101
|
Tian H, Li Y, Kang P, Wang Z, Yue F, Jiao P, Yang N, Qin S, Yao S. Endoplasmic reticulum stress-dependent autophagy inhibits glycated high-density lipoprotein-induced macrophage apoptosis by inhibiting CHOP pathway. J Cell Mol Med 2019; 23:2954-2969. [PMID: 30746902 PMCID: PMC6433656 DOI: 10.1111/jcmm.14203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/07/2018] [Accepted: 01/13/2019] [Indexed: 12/15/2022] Open
Abstract
This study was designed to explore the inductive effect of glycated high‐density lipoprotein (gly‐HDL) on endoplasmic reticulum (ER) stress‐C/EBP homologous protein (CHOP)‐mediated macrophage apoptosis and its relationship with autophagy. Our results showed that gly‐HDL caused macrophage apoptosis with concomitant activation of ER stress pathway, including nuclear translocation of activating transcription factor 6, phosphorylation of protein kinase‐like ER kinase (PERK) and eukaryotic translation initiation factor 2α, and CHOP up‐regulation, which were inhibited by 4‐phenylbutyric acid (PBA, an ER stress inhibitor) and the gene silencing of PERK and CHOP. Similar data were obtained from macrophages treated by HDL isolated from diabetic patients. Gly‐HDL induced macrophage autophagy as assessed by up‐regulation of beclin‐1, autophagy‐related gene 5 and microtubule‐associated protein one light chain 3‐II, which were depressed by PBA and PERK siRNA. Gly‐HDL‐induced apoptosis, PERK phosphorylation and CHOP up‐regulation were suppressed by rapamycin (an autophagy inducer), whereas aggravated by 3‐methyladenine (an autophagy inhibitor) and beclin‐1 siRNA. Administration of diabetic apoE−/− mice with rapamycin attenuated MOMA‐2 and CHOP up‐regulation and apoptosis in atherosclerotic lesions. These data indicate that gly‐HDL may induce macrophage apoptosis through activating ER stress‐CHOP pathway and ER stress mediates gly‐HDL‐induced autophagy, which in turn protects macrophages against apoptosis by alleviating CHOP pathway.
Collapse
Affiliation(s)
- Hua Tian
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian, China
| | - Yanyan Li
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian, China
| | - Panpan Kang
- Affiliated hospital of Chengde Medical University, Chengde Medical University, Chengde, China
| | - Zhichao Wang
- College of Nursing, Taishan Medical University, Taian, China
| | - Feng Yue
- Department of Endocrinology, Central Hospital of Taian, Taian, China
| | - Peng Jiao
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian, China
| | - Nana Yang
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian, China
| | - Shucun Qin
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian, China
| | - Shutong Yao
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian, China.,College of Basic Medical Sciences, Taishan Medical University, Taian, China
| |
Collapse
|
102
|
Xiao H, Xu J. Isaindigotone as an inhibitor of the lipopolysaccharide‑induced inflammatory reaction of BV‑2 cells and corresponding mechanisms. Mol Med Rep 2019; 19:2890-2896. [PMID: 30720138 DOI: 10.3892/mmr.2019.9909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/25/2019] [Indexed: 11/06/2022] Open
Abstract
Isaindigotone possesses extensive pharmacological activities, including anti‑inflammatory effects. The present study investigated the role of isaindigotone in the inhibition of neuroinflammation. Mouse BV‑2 cells were incubated with lipopolysaccharide (LPS; 1 mg/l) for 24 h in a microglial inflammatory model in vitro. The effects of isaindigotone on BV‑2 cell proliferation were observed using the 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide method. Following co‑incubation, an enzyme‑linked immunosorbent assay and western blot analysis were used to analyze cellular levels of cytokines and associated protein expression, including the phosphorylation of nuclear factor (NF)‑κB. The effects of isaindigotone concentration on LPS‑mediated cell chemotaxis behavior were assessed using a chemotaxis assay. The results indicated that isaindigotone is non‑toxic towards BV‑2 cells. Compared with the LPS group, isaindigotone significantly reduced the secretion of tumor necrosis factor‑α and interleukin‑1β in BV‑2 cells and reduced the cell chemotaxis caused by LPS; it also reversed morphological changes in the BV‑2 cells and inhibited the phosphorylation of NF‑κB. The results of the present study suggest that isaindigotone can inhibit inflammatory reactions in LPS‑induced BV‑2 cells, and provides a theoretical basis and experimental evidence for examining the mechanism underlying the isaindigotone‑induced inhibition of neuroinflammation.
