101
|
Cross D, Drury R, Hill J, Pollard AJ. Epigenetics in Sepsis: Understanding Its Role in Endothelial Dysfunction, Immunosuppression, and Potential Therapeutics. Front Immunol 2019; 10:1363. [PMID: 31275313 PMCID: PMC6591469 DOI: 10.3389/fimmu.2019.01363] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
Sepsis has a complex pathophysiology in which both excessive and refractory inflammatory responses are hallmark features. Pro-inflammatory cytokine responses during the early stages are responsible for significant endothelial dysfunction, loss of endothelial integrity, and organ failure. In addition, it is now well-established that a substantial number of sepsis survivors experience ongoing immunological derangement and immunosuppression following a septic episode. The underpinning mechanisms of these phenomena are incompletely understood yet they contribute to a significant proportion of sepsis-associated mortality. Epigenetic mechanisms including DNA methylation, histone modifications, and non-coding RNAs, have an increasingly clear role in modulating inflammatory and other immunological processes. Recent evidence suggests epigenetic mechanisms are extensively perturbed as sepsis progresses, and particularly play a role in endothelial dysfunction and immunosuppression. Whilst therapeutic modulation of the epigenome is still in its infancy, there is substantial evidence from animal models that this approach could reap benefits. In this review, we summarize research elucidating the role of these mechanisms in several aspects of sepsis pathophysiology including tissue injury and immunosuppression. We also evaluate pre-clinical evidence for the use of "epi-therapies" in the treatment of poly-microbial sepsis.
Collapse
Affiliation(s)
- Deborah Cross
- Oxford Vaccine Group, Department of Paediatrics, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | | | | | | |
Collapse
|
102
|
Foss DV, Schirle NT, MacRae IJ, Pezacki JP. Structural insights into interactions between viral suppressor of RNA silencing protein p19 mutants and small RNAs. FEBS Open Bio 2019; 9:1042-1051. [PMID: 31021526 PMCID: PMC6551489 DOI: 10.1002/2211-5463.12644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 12/31/2022] Open
Abstract
Viral suppressors of RNA silencing (VSRSs) are a diverse group of viral proteins that have evolved to disrupt eukaryotic RNA silencing pathways, thereby contributing to viral pathogenicity. The p19 protein is a VSRS that selectively binds to short interfering RNAs (siRNAs) over microRNAs (miRNAs). Mutational analysis has identified single amino acid substitutions that reverse this selectivity through new high-affinity interactions with human miR-122. Herein, we report crystal structures of complexed p19-T111S (2.6 Å), p19-T111H (2.3 Å) and wild-type p19 protein (2.2 Å) from the Carnation Italian ringspot virus with small interfering RNA (siRNA) ligands. Structural comparisons reveal that these mutations do not lead to major changes in p19 architecture, but instead promote subtle rearrangement of residues and solvent molecules along the p19 midline. These observations suggest p19 uses many small interactions to distinguish siRNAs from miRNAs and perturbing these interactions can create p19 variants with novel RNA-recognition properties. DATABASE: Model data are deposited in the PDB database under the accession numbers 6BJG, 6BJH and 6BJV.
Collapse
Affiliation(s)
- Dana V Foss
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada
| | - Nicole T Schirle
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| |
Collapse
|
103
|
Bruggeman LA. Common Mechanisms of Viral Injury to the Kidney. Adv Chronic Kidney Dis 2019; 26:164-170. [PMID: 31202388 PMCID: PMC6578596 DOI: 10.1053/j.ackd.2018.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 11/11/2022]
Abstract
Viral infections in an immunocompetent host can cause both acute and chronic kidney diseases, either by direct damage to the infected kidney cells or as a consequence of systemic immune responses that impact the kidneys' function. Viruses have evolved mechanisms to hijack signaling pathways of the infected cell, including the mammalian target of rapamycin pathway to support viral replication, and to evade antiviral immune responses such as those mediated by miR-155 via microRNA mimetics expressed by the virus. At both the cellular and systemic levels, the host has also evolved mechanisms to counter the viral subversion strategies in the evolutionary battle for mutual survival. In the era of genomic medicine, understanding individual genetic variations that lead to differences in susceptibilities to infection and variabilities in immune responses may open new avenues for treatment, such as the recently described functions of apolipoprotein L1 risk alleles in HIV-associated nephropathy. In addition, state-of-the-art high-throughput sequencing methods have discovered new viruses as the cause for chronic diseases not previously attributed to an infection. The potential application of these methods to idiopathic kidney diseases may reveal similar occult infections by unknown viruses. Precision medicine objectives to optimize host-directed and pathogen-directed therapies for kidney diseases associated with infectious causes will only be achieved through detailed understanding of genetic susceptibility associated with immune responses and viral tropism.
