101
|
Sarasola MDLP, Táquez Delgado MA, Nicoud MB, Medina VA. Histamine in cancer immunology and immunotherapy. Current status and new perspectives. Pharmacol Res Perspect 2021; 9:e00778. [PMID: 34609067 PMCID: PMC8491460 DOI: 10.1002/prp2.778] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second leading cause of death globally and its incidence and mortality are rapidly increasing worldwide. The dynamic interaction of immune cells and tumor cells determines the clinical outcome of cancer. Immunotherapy comes to the forefront of cancer treatments, resulting in impressive and durable responses but only in a fraction of patients. Thus, understanding the characteristics and profiles of immune cells in the tumor microenvironment (TME) is a necessary step to move forward in the design of new immunomodulatory strategies that can boost the immune system to fight cancer. Histamine produces a complex and fine-tuned regulation of the phenotype and functions of the different immune cells, participating in multiple regulatory responses of the innate and adaptive immunity. Considering the important actions of histamine-producing immune cells in the TME, in this review we first address the most important immunomodulatory roles of histamine and histamine receptors in the context of cancer development and progression. In addition, this review highlights the current progress and foundational developments in the field of cancer immunotherapy in combination with histamine and pharmacological compounds targeting histamine receptors.
Collapse
Affiliation(s)
- María de la Paz Sarasola
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mónica A Táquez Delgado
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Melisa B Nicoud
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Vanina A Medina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
102
|
Fu C, Lu Y, Zhang Y, Yu M, Ma S, Lyu S. Intermittent fasting suppressed splenic CD205+ G-MDSC accumulation in a murine breast cancer model by attenuating cell trafficking and inducing apoptosis. Food Sci Nutr 2021; 9:5517-5526. [PMID: 34646521 PMCID: PMC8498071 DOI: 10.1002/fsn3.2510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/11/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
Immune-based interventions are the most promising approach for new cancer treatments to achieve long-term cancer-free survival. However, the expansion of myeloid-derived suppression cells (MDSCs) attenuates the therapeutic potential of immunotherapy. We recently showed that CD205+ granulocytic MDSCs (G-MDSCs), but not T cells, are sensitive to glucose deficiency. Intermittent fasting (IF) may inhibit the growth of malignant cells by reducing serum glucose levels, but little is known regarding the influence of IF on MDSC expansion. Herein, we observed that IF selectively inhibited splenic accumulation of CD205+ G-MDSCs in a 4T1 and 4T07 transplant murine breast cancer model. The efficiency of IF in suppressing tumor growth was comparable to that of docetaxel. Further examination revealed that CXCR4 expression was concentrated in CD205+ subsets of tumor-induced G-MDSCs. Downregulation of CXCR4 correlated with a reduction in CD205+ G-MDSC trafficking from bone marrow to the spleen under IF treatment. In addition, ex vivo culture assays showed that glucose deficiency and 2-deoxy-D-glucose (2DG) treatment selectively induced massive death of splenic CD205+ G-MDSCs. Interestingly, 2DG emulated the phenomena of IF selectively suppressing the accumulation of CD205+ G-MDSCs in the spleen, upregulating cleaved caspase 3 in the tumor, downregulating Ki67 in the lung, and retarding the growth of transplanted 4T1 and 4T07 murine breast tumors. These findings suggest that IF inhibited cell trafficking through the downregulation of CXCR4 and induced apoptosis by altering glucose metabolism; this, suppressed the accumulation of tumor-induced splenic CD205+ G-MDSCs and in turn enhanced antitumor immunity.
