101
|
Zhang L, Hendrickson RC, Meikle V, Lefkowitz EJ, Ioerger TR, Niederweis M. Comprehensive analysis of iron utilization by Mycobacterium tuberculosis. PLoS Pathog 2020; 16:e1008337. [PMID: 32069330 PMCID: PMC7058343 DOI: 10.1371/journal.ppat.1008337] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/05/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Iron is essential for nearly all bacterial pathogens, including Mycobacterium tuberculosis (Mtb), but is severely limited in the human host. To meet its iron needs, Mtb secretes siderophores, small molecules with high affinity for iron, and takes up iron-loaded mycobactins (MBT) and carboxymycobactins (cMBT), from the environment. Mtb is also capable of utilizing heme and hemoglobin which contain more than 70% of the iron in the human body. However, many components of these iron acquisition pathways are still unknown. In this study, a high-density transposon mutagenesis coupled with deep sequencing (TnSeq) showed that Mtb exhibits nearly opposite requirements for 165 genes in the presence of heme and hemoglobin versus MBT and cMBT as iron sources. The ESX-3 secretion system was assessed as essential for siderophore-mediated iron uptake and, surprisingly, also for heme utilization by Mtb. Predictions derived from the TnSeq analysis were validated by growth experiments with isogenic Mtb mutants. These results showed that (i) the efflux pump MmpL5 plays a dominant role in siderophore secretion, (ii) the Rv2047c protein is essential for growth of Mtb in the presence of mycobactin, and (iii) the transcriptional repressor Zur is required for heme utilization by Mtb. The novel genetic determinants of iron utilization revealed in this study will stimulate further experiments in this important area of Mtb physiology.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - R. Curtis Hendrickson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Virginia Meikle
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Elliot J. Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
102
|
The genome of opportunistic fungal pathogen Fusarium oxysporum carries a unique set of lineage-specific chromosomes. Commun Biol 2020; 3:50. [PMID: 32005944 PMCID: PMC6994591 DOI: 10.1038/s42003-020-0770-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
Fusarium oxysporum is a cross-kingdom fungal pathogen that infects plants and humans. Horizontally transferred lineage-specific (LS) chromosomes were reported to determine host-specific pathogenicity among phytopathogenic F. oxysporum. However, the existence and functional importance of LS chromosomes among human pathogenic isolates are unknown. Here we report four unique LS chromosomes in a human pathogenic strain NRRL 32931, isolated from a leukemia patient. These LS chromosomes were devoid of housekeeping genes, but were significantly enriched in genes encoding metal ion transporters and cation transporters. Homologs of NRRL 32931 LS genes, including a homolog of ceruloplasmin and the genes that contribute to the expansion of the alkaline pH-responsive transcription factor PacC/Rim1p, were also present in the genome of NRRL 47514, a strain associated with Fusarium keratitis outbreak. This study provides the first evidence, to our knowledge, for genomic compartmentalization in two human pathogenic fungal genomes and suggests an important role of LS chromosomes in niche adaptation. Zhang, Yang et al. compare a Fusarium oxysporum isolate obtained clinically to a phytopathogenic strain to examine transfer of lineage-specific chromosomes in determining host specificity. They find four unique lineage-specific chromosomes that seem to contribute to fungal adaptation to human hosts.
Collapse
|
103
|
Garber AI, Nealson KH, Okamoto A, McAllister SM, Chan CS, Barco RA, Merino N. FeGenie: A Comprehensive Tool for the Identification of Iron Genes and Iron Gene Neighborhoods in Genome and Metagenome Assemblies. Front Microbiol 2020; 11:37. [PMID: 32082281 PMCID: PMC7005843 DOI: 10.3389/fmicb.2020.00037] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/09/2020] [Indexed: 01/15/2023] Open
Abstract
Iron is a micronutrient for nearly all life on Earth. It can be used as an electron donor and electron acceptor by iron-oxidizing and iron-reducing microorganisms and is used in a variety of biological processes, including photosynthesis and respiration. While it is the fourth most abundant metal in the Earth's crust, iron is often limiting for growth in oxic environments because it is readily oxidized and precipitated. Much of our understanding of how microorganisms compete for and utilize iron is based on laboratory experiments. However, the advent of next-generation sequencing and surge in publicly available sequence data has made it possible to probe the structure and function of microbial communities in the environment. To bridge the gap between our understanding of iron acquisition, iron redox cycling, iron storage, and magnetosome formation in model microorganisms and the plethora of sequence data available from environmental studies, we have created a comprehensive database of hidden Markov models (HMMs) based on genes related to iron acquisition, storage, and reduction/oxidation in Bacteria and Archaea. Along with this database, we present FeGenie, a bioinformatics tool that accepts genome and metagenome assemblies as input and uses our comprehensive HMM database to annotate provided datasets with respect to iron-related genes and gene neighborhood. An important contribution of this tool is the efficient identification of genes involved in iron oxidation and dissimilatory iron reduction, which have been largely overlooked by standard annotation pipelines. We validated FeGenie against a selected set of 28 isolate genomes and showcase its utility in exploring iron genes present in 27 metagenomes, 4 isolate genomes from human oral biofilms, and 17 genomes from candidate organisms, including members of the candidate phyla radiation. We show that FeGenie accurately identifies iron genes in isolates. Furthermore, analysis of metagenomes using FeGenie demonstrates that the iron gene repertoire and abundance of each environment is correlated with iron richness. While this tool will not replace the reliability of culture-dependent analyses of microbial physiology, it provides reliable predictions derived from the most up-to-date genetic markers. FeGenie's database will be maintained and continually updated as new genes are discovered. FeGenie is freely available: https://github.com/Arkadiy-Garber/FeGenie.
Collapse
Affiliation(s)
- Arkadiy I. Garber
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Earth Sciences, University of Delaware, Newark, DE, United States
| | - Kenneth H. Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Sean M. McAllister
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States
| | - Clara S. Chan
- Department of Earth Sciences, University of Delaware, Newark, DE, United States
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States
| | - Roman A. Barco
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Nancy Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
104
|
Lange MD, Farmer BD, Abernathy J. Vertebrate mucus stimulates biofilm development and upregulates iron acquisition genes in Flavobacterium columnare. JOURNAL OF FISH DISEASES 2020; 43:101-110. [PMID: 31709555 DOI: 10.1111/jfd.13103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Columnaris disease is responsible for substantial losses throughout the production of many freshwater fish species. One of the ways in which the bacterium Flavobacterium columnare is so effective in initiating disease is through the formation of biofilms on fish skin and gills. To further explore the interaction between host factors and bacterial cells, we assayed the ability of vertebrate mucus to enhance F. columnare biofilm development. Different concentrations of catfish, tilapia and pig mucus (5-60 µg/ml) increased biofilm growth at varying degrees among F. columnare isolates. Our data suggest that vertebrate mucus acts as a signalling molecule for the development of F. columnare biofilms; however, there are clear disparities in how individual isolates respond to different mucus fractions to stimulate biofilms. The expression of iron acquisition genes among two genomovar II isolates showed that ferroxidase, TonB receptor and the siderophore synthetase gene were all significantly upregulated among F. columnare biofilms. Interestingly, the siderophore acetyltransferase gene was only shown to be significantly upregulated in one of the genomovar II isolates. This work provides insight into our understanding of the interaction between F. columnare and vertebrate mucus, which likely contributes to the growth of planktonic cells and the transition into biofilms.
Collapse
Affiliation(s)
- Miles D Lange
- United States Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA
| | - Bradley D Farmer
- United States Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA
| | - Jason Abernathy
- United States Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA
| |
Collapse
|
105
|
Nair A, Perry A, Perry JD, Gould FK, Samuel J. In vitro effects of combined iron chelation, antibiotics and matrix disruption on clinical isolates of Pseudomonas aeruginosa. J Antimicrob Chemother 2019; 75:586-592. [DOI: 10.1093/jac/dkz505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
Objectives
Pseudomonas aeruginosa is an important pathogen in chronic suppurative respiratory diseases, with adverse effects on severity, healthcare utilization and quality of life. Aerosolized combined biofilm disruption and iron chelators offer novel proof-of-concept for improving airway antimicrobial efficacy. Our aim was to assess the activity of desferrioxamine, Dornase alfa (DNase) and antibiotics on biofilm formation and against mature preformed biofilms of P. aeruginosa.
Methods
Fifty-six isolates of P. aeruginosa were screened for biofilm production and seven isolates with varying capacity to form biofilms were referred for further study. Three antibiotics (colistin, tobramycin and ciprofloxacin) as well as desferrioxamine and DNase were assessed for their ability to prevent biofilm formation using the crystal violet assay. The same method was used to assess their impact on mature biofilms. Each agent, as well as combinations of these agents, was also assessed for its effect on the metabolic activity and viability of preformed P. aeruginosa biofilm by the resazurin reduction assay and by performing viable counts.
Results
Antibiotics alone prevented the development of biofilms and partly reduced the viability of mature biofilms. Desferrioxamine and DNase did not reduce biofilm formation. For most isolates, desferrioxamine and DNase did not offer any clear advantage over the use of antibiotics alone with respect to reducing the viability of Pseudomonas biofilms.
Conclusions
Colistin, tobramycin and ciprofloxacin prevented biofilm formation by P. aeruginosa and reduced the viability of mature biofilms. For most isolates, there was no clear advantage of combining these antimicrobials with desferrioxamine or DNase.
Collapse
Affiliation(s)
- Arun Nair
- Institute of Transplantation, Department of Respiratory Medicine and Cardiothoracic Transplantation, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Audrey Perry
- Microbiology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - John D Perry
- Microbiology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - F Kate Gould
- Microbiology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Julie Samuel
- Microbiology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| |
Collapse
|
106
|
Structure and Metal Binding Properties of Chlamydia trachomatis YtgA. J Bacteriol 2019; 202:JB.00580-19. [PMID: 31611288 DOI: 10.1128/jb.00580-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis is a globally significant cause of sexually transmitted bacterial infections and the leading etiological agent of preventable blindness. The first-row transition metal iron (Fe) plays critical roles in chlamydial cell biology, and acquisition of this nutrient is essential for the survival and virulence of the pathogen. Nevertheless, how C. trachomatis acquires Fe from host cells is not well understood, since it lacks genes encoding known siderophore biosynthetic pathways, receptors for host Fe storage proteins, and the Fe acquisition machinery common to many bacteria. Recent studies have suggested that C. trachomatis directly acquires host Fe via the ATP-binding cassette permease YtgABCD. Here, we characterized YtgA, the periplasmic solute binding protein component of the transport pathway, which has been implicated in scavenging Fe(III) ions. The structure of Fe(III)-bound YtgA was determined at 2.0-Å resolution with the bound ion coordinated via a novel geometry (3 Ns, 2 Os [3N2O]). This unusual coordination suggested a highly plastic metal binding site in YtgA capable of interacting with other cations. Biochemical analyses showed that the metal binding site of YtgA was not restricted to interaction with only Fe(III) ions but could bind all transition metal ions examined. However, only Mn(II), Fe(II), and Ni(II) ions bound reversibly to YtgA, with Fe being the most abundant cellular transition metal in C. trachomatis Collectively, these findings show that YtgA is the metal-recruiting component of the YtgABCD permease and is most likely involved in the acquisition of Fe(II) and Mn(II) from host cells.IMPORTANCE Chlamydia trachomatis is the most common bacterial sexually transmitted infection in developed countries, with an estimated global prevalence of 4.2% in the 15- to 49-year age group. Although infection is asymptomatic in more than 80% of infected women, about 10% of cases result in serious disease. Infection by C. trachomatis is dependent on the ability to acquire essential nutrients, such as the transition metal iron, from host cells. In this study, we show that iron is the most abundant transition metal in C. trachomatis and report the structural and biochemical properties of the iron-recruiting protein YtgA. Knowledge of the high-resolution structure of YtgA will provide a platform for future structure-based antimicrobial design approaches.