Collapse
Affiliation(s)
- Leslie A Bruggeman
- Departments of Inflammation & Immunity and Nephrology, Cleveland Clinic, and Case Western Reserve University School of Medicine, Cleveland, OH.
| |
Collapse
|
104
|
Hussein HAM, Alfhili MA, Pakala P, Simon S, Hussain J, McCubrey JA, Akula SM. miRNAs and their roles in KSHV pathogenesis. Virus Res 2019; 266:15-24. [PMID: 30951791 DOI: 10.1016/j.virusres.2019.03.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman Disease (MCD). Recent mechanistic advances have discerned the importance of microRNAs in the virus-host relationship. KSHV has two modes of replication: lytic and latent phase. KSHV entry into permissive cells, establishment of infection, and maintenance of latency are contingent upon successful modulation of the host miRNA transcriptome. Apart from host cell miRNAs, KSHV also encodes viral miRNAs. Among various cellular and molecular targets, miRNAs are appearing to be key players in regulating viral pathogenesis. Therefore, the use of miRNAs as novel therapeutics has gained considerable attention as of late. This innovative approach relies on either mimicking miRNA species by identical oligonucleotides, or selective silencing of miRNA with specific oligonucleotide inhibitors. Here, we provide an overview of KSHV pathogenesis at the molecular level with special emphasis on the various roles miRNAs play during virus infection.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States; Faculty of Science, Al Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohammad A Alfhili
- Department of Medicine (Division of Hematology/Oncology), Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Pranaya Pakala
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Sandra Simon
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Jaffer Hussain
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| |
Collapse
|
105
|
Zhang Z, Han Y, Sun G, Liu X, Jia X, Yu X. MicroRNA-325-3p inhibits cell proliferation and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma by down-regulation of aquaporin 5. Cell Mol Biol Lett 2019; 24:13. [PMID: 30805015 PMCID: PMC6373077 DOI: 10.1186/s11658-019-0137-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is acknowledged as the main cause of hepatocellular carcinoma (HCC). Moreover, previous studies have revealed that microRNAs (miRNAs) widely participate in regulation of various cellular processes, such as viral replication. Hence, the purpose of this study was to investigate the roles of aquaporin 5 (AQP5) and miR-325-3p in the proliferation and apoptosis of HBV-related HCC cells. METHODS AQP5 and miR-325-3p expression in both normal and HBV-HCC tissues or cells (both Huh7-1.3 and HepG2.2.15) was detected using qRT-PCR. AQP5 expression was knocked down in HBV-related Huh7-1.3 and HepG2.2.15 cells using small interfering RNA (siRNA) technology. Down-regulation was confirmed using real-time PCR and Western blot analysis. Effects of AQP5 down-regulation on the proliferation and apoptosis were assessed. Dual luciferase reporter gene assay, Western blot and qRT-PCR were employed to evaluate the effect of miR-325-3p on the luciferase activity and expression of AQP5. Moreover, miR-325-3p mimic-induced changes in cellular proliferation and apoptosis were detected through CCK-8 assay, BrdU assay, flow cytometry analysis and ELISA. RESULTS In this study, the expression of AQP5 was up-regulated in human HBV-HCC tissue, Huh7-1.3 and HepG2.2.15 cells. Knockdown of AQP5 significantly inhibited the proliferation and promoted apoptosis of HBV-HCC cells. Next, miR-325-3p was obviously down-regulated in HBV-HCC. In concordance with this, MiR-325-3p directly targeted AQP5, and reduced both mRNA and protein levels of AQP5, which promoted cell proliferation and suppressed cell apoptosis in HCC cells. Overexpression of miR-325-3p dramatically inhibited cell proliferation and induced cell apoptosis. CONCLUSIONS Our findings clearly demonstrated that introduction of miR-325-3p inhibited proliferation and induced apoptosis of Huh7-1.3 and HepG2.2.15 cells by directly decreasing AQP5 expression, and that silencing AQP5 expression was essential for the pro-apoptotic effect of miR-325-3p overexpression on Huh7-1.3 and HepG2.2.15 cells. It is beneficial to gain insight into the mechanism of HBV infection and pathophysiology of HBV-related HCC.
Collapse
Affiliation(s)
- Zhitao Zhang
- Clinical Laboratory, Handan Infectious Disease Hospital, Handan, 056002 Hebei Province People’s Republic of China
| | - Yanzhen Han
- General Surgery V Ward, Affiliated Hospital of Hebei Engineering University, Handan, 056002 Hebei Province People’s Republic of China
| | - Guangxin Sun
- General Surgery V Ward, Affiliated Hospital of Hebei Engineering University, Handan, 056002 Hebei Province People’s Republic of China
| | - Xiaohong Liu
- General Surgery V Ward, Affiliated Hospital of Hebei Engineering University, Handan, 056002 Hebei Province People’s Republic of China
| | - Xiaoyan Jia
- General Surgery V Ward, Affiliated Hospital of Hebei Engineering University, Handan, 056002 Hebei Province People’s Republic of China
| | - Xiangjun Yu
- General Surgery V Ward, Affiliated Hospital of Hebei Engineering University, Handan, 056002 Hebei Province People’s Republic of China
| |
Collapse
|
106
|
Manning JE, Cantaert T. Time to Micromanage the Pathogen-Host-Vector Interface: Considerations for Vaccine Development. Vaccines (Basel) 2019; 7:E10. [PMID: 30669682 PMCID: PMC6466432 DOI: 10.3390/vaccines7010010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/18/2022] Open
Abstract
The current increase in vector-borne disease worldwide necessitates novel approaches to vaccine development targeted to pathogens delivered by blood-feeding arthropod vectors into the host skin. A concept that is gaining traction in recent years is the contribution of the vector or vector-derived components, like salivary proteins, to host-pathogen interactions. Indeed, the triad of vector-host-pathogen interactions in the skin microenvironment can influence host innate and adaptive responses alike, providing an advantage to the pathogen to establish infection. A better understanding of this "bite site" microenvironment, along with how host and vector local microbiomes immunomodulate responses to pathogens, is required for future vaccines for vector-borne diseases. Microneedle administration of such vaccines may more closely mimic vector deposition of pathogen and saliva into the skin with the added benefit of near painless vaccine delivery. Focusing on the 'micro'⁻from microenvironments to microbiomes to microneedles⁻may yield an improved generation of vector-borne disease vaccines in today's increasingly complex world.