Collapse
Affiliation(s)
- Chenghao Fu
- College of Food ScienceShenyang Agricultural UniversityShenyangChina
| | - Yao Lu
- College of Bioscience and BiotechnologyShenyang Agricultural UniversityShenyangChina
| | - Yiwei Zhang
- College of Animal Science and Veterinary MedicineShenyang Agricultural UniversityShenyangChina
| | - Mingxi Yu
- College of Bioscience and BiotechnologyShenyang Agricultural UniversityShenyangChina
| | - Shiliang Ma
- College of Bioscience and BiotechnologyShenyang Agricultural UniversityShenyangChina
| | - Shuxia Lyu
- College of Bioscience and BiotechnologyShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
103
|
SenGupta S, Hein LE, Parent CA. The Recruitment of Neutrophils to the Tumor Microenvironment Is Regulated by Multiple Mediators. Front Immunol 2021; 12:734188. [PMID: 34567000 PMCID: PMC8461236 DOI: 10.3389/fimmu.2021.734188] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Neutrophils sense and migrate towards chemotactic factors released at sites of infection/inflammation and contain the affected area using a variety of effector mechanisms. Aside from these established immune defense functions, neutrophils are emerging as one of the key tumor-infiltrating immune cells that influence cancer progression and metastasis. Neutrophil recruitment to the tumor microenvironment (TME) is mediated by multiple mediators including cytokines, chemokines, lipids, and growth factors that are secreted from cancer cells and cancer-associated stromal cells. However, the molecular mechanisms that underlie the expression and secretion of the different mediators from cancer cells and how neutrophils integrate these signals to reach and invade tumors remain unclear. Here, we discuss the possible role of the epithelial to mesenchymal transition (EMT) program, which is a well-established promoter of malignant potential in cancer, in regulating the expression and secretion of these key mediators. We also summarize and review our current understanding of the machineries that potentially control the secretion of the mediators from cancer cells, including the exocytic trafficking pathways, secretory autophagy, and extracellular vesicle-mediated secretion. We further reflect on possible mechanisms by which different mediators collaborate by integrating their signaling network, and particularly focus on TGF-β, a cytokine that is highly expressed in invasive tumors, and CXCR2 ligands, which are crucial neutrophil recruiting chemokines. Finally, we highlight gaps in the field and the need to expand current knowledge of the secretory machineries and cross-talks among mediators to develop novel neutrophil targeting strategies as effective therapeutic options in the treatment of cancer.
Collapse
Affiliation(s)
- Shuvasree SenGupta
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lauren E Hein
- Cancer Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Carole A Parent
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
104
|
Movassaghi M, Chung R, Anderson CB, Stein M, Saenger Y, Faiena I. Overcoming Immune Resistance in Prostate Cancer: Challenges and Advances. Cancers (Basel) 2021; 13:cancers13194757. [PMID: 34638243 PMCID: PMC8507531 DOI: 10.3390/cancers13194757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Immunotherapy has changed the landscape of treatment modalities available for many different types of malignancies. However, the factors that influence the success of immunotherapeutics have not been as clearly seen in advanced prostate cancer, likely due to immunosuppressive factors that exist within the prostate cancer tumor microenvironment. While there have been many immunotherapeutics used for prostate cancer, the majority have targeted a single immunosuppressive mechanism resulting in limited clinical efficacy. More recent research centered on elucidating the key mechanisms of immune resistance in the prostate tumor microenvironment has led to the discovery of a range of new treatment targets. With that in mind, many clinical trials have now set out to evaluate combination immunotherapeutic strategies in patients with advanced prostate cancer, in the hopes of circumventing the immunosuppressive mechanisms. Abstract The use of immunotherapy has become a critical treatment modality in many advanced cancers. However, immunotherapy in prostate cancer has not been met with similar success. Multiple interrelated mechanisms, such as low tumor mutational burden, immunosuppressive cells, and impaired cellular immunity, appear to subvert the immune system, creating an immunosuppressive tumor microenvironment and leading to lower treatment efficacy in advanced prostate cancer. The lethality of metastatic castrate-resistant prostate cancer is driven by the lack of therapeutic regimens capable of generating durable responses. Multiple strategies are currently being tested to overcome immune resistance including combining various classes of treatment modalities. Several completed and ongoing trials have shown that combining vaccines or checkpoint inhibitors with hormonal therapy, radiotherapy, antibody–drug conjugates, chimeric antigen receptor T cell therapy, or chemotherapy may enhance immune responses and induce long-lasting clinical responses without significant toxicity. Here, we review the current state of immunotherapy for prostate cancer, as well as tumor-specific mechanisms underlying therapeutic resistance, with a comprehensive look at the current preclinical and clinical immunotherapeutic strategies aimed at overcoming the immunosuppressive tumor microenvironment and impaired cellular immunity that have largely limited the utility of immunotherapy in advanced prostate cancer.