Collapse
Affiliation(s)
- Hui Xiao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jianhua Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
103
|
Wang C, Zhu G, He W, Yin H, Lin F, Gou X, Li X. BMSCs protect against renal ischemia-reperfusion injury by secreting exosomes loaded with miR-199a-5p that target BIP to inhibit endoplasmic reticulum stress at the very early reperfusion stages. FASEB J 2019; 33:5440-5456. [PMID: 30640521 DOI: 10.1096/fj.201801821r] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) have been recently reported to play a variety of vital roles in organ and tissue damage repair, mainly via potent paracrine activity, including secreting extracellular vesicles, such as exosomes, that serve as mediators facilitating intercellular communication and reprogramming recipient cells by delivering their contents to target cells. However, the underlying mechanisms are diverse and complex, and the influencing characteristics have rarely been studied. Accordingly, we designed this study to explore the time dependence of the effects of exosomes derived from BMSCs (BMexos) on renal ischemia-reperfusion (I/R) injury and the underlying mechanisms associated with the reperfusion time. Impressively, our study is the first to find that BMexos protected against renal I/R injury in vitro and in vivo at the very early reperfusion stages, especially 4-8 h after reperfusion in vitro and 8-16 h after reperfusion in vivo. Interestingly, we simultaneously found that endoplasmic reticulum (ER) stress was significantly suppressed following the administration of BMexos in vitro and in vivo with a similar time dependence. Additionally, we discovered that miR-199a-5p, which was abundant in the BMSCs, was transferred into renal tubular epithelial cells (NRK-52E) in a time-dependent manner and significantly inhibited I/R-induced ER stress by targeting binding immunoglobulin protein (BIP). Cocultivation with miR-199a-5p-overexpressing BMSCs amplified the suppression of ER stress and further protected against I/R injury. However, coculture with miR-199a-5p-knockdown BMSCs obviously increased ER stress and reversed the BMexos-induced protection, and silencing BIP by small interfering RNA-1098 in NRK-52E inhibited these effects. This study provides evidence that administering BMexos at the very early reperfusion stages significantly protects against renal I/R injury, and ER stress is closely linked to this protection. These results suggest a novel therapeutic strategy during the very early reperfusion stages of renal I/R injury.-Wang, C., Zhu, G., He, W., Yin, H., Lin, F., Gou, X., Li, X. BMSCs protect against renal ischemia-reperfusion injury by secreting exosomes loaded with miR-199a-5p that target BIP to inhibit endoplasmic reticulum stress at the very early reperfusion stages.
Collapse
Affiliation(s)
- Chenyang Wang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China.,Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Chin
| | - Gongmin Zhu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hubin Yin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Fan Lin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyuan Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| |
Collapse
|
104
|
Zhang L, Sun H, Liu S, Gao J, Xia J. Glycemic variability is associated with vascular calcification by the markers of endoplasmic reticulum stress-related apoptosis, Wnt1, galectin-3 and BMP-2. Diabetol Metab Syndr 2019; 11:67. [PMID: 31452690 PMCID: PMC6701112 DOI: 10.1186/s13098-019-0464-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/13/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The present study identified whether glycemic variability (GV) was associated with vascular calcification and explored the underlying mechanisms. METHODS Eighty-four consecutive type 2 diabetic patients with unstable angina (UA) were included from January 2018 to June 2018 to calculate calcification scores using computerized tomographic angiography (CTA), and the patients were divided into 2 groups: high calcification score group (HCS group) and low calcification score group (LCS group). Intergroup differences in GV were determined via comparisons of the standard deviation (SD) of blood glucose. Calcification staining, content measurement, apoptosis evaluation and Western blot analysis of endoplasmic reticulum (ER) stress-related apoptosis, Wnt1, galectin-3 and bone morphogenetic protein-2 (BMP-2) were compared in cell cultures from rat vascular smooth muscle cells in the different degrees of GV. RESULTS The SD increased significantly with the increases in calcification scores from human studies (HCS group 2.37 ± 0.82 vs. LCS group 1.87 ± 0.78, p = 0.007). Multivariate logistic regression analysis suggested that increased SD and serum creatinine were independent predictors of calcification. The high GV group had a higher apoptotic rate, higher calcification content and higher expressions of glucose-regulated protein, caspase-3, Wnt1, galectin-3 and BMP-2 markers compared to the low GV group in the in vitro studies (p < 0.001). CONCLUSION We report the novel finding that GV is associated with vascular calcification, and ER stress-related apoptosis, Wnt1, galectin-3 and BMP-2 may be involved in this regulation.