Collapse
|
107
|
Inbaraj S, Sejian V, Ramasamy S. Role of environmental stressor-host immune system–pathogen interactions in development of infectious disease in farm animals. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1695084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sophia Inbaraj
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Veerasamy Sejian
- Animal Physiology Division, ICAR-National Institute Animal Nutrition and Physiology, Bengaluru, India
| | - Santhamani Ramasamy
- Department of microbiology and immunology, Post-doctoral research fellow, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
108
|
Iron: an essential nutrient for Aspergillus fumigatus and a fulcrum for pathogenesis. Curr Opin Infect Dis 2019; 31:506-511. [PMID: 30379731 DOI: 10.1097/qco.0000000000000487] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Aspergillus fumigatus is a ubiquitous saprophytic fungus that can cause life-threatening invasive aspergillosis in immunocompromised patients. Apart from the immune status of the host only a few characterized virulence factors have been identified. In this review, we describe the role of iron in the manifestation of A. fumigatus virulence. RECENT FINDINGS We gathered recent clinical evidence suggesting that tissue iron overload increases the risk of invasive aspergillosis occurrence. Furthermore, we summarize the mechanisms that A. fumigatus employs to achieve iron homeostasis and their importance in A. fumigatus proliferation in vitro. We describe two recent in-vivo models that clearly demonstrate the importance of iron in A. fumigatus growth and invasion. SUMMARY Based on these recent findings, therapy aimed at managing A. fumigatus iron homeostasis locally could make conditions more favorable to the host.
Collapse
|
109
|
Cross JH, Jarjou O, Mohammed NI, Prentice AM, Cerami C. Neonatal iron distribution and infection susceptibility in full term, preterm and low birthweight babies in urban Gambia: study protocol for an observational study. Gates Open Res 2019; 3:1469. [PMID: 31588425 PMCID: PMC6757319 DOI: 10.12688/gatesopenres.12963.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Neonatal infection is the third largest cause of death in children under five worldwide. Nutritional immunity is the process by which the host innate immune system limits nutrient availability to invading organisms. Iron is an essential micronutrient for both microbial pathogens and their mammalian hosts. Changes in iron availability and distribution have significant effects on pathogen virulence and on the immune response to infection. Our previously published data shows that, during the first 24 hours of life, full-term neonates have reduced overall serum iron. Transferrin saturation decreases rapidly from 45% in cord blood to ~20% by six hours post-delivery. Methods: To study neonatal nutritional immunity and its role in neonatal susceptibility to infection, we will conduct an observational study on 300 full-term normal birth weight (FTB+NBW), 50 preterm normal birth weight (PTB+NBW), 50 preterm low birth weight (PTB+LBW) and 50 full-term low birth weight (FTB+LBW), vaginally-delivered neonates born at Kanifing General Hospital, The Gambia. We will characterize and quantify iron-related nutritional immunity during the early neonatal period and use ex vivo sentinel bacterial growth assays to assess how differences in serum iron affect bacterial growth. Blood samples will be collected from the umbilical cord (arterial and venous) and at serial time points from the neonates over the first week of life. Discussion: Currently, little is known about nutritional immunity in neonates. In this study, we will increase understanding of how nutritional immunity may protect neonates from infection during the first critical days of life by limiting the pathogenicity and virulence of neonatal sepsis causing organisms by reducing the availability of iron. Additionally, we will investigate the hypothesis that this protective mechanism may not be activated in preterm and low birth weight neonates, potentially putting these babies at an enhanced risk of neonatal infection. Trial registration: clinicaltrials.gov ( NCT03353051) 27/11/2017.
Collapse
Affiliation(s)
- James H. Cross
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Ousman Jarjou
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | | | - Andrew M. Prentice
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Carla Cerami
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| |
Collapse
|
110
|
Dikicioglu D, Coxon JWMT, Oliver SG. Metabolic response to Parkinson's disease recapitulated by the haploinsufficient diploid yeast cells hemizygous for the adrenodoxin reductase gene. Mol Omics 2019; 15:340-347. [PMID: 31429849 DOI: 10.1039/c9mo00090a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Adrenodoxin reductase, a widely conserved mitochondrial P450 protein, catalyses essential steps in steroid hormone biosynthesis and is highly expressed in the adrenal cortex. The yeast adrenodoxin reductase homolog, Arh1p, is involved in cytoplasmic and mitochondrial iron homeostasis and is required for activity of enzymes containing an Fe-S cluster. In this paper, we investigated the response of yeast to the loss of a single copy of ARH1, an oxidoreductase of the mitochondrial inner membrane, which is among the few mitochondrial proteins that is essential for viability in yeast. The phenotypic, transcriptional, proteomic, and metabolic landscape indicated that Saccharomyces cerevisiae successfully adapted to this loss, displaying an apparently dosage-insensitive cellular response. However, a considered investigation of transcriptional regulation in ARH1-impaired yeast highlighted that a significant hierarchical reorganisation occurred, involving the iron assimilation and tyrosine biosynthetic processes. The interconnected roles of the iron and tyrosine pathways, coupled with oxidative processes, are of interest beyond yeast since they are involved in dopaminergic neurodegeneration associated with Parkinson's disease. The identification of similar responses in yeast, albeit preliminary, suggests that this simple eukaryote could have potential as a model system for investigating the regulatory mechanisms leading to the initiation and progression of early disease responses in humans.
Collapse
Affiliation(s)
- Duygu Dikicioglu
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| | | | | |
Collapse
|
111
|
Abstract
Organisms from all kingdoms of life use iron-proteins in a multitude of functional processes. We applied a bioinformatics approach to investigate the human portfolio of iron-proteins. We separated iron-proteins based on the chemical nature of their metal-containing cofactors: individual iron ions, heme cofactors and iron-sulfur clusters. We found that about 2% of human genes encode an iron-protein. Of these, 35% are proteins binding individual iron ions, 48% are heme-binding proteins and 17% are iron-sulfur proteins. More than half of the human iron-proteins have a catalytic function. Indeed, we predict that 6.5% of all human enzymes are iron-dependent. This percentage is quite different for the various enzyme classes. Human oxidoreductases feature the largest fraction of iron-dependent family members (about 37%). The distribution of iron proteins in the various cellular compartments is uneven. In particular, the mitochondrion and the endoplasmic reticulum are enriched in iron-proteins with respect to the average content of the cell. Finally, we observed that genes encoding iron-proteins are more frequently associated to pathologies than the all other human genes on average. The present research provides an extensive overview of iron usage by the human proteome, and highlights several specific features of the physiological role of iron ions in human cells.
Collapse
Affiliation(s)
- Claudia Andreini
- Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy.
| | | | | | | |
Collapse
|
112
|
Carrier MC, Bourassa JS, Massé E. Cellular Homeostasis: A Small RNA at the Crossroads of Iron and Photosynthesis. Curr Biol 2019; 27:R380-R383. [PMID: 28535387 DOI: 10.1016/j.cub.2017.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cyanobacterium Synechocystis relies on iron to perform oxygenic photosynthesis. This makes Synechocystis particularly sensitive to iron starvation. A new study shows that the small RNA IsaR1 is a major effector of the iron-stress response, remodeling the photosynthetic apparatus.
Collapse
Affiliation(s)
- Marie-Claude Carrier
- University of Sherbrooke, CRCHUS, Faculty of Medicine and Health Sciences, Department of Biochemistry, Sherbrooke, Quebec, Canada
| | - Jean-Sébastien Bourassa
- University of Sherbrooke, CRCHUS, Faculty of Medicine and Health Sciences, Department of Biochemistry, Sherbrooke, Quebec, Canada
| | - Eric Massé
- University of Sherbrooke, CRCHUS, Faculty of Medicine and Health Sciences, Department of Biochemistry, Sherbrooke, Quebec, Canada.
| |
Collapse
|
113
|
Cross JH, Jarjou O, Mohammed NI, Prentice AM, Cerami C. Neonatal iron distribution and infection susceptibility in full term, preterm and low birthweight babies in urban Gambia: study protocol for an observational study. Gates Open Res 2019; 3:1469. [PMID: 31588425 PMCID: PMC6757319 DOI: 10.12688/gatesopenres.12963.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2019] [Indexed: 10/15/2023] Open
Abstract
Background: Neonatal infection is the third largest cause of death in children under five worldwide. Nutritional immunity is the process by which the host innate immune system limits nutrient availability to invading organisms. Iron is an essential micronutrient for both microbial pathogens and their mammalian hosts. Changes in iron availability and distribution have significant effects on pathogen virulence and on the immune response to infection. Our previously published data shows that, during the first 24 hours of life, full-term neonates have reduced overall serum iron. Transferrin saturation decreases rapidly from 45% in cord blood to ~20% by six hours post-delivery. Methods: To study neonatal nutritional immunity and its role in neonatal susceptibility to infection, we will conduct an observational study on 300 full-term normal birth weight (FTB+NBW), 50 preterm normal birth weight (PTB+NBW), 50 preterm low birth weight (PTB+LBW) and 50 full-term low birth weight (FTB+LBW), vaginally-delivered neonates born at Kanifing General Hospital, The Gambia. We will characterize and quantify iron-related nutritional immunity during the early neonatal period and use ex vivo sentinel bacterial growth assays to assess how differences in serum iron affect bacterial growth. Blood samples will be collected from the umbilical cord (arterial and venous) and at serial time points from the neonates over the first week of life. Discussion: Currently, little is known about nutritional immunity in neonates. In this study, we will increase understanding of how nutritional immunity may protect neonates from infection during the first critical days of life by limiting the pathogenicity and virulence of neonatal sepsis causing organisms by reducing the availability of iron. Additionally, we will investigate the hypothesis that this protective mechanism may not be activated in preterm and low birth weight neonates, potentially putting these babies at an enhanced risk of neonatal infection. Trial registration: clinicaltrials.gov ( NCT03353051) 27/11/2017.
