bologna, Italy; (C.S.); (F.B.); (M.P.)
| | - Marco Pellegrini
- Ophthalmology Unit, S.Orsola-Malpighi University Hospital, University of Bologna, 40138 Bologna, Italy; (C.S.); (F.B.); (M.P.)
| | - Vincenzo Scorcia
- Department of Ophthalmology, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.S.); (G.G.)
| | - Carlo E Traverso
- University Eye Clinic of Genoa, DiNOGMI—University of Genoa IRCCS Ospedale, Policlinico San Martino, Viale Benedetto XV, 5, 16132 Genova (GE), Italy;
| | - Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.S.); (G.G.)
| |
Collapse
|
133
|
Rocchetti MT, Rascio F, Castellano G, Fiorentino M, Netti GS, Spadaccino F, Ranieri E, Gallone A, Gesualdo L, Stallone G, Pontrelli P, Grandaliano G. Altered Phosphorylation of Cytoskeleton Proteins in Peripheral Blood Mononuclear Cells Characterizes Chronic Antibody-Mediated Rejection in Kidney Transplantation. Int J Mol Sci 2020; 21:ijms21186509. [PMID: 32899575 PMCID: PMC7556000 DOI: 10.3390/ijms21186509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 11/24/2022] Open
Abstract
Chronic antibody-mediated rejection (CAMR) is the major cause of kidney transplant failure. The molecular mechanisms underlying this event are still poorly defined and this lack of knowledge deeply influences the potential therapeutic strategies. The aim of our study was to analyze the phosphoproteome of peripheral blood mononuclear cells (PBMCs), to identify cellular signaling networks differentially activated in CAMR. Phosphoproteins isolated from PBMCs of biopsy proven CAMR, kidney transplant recipients with normal graft function and histology and healthy immunocompetent individuals, have been investigated by proteomic analysis. Phosphoproteomic results were confirmed by Western blot and PBMCs’ confocal microscopy analyses. Overall, 38 PBMCs samples were analyzed. A differential analysis of PBMCs’ phosphoproteomes revealed an increase of lactotransferrin, actin-related protein 2 (ARPC2) and calgranulin-B in antibody-mediated rejection patients, compared to controls. Increased expression of phosphorylated ARPC2 and its correlation to F-actin filaments were confirmed in CAMR patients. Our results are the first evidence of altered cytoskeleton organization in circulating immune cells of CAMR patients. The increased expression of phosphorylated ARPC2 found in the PBMCs of our patients, and its association with derangement of F-actin filaments, might suggest that proteins regulating actin dynamics in immune cells could be involved in the mechanism of CAMR of kidney grafts.
Collapse
Affiliation(s)
- Maria Teresa Rocchetti
- Clinical Pathology Unit and Center for Molecular Medicine, Department of Medical and Surgical Sciences, Faculty of Medicine, University of Foggia, 71122 Foggia, Italy; (M.T.R.); (F.R.); (G.S.N.); (F.S.); (E.R.)
| | - Federica Rascio
- Clinical Pathology Unit and Center for Molecular Medicine, Department of Medical and Surgical Sciences, Faculty of Medicine, University of Foggia, 71122 Foggia, Italy; (M.T.R.); (F.R.); (G.S.N.); (F.S.); (E.R.)
| | - Giuseppe Castellano
- Nephrology Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, Faculty of Medicine University of Foggia, 71122 Foggia, Italy; (G.C.); (G.S.)
| | - Marco Fiorentino
- Nephrology Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, Faculty of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.F.); (L.G.)
| | - Giuseppe Stefano Netti
- Clinical Pathology Unit and Center for Molecular Medicine, Department of Medical and Surgical Sciences, Faculty of Medicine, University of Foggia, 71122 Foggia, Italy; (M.T.R.); (F.R.); (G.S.N.); (F.S.); (E.R.)
| | - Federica Spadaccino
- Clinical Pathology Unit and Center for Molecular Medicine, Department of Medical and Surgical Sciences, Faculty of Medicine, University of Foggia, 71122 Foggia, Italy; (M.T.R.); (F.R.); (G.S.N.); (F.S.); (E.R.)
| | - Elena Ranieri
- Clinical Pathology Unit and Center for Molecular Medicine, Department of Medical and Surgical Sciences, Faculty of Medicine, University of Foggia, 71122 Foggia, Italy; (M.T.R.); (F.R.); (G.S.N.); (F.S.); (E.R.)