Collapse
Affiliation(s)
- Li Zhang
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, China National Clinical Research Center for Geriatric Medicine, Beijing, 100053 China
| | - Haichen Sun
- Surgical Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Shuang Liu
- Surgical Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Jinhuan Gao
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Jinggang Xia
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| |
Collapse
|
105
|
Wang M, Yang Q, Long J, Ding Y, Zou X, Liao G, Cao Y. A comparative study of toxicity of TiO 2, ZnO, and Ag nanoparticles to human aortic smooth-muscle cells. Int J Nanomedicine 2018; 13:8037-8049. [PMID: 30568444 PMCID: PMC6267729 DOI: 10.2147/ijn.s188175] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To evaluate the adverse vascular effects of nanoparticles (NPs) in vitro, extensive studies have investigated the toxicity of NPs on endothelial cells, but the knowledge of potential toxicity on human smooth-muscle cells (SMCs) is currently limited. METHODS This study compared the toxicity of TiO2, ZnO, and Ag NPs to human aortic SMCs. RESULTS Only ZnO NPs significantly induced cytotoxicity, accompanied by increased intracellular reactive oxygen species, Zn ions, and endoplasmic reticulum stress biomarkers (DDIT3 expression and p-Chop proteins). All the NPs significantly promoted the release of soluble VCAM1 and soluble sICAM1, but not IL6, which suggested that metal-based NPs might promote inflammatory responses. Furthermore, KLF4 expression (a transcription factor for SMC-phenotype switch) was significantly induced by TiO2 NPs and modestly by ZnO NPs, but the expression of CD68 remained unaltered. CONCLUSION Our data indicated that ZnO NPs were more cytotoxic to human aortic SMCs than TiO2 and Ag NPs at the same mass concentrations, which might have been associated with intracellular reactive oxygen species, Zn ions, and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Maolin Wang
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China,
| | - Qianyu Yang
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China,
| | - Jimin Long
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China,
| | - Yanghuai Ding
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China,
| | - Xiaoqing Zou
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China,
| | - Guochao Liao
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China,
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China,
| |
Collapse
|
106
|
Michalak M, Agellon LB. Stress Coping Strategies in the Heart: An Integrated View. Front Cardiovasc Med 2018; 5:168. [PMID: 30519562 PMCID: PMC6258784 DOI: 10.3389/fcvm.2018.00168] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/02/2018] [Indexed: 12/15/2022] Open
Abstract
The heart is made up of an ordered amalgam of cardiac cell types that work together to coordinate four major processes, namely energy production, electrical conductance, mechanical work, and tissue remodeling. Over the last decade, a large body of information has been amassed regarding how different cardiac cell types respond to cellular stress that affect the functionality of their elaborate intracellular membrane networks, the cellular reticular network. In the context of the heart, the manifestations of stress coping strategies likely differ depending on the coping strategy outcomes of the different cardiac cell types, and thus may underlie the development of distinct cardiac disorders. It is not clear whether all cardiac cell types have similar sensitivity to cellular stress, how specific coping response strategies modify their unique roles, and how their metabolic status is communicated to other cells within the heart. Here we discuss our understanding of the roles of specialized cardiac cells that together make the heart function as an organ with the ability to pump blood continuously and follow a regular rhythm.
Collapse
Affiliation(s)
- Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, Canada
| |
Collapse
|
107
|
Role of local coronary blood flow patterns and shear stress on the development of microvascular and epicardial endothelial dysfunction and coronary plaque. Curr Opin Cardiol 2018; 33:638-644. [DOI: 10.1097/hco.0000000000000571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
108
|
Luo J, Huang L, Wang A, Liu Y, Cai R, Li W, Zhou MS. Resistin-Induced Endoplasmic Reticulum Stress Contributes to the Impairment of Insulin Signaling in Endothelium. Front Pharmacol 2018; 9:1226. [PMID: 30416448 PMCID: PMC6212567 DOI: 10.3389/fphar.2018.01226] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/08/2018] [Indexed: 01/04/2023] Open
Abstract
Background: Endoplasmic reticulum (ER) stress plays an important role in the pathogenesis of obesity, insulin resistance and cardiovascular diseases (CVDs). Impairment of insulin vascular action may represent a mechanism linking insulin resistance and CVDs. The present study tested the hypothesis that adipocyte-derived resistin inhibits insulin-stimulated endothelial NO production through the induction of ER stress. Methods and Results: Human umbilical vein endothelial cells (HUVC) were incubated with tunicamycin (an inducer of ER stress, 1–20 μg/mL) or resistin (10–100 ng/mL) for 1 h. Either tunicamycin or resistin increased GRP78 (an ER stress marker) expression associated with the impairment of insulin-stimulated Akt/eNOS phosphorylation, which were prevented by TUDCA (an ER stress suppressor). Resistin increased reactive oxygen species (ROS) production, antioxidant treatment inhibited resistin-induced GRP78 expression and impairment of insulin Akt/eNOS signaling, suggesting that ROS may involve resistin-induced ER stress. Resistin also increased JNK phosphorylation, which was prevented by TUDCA. JNK inhibitor SP600125 relieved the resistin inhibitory effects on endothelial insulin Akt/eNOS signaling. In ex vivo experiments, the incubation of aortic rings with resistin impaired insulin- but not acetylcholine-induced vasodilation, which was restored by TUDCA. LNAME (a NOS inhibitor) abolished insulin-induced vasorelaxation in the control or the resistin-treated aortic rings. In addition, resistin increased the mRNA expressions of proinflammatory cytokines tumor nuclear factor (TNF)α and interleukin (IL)-1β, which were also prevented by TUDCA. Conclusion: Our results support the ideal that ER stress may play an important role for resistin impairment of vascular insulin signaling and insulin action. The mitigation of ER stress may represent a new strategy for prevention and treatment of CVDs in obesity and insulin resistant-related diseases.