Collapse
Affiliation(s)
- Miyad Movassaghi
- Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA; (R.C.); (C.B.A.)
- Correspondence: (M.M.); (I.F.)
| | - Rainjade Chung
- Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA; (R.C.); (C.B.A.)
| | - Christopher B. Anderson
- Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA; (R.C.); (C.B.A.)
| | - Mark Stein
- Department of Medicine, Division of Medical Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (Y.S.)
| | - Yvonne Saenger
- Department of Medicine, Division of Medical Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (Y.S.)
| | - Izak Faiena
- Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA; (R.C.); (C.B.A.)
- Correspondence: (M.M.); (I.F.)
| |
Collapse
|
105
|
Li Y, He H, Jihu R, Zhou J, Zeng R, Yan H. Novel Characterization of Myeloid-Derived Suppressor Cells in Tumor Microenvironment. Front Cell Dev Biol 2021; 9:698532. [PMID: 34527668 PMCID: PMC8435631 DOI: 10.3389/fcell.2021.698532] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of cells generated in various pathologic conditions, which have been known to be key components of the tumor microenvironment (TME) involving in tumor immune tolerance. So MDSCs have been extensively researched recently. As its name suggests, immunosuppression is the widely accepted function of MDSCs. Aside from suppressing antitumor immune responses, MDSCs in the TME also stimulate tumor angiogenesis and metastasis, thereby promoting tumor growth and development. Therefore, altering the recruitment, expansion, activation, and immunosuppression of MDSCs could partially restore antitumor immunity. So, this view focused on the favorable TME conditions that promote the immunosuppressive effects of MDSCs and contribute to targeted therapies with increased precision for MDSCs.
Collapse
Affiliation(s)
- Yanan Li
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Hongdan He
- Immunotherapy Laboratory, Qinghai Tibet Plateau Research Institute, Southwest Minzu University, Chengdu, China
| | - Ribu Jihu
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Junfu Zhou
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Rui Zeng
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Hengxiu Yan
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| |
Collapse
|
106
|
Xu N, Palmer DC, Robeson AC, Shou P, Bommiasamy H, Laurie SJ, Willis C, Dotti G, Vincent BG, Restifo NP, Serody JS. STING agonist promotes CAR T cell trafficking and persistence in breast cancer. J Exp Med 2021; 218:211644. [PMID: 33382402 PMCID: PMC7780733 DOI: 10.1084/jem.20200844] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/22/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
CAR T therapy targeting solid tumors is restrained by limited infiltration and persistence of those cells in the tumor microenvironment (TME). Here, we developed approaches to enhance the activity of CAR T cells using an orthotopic model of locally advanced breast cancer. CAR T cells generated from Th/Tc17 cells given with the STING agonists DMXAA or cGAMP greatly enhanced tumor control, which was associated with enhanced CAR T cell persistence in the TME. Using single-cell RNA sequencing, we demonstrate that DMXAA promoted CAR T cell trafficking and persistence, supported by the generation of a chemokine milieu that promoted CAR T cell recruitment and modulation of the immunosuppressive TME through alterations in the balance of immune-stimulatory and suppressive myeloid cells. However, sustained tumor regression was accomplished only with the addition of anti-PD-1 and anti-GR-1 mAb to Th/Tc17 CAR T cell therapy given with STING agonists. This study provides new approaches to enhance adoptive T cell therapy in solid tumors.