| | - Anna Gallone
- Experimental Biology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, Faculty of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Loreto Gesualdo
- Nephrology Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, Faculty of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.F.); (L.G.)
| | - Giovanni Stallone
- Nephrology Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, Faculty of Medicine University of Foggia, 71122 Foggia, Italy; (G.C.); (G.S.)
| | - Paola Pontrelli
- Experimental Biology, Department of Emergency and Organ Transplantation, Faculty of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence: ; Tel.: +39-08-05-478-868
| | - Giuseppe Grandaliano
- Nephrology Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
- Department of Translational Medicine and Surgery, Faculty of Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
134
|
Zhao X, Kruzel M, Aronowski J. Lactoferrin and hematoma detoxification after intracerebral hemorrhage. Biochem Cell Biol 2020; 99:97-101. [PMID: 32886889 DOI: 10.1139/bcb-2020-0116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this minireview we discuss the role of lactoferrin (LTF) in detoxifying hematoma after intracerebral hemorrhage (ICH). Subsequent to ICH, neutrophils enter the ICH-affected brain, where they release various granule contents, including LTF. LTF is an iron-binding glycoprotein that binds Fe3+ with high affinity. Unlike other iron-binding proteins, LTF can retain Fe3+ at the low pH associated with inflamed tissue. LTF's ability to sequester Fe3+ is of particular importance to ICH pathogenesis, because large quantities of free iron, which is pro-oxidative and pro-inflammatory, are generated in the ICH-affected brain owing to blood hemolysis. LTF delivered to ICH-affected brain, either as a therapeutic agent or through infiltrated polymorphonuclear neutrophils (cells containing high levels of LTF), could limit the pathogenesis of ICH. LTF is a protein with a high isoelectric point (8.7), a property that enables it to bind to negatively-charged apoptotic cells or proteins. Here, LTF could act as a bridging molecule that couples the apoptotic cells to LTF receptors on the cellular membranes of microglia/macrophages to facilitate the efferocytosis/erythrophagocytosis of apoptotic cells and damaged red blood cells. Thus, by virtue of sequestrating iron and facilitating efferocytosis, LTF may contribute to hematoma detoxification and hematoma/inflammation resolution after ICH.
Collapse
Affiliation(s)
- Xiurong Zhao
- Department of Neurology UTHealth Neuroscience, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| | - Marian Kruzel
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| | - Jaroslaw Aronowski
- Department of Neurology UTHealth Neuroscience, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
135
|
Mann JK, Ndung'u T. The potential of lactoferrin, ovotransferrin and lysozyme as antiviral and immune-modulating agents in COVID-19. Future Virol 2020. [PMCID: PMC7543043 DOI: 10.2217/fvl-2020-0170] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by SARS coronavirus 2 (SARS-CoV-2), is spreading rapidly with no established effective treatments. While most cases are mild, others experience uncontrolled inflammatory responses with oxidative stress, dysregulation of iron and coagulation as features. Lactoferrin, ovotransferrin and lysozyme are abundant, safe antimicrobials that have wide antiviral as well as immunomodulatory properties. In particular, lactoferrin restores iron homeostasis and inhibits replication of SARS-CoV, which is closely related to SARS-CoV-2. Ovotransferrin has antiviral peptides and activities that are shared with lactoferrin. Both lactoferrin and lysozyme are ‘immune sensing’ as they may stimulate immune responses or resolve inflammation. Mechanisms by which these antimicrobials may treat or prevent COVID-19, as well as sources and forms of these, are reviewed.
Collapse
Affiliation(s)
- Jaclyn Kelly Mann
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa
- Africa Health Research Institute, Durban, 4001, South Africa
- Ragon Institute of MGH, MIT & Harvard University, Cambridge, MA 02139, USA
- Max Planck Institute for Infection Biology, Chariteplatz, D-10117 Berlin, Germany
- Division of Infection & Immunity, University College London, London WC1E 6BT, UK
| |
Collapse
|
136
|
Superti F. Lactoferrin from Bovine Milk: A Protective Companion for Life. Nutrients 2020; 12:nu12092562. [PMID: 32847014 PMCID: PMC7551115 DOI: 10.3390/nu12092562] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Lactoferrin (Lf), an iron-binding multifunctional glycoprotein belonging to the transferrin family, is present in most biological secretions and reaches particularly high concentrations in colostrum and breast milk. A key function of lactoferrin is non-immune defence and it is considered to be a mediator linking innate and adaptive immune responses. Lf from bovine milk (bLf), the main Lf used in human medicine because of its easy availability, has been designated by the United States Food and Drug Administration as a food additive that is generally recognized as safe (GRAS). Among the numerous protective activities exercised by this nutraceutical protein, the most important ones demonstrated after its oral administration are: Antianemic, anti-inflammatory, antimicrobial, immunomodulatory, antioxidant and anticancer activities. All these activities underline the significance in host defence of bLf, which represents an ideal nutraceutical product both for its economic production and for its tolerance after ingestion. The purpose of this review is to summarize the most important beneficial activities demonstrated following the oral administration of bLf, trying to identify potential perspectives on its prophylactic and therapeutic applications in the future.