Collapse
Affiliation(s)
- Jun Luo
- Department of Cardiology, Affiliated Ganzhou City Hospital, Nanchang University, Ganzhou, China
| | - Lei Huang
- Department of Physiology, Shenyang Medical University, Shenyang, China
| | - Aimei Wang
- Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Yueyang Liu
- Department of Physiology, Shenyang Medical University, Shenyang, China
| | - Ruiping Cai
- Department of Physiology, Shenyang Medical University, Shenyang, China
| | - Weihong Li
- Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Ming-Sheng Zhou
- Department of Physiology, Shenyang Medical University, Shenyang, China.,Department of Physiology, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
109
|
Fan B, Li Y, Bi Y, Tong L, Li D, Wang Y. Design of multi-drug combinations for poly-pharmacological effects using composition-activity relationship modeling and multi-objective optimization approach: Application in traditional Chinese medicine. Chem Biol Drug Des 2018; 93:1073-1082. [PMID: 30230238 DOI: 10.1111/cbdd.13396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/26/2018] [Accepted: 08/26/2018] [Indexed: 12/21/2022]
Abstract
In recent years, multi-component therapies are increasingly utilized to treat complex diseases such as cancer, diabetes, and other chronic complex diseases. Here, we proposed the protocol for rational design of drug combination with poly-pharmacological effects by integration of design of experiments (DOE), computational modeling, and multiple-objective optimization algorithm. Here, we introduce a common workflow for modeling quantitative relationship of chemical composition and multiple activities of drug combinations. As an example, anti-oxidation, neuroprotective, and anti-platelet activities of three different salvia polyphenols were measured, which were mathematically represented by multivariant regression models to evaluate the effect of combination. In validation, the optimized combination which obtained by weighed-sum method showed good activities in all three models. Our results demonstrate that the multiple-objective optimization strategy is suitable to optimize the ratio of the compounds so to induce the best therapeutic action.
Collapse
Affiliation(s)
- Bo Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yunfei Li
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin, China
| | - Yong Bi
- Department of Neurology, Shanghai Fourth People's Hospital, Shanghai, China
| | - Ling Tong
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin, China
| | - Dongxiang Li
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
110
|
Activation of CD137 Signaling Enhances Vascular Calcification through c-Jun N-Terminal Kinase-Dependent Disruption of Autophagic Flux. Mediators Inflamm 2018; 2018:8407137. [PMID: 30356425 PMCID: PMC6178178 DOI: 10.1155/2018/8407137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/25/2018] [Accepted: 07/16/2018] [Indexed: 01/17/2023] Open
Abstract
Background Vascular calcification is widespread and clinically significant, contributing to substantial morbidity and mortality. Calcifying vascular cells are partly derived from local vascular smooth muscle cells (VSMCs), which can undergo chondrogenic or osteogenic differentiation under inflammatory environment. Recently, we have found activation of CD137 signaling accelerated vascular calcification. However, the underlying mechanism remains unknown. This study aims to identify key mediators involved in CD137 signaling-induced vascular calcification in vivo and in vitro. Methods Autophagy flux was measured through mRFP-GFP-LC3 adenovirus and transmission electron microscopy. Von Kossa assay and alkaline phosphatase (ALP) activity were used to observe calcification in vivo and in vitro, respectively. Autophagosome-containing vesicles were collected and identified by flow cytometry and Western blot. Autophagy or calcification-associated targets were measured by Western blot, quantitative real-time PCR, and immunohistochemistry. Results Treatment with the agonist-CD137 displayed c-Jun N-terminal kinase- (JNK-) dependent increase in the expression of various markers of autophagy and the number of autophagosomes relative to the control group. Autophagy flux experiments suggested that agonist-CD137 blocked the fusion of autophagosomes with lysosomes in cultured VSMCs. Calcium deposition, ALP activity, and the expression of calcification-associated proteins also increased in agonist-CD137 group compared with anti-CD137 group, which could be recovered by autophagy stimulator rapamycin. Autophagosome-containing vesicles collected from agonist-CD137 VSMCs supernatant promoted VSMC calcification. Conclusion The present study identified a new pathway in which CD137 promotes VSMC calcification through the activation of JNK signaling, subsequently leading to the disruption of autophagic flux, which is responsible for CD137-induced acceleration of vascular calcification.