Collapse
Affiliation(s)
- Jessica E Manning
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh 12201, Cambodia.
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 12201, Cambodia.
| |
Collapse
|
107
|
Zhao C, Zhang Y, Popel AS. Mechanistic Computational Models of MicroRNA-Mediated Signaling Networks in Human Diseases. Int J Mol Sci 2019; 20:E421. [PMID: 30669429 PMCID: PMC6358731 DOI: 10.3390/ijms20020421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRs) are endogenous non-coding RNA molecules that play important roles in human health and disease by regulating gene expression and cellular processes. In recent years, with the increasing scientific knowledge and new discovery of miRs and their gene targets, as well as the plentiful experimental evidence that shows dysregulation of miRs in a wide variety of human diseases, the computational modeling approach has emerged as an effective tool to help researchers identify novel functional associations between differential miR expression and diseases, dissect the phenotypic expression patterns of miRs in gene regulatory networks, and elucidate the critical roles of miRs in the modulation of disease pathways from mechanistic and quantitative perspectives. Here we will review the recent systems biology studies that employed different kinetic modeling techniques to provide mechanistic insights relating to the regulatory function and therapeutic potential of miRs in human diseases. Some of the key computational aspects to be discussed in detail in this review include (i) models of miR-mediated network motifs in the regulation of gene expression, (ii) models of miR biogenesis and miR⁻target interactions, and (iii) the incorporation of such models into complex disease pathways in order to generate mechanistic, molecular- and systems-level understanding of pathophysiology. Other related bioinformatics tools such as computational platforms that predict miR-disease associations will also be discussed, and we will provide perspectives on the challenges and opportunities in the future development and translational application of data-driven systems biology models that involve miRs and their regulatory pathways in human diseases.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Yu Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
108
|
López-Rosas I, López-Camarillo C, Salinas-Vera YM, Hernández-de la Cruz ON, Palma-Flores C, Chávez-Munguía B, Resendis-Antonio O, Guillen N, Pérez-Plasencia C, Álvarez-Sánchez ME, Ramírez-Moreno E, Marchat LA. Entamoeba histolytica Up-Regulates MicroRNA-643 to Promote Apoptosis by Targeting XIAP in Human Epithelial Colon Cells. Front Cell Infect Microbiol 2019; 8:437. [PMID: 30671387 PMCID: PMC6333105 DOI: 10.3389/fcimb.2018.00437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function as negative regulators of gene expression. Recent evidences suggested that host cells miRNAs are involved in the progression of infectious diseases, but its role in amoebiasis remains largely unknown. Here, we reported an unexplored role for miRNAs of human epithelial colon cells during the apoptosis induced by Entamoeba histolytica. We demonstrated for the first time that SW-480 colon cells change their miRNAs profile in response to parasite exposure. Our data showed that virulent E. histolytica trophozoites induced apoptosis of SW-480 colon cells after 45 min interaction, which was associated to caspases-3 and -9 activation. Comprehensive profiling of 667 miRNAs using Taqman Low-Density Arrays showed that 6 and 15 miRNAs were significantly (FC > 1.5; p < 0.05) modulated in SW-480 cells after 45 and 75 min interaction with parasites, respectively. Remarkably, no significant regulation of the 6-miRNAs signature (miR-526b-5p, miR-150, miR-643, miR-615-5p, miR-525, and miR-409-3p) was found when SW-480 cells were exposed to non-virulent Entamoeba dispar. Moreover, we confirmed that miR-150, miR-643, miR-615-5p, and miR-525 exhibited similar regulation in SW-480 and Caco2 colon cells after 45 min interaction with trophozoites. Exhaustive bioinformatic analysis of the six-miRNAs signature revealed intricate miRNAs-mRNAs co-regulation networks in which the anti-apoptotic XIAP, API5, BCL2, and AKT1 genes were the major targets of the set of six-miRNAs. Of these, we focused in the study of functional relationships between miR-643, upregulated at 45 min interaction, and its predicted target X-linked inhibitor of apoptosis protein (XIAP). Interestingly, interplay of amoeba with SW-480 cells resulted in downregulation of XIAP consistent with apoptosis activation. More importantly, loss of function studies using antagomiRs showed that forced inhibition of miR-643 leads to restoration of XIAP levels and suppression of both apoptosis and caspases-3 and -9 activation. Congruently, mechanistic studies using luciferase reporter assays confirmed that miR-643 exerts a postranscripcional negative regulation of XIAP by targeting its 3′-UTR indicating that it's a downstream effector. In summary, we provide novel lines of evidence suggesting that early-branched eukaryote E. histolytica may promote apoptosis of human colon cells by modulating, in part, the host microRNome which highlight an unexpected role for miRNA-643/XIAP axis in the host cellular response to parasites infection.