Collapse
Affiliation(s)
- James H. Cross
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Ousman Jarjou
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | | | - Andrew M. Prentice
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Carla Cerami
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| |
Collapse
|
114
|
Labruna G, Nanayakkara M, Pagliuca C, Nunziato M, Iaffaldano L, D'Argenio V, Colicchio R, Budelli AL, Nigro R, Salvatore P, Barone MV, Sacchetti L. Celiac disease-associated Neisseria flavescens decreases mitochondrial respiration in CaCo-2 epithelial cells: Impact of Lactobacillus paracasei CBA L74 on bacterial-induced cellular imbalance. Cell Microbiol 2019; 21:e13035. [PMID: 31042331 PMCID: PMC6618323 DOI: 10.1111/cmi.13035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022]
Abstract
We previously identified a Neisseria flavescens strain in the duodenum of celiac disease (CD) patients that induced immune inflammation in ex vivo duodenal mucosal explants and in CaCo‐2 cells. We also found that vesicular trafficking was delayed after the CD‐immunogenic P31‐43 gliadin peptide‐entered CaCo‐2 cells and that Lactobacillus paracasei CBA L74 (L. paracasei‐CBA) supernatant reduced peptide entry. In this study, we evaluated if metabolism and trafficking was altered in CD‐N. flavescens‐infected CaCo‐2 cells and if any alteration could be mitigated by pretreating cells with L. paracasei‐CBA supernatant, despite the presence of P31‐43. We measured CaCo‐2 bioenergetics by an extracellular flux analyser, N. flavescens and P31‐43 intracellular trafficking by immunofluorescence, cellular stress by TBARS assay, and ATP by bioluminescence. We found that CD‐N. flavescens colocalised more than control N. flavescens with early endocytic vesicles and more escaped autophagy thereby surviving longer in infected cells. P31‐43 increased colocalisation of N. flavescens with early vesicles. Mitochondrial respiration was lower (P < .05) in CD‐N. flavescens‐infected cells versus not‐treated CaCo‐2 cells, whereas pretreatment with L. paracasei‐CBA reduced CD‐N. flavescens viability and improved cell bioenergetics and trafficking. In conclusion, CD‐N. flavescens induces metabolic imbalance in CaCo‐2 cells, and the L. paracasei‐CBA probiotic could be used to correct CD‐associated dysbiosis.
Collapse
Affiliation(s)
- Giuseppe Labruna
- IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) SDN, Naples, Italy
| | - Merlin Nanayakkara
- Dipartimento di Scienze Mediche Traslazionali and European Laboratory for the Investigation of Food Induced Disease (ELFID), Università degli Studi di Napoli Federico II, Naples, Italy
| | - Chiara Pagliuca
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Marcella Nunziato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate SCarl, Naples, Italy
| | | | - Valeria D'Argenio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate SCarl, Naples, Italy.,Task Force on Microbiome Studies, Università degli Studi di Napoli Federico II and CEINGE-Biotecnologie Avanzate SCarl, Naples, Italy
| | - Roberta Colicchio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | - Roberto Nigro
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Naples, Italy
| | - Paola Salvatore
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Maria Vittoria Barone
- Dipartimento di Scienze Mediche Traslazionali and European Laboratory for the Investigation of Food Induced Disease (ELFID), Università degli Studi di Napoli Federico II, Naples, Italy
| | - Lucia Sacchetti
- CEINGE-Biotecnologie Avanzate SCarl, Naples, Italy.,Task Force on Microbiome Studies, Università degli Studi di Napoli Federico II and CEINGE-Biotecnologie Avanzate SCarl, Naples, Italy
| |
Collapse
|
115
|
Souza BSVD, Silva KCS, Parente AFA, Borges CL, Paccez JD, Pereira M, Soares CMDA, Giambiagi-deMarval M, Silva-Bailão MG, Parente-Rocha JA. The influence of pH on Staphylococcus saprophyticus iron metabolism and the production of siderophores. Microbes Infect 2019; 21:456-463. [PMID: 31075417 DOI: 10.1016/j.micinf.2019.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 01/11/2023]
Abstract
Staphylococcus saprophyticus is a gram-positive coagulase negative bacteria which shows clinical importance due to its capability of causing urinary tract infections (UTI), as well as its ability to persist in this environment. Little is known about how S. saprophyticus adapts to the pH shift that occurs during infection. Thus, in this study we aim to use a proteomic approach to analyze the metabolic adaptations which occur as a response by S. saprophyticus when exposed to acid (5.5) and alkaline (9.0) pH environments. Proteins related to iron storage are overexpressed in acid pH, whilst iron acquisition proteins are overexpressed in alkaline pH. It likely occurs because iron is soluble at acid pH and insoluble at alkaline pH. To evaluate if S. saprophyticus synthesizes siderophores, CAS assays were performed, and the results confirmed their production. The chemical characterization of siderophores demonstrates that S. saprophyticus produces carboxylates derived from citrate. Of special note is the fact that citrate synthase (CS) is down-regulated during incubation at acid pH, corroborating this result. This data was also confirmed by enzymatic assay. Our results demonstrate that iron metabolism regulation is influenced by different pH levels, and show, for the first time, the production of siderophores by S. saprophyticus. Enzymatic assays suggest that citrate from the tricarboxylic acid cycle (TCA) is used as substrate for siderophore production.
Collapse
Affiliation(s)
- Bianca Silva Vieira de Souza
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Av. Esperança, ICB2, 74690-900, Goiânia - Goiás, Brazil.
| | - Karla Christina Sousa Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Av. Esperança, ICB2, 74690-900, Goiânia - Goiás, Brazil.
| | - Ana Flávia Alves Parente
- Instituto de Biologia, Campus Universitário Darcy Ribeiro, Universidade de Brasília, 70297-400, Brasília - Distrito Federal, Brazil.
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Av. Esperança, ICB2, 74690-900, Goiânia - Goiás, Brazil.
| | - Juliano Domiraci Paccez
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Av. Esperança, ICB2, 74690-900, Goiânia - Goiás, Brazil.
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Av. Esperança, ICB2, 74690-900, Goiânia - Goiás, Brazil.
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Av. Esperança, ICB2, 74690-900, Goiânia - Goiás, Brazil.
| | - Marcia Giambiagi-deMarval
- Laboratório de Microbiologia Molecular, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Cidade Universitária, 21941-970, Rio de Janeiro - Rio de Janeiro, Brazil.
| | - Mirelle Garcia Silva-Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Av. Esperança, ICB2, 74690-900, Goiânia - Goiás, Brazil.
| | - Juliana Alves Parente-Rocha
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Av. Esperança, ICB2, 74690-900, Goiânia - Goiás, Brazil.
| |
Collapse
|
116
|
Bulbul G, Liu G, Vithalapur NR, Atilgan C, Sayers Z, Pourmand N. Employment of Iron-Binding Protein from Haemophilus influenzae in Functional Nanopipettes for Iron Monitoring. ACS Chem Neurosci 2019; 10:1970-1977. [PMID: 30346707 DOI: 10.1021/acschemneuro.8b00263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Because of the serious neurologic consequences of iron deficiency and iron excess in the brain, interest in the iron status of the central nervous system has increased significantly in the past decade. While iron plays an important role in many physiological processes, its accumulation may lead to diseases such as Huntington's, Parkinson's, and Alzheimer's. Therefore, it is important to develop methodologies that can monitor the presence of iron in a selective and sensitive manner. In this paper, we first showed the synthesis and characterization of the iron-binding protein (FBP) from Haemophilus influenzae, specific for ferrous ions. Subsequently, we employed this protein in our nanopipette platform and utilized it in functionalized nanoprobes to monitor the presence of ferrous ions. A suite of characterization techniques: absorbance spectroscopy, dynamic light scattering, and small-angle X-ray scattering were used for FBP. The functionalized Fe-nanoprobe calibrated in ferrous chloride enabled detection from 0.05 to 10 μM, and the specificity of the modified iron probe was evaluated by using various metal ion solutions.
Collapse
Affiliation(s)
- Gonca Bulbul
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California 95064, United States
| | - Goksin Liu
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkey
| | - Namrata Rao Vithalapur
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California 95064, United States
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkey
| | - Zehra Sayers
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkey
| | - Nader Pourmand
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California 95064, United States
| |
Collapse
|
117
|
Post SJ, Shapiro JA, Wuest WM. Connecting iron acquisition and biofilm formation in the ESKAPE pathogens as a strategy for combatting antibiotic resistance. MEDCHEMCOMM 2019; 10:505-512. [PMID: 31057729 PMCID: PMC6482887 DOI: 10.1039/c9md00032a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/20/2019] [Indexed: 12/24/2022]
Abstract
The rise of antibiotic resistant bacteria has become a problem of global concern. Of particular interest are the ESKAPE pathogens, species with high rates of multi-drug resistant infections. Novel antibiotic mechanisms of action are necessary to compliment traditional therapeutics. Recent research has focused on targeting virulence factors as a method of combatting infection without creating selective pressure for resistance or damaging the host commensal microbiome. Some investigations into one such virulence behavior, iron acquisition, have displayed additional effects on another virulence behavior, biofilm formation. The use of exogenous iron-chelators, gallium as an iron mimic, and inhibition of siderophore-mediated iron acquisition are all strategies for disturbing iron-homeostasis that have implicated effects on biofilms. However, the exact nature of this connection remains ambiguous. Herein we summarize these findings and identify opportunities for further investigation.
Collapse
Affiliation(s)
- Savannah J Post
- Department of Chemistry , Emory University , Atlanta , GA 30322 , USA .
| | - Justin A Shapiro
- Department of Chemistry , Emory University , Atlanta , GA 30322 , USA .
| | - William M Wuest
- Department of Chemistry , Emory University , Atlanta , GA 30322 , USA .
- Antibiotic Resistance Center , Emory University School of Medicine , Atlanta , GA 30322 , USA
| |
Collapse
|
118
|
Kurnick SA, Mannion AJ, Feng Y, Madden CM, Chamberlain P, Fox JG. Genotoxic Escherichia coli Strains Encoding Colibactin, Cytolethal Distending Toxin, and Cytotoxic Necrotizing Factor in Laboratory Rats. Comp Med 2019; 69:103-113. [PMID: 30902120 PMCID: PMC6464076 DOI: 10.30802/aalas-cm-18-000099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/13/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
Although many Escherichia coli strains are considered commensals in mammals, strains encoding the cyclomodulin genotoxins are associated with clinical and subclinical disease in the urogenital and gastrointestinal tracts, meningitis, and inflammatory disorders. These genotoxins include the polyketide synthase (pks) pathogenicity island, cytolethal distending toxin (cdt), and hemolysin-associated cytotoxic necrotizing factor (cnf). E. coli strains are not excluded from rodents housed under SPF conditions in academic or vendor facilities. This study isolated and characterized genotoxin-encoding E. coli from laboratory rats obtained from 4 academic institutions and 3 vendors. A total of 69 distinct E. coli isolates were cultured from feces, rectal swab, nares, or vaginal swab of 52 rats and characterized biochemically. PCR analysis for cyclomodulin genes and phylogroup was performed on all 69 isolates. Of the 69 isolates, 45 (65%) were positive for pks, 20/69 (29%) were positive for cdt, and 4 (6%) were positive for cnf. Colibactin was the sole genotoxin identified in 21 of 45 pks+ isolates (47%), whereas cdt or cnf was also present in the remaining 24 isolates (53%); cdt and cnf were never present together or without pks. All genotoxin-associated strains were members of pathogen-associated phylogroup B2. Fisher exact and χ² tests demonstrated significant differences in genotoxin prevalence and API code distribution with regard to vendor. Select E. coli isolates were characterized by HeLa cell in vitro cytotoxicity assays, serotyped, and whole-genome sequenced. All isolates encoding cyclomodulins induced megalocytosis. Serotypes corresponded with vendor origin and cyclomodulin composition, with the cnf+ serotype representing a known human uropathogen. Whole-genome sequencing confirmed the presence of complete pks, cdt, and hemolysin-cnf pathogenicity islands. These findings indicate that genotoxin-encoding E. coli colonize laboratory rats from multiple commercial vendors and academic institutions and suggest the potential to contribute to clinical disease and introduce confounding variables into experimental rat models.