Collapse
|
111
|
Huang R, Shi M, Guo F, Feng Y, Feng Y, Liu J, Li L, Liang Y, Xiang J, Lei S, Ma L, Fu P. Pharmacological Inhibition of Fatty Acid-Binding Protein 4 (FABP4) Protects Against Rhabdomyolysis-Induced Acute Kidney Injury. Front Pharmacol 2018; 9:917. [PMID: 30135658 PMCID: PMC6092613 DOI: 10.3389/fphar.2018.00917] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/26/2018] [Indexed: 02/05/2023] Open
Abstract
Acute kidney injury (AKI) is a common and potentially life-threatening complication. Studies confirmed that circulating FABP4 depended on renal function of AKI patients. In our previous study, FABP4 was involved in the pathogenesis of I/R-induced AKI. However, the function of FABP4 in rhabdomyolysis-induced AKI remained poorly understood. In the study, we further investigated the effect of FABP4 in a murine model of glycerol injection-induced rhabdomyolysis. Following glycerol injection, the mice developed severe AKI as indicated by acute renal dysfunction and histologic changes, companied by the increased FABP4 expression in the cytoplasm of tubular epithelial cells. Pharmacological inhibition of FABP4 by a highly selective inhibitor BMS309403 significantly reduced serum creatinine level, proinflammatory cytokine mRNA expression of tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein 1 as well as attenuated renal tubular damage in glycerol-injured kidneys. Oral administration of FABP4 inhibitor also resulted in a significant attenuation of ER stress indicated by transmission electron microscope analysis and its maker proteins expression of GRP78, CHOP, p-perk, and ATF4 in kidneys of AKI. Furthermore, BMS309403 could attenuate myoglobin-induced ER stress and inflammation in renal proximal tubular epithelial cell line (HK-2). Overall, these data highlighted that renal protection of selective FABP4 inhibitor was substantiated by the reduction of ER stress and inflammation in tubular epithelial cells of rhabdomyolysis-induced injured kidneys and suggested that the inhibition of FABP4 might be a promising therapeutic strategy for AKI treatment.
Collapse
Affiliation(s)
- Rongshuang Huang
- Kidney Research Laboratory, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Min Shi
- Kidney Research Laboratory, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Fan Guo
- Kidney Research Laboratory, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Yuying Feng
- Kidney Research Laboratory, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Yanhuan Feng
- Kidney Research Laboratory, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Jing Liu
- Kidney Research Laboratory, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Lingzhi Li
- Kidney Research Laboratory, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Yan Liang
- Core Facility of West China Hospital, Chengdu, China
| | - Jin Xiang
- Laboratory of Clinical Pharmacology, West China Hospital of Sichuan University, Chengdu, China
| | - Song Lei
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Liang Ma
- Kidney Research Laboratory, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Ping Fu
- Kidney Research Laboratory, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
112
|
Anti-Inflammatory Effects of Resveratrol: Mechanistic Insights. Int J Mol Sci 2018; 19:ijms19061812. [PMID: 29925765 PMCID: PMC6032205 DOI: 10.3390/ijms19061812] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022] Open
Abstract
Inflammation is the principal response invoked by the body to address injuries. Despite inflammation constituting a crucial component of tissue repair, it is well known that unchecked or chronic inflammation becomes deleterious, leading to progressive tissue damage. Studies over the past years focused on foods rich in polyphenols with anti-inflammatory and immunomodulatory properties, since inflammation was recognized to play a central role in several diseases. In this review, we discuss the beneficial effects of resveratrol, the most widely investigated polyphenol, on cancer and neurodegenerative, respiratory, metabolic, and cardiovascular diseases. We highlight how resveratrol, despite its unfavorable pharmacokinetics, can modulate the inflammatory pathways underlying those diseases, and we identify future opportunities for the evaluation of its clinical feasibility.