Collapse
Affiliation(s)
- Itzel López-Rosas
- Catedrática CONACYT, Laboratorio de Genómica Funcional y Biología Molecular, Colegio de Postgraduados Campus Campeche, Campeche, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de Mexico, Mexico City, Mexico
| | - Yarely M Salinas-Vera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de Mexico, Mexico City, Mexico
| | | | | | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Osbaldo Resendis-Antonio
- Instituto Nacional de Medicina Genómica y Coordinación de la Investigación Científica, Red de Apoyo a la Investigación, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Nancy Guillen
- Unidad de Análisis Cuantitativo de Imágenes, Instituto Pasteur, Paris, France
| | - Carlos Pérez-Plasencia
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | - Esther Ramírez-Moreno
- Programa en Biomedicina Molecular y Red de Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Laurence A Marchat
- Programa en Biomedicina Molecular y Red de Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
109
|
Yang Z, Li J, Feng G, Wang Y, Yang G, Liu Y, Zhang S, Feng J, Zhang X. Hepatitis B virus X protein enhances hepatocarcinogenesis by depressing the targeting of NUSAP1 mRNA by miR- 18b. Cancer Biol Med 2019; 16:276-287. [PMID: 31516748 PMCID: PMC6713641 DOI: 10.20892/j.issn.2095-3941.2018.0283] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objective The aim of this study was to investigate the underlying mechanism whereby HBx modulates the targeting of NUSAP1 by miR-18b to enhance hepatocarcinogenesis. Methods We employed an integrated approach of bioinformatics analysis and molecular experiments in hepatoma cells, HBV transgenic mice, and clinical liver cancer tissues to investigate the role of HBx-regulated miR-18b in the development of liver cancer. Results In this study, we report that the HBx-mediated tumor suppressor miR-18b modulates hepatocarcinogenesis during the host-HBV interaction. The expression levels of miR-18b were lower in clinical HBV-positive liver cancer tissues and liver tissues of HBV-transgenic mice. Interestingly, HBx inhibited miR-18b expression by inducing the methylation of CpG islands in its promoter. Accordingly, we tested the hypothesis that HBx enhanced hepatocarcinogenesis by increasing the expression of target genes of miR-18b. Moreover, we identified nucleolar spindle-associated protein 1 (NUSAP1) as one of the target genes of miR-18b. NUSAP1 was expressed at high levels in liver cancer tissues. Interestingly, HBx up-regulated NUSAP1 by suppressing miR-18b. Functionally, miR-18b significantly inhibited the proliferation of hepatoma cells by depressing NUSAP1 levels in vivo and in vitro. Conclusions Thus, we conclude that the targeting of NUSAP1 mRNA by the tumor suppressor miR-18b is controlled by HBx-modulated promoter methylation during the host-virus interaction, leading to hepatocarcinogenesis. Our findings provide new insights into the mechanism by which HBx-mediated miRNAs modulate hepatocarcinogenesis.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiong Li
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guoxing Feng
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuan Wang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guang Yang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunxia Liu
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuqin Zhang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jinyan Feng
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaodong Zhang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
110
|
Abstract
High-throughput profiling/sensing of nucleic acids has recently emerged as a highly promising strategy for the early diagnosis and improved prognosis of a broad range of pathologies, most notably cancer. Among the potential biomarker candidates, microRNAs (miRNAs), a class of non-coding RNAs of 19-25 nucleotides in length, are of particular interest due to their role in the post-transcriptional regulation of gene expression. Developing miRNA sensing technologies that are quantitative, ultrasensitive and highly specific has proven very challenging because of their small size, low natural abundance and the high degree of sequence similarity among family members. When compared to optical based methods, electrochemical sensors offer many advantages in terms of sensitivity and scalability. This non-comprehensive review aims to break-down and highlight some of the most promising strategies for electrochemical sensing of microRNA biomarkers.