Collapse
Affiliation(s)
- Susanna A Kurnick
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Anthony J Mannion
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Carolyn M Madden
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Paul Chamberlain
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts;,
| |
Collapse
|
119
|
Transition metals and host-microbe interactions in the inflamed intestine. Biometals 2019; 32:369-384. [PMID: 30788645 DOI: 10.1007/s10534-019-00182-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/10/2019] [Indexed: 12/12/2022]
Abstract
Host-associated microbial communities provide critical functions for their hosts. Transition metals are essential for both the mammalian host and the majority of commensal bacteria. As such, access to transition metals is an important component of host-microbe interactions in the gastrointestinal tract. In mammals, transition metal ions are often sequestered by metal binding proteins to limit microbial access under homeostatic conditions. In response to invading pathogens, the mammalian host further decreases availability of these micronutrients by regulating their trafficking or releasing high-affinity metal chelating proteins, a process termed nutritional immunity. Bacterial pathogens have evolved several mechanisms to subvert nutritional immunity. Here, we provide an overview on how metal ion availability shapes host-microbe interactions in the gut with a particular focus on intestinal inflammatory diseases.
Collapse
|
120
|
Asadi Karam MR, Habibi M, Bouzari S. Urinary tract infection: Pathogenicity, antibiotic resistance and development of effective vaccines against Uropathogenic Escherichia coli. Mol Immunol 2019; 108:56-67. [PMID: 30784763 DOI: 10.1016/j.molimm.2019.02.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 02/02/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
Abstract
Urinary tract infections (UTIs) are recognized as one of the most common infectious diseases in the world that can be divided to different types. Uropathogenic Escherichia coli (UPEC) strains are the most prevalent causative agent of UTIs that applied different virulence factors such as fimbriae, capsule, iron scavenger receptors, flagella, toxins, and lipopolysaccharide for their pathogenicity in the urinary tract. Despite the high pathogenicity of UPEC strains, host utilizes different immune systems such as innate and adaptive immunity for eradication of them from the urinary tract. The routine therapy of UTIs is based on the use of antibiotics such as β-lactams, trimethoprim, nitrofurantoin and quinolones in many countries. Unfortunately, the widespread and misuse of these antibiotics resulted in the increasing rate of resistance to them in the societies. Increasing antibiotic resistance and their side effects on human body show the need to develop alternative strategies such as vaccine against UTIs. Developing a vaccine against UTI pathogens will have an important role in reduction the mortality rate as well as reducing economic costs. Different vaccines based on the whole cells (killed or live-attenuated vaccines) and antigens (subunits, toxins and conjugatedvaccines) have been evaluated against UTIs pathogens. Furthermore, other therapeutic strategies such as the use of probiotics and antimicrobial peptides are considered against UTIs. Despite the extensive efforts, limited success has been achieved and more studies are needed to reach an alternative of antibiotics for treatment of UTIs.
Collapse
Affiliation(s)
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran, 13164, Iran.
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran, 13164, Iran.
| |
Collapse
|
121
|
Han Z, Yu Y, Xu J, Bao Z, Xu Z, Hu J, Yu M, Bamba D, Ma W, Ding F, Zhang L, Jin M, Yan G, Huang Q, Wang X, Hua B, Yang F, Li Y, Lei L, Cao N, Pan Z, Cai B. Iron Homeostasis Determines Fate of Human Pluripotent Stem Cells Via Glycerophospholipids-Epigenetic Circuit. Stem Cells 2019; 37:489-503. [PMID: 30599084 DOI: 10.1002/stem.2967] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022]
Abstract
Iron homeostasis is crucial for a variety of biological processes, but the biological role of iron homeostasis in pluripotent stem cells (PSCs) remains largely unknown. The present study aimed to determine whether iron homeostasis is involved in maintaining the pluripotency of human PSCs (hPSCs). We found that the intracellular depletion of iron leads to a rapid downregulation of NANOG and a dramatic decrease in the self-renewal of hPSCs as well as spontaneous and nonspecific differentiation. Moreover, long-term depletion of iron can result in the remarkable cell death of hPSCs via apoptosis and necrosis pathways. Additionally, we found that the depletion of iron increased the activity of lipoprotein-associated phospholipase A2 (LP-PLA2) and the production of lysophosphatidylcholine, thereby suppressing NANOG expression by enhancer of zeste homolog 2-mediated trimethylation of histone H3 lysine 27. Consistently, LP-PLA2 inhibition abrogated iron depletion-induced loss of pluripotency and differentiation. Altogether, the findings of our study demonstrates that iron homeostasis, acting through glycerophospholipid metabolic pathway, is essential for the pluripotency and survival of hPSCs. Stem Cells 2019;37:489-503.
Collapse
Affiliation(s)
- Zhenbo Han
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Ying Yu
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Juan Xu
- Department of Bioinformatics, Harbin Medical University, Harbin, People's Republic of China
| | - Zhengyi Bao
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Zihang Xu
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Jiancheng Hu
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Meixi Yu
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Djibril Bamba
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Wenya Ma
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Fengzhi Ding
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Lai Zhang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Mengyu Jin
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Gege Yan
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Qi Huang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Xiuxiu Wang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Bingjie Hua
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Fan Yang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Yuan Li
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, People's Republic of China
| | - Nan Cao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.,The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People's Republic of China
| | - Zhenwei Pan
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Benzhi Cai
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
122
|
Golonka R, Yeoh BS, Vijay-Kumar M. The Iron Tug-of-War between Bacterial Siderophores and Innate Immunity. J Innate Immun 2019; 11:249-262. [PMID: 30605903 DOI: 10.1159/000494627] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/20/2018] [Indexed: 12/21/2022] Open
Abstract
Iron is necessary for the survival of almost all aerobic organisms. In the mammalian host, iron is a required cofactor for the assembly of functional iron-sulfur (Fe-S) cluster proteins, heme-binding proteins and ribonucleotide reductases that regulate various functions, including heme synthesis, oxygen transport and DNA synthesis. However, the bioavailability of iron is low due to its insolubility under aerobic conditions. Moreover, the host coordinates a nutritional immune response to restrict the accessibility of iron against potential pathogens. To counter nutritional immunity, most commensal and pathogenic bacteria synthesize and secrete small iron chelators termed siderophores. Siderophores have potent affinity for iron, which allows them to seize the essential metal from the host iron-binding proteins. To safeguard against iron thievery, the host relies upon the innate immune protein, lipocalin 2 (Lcn2), which could sequester catecholate-type siderophores and thus impede bacterial growth. However, certain bacteria are capable of outmaneuvering the host by either producing "stealth" siderophores or by expressing competitive antagonists that bind Lcn2 in lieu of siderophores. In this review, we summarize the mechanisms underlying the complex iron tug-of-war between host and bacteria with an emphasis on how host innate immunity responds to siderophores.
Collapse
Affiliation(s)
- Rachel Golonka
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Beng San Yeoh
- Graduate Program in Immunology and Infectious Disease, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Matam Vijay-Kumar
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA, .,Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA,
| |
Collapse
|
123
|
Crystal structure of GAPDH of Streptococcus agalactiae and characterization of its interaction with extracellular matrix molecules. Microb Pathog 2018; 127:359-367. [PMID: 30553015 DOI: 10.1016/j.micpath.2018.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/10/2018] [Indexed: 11/21/2022]
Abstract
GAPDH being a key enzyme in the glycolytic pathway is one of the surface adhesins of many Gram-positive bacteria including Streptococcus agalactiae. This anchorless adhesin is known to bind to host plasminogen (PLG) and fibrinogen (Fg), which enhances the virulence and modulates the host immune system. The crystal structure of the recombinant GAPDH from S. agalactiae (SagGAPDH) was determined at 2.6 Å resolution by molecular replacement. The structure was found to be highly conserved with a typical NAD binding domain and a catalytic domain. In this paper, using biolayer interferometry studies, we report that the multifunctional SagGAPDH enzyme binds to a variety of host molecules such as PLG, Fg, laminin, transferrin and mucin with a KD value of 4.4 × 10-7 M, 9.8 × 10-7 M, 1 × 10-5 M, 9.7 × 10-12 M and 1.4 × 10-7 M respectively. The ligand affinity blots reveal that SagGAPDH binds specifically to α and β subunits of Fg and the competitive binding ELISA assay reveals that the Fg and PLG binding sites on GAPDH does not overlap each other. The PLG binding motif of GAPDH varies with organisms, however positively charged residues in the hydrophobic surroundings is essential for PLG binding. The lysine analogue competitive binding assay and lysine succinylation experiments deciphered the role of SagGAPDH lysines in PLG binding. On structural comparison with S. pneumoniae GAPDH, K171 of SagGAPDH is being predicted to be involved in PLG binding. Further SagGAPDH exhibited enzymatic activity in the presence of Fg, PLG and transferrin. This suggests that these host molecules does not mask the active site and bind at some other region of GAPDH.
Collapse
|
124
|
Alberoni D, Gaggìa F, Baffoni L, Modesto MM, Biavati B, Di Gioia D. Bifidobacterium xylocopae sp. nov. and Bifidobacterium aemilianum sp. nov., from the carpenter bee (Xylocopa violacea) digestive tract. Syst Appl Microbiol 2018; 42:205-216. [PMID: 30551956 DOI: 10.1016/j.syapm.2018.11.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
Abstract
Social bees harbor a community of gut mutualistic bacteria, among which bifidobacteria occupy an important niche. Recently, four novel species have been isolated from guts of different bumblebees, thus allowing to suppose that a core bifidobacterial population may be present in wild solitary bees. To date there is sparse information about bifidobacteria in solitary bees such as Xylocopa and Osmia spp., this study is therefore focused on the isolation and characterization of bifidobacterial strains from solitary bees, in particular carpenter bee (Xylocopa violacea), builder bee (Osmia cornuta), and red mason bee (Osmia rufa). Among the isolates from Osmia spp. no new species have been detected whereas among Xylocopa isolates four strains (XV2, XV4, XV10, XV16) belonging to putative new species were found. Isolated strains are Gram-positive, lactate- and acetate-producing and possess the fructose-6-phosphate phosphoketolase enzyme. Full genome sequencing and genome annotation were performed for XV2 and XV10. Phylogenetic relationships were determined using partial and complete 16S rRNA sequences and hsp60 restriction analysis that confirmed the belonging of the new strains to Bifidobacterium genus and the relatedness of the strains XV2 and XV10 with XV16 and XV4, respectively. Phenotypic tests were performed for the proposed type strains, reference strains and their closest neighbor in the phylogenetic tree. The results support the proposal of two novel species Bifidobacterium xylocopae sp. nov. whose type strain is XV2 (=DSM 104955T=LMG 30142T), reference strain XV16 and Bifidobacterium aemilianum sp. nov. whose type strain is XV10 (=DSM 104956T=LMG 30143T), reference strain XV4.