Collapse
Affiliation(s)
- Nuo Xu
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Douglas C Palmer
- Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Alexander C Robeson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Peishun Shou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Hemamalini Bommiasamy
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Sonia J Laurie
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Caryn Willis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Gianpietro Dotti
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Benjamin G Vincent
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Jonathan S Serody
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
107
|
Ren Z, Tang H, Wan L, Liu X, Tang N, Wang L, Guo Z. Swertianolin ameliorates immune dysfunction in sepsis <em>via</em> blocking the immunosuppressive function of myeloid- derived suppressor cells. Eur J Histochem 2021; 65:3292. [PMID: 34468107 PMCID: PMC8419598 DOI: 10.4081/ejh.2021.3292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022] Open
Abstract
In this study, we studied the long-term proliferation trajectory of myeloid-derived suppressor cells (MDSCs) in murine sepsis model and investigated whether swertianolin could modulate the immunosuppressive function of MDSCs. A murine sepsis model was established by cecal ligation and perforation (CLP), according to the Minimum Quality Threshold in Pre-Clinical Sepsis Studies (MQTiPSS) guidelines. The bone marrow and spleen of the mice were collected at 24 h, 72 h, 7 and 15 d after sepsis induction. The proportions of monocytic-MDSCs (M-MDSCs; CD11b+LY6G-LY6Chi) and granulocytic-MDSCs (G-MDSC, CD11b+ Ly6G+ Ly6Clow) were analyzed by flow cytometry. Then, we have investigated whether swertianolin could modulate the immunosuppressive function of MDSCs in in vitro experiments. G-MDSCs and M-MDSCs increased acutely after sepsis with high levels sustained over a long period of time. G-MDSCs were the main subtype identified in the murine model of sepsis with polymicrobial peritonitis. Furthermore, it was found that swertianolin reduced significantly interleukin-10 (IL-10), nitric oxide (NO), reactive oxygen species (ROS), and arginase production in MDSCs, while reducing MDSC proliferation and promoting MDSC differentiation into dendritic cells. Swertianolin also improved T-cell activity by blocking the immunosuppressive effect of MDSCs. Both subsets of MDSCs significantly increased in the bone marrow and spleen of the mice with sepsis, with G-MDSCs being the main subtype identified. Swertianolin effectively regulated the functions of MDSCs and reduced immune suppression.
Collapse
Affiliation(s)
- Zongfang Ren
- The First School of Clinical Medicine, Southern Medical University, Guangzhou.
| | - Haoren Tang
- Department of Gastroenterological Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming .
| | - Linjun Wan
- Department of Critical Care Medicine, the Second Affiliated Hospital of Kunming Medical University, Kunming .
| | - Xing Liu
- Graduate School of Guangzhou University of Chinese Medicine, Guangzhou.
| | - Ning Tang
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming.
| | - Lingling Wang
- Department of Medical Intensive Care Unit, General Hospital of Southern Theater Command of PLA, Guangzhou .
| | - Zhenhui Guo
- The First School of Clinical Medicine, Southern Medical University, Guangzhou.
| |
Collapse
|
108
|
Cao D, Naiyila X, Li J, Huang Y, Chen Z, Chen B, Li J, Guo J, Dong Q, Ai J, Yang L, Liu L, Wei Q. Potential Strategies to Improve the Effectiveness of Drug Therapy by Changing Factors Related to Tumor Microenvironment. Front Cell Dev Biol 2021; 9:705280. [PMID: 34447750 PMCID: PMC8383319 DOI: 10.3389/fcell.2021.705280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
A tumor microenvironment (TME) is composed of various cell types and extracellular components. It contains tumor cells and is nourished by a network of blood vessels. The TME not only plays a significant role in the occurrence, development, and metastasis of tumors but also has a far-reaching impact on the effect of therapeutics. Continuous interaction between tumor cells and the environment, which is mediated by their environment, may lead to drug resistance. In this review, we focus on the key cellular components of the TME and the potential strategies to improve the effectiveness of drug therapy by changing their related factors.