Collapse
Affiliation(s)
- Philip Gillespie
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW72AZ, UK.
| | - Sylvain Ladame
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW72AZ, UK.
| | - Danny O'Hare
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW72AZ, UK.
| |
Collapse
|
111
|
Han Y, Mesplède T. Investigational drugs for the treatment of Zika virus infection: a preclinical and clinical update. Expert Opin Investig Drugs 2018; 27:951-962. [PMID: 30430882 DOI: 10.1080/13543784.2018.1548609] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The Zika virus (ZIKV) infection results in severe neurological complications and has emerged as a threat to public health worldwide. No drugs or vaccines are available for use in the clinic and the need for novel and effective therapeutic agents is urgent. AREAS COVERED This review describes the latest progress of antiviral development for the treatment of ZIKV infection; it primarily focuses on the literature describing 20 potential anti-ZIKV drugs/agents currently being tested in vivo or in clinical trials. The paper also discusses the need for novel ZIKV inhibitors and the critical issues for successful antiviral drug development. EXPERT OPINION So far, 20 compounds have been tested in vivo and three in the clinical trials; progressing these compounds to the clinic is a challenge. Novel ZIKV inhibitors that target virus or host factors are urgently needed. Knowledge-driven drug repurposing, structure-based discovery, RNA interference, long noncoding RNAs, miRNAs, and peptide inhibitors may pave the way for the discovery of such novel agents.
Collapse
Affiliation(s)
- Yingshan Han
- a McGill University AIDS Centre , Lady Davis Institute for Medical Research, Jewish General Hospital , Montreal , Canada
| | - Thibault Mesplède
- a McGill University AIDS Centre , Lady Davis Institute for Medical Research, Jewish General Hospital , Montreal , Canada
| |
Collapse
|
112
|
Varikuti S, Jha BK, Volpedo G, Ryan NM, Halsey G, Hamza OM, McGwire BS, Satoskar AR. Host-Directed Drug Therapies for Neglected Tropical Diseases Caused by Protozoan Parasites. Front Microbiol 2018; 9:2655. [PMID: 30555425 PMCID: PMC6284052 DOI: 10.3389/fmicb.2018.02655] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
The neglected tropical diseases (NTDs) caused by protozoan parasites are responsible for significant morbidity and mortality worldwide. Current treatments using anti-parasitic drugs are toxic and prolonged with poor patient compliance. In addition, emergence of drug-resistant parasites is increasing worldwide. Hence, there is a need for safer and better therapeutics for these infections. Host-directed therapy using drugs that target host pathways required for pathogen survival or its clearance is a promising approach for treating infections. This review will give a summary of the current status and advances of host-targeted therapies for treating NTDs caused by protozoa.
Collapse
Affiliation(s)
- Sanjay Varikuti
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Bijay Kumar Jha
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Greta Volpedo
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Nathan M Ryan
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Gregory Halsey
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Omar M Hamza
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Bradford S McGwire
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Abhay R Satoskar
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
113
|
Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol 2018; 234:5451-5465. [PMID: 30471116 DOI: 10.1002/jcp.27486] [Citation(s) in RCA: 1166] [Impact Index Per Article: 194.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs, which function in posttranscriptional regulation of gene expression. They are powerful regulators of various cellular activities including cell growth, differentiation, development, and apoptosis. They have been linked to many diseases, and currently miRNA-mediated clinical trial has shown promising results for treatment of cancer and viral infection. This review provides an overview and update on miRNAs biogenesis, regulation of miRNAs expression, their biological functions, and role of miRNAs in epigenetics and cell-cell communication. In addition, alteration of miRNAs following exercise, their association with diseases, and therapeutic potential will be explained. Finally, miRNA bioinformatics tools and conventional methods for miRNA detection and quantification will be discussed.
Collapse
Affiliation(s)
- Kioomars Saliminejad
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shahrzad Soleymani Fard
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hamidollah Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
114
|
Hou Y, Bai L, Jiang N, Yao Z, Xue L, Yu B. Screening of TNF-α gene polymorphisms in patients with extremity chronic osteomyelitis in China. Per Med 2018; 15:395-401. [PMID: 30259788 DOI: 10.2217/pme-2018-0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIM This study aims to investigate the link between TNF-α gene SNPs and patients with extremity chronic osteomyelitis in China. METHODOLOGY Our study included 433 subjects, composed of 233 extremity chronic osteomyelitis patients and 200 controls. Six single-nucleotide polymorphisms (rs1799964, rs1800630, rs1799724, rs1800750, rs1800629 and rs361525) in TNF-α gene were detected by the SNaPshot genotyping method. RESULTS Significant genotype distribution of rs1799964 was identified between patients and healthy controls (p = 0.045). In addition, statistical difference was found between rs1799964 SNP and the susceptibility to extremity chronic osteomyelitis (p = 0.044). CONCLUSION We reported for the first time that TNF-α gene SNP rs1799964 contributes to the elevated venture of extremity chronic osteomyelitis in China.