Collapse
Affiliation(s)
- Daniele Alberoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Francesca Gaggìa
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Loredana Baffoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy.
| | - Monica Marianna Modesto
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Bruno Biavati
- Institute of Earth Systems, Division of Rural Sciences Food Systems, University of Malta, Msida, Malta
| | - Diana Di Gioia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy
| |
Collapse
|
125
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
126
|
Karam MRA, Habibi M, Bouzari S. Relationships between Virulence Factors and Antimicrobial Resistance among Escherichia coli Isolated from Urinary Tract Infections and Commensal Isolates in Tehran, Iran. Osong Public Health Res Perspect 2018; 9:217-224. [PMID: 30402376 PMCID: PMC6202021 DOI: 10.24171/j.phrp.2018.9.5.02] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objectives Uropathogenic Escherichia coli (UPEC) are the major cause of urinary tract infections (UTIs). Here, we determined whether sensitivity to antibiotics was related to the prevalence of iron scavenging genes, or to biofilm and hemolysis formation. Methods A total of 110 UPEC and 30 E coli isolates were collected from the urine of UTI patients and feces of healthy individuals without UTI, respectively. The presence of iron receptor genes and phenotypic properties were evaluated by polymerase chain reaction and phenotypic methods, respectively. Susceptibility to routine antibiotics was evaluated using the disc diffusion method. Results The prevalence of iron scavenging genes ranged from 21.8% (ireA) to 84.5% (chuA) in the UPEC. Resistance to ceftazidime and cefotaxime was significantly correlated with the presence of fyuA and iutA iron genes. Biofilm production was significantly associated with the prevalence of fyuA and hma iron genes. A higher degree of antibiotic resistance was exhibited by isolates that produced biofilms than by their non-biofilm producing counterparts. Conclusion Our study clearly indicates that biofilm production is associated with antibiotic resistance, and that iron receptors and hemolysin production also contribute to reduced antibiotic sensitivity. These results further our understanding of the role that these virulence factors play during UPEC pathogenesis, which in turn may be valuable for the development of novel treatment strategies against UTIs.
Collapse
Affiliation(s)
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
127
|
Jaworska K, Nieckarz M, Ludwiczak M, Raczkowska A, Brzostek K. OmpR-Mediated Transcriptional Regulation and Function of Two Heme Receptor Proteins of Yersinia enterocolitica Bio-Serotype 2/O:9. Front Cell Infect Microbiol 2018; 8:333. [PMID: 30294593 PMCID: PMC6158557 DOI: 10.3389/fcimb.2018.00333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/29/2018] [Indexed: 12/26/2022] Open
Abstract
We show that Yersinia enterocolitica strain Ye9 (bio-serotype 2/O:9) utilizes heme-containing molecules as an iron source. The Ye9 genome contains two multigenic clusters, hemPRSTUV-1 and hemPRST-2, encoding putative heme receptors HemR1 and HemR2, that share 62% amino acid identity. Expression of these proteins in an Escherichia coli mutant defective in heme biosynthesis allowed this strain to use hemin and hemoglobin as a source of porphyrin. The hemPRSTUV-1 and hemPRST-2 clusters are organized as operons, expressed from the phem−1 and weaker phem−2 promoters, respectively. Expression of both operons is negatively regulated by iron and the iron-responsive transcriptional repressor Fur. In addition, OmpR, the response regulator of two component system (TCSs) EnvZ/OmpR, represses transcription of both operons through interaction with binding sequences overlapping the −35 region of their promoters. Western blot analysis of the level of HemR1 in ompR, fur, and ompRfur mutants, showed an additive effect of these mutations, indicating that OmpR may regulate HemR expression independently of Fur. However, the effect of OmpR on the activity of the phem−1 promoter and on HemR1 production was observed in both iron-depleted and iron-replete conditions, i.e., when Fur represses the iron-regulated promoter. In addition, a hairpin RNA thermometer, composed of four uracil residues (FourU) that pair with the ribosome-binding site in the 5′-untranslated region (5′-UTR) of hemR1 was predicted by in silico analysis. However, thermoregulated expression of HemR1 could not be demonstrated. Taken together, these data suggest that Fur and OmpR control iron/heme acquisition via a complex mechanism based on negative regulation of hemR1 and hemR2 at the transcriptional level. This interplay could fine-tune the level of heme receptor proteins to allow Y. enterocolitica to fulfill its iron/heme requirements without over-accumulation, which might be important for pathogenic growth within human hosts.
Collapse
Affiliation(s)
- Karolina Jaworska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marta Nieckarz
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marta Ludwiczak
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Adrianna Raczkowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Brzostek
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
128
|
Anantram A, Janve M, Degani M, Singhal R, Kundaikar H. Homology modelling of human divalent metal transporter (DMT): Molecular docking and dynamic simulations for duodenal iron transport. J Mol Graph Model 2018; 85:145-152. [PMID: 30193229 DOI: 10.1016/j.jmgm.2018.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/26/2018] [Accepted: 08/13/2018] [Indexed: 10/28/2022]
Abstract
Iron transport through the duodenum is regulated by carrier proteins, one of which is the ubiquitously distributed divalent metal transporter (DMT1) which is responsible for the uptake of iron across the apical surface of the duodenal enterocyte. The crystallographic structure of Staphylococcus capitis divalent metal ion transporter (ScaDMT1) was obtained and it was used as a template for the construction of a homology model of human divalent metal transporter (hDMT1). The binding site for hDMT1 was determined by using SiteMap as well as molecular docking studies on ScaDMT1. The differences in binding modes between ScaDMT1 and hDMT1 were noted for a set of 7 iron containing compounds, including ferrous sulphate. Diffusion of ferrous ion was observed during the course of molecular dynamic simulation which corresponded to the postulated mechanism of iron transport. Further, the dock scores correlated well with relative bioavailabilities of the iron compounds. The study confirmed the efficacy of the in silico model which could be used for future studies on the absorption of micronutrients.
Collapse
Affiliation(s)
- Aarti Anantram
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400 019, India
| | - Madhura Janve
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400 019, India
| | - Mariam Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400 019, India.
| | - Rekha Singhal
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400 019, India
| | - Harish Kundaikar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400 019, India
| |
Collapse
|
129
|
|
130
|
Abd El Ghany M, Sharaf H, Al-agamy MH, Shibl A, Hill-Cawthorne GA, Hong PY. Genomic characterization of NDM-1 and 5, and OXA-181 carbapenemases in uropathogenic Escherichia coli isolates from Riyadh, Saudi Arabia. PLoS One 2018; 13:e0201613. [PMID: 30110357 PMCID: PMC6093660 DOI: 10.1371/journal.pone.0201613] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 07/18/2018] [Indexed: 12/18/2022] Open
Abstract
Urinary tract infections (UTIs) associated with Escherichia coli are a growing threat with an increase in the prevalence of multidrug resistant (MDR) strains, particularly ß-lactamase producers, occurring globally. We investigated the presence of carbapenem-resistant uropathogenic E. coli clones in community-acquired UTIs in Riyadh, Kingdom of Saudi Arabia (KSA) to identify the virulence and resistance structures of the resistant clones and relate the isolates to those circulating globally. A combination of comparative genomics and phenotypic approaches were used to characterize ten MDR-uropathogenic Escherichia coli isolates recovered from UTI patients in Riyadh between November 2014 and January 2015. We report the presence of NDM-1 and 5, and OXA-181 in carbapenem-resistant UPEC strains from Riyadh, KSA. Single nucleotide polymorphism analyses demonstrated that these ten isolates fell into four phylogenetically distinct clades within the UPEC phylogeny. Comparative genomic analyses indicate that these diverse clones could be distinguished according to their multilocus sequencing type (MLST), serology, and virulence and antimicrobial gene architectures. These clones include the blaNDM-1 carrying isolates of the globally predominant MDR ST131 and ST69 types, previously identified as one of the most common UPEC strains in KSA. This is in addition to clones of ST23Cplx (ST410) and ST448Cplx (ST448) that have likely evolved from common intestinal strains, carrying copies of ß-lactamase genes including blaNDM-5, blaCTX-M-15, blaTEM-1, blaCMY-42, blaOXA-1 and blaOXA-181. These data have identified an emerging public health concern and highlight the need to use comprehensive approaches to detect the structure of MDR E. coli populations associated with community-acquired UTIs in KSA.
Collapse
Affiliation(s)
- Moataz Abd El Ghany
- Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia
| | - Hazem Sharaf
- Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States of America
| | - Mohamed H. Al-agamy
- Department of Pharmaceutics and Microbiology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Atef Shibl
- Microbiology and Immunology Department, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Grant A. Hill-Cawthorne
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia
- School of Public Health, The University of Sydney, Sydney, Australia
| | - Pei-Ying Hong
- Water Desalination and Reuse Center, Environmental Science and Engineering, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| |
Collapse
|
131
|
Iron Restriction to Clinical Isolates of Candida albicans by the Novel Chelator DIBI Inhibits Growth and Increases Sensitivity to Azoles In Vitro and In Vivo in a Murine Model of Experimental Vaginitis. Antimicrob Agents Chemother 2018; 62:AAC.02576-17. [PMID: 29844048 DOI: 10.1128/aac.02576-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/19/2018] [Indexed: 12/22/2022] Open
Abstract
Candida albicans is an important opportunistic pathogen causing various human infections that are often treated with azole antifungals. The U.S. CDC now regards developing candidal antifungal resistance as a threat, creating a need for new and more effective antifungal treatments. Iron is an essential nutrient for all living cells, and there is growing evidence that interference with iron homeostasis of C. albicans can improve its response to antifungals. This study was aimed at establishing whether withholding iron by currently used medical iron chelators and the novel chelator DIBI could restrict growth and also enhance the activity of azoles against clinical isolates of C. albicans DIBI, but not deferoxamine or deferiprone, inhibited the growth of C. albicans at relatively low concentrations in vitro, and this inhibition was reversed by iron addition. DIBI in combination with various azoles demonstrated stronger growth inhibition than the azoles alone and greatly prolonged the inhibition of cell multiplication. In addition, the administration of DIBI along with fluconazole (FLC) to mice inoculated with an FLC-sensitive isolate in a model of experimental C. albicans vaginitis showed a markedly improved clearance of infection. These results suggest that iron chelation by DIBI has the potential to enhance azole efficacy for the treatment of candidiasis.