Collapse
Affiliation(s)
- Fabiana Superti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
137
|
Janarthanan G, Tran HN, Cha E, Lee C, Das D, Noh I. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:111008. [DOI: 10.1016/j.msec.2020.111008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/27/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
|
138
|
Chang R, Ng TB, Sun WZ. Lactoferrin as potential preventative and adjunct treatment for COVID-19. Int J Antimicrob Agents 2020; 56:106118. [PMID: 32738305 PMCID: PMC7390755 DOI: 10.1016/j.ijantimicag.2020.106118] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/01/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022]
Abstract
Lactoferrin (Lf) is a naturally occurring, pleiotropic, non-toxic glycoprotein. Lf has broad-spectrum antiviral, immunomodulatory and anti-inflammatory effects. Lf shows in vitro antiviral activity against SARS-CoV, which is likely similar against SARS-CoV-2 via the same mechanism. Lf's immunomodulatory and anti-inflammatory effects may be especially relevant as a potential adjunct for severe COVID-19.
The coronavirus disease 2019 (COVID-19) pandemic is rapidly advancing across the globe despite drastic public and personal health measures. Antivirals and nutritional supplements have been proposed as potentially useful against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the novel coronavirus that causes COVID-19, but few have been clinically established. Lactoferrin (Lf) is a naturally occurring, non-toxic glycoprotein that is orally available as a nutritional supplement and has established in vitro antiviral efficacy against a wide range of viruses, including SARS-CoV, a closely related coronavirus to SARS-CoV-2. Furthermore, Lf possesses unique immunomodulatory and anti-inflammatory effects that may be especially relevant to the pathophysiology of severe COVID-19 cases. Here we review the underlying biological mechanisms of Lf as an antiviral and immune regulator, and propose its unique potential as a preventative and adjunct treatment for COVID-19. We hope that further research and development of Lf nutritional supplementation would establish its role for COVID-19.
Collapse
Affiliation(s)
- Raymond Chang
- Institute of East-West Medicine, 102 E 30th Street, New York, NY 10016, USA.
| | - Tzi Bun Ng
- Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Wei-Zen Sun
- Institute of East-West Medicine, 102 E 30th Street, New York, NY 10016, USA; National Taiwan University Hospital, 7 Chung Shan S. Road., Taipei, Taiwan
| |
Collapse
|
139
|
Campione E, Cosio T, Rosa L, Lanna C, Di Girolamo S, Gaziano R, Valenti P, Bianchi L. Lactoferrin as Protective Natural Barrier of Respiratory and Intestinal Mucosa against Coronavirus Infection and Inflammation. Int J Mol Sci 2020; 21:E4903. [PMID: 32664543 PMCID: PMC7402319 DOI: 10.3390/ijms21144903] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022] Open
Abstract
Recently, the world has been dealing with a devastating global pandemic coronavirus infection, with more than 12 million infected worldwide and over 300,000 deaths as of May 15th 2020, related to a novel coronavirus (2019-nCoV), characterized by a spherical morphology and identified through next-generation sequencing. Although the respiratory tract is the primary portal of entry of SARS-CoV-2, gastrointestinal involvement associated with nausea, vomiting and diarrhoea may also occur. No drug or vaccine has been approved due to the absence of evidence deriving from rigorous clinical trials. Increasing interest has been highlighted on the possible preventative role and adjunct treatment of lactoferrin, glycoprotein of human secretions part of a non-specific defensive system, known to play a crucial role against microbial and viral infections and exerting anti-inflammatory effects on different mucosal surfaces and able to regulate iron metabolism. In this review, analysing lactoferrin properties, we propose designing a clinical trial to evaluate and verify its effect using a dual combination treatment with local, solubilized intranasal spray formulation and oral administration. Lactoferrin could counteract the coronavirus infection and inflammation, acting either as natural barrier of both respiratory and intestinal mucosa or reverting the iron disorders related to the viral colonization.