Collapse
Affiliation(s)
- Yilong Hou
- Guangdong Provincial Key Laboratory of Bone & Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Lang Bai
- Guangdong Provincial Key Laboratory of Bone & Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Nan Jiang
- Guangdong Provincial Key Laboratory of Bone & Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.,Department of Orthopaedics & Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Zilong Yao
- Guangdong Provincial Key Laboratory of Bone & Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Li Xue
- 8th Department of Orthopaedics, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, PR China
| | - Bin Yu
- Guangdong Provincial Key Laboratory of Bone & Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.,Department of Orthopaedics & Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
115
|
Fischer T, Spohn M, Olearo F, Zinser ME, Kasonta R, Stubbe HC, Rechtien A, Ly ML, Schmiedel S, Lohse AW, Grundhoff A, Addo MM, Dahlke C. Dynamic changes of circulating miRNAs induced by the Ebola virus vaccine VSV-EBOV. Vaccine 2018; 36:7083-7094. [PMID: 30244872 DOI: 10.1016/j.vaccine.2018.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/02/2018] [Accepted: 09/08/2018] [Indexed: 12/18/2022]
Abstract
VSV-EBOV is a replication-competent Ebola virus (EBOV) vaccine, which was tested in clinical trials as response to the Ebola virus disease (EVD) outbreak 2013-2016. It is the most advanced EBOV candidate currently in the licensure process. The experimental vaccine was again administered as response to outbreaks in the Democratic Republic of Congo. However, underlying molecular mechanisms that convey protection remain incompletely understood. MicroRNAs (miRNAs) are known key regulators that influence gene expression on a post-transcriptional level. The miRNA-mediated control has emerged as a critical regulatory principle in the immune system, which strongly influences the balance of innate and adaptive immune responses by modulation of signaling pathways critical for differentiation of immune cells. We investigated expression levels of circulating miRNAs (c-miRNAs) in plasma from healthy vaccinees, as they may reflect cellular dynamics following VSV-EBOV immunization and additionally may serve as potential biomarkers for vaccine efficacy. As part of the WHO-led VEBCON consortium, we investigated safety and immunogenicity of VSV-EBOV in a phase I trial. A comprehensive analysis of expression levels on c-miRNAs from plasma samples following VSV-EBOV immunization (day 0, 1, 3 post vaccination) was conducted using RT-qPCR assays. Potential biological relevance was assessed using in silico analyses. Additionally, we correlated dynamics of miRNA expressions with our previously reported data on vaccine-induced antibody and cytokine responses and finally evaluated the prognostic power by generating ROC curves. We identified four promising miRNAs (hsa-miR-146a, hsa-miR-126, hsa-miR-199a, hsa-miR-484), showing a strong association with adaptive immune responses, exhibited favourable prognostic performance and are implicated in immunology-related functions. Our results provide evidence that miRNAs may serve as useful biomarkers for prediction of vaccine-induced immunogenicity. Furthermore, our unique data set provides insight into molecular mechanisms that underlie VSV-EBOV-mediated protective immune responses, which may help to decipher VSV-EBOV immune signature and accelerate strategic vaccine design or personalized approaches.
Collapse
Affiliation(s)
- T Fischer
- University Medical Center Hamburg-Eppendorf (UKE), 1st Department of Medicine, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - M Spohn
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - F Olearo
- University Medical Center Hamburg-Eppendorf (UKE), 1st Department of Medicine, Hamburg, Germany
| | - M E Zinser
- University Medical Center Hamburg-Eppendorf (UKE), 1st Department of Medicine, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Rahel Kasonta
- University Medical Center Hamburg-Eppendorf (UKE), 1st Department of Medicine, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - H C Stubbe
- Division of Infectious Diseases, Department of Medicine II, LMU, Munich, Germany
| | - A Rechtien
- University Medical Center Hamburg-Eppendorf (UKE), 1st Department of Medicine, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany; Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - M L Ly
- University Medical Center Hamburg-Eppendorf (UKE), 1st Department of Medicine, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany; University Medical Center Hamburg-Eppendorf (UKE), Division of Infectious Diseases, Hamburg, Germany
| | - S Schmiedel
- University Medical Center Hamburg-Eppendorf (UKE), 1st Department of Medicine, Hamburg, Germany; University Medical Center Hamburg-Eppendorf (UKE), Division of Infectious Diseases, Hamburg, Germany
| | - A W Lohse
- University Medical Center Hamburg-Eppendorf (UKE), 1st Department of Medicine, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - A Grundhoff
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - M M Addo
- University Medical Center Hamburg-Eppendorf (UKE), 1st Department of Medicine, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany; University Medical Center Hamburg-Eppendorf (UKE), Division of Infectious Diseases, Hamburg, Germany.
| | - C Dahlke
- University Medical Center Hamburg-Eppendorf (UKE), 1st Department of Medicine, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany; University Medical Center Hamburg-Eppendorf (UKE), Division of Infectious Diseases, Hamburg, Germany.