Collapse
|
132
|
Sepúlveda Cisternas I, Salazar JC, García-Angulo VA. Overview on the Bacterial Iron-Riboflavin Metabolic Axis. Front Microbiol 2018; 9:1478. [PMID: 30026736 PMCID: PMC6041382 DOI: 10.3389/fmicb.2018.01478] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/13/2018] [Indexed: 01/10/2023] Open
Abstract
Redox reactions are ubiquitous in biological processes. Enzymes involved in redox metabolism often use cofactors in order to facilitate electron-transfer reactions. Common redox cofactors include micronutrients such as vitamins and metals. By far, while iron is the main metal cofactor, riboflavin is the most important organic cofactor. Notably, the metabolism of iron and riboflavin seem to be intrinsically related across life kingdoms. In bacteria, iron availability influences expression of riboflavin biosynthetic genes. There is documented evidence for riboflavin involvement in surpassing iron-restrictive conditions in some species. This is probably achieved through increase in iron bioavailability by reduction of extracellular iron, improvement of iron uptake pathways and boosting hemolytic activity. In some cases, riboflavin may also work as replacement of iron as enzyme cofactor. In addition, riboflavin is involved in dissimilatory iron reduction during extracellular respiration by some species. The main direct metabolic relationships between riboflavin and iron in bacterial physiology are reviewed here.
Collapse
Affiliation(s)
- Ignacio Sepúlveda Cisternas
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Juan C Salazar
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Víctor A García-Angulo
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
133
|
Environmental Adaptability and Quorum Sensing: Iron Uptake Regulation during Biofilm Formation by Paracoccus denitrificans. Appl Environ Microbiol 2018; 84:AEM.00865-18. [PMID: 29776923 DOI: 10.1128/aem.00865-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/07/2018] [Indexed: 11/20/2022] Open
Abstract
Paracoccus denitrificans is a valuable model organism due to its versatile respiration capability and bioenergetic flexibility, both of which are critical to its survival in different environments. Quorum sensing (QS) plays a crucial role in the regulation of many cell functions; however, whether QS systems play a role in P. denitrificans is unknown. In this study, we demonstrated that iron uptake systems in P. denitrificans were directly regulated by a newly identified QS system. Genes coding for TonB-dependent systems, which transport chelated iron, were transcribed at higher levels in the QS-defective mutants. In contrast, genes coding for the Fbp system, which is TonB independent and transports unchelated ferric iron, were downregulated in the mutants. In brief, QS in P. denitrificans triggers a switch in iron uptake from TonB-dependent to TonB-independent transport during biofilm formation as higher concentrations of iron accumulate in the exopolysaccharide (EPS). Switching from TonB-dependent iron uptake systems to TonB-independent systems not only prevents cells from absorbing excess iron but also conserves energy. Our data suggest that iron uptake strategies are directly regulated by QS in Paracoccus denitrificans to support their survival in available ecological niches.IMPORTANCE As iron is an important trace metal for most organisms, its absorption is highly regulated. Fur has been reported as a prevalent regulator of iron acquisition. In addition, there is a relationship between QS and iron acquisition in pathogenic microbes. However, there have been few studies on the iron uptake strategies of nonpathogenic bacteria. In this study, we demonstrated that iron uptake systems in Paracoccus denitrificans PD1222 were regulated by a newly identified PdeR/PdeI QS system during biofilm formation, and we put forward a hypothesis that QS-dependent iron uptake systems benefit the stability of biofilms. This report elaborates the correlation among QS, iron uptake, and biofilm formation and thus contributes to an understanding of the ecological behavior of environmental bacteria.
Collapse
|
134
|
Rak K, Kornafel D, Mazurek D, Bronkowska M. Lactoferrin level in maternal serum is related to birth anthropometry - an evidence for an indirect biomarker of intrauterine homeostasis? J Matern Fetal Neonatal Med 2018; 32:4043-4050. [PMID: 29921139 DOI: 10.1080/14767058.2018.1481040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objective: To investigate the relation between level of antibodies against lactoferrin (LfAb) in maternal serum (MS) and birth anthropometry of healthy full-term newborns.Methods: The study included 105 pairs of mother-newborn. MS LfAb level was determined using ELISA kit. Spearman's correlation and Kruskal-Wallis one-way analysis of variance (ANOVA) were applied to establish the relationship between MS LfAb level and birth weight (BW), birth weight-to-birth length ratio (BW/BL), and head circumference (HC) of newborns.Results: The U-shaped relation of MS LfAb and BW was demonstrated (p = .019). Negative correlation between MS LfAb and BW/BL was observed (p = .016). The most optimal birth weight and body proportion were observed in newborns of mothers with MS LfAb level of 49 ± 4 U/ml.Conclusions: Significant relationship between MS LfAb and birth anthropometry suggests serum Lf of pregnant women can be considered as a promising indirect biomarker of intrauterine homeostasis, verifiable noninvasively already during pregnancy and thus allowing predict, or even prevent, potential short- and long-term postnatal health consequences.
Collapse
Affiliation(s)
- Karolina Rak
- Department of Human Nutrition, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Danuta Kornafel
- Department of General Psychology, Faculty of Pedagogical Sciences, University of Lower Silesia, Wrocław, Poland
| | - Dominika Mazurek
- Department of Human Nutrition, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Monika Bronkowska
- Department of Human Nutrition, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
135
|
A Complex Mechanism Involving LysR and TetR/AcrR That Regulates Iron Scavenger Biosynthesis in Pseudomonas donghuensis HYS. J Bacteriol 2018; 200:JB.00087-18. [PMID: 29686142 DOI: 10.1128/jb.00087-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/18/2018] [Indexed: 11/20/2022] Open
Abstract
7-Hydroxytropolone (7-HT) is a symmetrical seven-membered heteroatomic ring with a carboxyl group and two hydroxyl groups and was recently reported to be an iron scavenger of Pseudomonas donghuensis HYS. Cluster 1 includes 12 genes related to the synthesis of 7-HT; among these genes, those for two regulators, Orf1 and Orf12, were predicted to regulate 7-HT biosynthesis and to be LysR-type transcriptional regulators (LTTRs) and TetR/AcrR family transcriptional regulators, respectively. Data from real-time quantitative PCR and β-galactosidase and classical siderophore assays indicated that the transcription levels of orf1 and orf12, as well as those of crucial genes orf6 to orf9, were repressed under high-iron conditions. The deletion of orf1 and orf12 led to an absence of 7-HT and a decrease in orf6-orf9 expression. Orf1 and Orf12 were essential for the production of 7-HT through orf6-orf9 These two regulators are regulated by the Gac/Rsm system; Orf1 facilitates the expression of Orf12, and Orf12 concomitantly stimulates the expression of orf6-orf9 to synthesize 7-HT. The overexpression of Orf12 decreased 7-HT yields, possibly through decreased orf6-orf9 expression. This work thus outlines a complex mechanism regulating the biosynthesis of the iron scavenger 7-HT in P. donghuensis HYS. The synergy between Orf1 and Orf12 ensures that 7-HT acts as an iron chelator despite being toxic to bacteria and provides new ideas for the novel regulation of dual-functional secondary metabolism and research on 7-HT and its derivates in other bacteria.IMPORTANCE A complex regulation mechanism including two regulators, LysR and TetR/AcrR, in the biosynthesis of the novel iron scavenger 7-hydroxytropolone (7-HT) was verified in Pseudomonas donghuensis HYS. The coaction of LysR Orf1 and TetR/AcrR Orf12 may balance the toxicity and iron chelation of 7-HT in P. donghuensis HYS to overcome iron deficiency, as well as improve the bacterial competitiveness under iron-scarce conditions because of the toxicity of 7-HT toward other bacteria, making the accurate regulation of 7-HT biosynthesis indispensable. This regulation mechanism may be ubiquitous in the Pseudomonas putida group but may better explain the group's strong adaptability.
Collapse
|
136
|
Fourie R, Kuloyo OO, Mochochoko BM, Albertyn J, Pohl CH. Iron at the Centre of Candida albicans Interactions. Front Cell Infect Microbiol 2018; 8:185. [PMID: 29922600 PMCID: PMC5996042 DOI: 10.3389/fcimb.2018.00185] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/14/2018] [Indexed: 12/27/2022] Open
Abstract
Iron is an absolute requirement for both the host and most pathogens alike and is needed for normal cellular growth. The acquisition of iron by biological systems is regulated to circumvent toxicity of iron overload, as well as the growth deficits imposed by iron deficiency. In addition, hosts, such as humans, need to limit the availability of iron to pathogens. However, opportunistic pathogens such as Candida albicans are able to adapt to extremes of iron availability, such as the iron replete environment of the gastrointestinal tract and iron deficiency during systemic infection. C. albicans has developed a complex and effective regulatory circuit for iron acquisition and storage to circumvent iron limitation within the human host. As C. albicans can form complex interactions with both commensal and pathogenic co-inhabitants, it can be speculated that iron may play an important role in these interactions. In this review, we highlight host iron regulation as well as regulation of iron homeostasis in C. albicans. In addition, the review argues for the need for further research into the role of iron in polymicrobial interactions. Lastly, the role of iron in treatment of C. albicans infection is discussed.
Collapse
Affiliation(s)
- Ruan Fourie
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Oluwasegun O Kuloyo
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Bonang M Mochochoko
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Jacobus Albertyn
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
137
|
Novel Zinc-Attenuating Compounds as Potent Broad-Spectrum Antifungal Agents with In Vitro and In Vivo Efficacy. Antimicrob Agents Chemother 2018; 62:AAC.02024-17. [PMID: 29439980 PMCID: PMC5923171 DOI: 10.1128/aac.02024-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/04/2018] [Indexed: 12/23/2022] Open
Abstract
An increase in the incidence of rare but hard-to-treat invasive fungal pathogens as well as resistance to the currently available antifungal drugs calls for new broad-spectrum antifungals with a novel mechanism of action. Here we report the identification and characterization of two novel zinc-attenuating compounds, ZAC307 and ZAC989, which exhibit broad-spectrum in vitro antifungal activity and in vivo efficacy in a fungal kidney burden candidiasis model. The compounds were identified serendipitously as part of a drug discovery process aimed at finding novel inhibitors of the fungal plasma membrane proton ATPase Pma1. Based on their structure, we hypothesized that they might act as zinc chelators. Indeed, both fluorescence-based affinity determination and potentiometric assays revealed these compounds, subsequently termed zinc-attenuating compounds (ZACs), to have strong affinity for zinc, and their growth inhibitory effects on Candida albicans and Aspergillus fumigatus could be inactivated by the addition of exogenous zinc to fungal growth media. We determined the ZACs to be fungistatic, with a low propensity for resistance development. Gene expression analysis suggested that the ZACs interfere negatively with the expression of genes encoding the major components of the A. fumigatus zinc uptake system, thus supporting perturbance of zinc homeostasis as the likely mode of action. With demonstrated in vitro and in vivo antifungal activity, low propensity for resistance development, and a novel mode of action, the ZACs represent a promising new class of antifungal compounds, and their advancement in a drug development program is therefore warranted.