Collapse
|
113
|
Li X, Zhu G, Gou X, He W, Yin H, Yang X, Li J. Negative feedback loop of autophagy and endoplasmic reticulum stress in rapamycin protection against renal ischemia-reperfusion injury during initial reperfusion phase. FASEB J 2018; 32:fj201800299R. [PMID: 29771603 DOI: 10.1096/fj.201800299r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Rapamycin, an immunosuppressant, is widely used in patients with kidney transplant. However, the therapeutic effects of rapamycin remain controversial. Additionally, previous studies have revealed deleterious effects of rapamycin predominantly when administered for ≥24 h. Few studies, however, have focused on the short-term effects of rapamycin administered only during the initial reperfusion phase. As such, we designed this study to explore the potential effects and mechanisms of rapamycin under a specific therapeutic regimen in which rapamycin is mixed in the perfusate during the initial reperfusion phase (within 24 h). Interestingly, we found that rapamycin maintained renal function and attenuated ischemia-reperfusion (I/R)-induced apoptosis in vivo and in vitro during the initial reperfusion phase, especially at 8 h after reperfusion. Simultaneously, rapamycin activated autophagy and inhibited endoplasmic reticulum (ER) stress and 3 pathways of unfolding protein response: ATF6, PERK, and IRE1α. Interestingly, we further found that the protective effects of rapamycin were suppressed when autophagy was inhibited by chloroquine and 3-methyladenine or when ER stress was induced by thapsigargin. Moreover, in terms of the regulatory effects of rapamycin, a negative-feedback loop between autophagy and ER stress occurred, with autophagy inhibiting ER stress and increased ER stress promoting autophagy during the initial reperfusion phase of renal I/R injury. Our study provides evidence that immediate reperfusion with rapamycin during the initial reperfusion phase repairs renal function and reduces apoptosis via activating autophagy, which could further inhibit ER stress. These results suggest a novel treatment modality for application during the initial reperfusion phase of renal I/R injury caused by kidney transplantation.-Li, X., Zhu, G., Gou, X., He, W., Yin, H., Yang, X., Li, J. Negative feedback loop of autophagy and endoplasmic reticulum stress in rapamycin protection against renal ischemia-reperfusion injury during initial reperfusion phase.
Collapse
Affiliation(s)
- Xinyuan Li
- Department of Urology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Gongmin Zhu
- Department of Urology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Xin Gou
- Department of Urology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
| | - Weiyang He
- Department of Urology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
| | - Hubin Yin
- Department of Urology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Xiaoyu Yang
- Department of Urology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Jie Li
- Department of Urology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
| |
Collapse
|
114
|
Cafestol Inhibits Cyclic-Strain-Induced Interleukin-8, Intercellular Adhesion Molecule-1, and Monocyte Chemoattractant Protein-1 Production in Vascular Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7861518. [PMID: 29854096 PMCID: PMC5952558 DOI: 10.1155/2018/7861518] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/10/2018] [Accepted: 02/15/2018] [Indexed: 11/17/2022]
Abstract
Moderate coffee consumption is inversely associated with cardiovascular disease mortality; however, mechanisms underlying this causal effect remain unclear. Cafestol, a diterpene found in coffee, has various properties, including an anti-inflammatory property. This study investigated the effect of cafestol on cyclic-strain-induced inflammatory molecule secretion in vascular endothelial cells. Cells were cultured under static or cyclic strain conditions, and the secretion of inflammatory molecules was determined using enzyme-linked immunosorbent assay. The effects of cafestol on mitogen-activated protein kinases (MAPK), heme oxygenase-1 (HO-1), and sirtuin 1 (Sirt1) signaling pathways were examined using Western blotting and specific inhibitors. Cafestol attenuated cyclic-strain-stimulated intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein- (MCP-) 1, and interleukin- (IL-) 8 secretion. Cafestol inhibited the cyclic-strain-induced phosphorylation of extracellular signal-regulated kinase and p38 MAPK. By contrast, cafestol upregulated cyclic-strain-induced HO-1 and Sirt1 expression. The addition of zinc protoporphyrin IX, sirtinol, or Sirt1 silencing (transfected with Sirt1 siRNA) significantly attenuated cafestol-mediated modulatory effects on cyclic-strain-stimulated ICAM-1, MCP-1, and IL-8 secretion. This is the first study to report that cafestol inhibited cyclic-strain-induced inflammatory molecule secretion, possibly through the activation of HO-1 and Sirt1 in endothelial cells. The results provide valuable insights into molecular pathways that may contribute to the effects of cafestol.