| |
Collapse
|
116
|
Faraldi M, Gomarasca M, Banfi G, Lombardi G. Free Circulating miRNAs Measurement in Clinical Settings: The Still Unsolved Issue of the Normalization. Adv Clin Chem 2018; 87:113-139. [PMID: 30342709 PMCID: PMC7112021 DOI: 10.1016/bs.acc.2018.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Circulating molecules that are released into the circulation in response to specific stimuli are considered potential biomarkers for physiological or pathological processes. Their effective usefulness as biomarkers resides in their stability and high availability in all the biological fluids, combined with the limited invasiveness of intervention. Among the circulating molecules, miRNAs represent a novel class of biomarkers as they possess all the required characteristics such as sensitivity, predictivity, specificity, robustness, translatability, and noninvasiveness. miRNAs are small non-coding RNAs, that act as inhibitors of protein translation, and intervene in the complex network of the post-transcriptional mechanisms finely regulating gene expression. The emerging role of miRNAs as potential biomarkers for clinical applications (e.g., cancer and cardiovascular diseases diagnosis and prediction, musculoskeletal disease diagnosis and bone fracture risk prediction), however, requires the standardization of miRNA processing, from sample collection and sample storage, to RNA isolation, RNA reverse-transcription, and data analyses. Normalization is one of the most controversial issues related to quantitative Real-Time PCR data analysis since no universally accepted normalization strategies and reference genes exist, even more importantly, for circulating miRNA quantification. As it is widely demonstrated that the choice of different normalization strategies influences the results of gene expression analysis, it is important to select the most appropriate normalizers for each experimental set. This review discloses on the different strategies adopted in RT-qPCR miRNA normalization and the concerning issues to highlight on the need of a universally accepted methodology to make comparable the results produced by different studies.
Collapse
Affiliation(s)
- Martina Faraldi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Marta Gomarasca
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Corresponding author: E-mail:
| |
Collapse
|
117
|
Ellwanger JH, Zambra FMB, Guimarães RL, Chies JAB. MicroRNA-Related Polymorphisms in Infectious Diseases-Tiny Changes With a Huge Impact on Viral Infections and Potential Clinical Applications. Front Immunol 2018; 9:1316. [PMID: 29963045 PMCID: PMC6010531 DOI: 10.3389/fimmu.2018.01316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are single-stranded sequences of non-coding RNA with approximately 22 nucleotides that act posttranscriptionally on gene expression. miRNAs are important gene regulators in physiological contexts, but they also impact the pathogenesis of various diseases. The role of miRNAs in viral infections has been explored by different authors in both population-based as well as in functional studies. However, the effect of miRNA polymorphisms on the susceptibility to viral infections and on the clinical course of these diseases is still an emerging topic. Thus, this review will compile and organize the findings described in studies that evaluated the effects of genetic variations on miRNA genes and on their binding sites, in the context of human viral diseases. In addition to discussing the basic aspects of miRNAs biology, we will cover the studies that investigated miRNA polymorphisms in infections caused by hepatitis B virus, hepatitis C virus, human immunodeficiency virus, Epstein–Barr virus, and human papillomavirus. Finally, emerging topics concerning the importance of miRNA genetic variants will be presented, focusing on the context of viral infectious diseases.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Francis Maria Báo Zambra
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rafael Lima Guimarães
- Departamento de Genética, Universidade Federal do Pernambuco (UFPE), Recife, Brazil.,Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
118
|
Paradise BD, Barham W, Fernandez-Zapico ME. Targeting Epigenetic Aberrations in Pancreatic Cancer, a New Path to Improve Patient Outcomes? Cancers (Basel) 2018; 10:cancers10050128. [PMID: 29710783 PMCID: PMC5977101 DOI: 10.3390/cancers10050128] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer has one of the highest mortality rates among all types of cancers. The disease is highly aggressive and typically diagnosed in late stage making it difficult to treat. Currently, the vast majority of therapeutic regimens have only modest curative effects, and most of them are in the surgical/neo-adjuvant setting. There is a great need for new and more effective treatment strategies in common clinical practice. Previously, pathogenesis of pancreatic cancer was attributed solely to genetic mutations; however, recent advancements in the field have demonstrated that aberrant activation of epigenetic pathways contributes significantly to the pathogenesis of the disease. The identification of these aberrant activated epigenetic pathways has revealed enticing targets for the use of epigenetic inhibitors to mitigate the phenotypic changes driven by these cascades. These pathways have been found to be responsible for overactivation of growth signaling pathways and silencing of tumor suppressors and other cell cycle checkpoints. Furthermore, new miRNA signatures have been uncovered in pancreatic ductal adenocarcinoma (PDAC) patients, further widening the window for therapeutic opportunity. There has been success in preclinical settings using both epigenetic inhibitors as well as miRNAs to slow disease progression and eliminate diseased tissues. In addition to their utility as anti-proliferative agents, the pharmacological inhibitors that target epigenetic regulators (referred to here as readers, writers, and erasers for their ability to recognize, deposit, and remove post-translational modifications) have the potential to reconfigure the epigenetic landscape of diseased cells and disrupt the cancerous phenotype. The potential to “reprogram” cancer cells to revert them to a healthy state presents great promise and merits further investigation.
Collapse
Affiliation(s)
- Brooke D Paradise
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA.
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA.
| | - Whitney Barham
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA.