Collapse
Affiliation(s)
- Elena Campione
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (T.C.); (C.L.); (L.B.)
| | - Terenzio Cosio
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (T.C.); (C.L.); (L.B.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Caterina Lanna
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (T.C.); (C.L.); (L.B.)
| | - Stefano Di Girolamo
- Department of Otorhinolaryngology, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Roberta Gaziano
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Luca Bianchi
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (T.C.); (C.L.); (L.B.)
| |
Collapse
|
140
|
Carlson SK, Erickson DL, Wilson E. Staphylococcus aureus metal acquisition in the mastitic mammary gland. Microb Pathog 2020; 144:104179. [DOI: 10.1016/j.micpath.2020.104179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/28/2022]
|
141
|
Buey B, Bellés A, Latorre E, Abad I, Pérez MD, Grasa L, Mesonero JE, Sánchez L. Comparative effect of bovine buttermilk, whey, and lactoferrin on the innate immunity receptors and oxidative status of intestinal epithelial cells. Biochem Cell Biol 2020; 99:54-60. [PMID: 32538128 DOI: 10.1139/bcb-2020-0121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Milk contains bioactive molecules with important functions as defensive proteins; among them are the whey protein lactoferrin and proteins of the milk fat globule membrane (MFGM) present in buttermilk. The aim of this study has been to investigate the effects of lactoferrin, whey, and buttermilk as modulators of intestinal innate immunity and oxidative stress on intestinal epithelial cells, to evaluate its potential use for the development of functional foods. The mRNA expression levels of innate immune system Toll-like receptors (TLR2, TLR4, and TLR9), lipid peroxidation (malondialdehyde + 4-hydroxyalkenals) and protein expression levels of carbonyl were analyzed in enterocyte-like Caco-2/TC7 cells treated for 24 h with different concentrations of lactoferrin, whey, or buttermilk. None of the substances analyzed caused oxidative damage; however, whey significantly decreased the levels of lipid peroxidation. Furthermore, both lactoferrin and whey reduced the oxidative stress induced by lipopolysaccharide. With respect to TLR receptors, lactoferrin, whey, and buttermilk specifically altered the expression of TLR2, TLR4, and TLR9 receptors, with a strong decrease in the expression levels of TLR4. These results suggest that lactoferrin, whey, and buttermilk are potentially interesting ingredients for functional foods because they seem to modulate oxidative stress and the inflammatory response induced by the activation of TLRs.
Collapse
Affiliation(s)
- Berta Buey
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Andrea Bellés
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Eva Latorre
- Departamento de Bioquímica y Biología Molecular y Celular. Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Inés Abad
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - María Dolores Pérez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Laura Grasa
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - José Emilio Mesonero
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Lourdes Sánchez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| |
Collapse
|
142
|
Liu Y, Perego M, Xiao Q, He Y, Fu S, He J, Liu W, Li X, Tang Y, Li X, Yuan W, Zhou W, Wu F, Jia C, Cui Q, Worthen GS, Jensen EA, Gabrilovich DI, Zhou J. Lactoferrin-induced myeloid-derived suppressor cell therapy attenuates pathologic inflammatory conditions in newborn mice. J Clin Invest 2020; 129:4261-4275. [PMID: 31483289 DOI: 10.1172/jci128164] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Inflammation plays a critical role in the development of severe neonatal morbidities. Myeloid-derived suppressor cells (MDSCs) were recently implicated in the regulation of immune responses in newborns. Here, we report that the presence of MDSCs and their functional activity in infants are closely associated with the maturity of newborns and the presence of lactoferrin (LF) in serum. Low amounts of MDSCs at birth predicted the development of severe pathology in preterm infants - necrotizing enterocolitis (NEC). In vitro treatment of newborn neutrophils and monocytes with LF converted these cells to MDSCs via the LRP2 receptor and activation of the NF-κB transcription factor. Decrease in the expression of LRP2 was responsible for the loss of sensitivity of adult myeloid cells to LF. LF-induced MDSCs (LF-MDSCs) were effective in the treatment of newborn mice with NEC, acting by blocking inflammation, resulting in increased survival. LF-MDSCs were more effective than treatment with LF protein alone. In addition to affecting NEC, LF-MDSCs demonstrated potent ability to control ovalbumin-induced (OVA-induced) lung inflammation, dextran sulfate sodium-induced (DSS-induced) colitis, and concanavalin A-induced (ConA-induced) hepatitis. These results suggest that cell therapy with LF-MDSCs may provide potent therapeutic benefits in infants with various pathological conditions associated with dysregulated inflammation.