Collapse
Affiliation(s)
- Dehong Cao
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaokaiti Naiyila
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Jinze Li
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Yin Huang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Zeyu Chen
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Bo Chen
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Jin Li
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Jianbing Guo
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Dong
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianzhong Ai
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Yang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Liangren Liu
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
109
|
Miyashita M, Shimizu T, Ashihara E, Ukimura O. Strategies to Improve the Antitumor Effect of γδ T Cell Immunotherapy for Clinical Application. Int J Mol Sci 2021; 22:8910. [PMID: 34445615 PMCID: PMC8396358 DOI: 10.3390/ijms22168910] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022] Open
Abstract
Human γδ T cells show potent cytotoxicity against various types of cancer cells in a major histocompatibility complex unrestricted manner. Phosphoantigens and nitrogen-containing bisphosphonates (N-bis) stimulate γδ T cells via interaction between the γδ T cell receptor (TCR) and butyrophilin subfamily 3 member A1 (BTN3A1) expressed on target cells. γδ T cell immunotherapy is classified as either in vivo or ex vivo according to the method of activation. Immunotherapy with activated γδ T cells is well tolerated; however, the clinical benefits are unsatisfactory. Therefore, the antitumor effects need to be increased. Administration of γδ T cells into local cavities might improve antitumor effects by increasing the effector-to-target cell ratio. Some anticancer and molecularly targeted agents increase the cytotoxicity of γδ T cells via mechanisms involving natural killer group 2 member D (NKG2D)-mediated recognition of target cells. Both the tumor microenvironment and cancer stem cells exert immunosuppressive effects via mechanisms that include inhibitory immune checkpoint molecules. Therefore, co-immunotherapy with γδ T cells plus immune checkpoint inhibitors is a strategy that may improve cytotoxicity. The use of a bispecific antibody and chimeric antigen receptor might be effective to overcome current therapeutic limitations. Such strategies should be tested in a clinical research setting.
Collapse
Affiliation(s)
- Masatsugu Miyashita
- Department of Urology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.S.); (O.U.)
- Department of Urology, Japanese Red Cross Kyoto Daini Hospital, Kyoto 602-8026, Japan
| | - Teruki Shimizu
- Department of Urology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.S.); (O.U.)
| | - Eishi Ashihara
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan;
| | - Osamu Ukimura
- Department of Urology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.S.); (O.U.)
| |
Collapse
|
110
|
Wang X, Ha D, Yoshitake R, Chen S. White button mushroom interrupts tissue AR-mediated TMPRSS2 expression and attenuates pro-inflammatory cytokines in C57BL/6 mice. NPJ Sci Food 2021; 5:20. [PMID: 34341347 PMCID: PMC8329194 DOI: 10.1038/s41538-021-00102-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/24/2021] [Indexed: 12/29/2022] Open
Abstract
White button mushroom (WBM) is a common edible mushroom consumed in the United States and many European and Asia-Pacific countries. We previously reported that dietary WBM antagonized dihydrotestosterone (DHT)-induced androgen receptor (AR) activation and reduced myeloid-derived suppressor cells (MDSCs) in prostate cancer animal models and patients. Transmembrane protease serine 2 (TMPRSS2), an androgen-induced protease in prostate cancer, has been implicated in influenza and coronavirus entry into the host cell, triggering host immune response. The present study on C57BL/6 mice revealed that WBM is a unique functional food that (A) interrupts AR-mediated TMPRSS2 expression in prostate, lungs, small intestine, and kidneys through its AR antagonistic activity and (B) attenuates serum pro-inflammatory cytokines and reduces MDSC counts through its immunoregulatory activity. These findings provide a scientific basis for translational studies toward clinical applications of WBM in diseases related to TMPRSS2 expression and immune dysregulation.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Cancer Biology, Beckman Research Institute, City of Hope, 1500E Duarte, Duarte, 91010, CA, USA
| | - Desiree Ha
- Department of Cancer Biology, Beckman Research Institute, City of Hope, 1500E Duarte, Duarte, 91010, CA, USA
| | - Ryohei Yoshitake
- Department of Cancer Biology, Beckman Research Institute, City of Hope, 1500E Duarte, Duarte, 91010, CA, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute, City of Hope, 1500E Duarte, Duarte, 91010, CA, USA.