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55905, USA.
| | - Martín E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
119
|
Lundstrom K. Epigenetics, Nutrition, Disease and Drug Development. Curr Drug Discov Technol 2018; 16:386-391. [PMID: 29692252 DOI: 10.2174/1570163815666180419154954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 01/27/2023]
Abstract
Epigenetic mechanisms comprising of DNA methylation, histone modifications and gene silencing by RNA interference have been strongly linked to the development and progression of various diseases. These findings have triggered research on epigenetic functions and signal pathways as targets for novel drug discovery. Dietary intake has also presented significant influence on human health and disease development and nutritional modifications have proven important in prevention, but also the treatment of disease. Moreover, a strong link between nutrition and epigenetic changes has been established. Therefore, in attempts to develop novel safer and more efficacious drugs, both nutritional requirements and epigenetic mechanisms need to be addressed.
Collapse
|
120
|
Hussain T, Zhao D, Shah SZA, Wang J, Yue R, Liao Y, Sabir N, Yang L, Zhou X. MicroRNA 27a-3p Regulates Antimicrobial Responses of Murine Macrophages Infected by Mycobacterium avium subspecies paratuberculosis by Targeting Interleukin-10 and TGF-β-Activated Protein Kinase 1 Binding Protein 2. Front Immunol 2018; 8:1915. [PMID: 29375563 PMCID: PMC5768609 DOI: 10.3389/fimmu.2017.01915] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) persistently survive and replicate in mononuclear phagocytic cells by adopting various strategies to subvert host immune response. Interleukin-10 (IL-10) upregulation via inhibition of macrophage bactericidal activity is a critical step for MAP survival and pathogenesis within the host cell. Mitogen-activated protein kinase p38 signaling cascade plays a crucial role in the elevation of IL-10 and progression of MAP pathogenesis. The contribution of microRNAs (miRNAs) and their influence on the activation of macrophages during MAP pathogenesis are still unclear. In the current study, we found that miRNA-27a-3p (miR-27a) expression is downregulated during MAP infection both in vivo and in vitro. Moreover, miR-27a is also downregulated in toll-like receptor 2 (TLR2)-stimulated murine macrophages (RAW264.7 and bone marrow-derived macrophage). ELISA and real-time qRT-PCR results confirm that overexpression of miR-27a inhibited MAP-induced IL-10 production in macrophages and upregulated pro-inflammatory cytokines, while miR-27a inhibitor counteracted these effects. Luciferase reporter assay results revealed that IL-10 and TGF-β-activated protein kinase 1 binding protein 2 (TAB 2) are potential targets of miR-27a. In addition, we demonstrated that miR-27a negatively regulates TAB 2 expression and diminishes TAB 2-dependent p38/JNK phosphorylation, ultimately downregulating IL-10 expression in MAP-infected macrophages. Furthermore, overexpression of miR-27a significantly inhibited the intracellular survival of MAP in infected macrophages. Our data show that miR-27a augments antimicrobial activities of macrophages and inhibits the expression of IL-10, demonstrating that miR-27a regulates protective innate immune responses during MAP infection and can be exploited as a novel therapeutic target in the control of intracellular pathogens, including paratuberculosis.
Collapse
Affiliation(s)
- Tariq Hussain
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Deming Zhao
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Syed Zahid Ali Shah
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jie Wang
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruichao Yue
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yi Liao
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Naveed Sabir
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lifeng Yang
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangmei Zhou
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
121
|
Gao K, Liu F, Guo H, Li J, Zhang Y, Mo Z. miR-224 suppresses HBV replication posttranscriptionally through inhibiting SIRT1-mediated autophagy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:189-198. [PMID: 31938100 PMCID: PMC6957968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/16/2017] [Indexed: 06/10/2023]
Abstract
Hepatitis B virus (HBV) enters the host and successfully completes replication by using several mechanisms, including autophagy. However, previous studies revealed that microRNAs (miRNAs) widely participate in regulation of various cellular processes, such as autophagy and viral replication. Hence, the purpose of this study was to investigate the role of miR-224 in HBV infection and to determine whether its role depended on the miR-224/SIRT1/autophagy axis. Our results show that secretions of HBeAg and HBsAg, and HBV replication significantly declined in Huh7-1.3 cells, established by transfecting recombinant pcDNA 3.0-1.3 mer containing the 1.3 mer fragment of HBV genomic DNA,with miR-224 mimic transfection as compared to the Huh7-1.3 group. Moreover, it was discovered that HBV could induce autophagy, while miR-224 inhibited autophagy caused by HBV. Additionally, miR-224 could suppress SIRT1, LC3 expression, and facilitate p62 expression. SIRT1 was identified as the target gene of miR-224 and down-regulation of SIRT1 via miR-224 or si-SIRT1 transfected treatment in Huh7-1.3 cells repressed LC3 expression and enhanced p62 expression. In conclusion, these results suggest that miR-224 might hinder HBV replication through attenuating SIRT1-mediated autophagy, thereby these findings open a new avenue for the treatment of HBV infection.
Collapse
Affiliation(s)
- Ke Gao
- Department of Pathology, The Fifth Affiliated Hospital, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Faquan Liu
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Hongxing Guo
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Jisheng Li
- Department of Pathology, The Fifth Affiliated Hospital, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Yanping Zhang
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Zhihui Mo
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical UniversityGuangzhou, Guangdong, China
| |
Collapse
|