Collapse
Affiliation(s)
- Yufeng Liu
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | | | - Qiang Xiao
- Institute of Human Virology, Zhongshan School of Medicine
| | - Yumei He
- Institute of Human Virology, Zhongshan School of Medicine
| | - Shuyu Fu
- Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Juan He
- Institute of Human Virology, Zhongshan School of Medicine
| | | | - Xing Li
- Third Affiliated Hospital, Sun Yat-sen University (SYSU), Guangzhou, China
| | | | | | - Weiming Yuan
- Guangzhou Women and Children's Medical Centre, Guangzhou, China
| | - Wei Zhou
- Guangzhou Women and Children's Medical Centre, Guangzhou, China
| | - Fan Wu
- Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chunhong Jia
- Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiliang Cui
- Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - George S Worthen
- Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | - Erik A Jensen
- Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | | | - Jie Zhou
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
143
|
Zhao C, Wei L, Yin B, Liu F, Li J, Liu X, Wang J, Wang Y. Encapsulation of lycopene within oil-in-water nanoemulsions using lactoferrin: Impact of carrier oils on physicochemical stability and bioaccessibility. Int J Biol Macromol 2020; 153:912-920. [DOI: 10.1016/j.ijbiomac.2020.03.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
|
144
|
Kruzel ML, Olszewska P, Pazdrak B, Krupinska AM, Actor JK. New insights into the systemic effects of oral lactoferrin: transcriptome profiling. Biochem Cell Biol 2020; 99:47-53. [PMID: 32476452 DOI: 10.1139/bcb-2020-0069] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The immunomodulatory nature of lactoferrin (LF) derives from its ability to bridge innate and adaptive immunity in obtaining physiological equilibrium. LF is an attractive molecule for treatment of diseases that compromise immune homeostasis. Oral delivery is a preferable method for LF administration; however, its bioavailability is affected by protein degradation and absorption. The aim of this study was to evaluate the systemic effects of orally and intravenously (IV) administered recombinant human LF (rhLF) on blood cell transcriptome profiling. Rats were administered a single dose of rhLF by gavage or IV. The transcriptome profiles from the control and the rhLF-treated rats after 3, 6, and 24 h were analyzed using a Clariom D microarray. The results showed differentially expressed genes in response to IV as well as oral administered rhLF including coding and noncoding RNAs. Moreover, a comparison of the differentially expressed genes between oral and IV administration of LF, after 6 h, revealed that the majority (72.8%) of the genes altered in response to oral administration of rhLF were the same as for the IV treatment. The pathway profiles showed similarities in up-regulation of specific genes involved in oxidative stress and inflammatory responses for both routes of treatments. These findings provide evidence of the systemic signal transduction effects of orally administered rhLF.