Collapse
|
138
|
Iron and the Breastfed Infant. Antioxidants (Basel) 2018; 7:antiox7040054. [PMID: 29642400 PMCID: PMC5946120 DOI: 10.3390/antiox7040054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/31/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022] Open
Abstract
The first 6 months of life is a crucial time in meeting iron needs. The purpose of this review is to examine iron in mother’s milk and whether or not it meets the physiological needs of the growing infant. Key issues include iron content and iron transport from the mammary gland as well as when and what foods should be added to the solely breastfed infant. We examine these topics in light of new molecular biology findings in the mammary gland.
Collapse
|
139
|
Moore GG, Mack BM, Beltz SB, Puel O. Genome sequence of an aflatoxigenic pathogen of Argentinian peanut, Aspergillus arachidicola. BMC Genomics 2018; 19:189. [PMID: 29523080 PMCID: PMC5845213 DOI: 10.1186/s12864-018-4576-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/02/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Aspergillus arachidicola is an aflatoxigenic fungal species, first isolated from the leaves of a wild peanut species native to Argentina. It has since been reported in maize, Brazil nut and human sputum samples. This aflatoxigenic species is capable of secreting both B and G aflatoxins, similar to A. parasiticus and A. nomius. It has other characteristics that may result in its misidentification as one of several other section Flavi species. This study offers a preliminary analysis of the A. arachidicola genome. RESULTS In this study we sequenced the genome of the A. arachidicola type strain (CBS 117610) and found its genome size to be 38.9 Mb, and its number of predicted genes to be 12,091, which are values comparable to those in other sequenced Aspergilli. A comparison of 57 known Aspergillus secondary metabolite gene clusters, among closely-related aflatoxigenic species, revealed nearly half were predicted to exist in the type strain of A. arachidicola. Of its predicted genes, 691 were identified as unique to the species and 60% were assigned Gene Ontology terms using BLAST2GO. Phylogenomic inference shows CBS 117610 sharing a most recent common ancestor with A. parasiticus. Finally, BLAST query of A. flavus mating-type idiomorph sequences to this strain revealed the presence of a single mating-type (MAT1-1) idiomorph. CONCLUSIONS Based on A. arachidicola morphological, genetic and chemotype similarities with A. flavus and A. parasiticus, sequencing the genome of A. arachidicola will contribute to our understanding of the evolutionary relatedness among aflatoxigenic fungi.
Collapse
Affiliation(s)
- Geromy G. Moore
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 1100 Robert E Lee Blvd, New Orleans, Louisiana, 70124 USA
| | - Brian M. Mack
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 1100 Robert E Lee Blvd, New Orleans, Louisiana, 70124 USA
| | - Shannon B. Beltz
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 1100 Robert E Lee Blvd, New Orleans, Louisiana, 70124 USA
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
140
|
Genomewide Transcriptional Responses of Iron-Starved Chlamydia trachomatis Reveal Prioritization of Metabolic Precursor Synthesis over Protein Translation. mSystems 2018; 3:mSystems00184-17. [PMID: 29468197 PMCID: PMC5811630 DOI: 10.1128/msystems.00184-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022] Open
Abstract
By utilizing an experimental approach that monitors the immediate global response of Chlamydia trachomatis to iron starvation, clues to long-standing issues in Chlamydia biology are revealed, including how Chlamydia adapts to this stress. We determined that this pathogen initiates a transcriptional program that prioritizes replenishment of nutrient stores over replication, possibly in preparation for rapid growth once optimal iron levels are restored. Transcription of genes for biosynthesis of metabolic precursors was generally upregulated, while those involved in multiple steps of translation were downregulated. We also observed an increase in transcription of genes involved in DNA repair and neutralizing oxidative stress, indicating that Chlamydia employs an “all-or-nothing” strategy. Its small genome limits its ability to tailor a specific response to a particular stress. Therefore, the “all-or-nothing” strategy may be the most efficient way of surviving within the host, where the pathogen likely encounters multiple simultaneous immunological and nutritional insults. Iron is essential for growth and development of Chlamydia. Its long-term starvation in cultured mammalian cells leads to production of aberrant noninfectious chlamydial forms, also known as persistence. Immediate transcriptional responses to iron limitation have not been characterized, leaving a knowledge gap of how Chlamydia regulates its response to changes in iron availability. We used the fast-chelating agent 2,2′-bipyridyl (BPDL) to homogeneously starve Chlamydia trachomatis serovar L2 of iron, starting at 6 or 12 h postinfection. Immediate transcriptional responses were monitored after only 3 or 6 h of BPDL treatment, well before formation of aberrant Chlamydia. The first genomewide transcriptional response of C. trachomatis to iron starvation was subsequently determined utilizing RNA sequencing. Only 7% and 8% of the genome were differentially expressed in response to iron starvation at the early and middle stages of development, respectively. Biological pathway analysis revealed an overarching theme. Synthesis of macromolecular precursors (deoxynucleotides, amino acids, charged tRNAs, and acetyl coenzyme A [acetyl-CoA]) was upregulated, while energy-expensive processes (ABC transport and translation) were downregulated. A large fraction of differentially downregulated genes are involved in translation, including those encoding ribosome assembly and initiation and termination factors, which could be analogous to the translation downregulation triggered by stress in other prokaryotes during stringent responses. Additionally, transcriptional upregulation of DNA repair, oxidative stress, and tryptophan salvage genes reveals a possible coordination of responses to multiple antimicrobial and immunological insults. These responses of replicative-phase Chlamydia to iron starvation indicate a prioritization of survival over replication, enabling the pathogen to “stock the pantry” with ingredients needed for rapid growth once optimal iron levels are restored. IMPORTANCE By utilizing an experimental approach that monitors the immediate global response of Chlamydia trachomatis to iron starvation, clues to long-standing issues in Chlamydia biology are revealed, including how Chlamydia adapts to this stress. We determined that this pathogen initiates a transcriptional program that prioritizes replenishment of nutrient stores over replication, possibly in preparation for rapid growth once optimal iron levels are restored. Transcription of genes for biosynthesis of metabolic precursors was generally upregulated, while those involved in multiple steps of translation were downregulated. We also observed an increase in transcription of genes involved in DNA repair and neutralizing oxidative stress, indicating that Chlamydia employs an “all-or-nothing” strategy. Its small genome limits its ability to tailor a specific response to a particular stress. Therefore, the “all-or-nothing” strategy may be the most efficient way of surviving within the host, where the pathogen likely encounters multiple simultaneous immunological and nutritional insults.
Collapse
|
141
|
Santos TMA, Lammers MG, Zhou M, Sparks IL, Rajendran M, Fang D, De Jesus CLY, Carneiro GFR, Cui Q, Weibel DB. Small Molecule Chelators Reveal That Iron Starvation Inhibits Late Stages of Bacterial Cytokinesis. ACS Chem Biol 2018; 13:235-246. [PMID: 29227619 DOI: 10.1021/acschembio.7b00560] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial cell division requires identification of the division site, assembly of the division machinery, and constriction of the cell envelope. These processes are regulated in response to several cellular and environmental signals. Here, we use small molecule iron chelators to characterize the surprising connections between bacterial iron homeostasis and cell division. We demonstrate that iron starvation downregulates the transcription of genes encoding proteins involved in cell division, reduces protein biosynthesis, and prevents correct positioning of the division machinery at the division site. These combined events arrest the constriction of the cell during late stages of cytokinesis in a manner distinct from known mechanisms of inhibiting cell division. Overexpression of genes encoding cell division proteins or iron transporters partially suppresses the biological activity of iron chelators and restores growth and division. We propose a model demonstrating the effect of iron availability on the regulatory mechanisms coordinating division in response to the nutritional state of the cell.
Collapse
Affiliation(s)
- Thiago M. A. Santos
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
| | - Matthew G. Lammers
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
| | - Maoquan Zhou
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
| | - Ian L. Sparks
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
| | - Madhusudan Rajendran
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
| | - Dong Fang
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Crystal L. Y. De Jesus
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
| | - Gabriel F. R. Carneiro
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
| | - Qiang Cui
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Douglas B. Weibel
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department
of Biomedical Engineering, University of Wisconsin—Madison, 1550 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
142
|
Hajihosein-Tabrizi A, Habibi M, Tabasi M, Asadi Karam MR. Distribution of Genes Encoding Iron Uptake Systems among the Escherichia coli Isolates from Diarrheal Patients of Iran. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2018. [DOI: 10.29252/jommid.6.1.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
143
|
Abstract
The devastating infections that fungal pathogens cause in humans are underappreciated relative to viral, bacterial and parasitic diseases. In recent years, the contributions to virulence of reductive iron uptake, siderophore-mediated uptake and heme acquisition have been identified in the best studied and most life-threatening fungal pathogens: Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. In particular, exciting new work illustrates the importance of iron acquisition from heme and hemoglobin in the virulence of pathogenic yeasts. However, the challenge of establishing how these fungi gain access to hemoglobin in blood and to other sources of heme remains to be fully addressed. Recent studies are also expanding our knowledge of iron uptake in less-well studied fungal pathogens, including dimorphic fungi where new information reveals an integration of iron acquisition with morphogenesis and cell-surface properties for adhesion to host cells. Overall, the accumulating information provides opportunities to exploit iron acquisition for antifungal therapy, and new work highlights the development of specific inhibitors of siderophore biosynthesis and metal chelators for therapeutic use alone or in conjunction with existing antifungal drugs. It is clear that iron-related therapies will need to be customized for specific diseases because the emerging view is that fungal pathogens use different combinations of strategies for iron acquisition in the varied niches of vertebrate hosts.
Collapse
Affiliation(s)
- Gaurav Bairwa
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 456-756, Republic of Korea
| | - James W Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
144
|
Dhusia K, Bajpai A, Ramteke PW. Overcoming antibiotic resistance: Is siderophore Trojan horse conjugation an answer to evolving resistance in microbial pathogens? J Control Release 2017; 269:63-87. [PMID: 29129658 DOI: 10.1016/j.jconrel.2017.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 01/11/2023]
Abstract
Comparative study of siderophore biosynthesis pathway in pathogens provides potential targets for antibiotics and host drug delivery as a part of computationally feasible microbial therapy. Iron acquisition using siderophore models is an essential and well established model in all microorganisms and microbial infections a known to cause great havoc to both plant and animal. Rapid development of antibiotic resistance in bacterial as well as fungal pathogens has drawn us at a verge where one has to get rid of the traditional way of obstructing pathogen using single or multiple antibiotic/chemical inhibitors or drugs. 'Trojan horse' strategy is an answer to this imperative call where antibiotic are by far sneaked into the pathogenic cell via the siderophore receptors at cell and outer membrane. This antibiotic once gets inside, generates a 'black hole' scenario within the opportunistic pathogens via iron scarcity. For pathogens whose siderophore are not compatible to smuggle drug due to their complex conformation and stiff valence bonds, there is another approach. By means of the siderophore biosynthesis pathways, potential targets for inhibition of these siderophores in pathogenic bacteria could be achieved and thus control pathogenic virulence. Method to design artificial exogenous siderophores for pathogens that would compete and succeed the battle of intake is also covered with this review. These manipulated siderophore would enter pathogenic cell like any other siderophore but will not disperse iron due to which iron inadequacy and hence pathogens control be accomplished. The aim of this review is to offer strategies to overcome the microbial infections/pathogens using siderophore.