Collapse
|
115
|
Zhou H, Ma Q, Zhu P, Ren J, Reiter RJ, Chen Y. Protective role of melatonin in cardiac ischemia-reperfusion injury: From pathogenesis to targeted therapy. J Pineal Res 2018; 64. [PMID: 29363153 DOI: 10.1111/jpi.12471] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023]
Abstract
Acute myocardial infarction (MI) is a major cause of mortality and disability worldwide. In patients with MI, the treatment option for reducing acute myocardial ischemic injury and limiting MI size is timely and effective myocardial reperfusion using either thombolytic therapy or primary percutaneous coronary intervention (PCI). However, the procedure of reperfusion itself induces cardiomyocyte death, known as myocardial reperfusion injury, for which there is still no effective therapy. Recent evidence has depicted a promising role of melatonin, which possesses powerful antioxidative and anti-inflammatory properties, in the prevention of ischemia-reperfusion (IR) injury and the protection against cardiomyocyte death. A number of reports explored the mechanism of action behind melatonin-induced beneficial effects against myocardial IR injury. In this review, we summarize the research progress related to IR injury and discuss the unique actions of melatonin as a protective agent. Furthermore, the possible mechanisms responsible for the myocardial benefits of melatonin against reperfusion injury are listed with the prospect of the use of melatonin in clinical application.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Qiang Ma
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Pingjun Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
116
|
Wang X, Xu L, Gillette TG, Jiang X, Wang ZV. The unfolded protein response in ischemic heart disease. J Mol Cell Cardiol 2018; 117:19-25. [PMID: 29470977 DOI: 10.1016/j.yjmcc.2018.02.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/10/2018] [Accepted: 02/17/2018] [Indexed: 12/28/2022]
Abstract
Ischemic heart disease is a severe stress condition that causes extensive pathological alterations and triggers cardiac cell death. Accumulating evidence suggests that the unfolded protein response (UPR) is strongly induced by myocardial ischemia. The UPR is an evolutionarily conserved cellular response to cope with protein-folding stress, from yeast to mammals. Endoplasmic reticulum (ER) transmembrane sensors detect the accumulation of unfolded proteins and stimulate a signaling network to accommodate unfolded and misfolded proteins. Distinct mechanisms participate in the activation of three major signal pathways, viz. protein kinase RNA-like ER kinase, inositol-requiring protein 1, and activating transcription factor 6, to transiently suppress protein translation, enhance protein folding capacity of the ER, and augment ER-associated degradation to refold denatured proteins and restore cellular homeostasis. However, if the stress is severe and persistent, the UPR elicits inflammatory and apoptotic pathways to eliminate terminally affected cells. The ER is therefore recognized as a vitally important organelle that determines cell survival or death. Recent studies indicate the UPR plays critical roles in the pathophysiology of ischemic heart disease. The three signaling branches may elicit distinct but overlapping effects in cardiac response to ischemia. Here, we outline the findings and discuss the mechanisms of action and therapeutic potentials of the UPR in the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Xiaoding Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Thomas G Gillette
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
117
|
Molecular mechanisms of cardiac pathology in diabetes - Experimental insights. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1949-1959. [PMID: 29109032 DOI: 10.1016/j.bbadis.2017.10.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/09/2017] [Accepted: 10/27/2017] [Indexed: 12/11/2022]
Abstract
Diabetic cardiomyopathy is a distinct pathology independent of co-morbidities such as coronary artery disease and hypertension. Diminished glucose uptake due to impaired insulin signaling and decreased expression of glucose transporters is associated with a shift towards increased reliance on fatty acid oxidation and reduced cardiac efficiency in diabetic hearts. The cardiac metabolic profile in diabetes is influenced by disturbances in circulating glucose, insulin and fatty acids, and alterations in cardiomyocyte signaling. In this review, we focus on recent preclinical advances in understanding the molecular mechanisms of diabetic cardiomyopathy. Genetic manipulation of cardiomyocyte insulin signaling intermediates has demonstrated that partial cardiac functional rescue can be achieved by upregulation of the insulin signaling pathway in diabetic hearts. Inconsistent findings have been reported relating to the role of cardiac AMPK and β-adrenergic signaling in diabetes, and systemic administration of agents targeting these pathways appear to elicit some cardiac benefit, but whether these effects are related to direct cardiac actions is uncertain. Overload of cardiomyocyte fuel storage is evident in the diabetic heart, with accumulation of glycogen and lipid droplets. Cardiac metabolic dysregulation in diabetes has been linked with oxidative stress and autophagy disturbance, which may lead to cell death induction, fibrotic 'backfill' and cardiac dysfunction. This review examines the weight of evidence relating to the molecular mechanisms of diabetic cardiomyopathy, with a particular focus on metabolic and signaling pathways. Areas of uncertainty in the field are highlighted and important knowledge gaps for further investigation are identified. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.