Collapse
Affiliation(s)
| | - Paulina Olszewska
- Medical University of Lodz, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Lodz, Poland
| | | | - Anna M Krupinska
- Medical University of Wroclaw, Department of Prosthetic Dentistry, Wroclaw, Poland
| | | |
Collapse
|
145
|
Figueroa-Lozano S, Valk-Weeber RL, Akkerman R, Abdulahad W, van Leeuwen SS, Dijkhuizen L, de Vos P. Inhibitory Effects of Dietary N-Glycans From Bovine Lactoferrin on Toll-Like Receptor 8; Comparing Efficacy With Chloroquine. Front Immunol 2020; 11:790. [PMID: 32477333 PMCID: PMC7235371 DOI: 10.3389/fimmu.2020.00790] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/07/2020] [Indexed: 01/06/2023] Open
Abstract
Toll-like receptor 8 (TLR-8) plays a role in the pathogenesis of autoimmune disorders and associated gastrointestinal symptoms that reduce quality of life of patients. Dietary interventions are becoming more accepted as mean to manage onset, progression, and treatment of a broad spectrum of inflammatory conditions. In this study, we assessed the impact of N-glycans derived from bovine lactoferrin (bLF) on the inhibition of TLR-8 activation. We investigated the effects of N-glycans in their native form, as well as in its partially demannosylated and partially desialylated form, on HEK293 cells expressing TLR-8, and in human monocyte-derived dendritic cells (MoDCs). We found that in HEK293 cells, N-glycans strongly inhibited the ssRNA40 induced TLR-8 activation but to a lesser extent the R848 induced TLR-8 activation. The impact was compared with a pharmaceutical agent, i.e., chloroquine (CQN), that is clinically applied to antagonize endosomal TLR- activation. Inhibitory effects of the N-glycans were not influenced by the partially demannosylated or partially desialylated N-glycans. As the difference in charge of the N-glycans did not influence the inhibition capacity of TLR-8, it is possible that the inhibition mediated by the N-glycans is a result of a direct interaction with the receptor rather than a result of pH changes in the endosome. The inhibition of TLR-8 in MoDCs resulted in a significant decrease of IL-6 when cells were treated with the unmodified (0.5-fold, p < 0.0001), partially demannosylated (0.3-fold, p < 0.0001) and partially desialylated (0.4-fold, p < 0.0001) N-glycans. Furthermore, the partially demannosylated and partially desialylated N-glycans showed stronger inhibition of IL-6 production compared with the native N-glycans. This provides evidence that glycan composition plays a role in the immunomodulatory activity of the isolated N-glycans from bLF on MoDCs. Compared to CQN, the N-glycans are specific inhibitors of TLR-8 activation and of IL-6 production in MoDCs. Our findings demonstrate that isolated N-glycans from bLF have attenuating effects on TLR-8 induced immune activation in HEK293 cells and human MoDCs. The inhibitory capacity of N-glycans isolated from bLF onTLR-8 activation may become a food-based strategy to manage autoimmune, infections or other inflammatory disorders.
Collapse
Affiliation(s)
- Susana Figueroa-Lozano
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rivca L Valk-Weeber
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Groningen, Netherlands
| | - Renate Akkerman
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Wayel Abdulahad
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Sander S van Leeuwen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Groningen, Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Groningen, Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
146
|
Recombinant human lactoferrin induces apoptosis, disruption of F-actin structure and cell cycle arrest with selective cytotoxicity on human triple negative breast cancer cells. Apoptosis 2020; 24:562-577. [PMID: 30941553 DOI: 10.1007/s10495-019-01539-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Breast cancer is the most frequently diagnosed cancer among women worldwide. Here, recombinant human lactoferrin (rhLf) expressed in Pichia pastoris was tested for its potential cytotoxic activity on a panel of six human breast cancer cell lines. The rhLf cytotoxic effect was determined via a live-cell HTS imaging assay. Also, confocal microscopy and flow cytometry protocols were employed to investigate the rhLf mode of action. The rhLf revealed an effective CC50 of 91.4 and 109.46 µg/ml on non-metastatic and metastatic MDA-MB-231 cells, with favorable selective cytotoxicity index values, 11.68 and 13.99, respectively. Moreover, rhLf displayed satisfactory SCI values on four additional cell lines, MDA-MB-468, HCC70, MCF-7 and T-47D (1.55-3.34). Also, rhLf provoked plasma membrane blebbing, chromatin condensation and cell shrinkage in MDA-MB-231 cells, being all three apoptosis-related morphological changes. Also, rhLf was able to shrink the microfilaments, forming a punctuated cytoplasmic pattern in both the MDA-MB-231 and Hs-27 cells, as visualized in confocal photomicrographs. Moreover, performing flow cytometric analysis, rhLf provoked significant phosphatidylserine externalization, cell cycle arrest in the S phase and apoptosis-induced DNA fragmentation in MDA-MB-231 cells. Hence, rhLf possesses selective cytotoxicity on breast cancer cells. Also, rhLf caused apoptosis-associated morphologic changes, disruption of F-actin cytoskeleton organization, phosphatidylserine externalization, DNA fragmentation, and arrest of the cell cycle progression on triple-negative breast cancer MDA-MB-231 cells. Overall results suggest that rhLf is using the apoptosis pathway as its mechanism to inflict cell death. Findings warranty further evaluation of rhLf as a potential anti-breast cancer drug option.