Collapse
Affiliation(s)
- Kalyani Dhusia
- Deptartment of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Allahabad-211007 (U.P.), India
| | - Archana Bajpai
- Laboratory for Disease Systems Modeling, Center for Integrative Medical Sciences, RIKEN, Yokohama City, Kanagawa, 230-0045, Japan
| | - P W Ramteke
- Deptartment of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Allahabad-211007 (U.P.), India
| |
Collapse
|
145
|
Sprenger M, Kasper L, Hensel M, Hube B. Metabolic adaptation of intracellular bacteria and fungi to macrophages. Int J Med Microbiol 2017; 308:215-227. [PMID: 29150190 DOI: 10.1016/j.ijmm.2017.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/21/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023] Open
Abstract
The mature phagosome of macrophages is a hostile environment for the vast majority of phagocytosed microbes. In addition to active destruction of the engulfed microbes by antimicrobial compounds, restriction of essential nutrients in the phagosomal compartment contributes to microbial growth inhibition and killing. However, some pathogenic microorganisms have not only developed various strategies to efficiently withstand or counteract antimicrobial activities, but also to acquire nutrients within macrophages for intracellular replication. Successful intracellular pathogens are able to utilize host-derived amino acids, carbohydrates and lipids as well as trace metals and vitamins during intracellular growth. This requires sophisticated strategies such as phagosome modification or escape, efficient nutrient transporters and metabolic adaptation. In this review, we discuss the metabolic adaptation of facultative intracellular bacteria and fungi to the intracellular lifestyle inside macrophages.
Collapse
Affiliation(s)
- Marcel Sprenger
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Michael Hensel
- Division of Microbiology, University Osnabrück, Osnabrück, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany; Friedrich Schiller University, Jena, Germany; Center for Sepsis Control and Care, University Hospital, Jena, Germany.
| |
Collapse
|
146
|
Butt AT, Thomas MS. Iron Acquisition Mechanisms and Their Role in the Virulence of Burkholderia Species. Front Cell Infect Microbiol 2017; 7:460. [PMID: 29164069 PMCID: PMC5681537 DOI: 10.3389/fcimb.2017.00460] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/18/2017] [Indexed: 11/19/2022] Open
Abstract
Burkholderia is a genus within the β-Proteobacteriaceae that contains at least 90 validly named species which can be found in a diverse range of environments. A number of pathogenic species occur within the genus. These include Burkholderia cenocepacia and Burkholderia multivorans, opportunistic pathogens that can infect the lungs of patients with cystic fibrosis, and are members of the Burkholderia cepacia complex (Bcc). Burkholderia pseudomallei is also an opportunistic pathogen, but in contrast to Bcc species it causes the tropical human disease melioidosis, while its close relative Burkholderia mallei is the causative agent of glanders in horses. For these pathogens to survive within a host and cause disease they must be able to acquire iron. This chemical element is essential for nearly all living organisms due to its important role in many enzymes and metabolic processes. In the mammalian host, the amount of accessible free iron is negligible due to the low solubility of the metal ion in its higher oxidation state and the tight binding of this element by host proteins such as ferritin and lactoferrin. As with other pathogenic bacteria, Burkholderia species have evolved an array of iron acquisition mechanisms with which to capture iron from the host environment. These mechanisms include the production and utilization of siderophores and the possession of a haem uptake system. Here, we summarize the known mechanisms of iron acquisition in pathogenic Burkholderia species and discuss the evidence for their importance in the context of virulence and the establishment of infection in the host. We have also carried out an extensive bioinformatic analysis to identify which siderophores are produced by each Burkholderia species that is pathogenic to humans.
Collapse
Affiliation(s)
- Aaron T Butt
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - Mark S Thomas
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
147
|
Mamouei Z, Zeng G, Wang YM, Wang Y. Candida albicanspossess a highly versatile and dynamic high-affinity iron transport system important for its commensal-pathogenic lifestyle. Mol Microbiol 2017; 106:986-998. [DOI: 10.1111/mmi.13864] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Zeinab Mamouei
- Multi-Modal Molecular (M3) Biology; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research; Singapore
| | - Guisheng Zeng
- Multi-Modal Molecular (M3) Biology; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research; Singapore
| | - Yan-Ming Wang
- Multi-Modal Molecular (M3) Biology; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research; Singapore
| | - Yue Wang
- Multi-Modal Molecular (M3) Biology; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research; Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| |
Collapse
|
148
|
Pokorzynski ND, Thompson CC, Carabeo RA. Ironing Out the Unconventional Mechanisms of Iron Acquisition and Gene Regulation in Chlamydia. Front Cell Infect Microbiol 2017; 7:394. [PMID: 28951853 PMCID: PMC5599777 DOI: 10.3389/fcimb.2017.00394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/23/2017] [Indexed: 01/19/2023] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis, along with its close species relatives, is known to be strictly dependent upon the availability of iron. Deprivation of iron in vitro induces an aberrant morphological phenotype termed "persistence." This persistent phenotype develops in response to various immunological and nutritional insults and may contribute to the development of sub-acute Chlamydia-associated chronic diseases in susceptible populations. Given the importance of iron to Chlamydia, relatively little is understood about its acquisition and its role in gene regulation in comparison to other iron-dependent bacteria. Analysis of the genome sequences of a variety of chlamydial species hinted at the involvement of unconventional mechanisms, being that Chlamydia lack many conventional systems of iron homeostasis that are highly conserved in other bacteria. Herein we detail past and current research regarding chlamydial iron biology in an attempt to provide context to the rapid progress of the field in recent years. We aim to highlight recent discoveries and innovations that illuminate the strategies involved in chlamydial iron homeostasis, including the vesicular mode of acquiring iron from the intracellular environment, and the identification of a putative iron-dependent transcriptional regulator that is synthesized as a fusion with a ABC-type transporter subunit. These recent findings, along with the noted absence of iron-related homologs, indicate that Chlamydia have evolved atypical approaches to the problem of iron homeostasis, reinvigorating research into the iron biology of this pathogen.
Collapse
Affiliation(s)
- Nick D Pokorzynski
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State UniversityPullman, WA, United States
| | - Christopher C Thompson
- Jefferiss Trust Laboratories, Faculty of Medicine, Imperial College London, St. Mary's HospitalLondon, United Kingdom
| | - Rey A Carabeo
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State UniversityPullman, WA, United States
| |
Collapse
|
149
|
Ferrareze PAG, Streit RSA, Santos PRD, Santos FMD, Almeida RMCD, Schrank A, Kmetzsch L, Vainstein MH, Staats CC. Transcriptional Analysis Allows Genome Reannotation and Reveals that Cryptococcus gattii VGII Undergoes Nutrient Restriction during Infection. Microorganisms 2017; 5:microorganisms5030049. [PMID: 28832534 PMCID: PMC5620640 DOI: 10.3390/microorganisms5030049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 12/30/2022] Open
Abstract
Cryptococcus gattii is a human and animal pathogen that infects healthy hosts and caused the Pacific Northwest outbreak of cryptococcosis. The inhalation of infectious propagules can lead to internalization of cryptococcal cells by alveolar macrophages, a niche in which C. gattii cells can survive and proliferate. Although the nutrient composition of macrophages is relatively unknown, the high induction of amino acid transporter genes inside the phagosome indicates a preference for amino acid uptake instead of synthesis. However, the presence of countable errors in the R265 genome annotation indicates significant inhibition of transcriptomic analysis in this hypervirulent strain. Thus, we analyzed RNA-Seq data from in vivo and in vitro cultures of C. gattii R265 to perform the reannotation of the genome. In addition, based on in vivo transcriptomic data, we identified highly expressed genes and pathways of amino acid metabolism that would enable C. gattii to survive and proliferate in vivo. Importantly, we identified high expression in three APC amino acid transporters as well as the GABA permease. The use of amino acids as carbon and nitrogen sources, releasing ammonium and generating carbohydrate metabolism intermediaries, also explains the high expression of components of several degradative pathways, since glucose starvation is an important host defense mechanism.
Collapse
Affiliation(s)
- Patrícia Aline Gröhs Ferrareze
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, Brazil.
| | - Rodrigo Silva Araujo Streit
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, Brazil.
| | - Patricia Ribeiro Dos Santos
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, Brazil.
| | - Francine Melise Dos Santos
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, Brazil.
| | | | - Augusto Schrank
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, Brazil.
| | - Livia Kmetzsch
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, Brazil.
| | - Marilene Henning Vainstein
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, Brazil.
| | - Charley Christian Staats
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, Brazil.
| |
Collapse
|
150
|
Sexton DJ, Schuster M. Nutrient limitation determines the fitness of cheaters in bacterial siderophore cooperation. Nat Commun 2017; 8:230. [PMID: 28794499 PMCID: PMC5550491 DOI: 10.1038/s41467-017-00222-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/09/2017] [Indexed: 11/28/2022] Open
Abstract
Cooperative behaviors provide a collective benefit, but are considered costly for the individual. Here, we report that these costs vary dramatically in different contexts and have opposing effects on the selection for non-cooperating cheaters. We investigate a prominent example of bacterial cooperation, the secretion of the peptide siderophore pyoverdine by Pseudomonas aeruginosa, under different nutrient-limiting conditions. Using metabolic modeling, we show that pyoverdine incurs a fitness cost only when its building blocks carbon or nitrogen are growth-limiting and are diverted from cellular biomass production. We confirm this result experimentally with a continuous-culture approach. We show that pyoverdine non-producers (cheaters) enjoy a large fitness advantage in co-culture with producers (cooperators) and spread to high frequency when limited by carbon, but not when limited by phosphorus. The principle of nutrient-dependent fitness costs has implications for the stability of cooperation in pathogenic and non-pathogenic environments, in biotechnological applications, and beyond the microbial realm. Cooperative behaviour among individuals provides a collective benefit, but is considered costly. Using Pseudomonas aeruginosa as a model system, the authors show that secretion of the siderophore pyoverdine only incurs a fitness cost and favours cheating when its building blocks carbon or nitrogen are growth-limiting.
Collapse
Affiliation(s)
- D Joseph Sexton
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Martin Schuster
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA.
| |
Collapse
|