Collapse
|
118
|
Deng Y, Zhu L, Cai H, Wang G, Liu B. Autophagic compound database: A resource connecting autophagy-modulating compounds, their potential targets and relevant diseases. Cell Prolif 2017; 51:e12403. [PMID: 29094410 DOI: 10.1111/cpr.12403] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/08/2017] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Autophagy, a highly conserved lysosomal degradation process in eukaryotic cells, can digest long-lived proteins and damaged organelles through vesicular trafficking pathways. Nowadays, mechanisms of autophagy have been gradually elucidated and thus the discovery of small-molecule drugs targeting autophagy has always been drawing much attention. So far, some autophagy-related web servers have been available online to facilitate scientists to obtain the information relevant to autophagy conveniently, such as HADb, CTLPScanner, iLIR server and ncRDeathDB. However, to the best of our knowledge, there is not any web server available about the autophagy-modulating compounds. METHODS According to published articles, all the compounds and their relations with autophagy were anatomized. Subsequently, an online Autophagic Compound Database (ACDB) (http://www.acdbliulab.com/) was constructed, which contained information of 357 compounds with 164 corresponding signalling pathways and potential targets in different diseases. RESULTS We achieved a great deal of information of autophagy-modulating compounds, including compounds, targets/pathways and diseases. ACDB is a valuable resource for users to access to more than 300 curated small-molecule compounds correlated with autophagy. CONCLUSIONS Autophagic compound database will facilitate to the discovery of more novel therapeutic drugs in the near future.
Collapse
Affiliation(s)
- Yiqi Deng
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Collaborative Innovation Center, Sichuan University, Chengdu, China
| | - Lingjuan Zhu
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Collaborative Innovation Center, Sichuan University, Chengdu, China.,School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Haoyang Cai
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Guan Wang
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Collaborative Innovation Center, Sichuan University, Chengdu, China
| | - Bo Liu
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Collaborative Innovation Center, Sichuan University, Chengdu, China
| |
Collapse
|
119
|
You L, Mao L, Wei J, Jin S, Yang C, Liu H, Zhu L, Qian W. The crosstalk between autophagic and endo-/exosomal pathways in antigen processing for MHC presentation in anticancer T cell immune responses. J Hematol Oncol 2017; 10:165. [PMID: 29058602 PMCID: PMC5651564 DOI: 10.1186/s13045-017-0534-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023] Open
Abstract
T cells recognize antigen fragments from proteolytic products that are presented to them in the form of peptides on major histocompatibility complex (MHC) molecules, which is crucial for the T cell to identify infected or transformed cells. Autophagy, a process that delivers cytoplasmic constituents for lysosomal degradation, has been observed to provide a substantial source of intra- and extracellular antigens for MHC presentation to T cells, which will impact the tumor-specific immune response. Meanwhile, extracellular components are transported to cytoplasm for the degradation/secretion process by the endo-/exosomal pathway and are thus involved in multiple physiological and pathological processes, including immune responses. Autophagy and endo-/exosomal pathways are intertwined in a highly intricate manner and both are closely involved in antigen processing for MHC presentation; thus, we propose that they may coordinate in antigen processing and presentation in anticancer T cell immune responses. In this article, we discuss the molecular and functional crosstalk between autophagy and endo-/exosomal pathways and their contributions to antigen processing for MHC presentation in anticancer T cell immune responses.
Collapse
Affiliation(s)
- Liangshun You
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Liping Mao
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Juying Wei
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Shenhe Jin
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Chunmei Yang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Hui Liu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Li Zhu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Wenbin Qian
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China. .,Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
120
|
Mechanisms contributing to cardiac remodelling. Clin Sci (Lond) 2017; 131:2319-2345. [PMID: 28842527 DOI: 10.1042/cs20171167] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Cardiac remodelling is classified as physiological (in response to growth, exercise and pregnancy) or pathological (in response to inflammation, ischaemia, ischaemia/reperfusion (I/R) injury, biomechanical stress, excess neurohormonal activation and excess afterload). Physiological remodelling of the heart is characterized by a fine-tuned and orchestrated process of beneficial adaptations. Pathological cardiac remodelling is the process of structural and functional changes in the left ventricle (LV) in response to internal or external cardiovascular damage or influence by pathogenic risk factors, and is a precursor of clinical heart failure (HF). Pathological remodelling is associated with fibrosis, inflammation and cellular dysfunction (e.g. abnormal cardiomyocyte/non-cardiomyocyte interactions, oxidative stress, endoplasmic reticulum (ER) stress, autophagy alterations, impairment of metabolism and signalling pathways), leading to HF. This review describes the key molecular and cellular responses involved in pathological cardiac remodelling.
Collapse
|
121
|
The Endoplasmic Reticulum and the Cellular Reticular Network. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:61-76. [DOI: 10.1007/978-3-319-55858-5_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|