Collapse
|
147
|
Sharifi R, Jahedi S, Mozaffari HR, Imani MM, Sadeghi M, Golshah A, Moradpoor H, Safaei M. Association of LTF, ENAM, and AMELX polymorphisms with dental caries susceptibility: a meta-analysis. BMC Oral Health 2020; 20:132. [PMID: 32375748 PMCID: PMC7204276 DOI: 10.1186/s12903-020-01121-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
Background This meta-analysis evaluated the association of LTF, ENAM, and AMELX polymorphisms with dental caries susceptibility. Methods We searched the Scopus, PubMed/Medline, Web of Science, and Cochrane Library databases to retrieve articles published by October 2019. Review Manager 5.3 software was used to estimate the odds ratios (ORs) and 95% confidence intervals (CIs). The results of publication bias tests were retrieved by Comprehensive Meta-Analysis 2.0 software. Results A total of 150 relevant records were identified; out of which, 16 were entered into the analysis (4 studies assessed LTF, 11 ENAM, and 11 AMELX polymorphisms). Of all polymorphisms, there was a significant association only between ENAM rs3796704 polymorphism and dental caries susceptibility. Both ENAM rs3796704 and AMELX rs17878486 polymorphisms had a significant association with dental caries risk in the Caucasian ethnicity and the studies including caries-free control group. Conclusions The results of this meta-analysis showed that the G allele and the GG genotype of ENAM rs3796704 were associated with an increased risk of caries in the case group compared with the control group. But there was no association between LTF rs1126478, ENAM (rs1264848 and rs3796703), and AMELX (rs946252, rs17878486, and rs2106416) polymorphisms and dental caries susceptibility.
Collapse
Affiliation(s)
- Roohollah Sharifi
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, 6713954658, Iran
| | - Sajjad Jahedi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6715847141, Iran
| | - Hamid Reza Mozaffari
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, 6713954658, Iran
| | - Mohammad Moslem Imani
- Department of Orthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, 6713954658, Iran
| | - Masoud Sadeghi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, 6714415185, Iran.
| | - Amin Golshah
- Department of Orthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, 6713954658, Iran
| | - Hedaiat Moradpoor
- Department of Prosthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, 6713954658, Iran
| | - Mohsen Safaei
- Advanced Dental Sciences Research Laboratory, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, 6713954658, Iran
| |
Collapse
|
148
|
Icriverzi M, Dinca V, Moisei M, Evans RW, Trif M, Roseanu A. Lactoferrin in Bone Tissue Regeneration. Curr Med Chem 2020; 27:838-853. [PMID: 31258057 DOI: 10.2174/0929867326666190503121546] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/15/2018] [Accepted: 12/13/2018] [Indexed: 11/22/2022]
Abstract
Among the multiple properties exhibited by lactoferrin (Lf), its involvement in bone regeneration processes is of great interest at the present time. A series of in vitro and in vivo studies have revealed the ability of Lf to promote survival, proliferation and differentiation of osteoblast cells and to inhibit bone resorption mediated by osteoclasts. Although the mechanism underlying the action of Lf in bone cells is still not fully elucidated, it has been shown that its mode of action leading to the survival of osteoblasts is complemented by its mitogenic effect. Activation of several signalling pathways and gene expression, in an LRPdependent or independent manner, has been identified. Unlike the effects on osteoblasts, the action on osteoclasts is different, with Lf leading to a total arrest of osteoclastogenesis. Due to the positive effect of Lf on osteoblasts, the potential use of Lf alone or in combination with different biologically active compounds in bone tissue regeneration and the treatment of bone diseases is of great interest. Since the bioavailability of Lf in vivo is poor, a nanotechnology- based strategy to improve the biological properties of Lf was developed. The investigated formulations include incorporation of Lf into collagen membranes, gelatin hydrogel, liposomes, loading onto nanofibers, porous microspheres, or coating onto silica/titan based implants. Lf has also been coupled with other biologically active compounds such as biomimetic hydroxyapatite, in order to improve the efficacy of biomaterials used in the regulation of bone homeostasis. This review aims to provide an up-to-date review of research on the involvement of Lf in bone growth and healing and on its use as a potential therapeutic factor in bone tissue regeneration.
Collapse
Affiliation(s)
- Madalina Icriverzi
- Ligand-Receptor Interaction Department, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania.,University of Bucharest, Faculty of Biology, Bucharest, Romania
| | - Valentina Dinca
- National Institute for Laser, Plasma and Radiation Physics, Magurele RO-077125, Romania
| | - Magdalena Moisei
- Ligand-Receptor Interaction Department, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Robert W Evans
- Brunel University, School of Engineering and Design, London, United Kingdom
| | - Mihaela Trif
- Ligand-Receptor Interaction Department, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Anca Roseanu
- Ligand-Receptor Interaction Department, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
149
|
Ibuki M, Shoda C, Miwa Y, Ishida A, Tsubota K, Kurihara T. Lactoferrin Has a Therapeutic Effect via HIF Inhibition in a Murine Model of Choroidal Neovascularization. Front Pharmacol 2020; 11:174. [PMID: 32180725 PMCID: PMC7059857 DOI: 10.3389/fphar.2020.00174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/07/2020] [Indexed: 12/30/2022] Open
Abstract
Background Lactoferrin, a type of glycoprotein, is contained in exocrine fluids such as tears, breast milk, sweat, and saliva, and is known to have anti-microbial, antioxidant, and anti-cancer effects. In the ophthalmological field, topical administration of lactoferrin has been reported to have a therapeutic effect in a murine dry eye model. Hypoxia-inducible factor (HIF) regulates various gene expressions under hypoxia, including vascular endothelial growth factor (VEGF), and is considered as an alternative target for neovascular ocular diseases such as age-related macular degeneration (AMD). We previously screened natural products and identified lactoferrin as a novel HIF inhibitor. In this study, we confirmed that lactoferrin has an HIF inhibitory effect and a therapeutic effect in a murine model of neovascular AMD. Methods HIF inhibitory effects of lactoferrin were evaluated using a luciferase assay and western blotting in vitro. The quantified volume of choroidal neovascularization (CNV) induced by laser irradiation was compared with oral lactoferrin administration or conditional tissue specific Hif1a knockout mice. Results Lactoferrin administration showed a significant HIF inhibitory effect in the retinal neuronal cells. Oral administration of lactoferrin or conditional Hif1a gene deletion significantly reduced CNV volume compared to controls. Conclusions Lactoferrin has a therapeutic effect in a laser CNV model by suppressing the retinal HIF activity.
Collapse
Affiliation(s)
- Mari Ibuki
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Chiho Shoda
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Nihon University, Tokyo, Japan
| | - Yukihiro Miwa
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Ayako Ishida
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Tsubota Laboratory, Inc., Tokyo, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
150
|
Lu Y, Jin W, Yang Y, Jia Y, Sun L, Liu J, Wang L, Zhang F, Ge W, Wang J, Huang L, Wang Z. Online LC-UV-ESI-MS/MS Comparative Analysis of Changes in Goat Colostrum N/ O-Glycopatterns at Different Parities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2174-2182. [PMID: 31985220 DOI: 10.1021/acs.jafc.9b07075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Goat milk oligosaccharides are complex carbohydrates with a variety of biological functions. Free oligosaccharides from goat milk show more similarity to human milk than cow milk. At present, changes in goat milk glycoconjugates at different parities remain poorly studied. Herein, we qualitatively and quantitatively compared the goat milk glycoprotein N/O-glycome at different parities using a stable isotope labeling followed by electrospray ionization mass spectrometry and online hydrophilic interaction chromatography. N-Glycans were mainly fucosylated and nonfucosylated nonsialylated, and both fucosylation and sialylation gradually increased with parity, amounting (at the third parity) to 1.25 times and 3.3 times those of the first parity, respectively. O-Glycans were mostly nonfucosylated and nonsialylated, and sialylation increased with increasing parity, and Neu5Ac-sialylated was up to 9 times higher in the third parity than in the first parity, whereas Neu5Gc-sialylated was 5.5 times higher. This study provides a reference for exploring an alternative milk source closest to human milk and for the development of humanized formula milk.
Collapse
Affiliation(s)
- Yu Lu
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Wanjun Jin
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Yuerong Yang
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Yue Jia
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Lujia Sun
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Jie Liu
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Langhong Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology , Northwest University , Xi'an 710069 , China
| | - Fuxing Zhang
- College of Food Engineering and Nutritional Science , Shaanxi Normal University , Xi'an 710119 , China
| | - Wupeng Ge
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Jiansheng Wang
- Shaanxi Hongxing Meiling Dairy Co., Ltd. , Fuping 711700 , China
| | - Linjuan Huang
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology , Northwest University , Xi'an 710069 , China
| | - Zhongfu Wang
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology , Northwest University , Xi'an 710069 , China
| |
Collapse
|