| |
Collapse
|
111
|
Chen W, Shen L, Jiang J, Zhang L, Zhang Z, Pan J, Ni C, Chen Z. Antiangiogenic therapy reverses the immunosuppressive breast cancer microenvironment. Biomark Res 2021; 9:59. [PMID: 34294146 PMCID: PMC8296533 DOI: 10.1186/s40364-021-00312-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor angiogenesis induces local hypoxia and recruits immunosuppressive cells, whereas hypoxia subsequently promotes tumor angiogenesis. Immunotherapy efficacy depends on the accumulation and activity of tumor-infiltrating immune cells (TIICs). Antangiogenic therapy could improve local perfusion, relieve tumor microenvironment (TME) hypoxia, and reverse the immunosuppressive state. Combining antiangiogenic therapy with immunotherapy might represent a promising option for the treatment of breast cancer. This article discusses the immunosuppressive characteristics of the breast cancer TME and outlines the interaction between the tumor vasculature and the immune system. Combining antiangiogenic therapy with immunotherapy could interrupt abnormal tumor vasculature-immunosuppression crosstalk, increase effector immune cell infiltration, improve immunotherapy effectiveness, and reduce the risk of immune-related adverse events. In addition, we summarize the preclinical research and ongoing clinical research related to the combination of antiangiogenic therapy with immunotherapy, discuss the underlying mechanisms, and provide a view for future developments. The combination of antiangiogenic therapy and immunotherapy could be a potential therapeutic strategy for treatment of breast cancer to promote tumor vasculature normalization and increase the efficiency of immunotherapy.
Collapse
Affiliation(s)
- Wuzhen Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310000, Zhejiang Province, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Lesang Shen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310000, Zhejiang Province, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jingxin Jiang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310000, Zhejiang Province, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Leyi Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Zhigang Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jun Pan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Chao Ni
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310000, Zhejiang Province, China. .,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China.
| | - Zhigang Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310000, Zhejiang Province, China. .,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
112
|
Mokhtari RB, Sambi M, Qorri B, Baluch N, Ashayeri N, Kumar S, Cheng HLM, Yeger H, Das B, Szewczuk MR. The Next-Generation of Combination Cancer Immunotherapy: Epigenetic Immunomodulators Transmogrify Immune Training to Enhance Immunotherapy. Cancers (Basel) 2021; 13:3596. [PMID: 34298809 PMCID: PMC8305317 DOI: 10.3390/cancers13143596] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy harnesses the immune system by targeting tumor cells that express antigens recognized by immune system cells, thus leading to tumor rejection. These tumor-associated antigens include tumor-specific shared antigens, differentiation antigens, protein products of mutated genes and rearrangements unique to tumor cells, overexpressed tissue-specific antigens, and exogenous viral proteins. However, the development of effective therapeutic approaches has proven difficult, mainly because these tumor antigens are shielded, and cells primarily express self-derived antigens. Despite innovative and notable advances in immunotherapy, challenges associated with variable patient response rates and efficacy on select tumors minimize the overall effectiveness of immunotherapy. Variations observed in response rates to immunotherapy are due to multiple factors, including adaptative resistance, competency, and a diversity of individual immune systems, including cancer stem cells in the tumor microenvironment, composition of the gut microbiota, and broad limitations of current immunotherapeutic approaches. New approaches are positioned to improve the immune response and increase the efficacy of immunotherapies, highlighting the challenges that the current global COVID-19 pandemic places on the present state of immunotherapy.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA 01852, USA;
| | - Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| | - Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| | - Narges Baluch
- Department of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Neda Ashayeri
- Division of Hematology & Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran;
| | - Sushil Kumar
- QPS, Holdings LLC, Pencader Corporate Center, 110 Executive Drive, Newark, DE 19702, USA;
| | - Hai-Ling Margaret Cheng
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5G 1M1, Canada;
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Herman Yeger
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Bikul Das
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA 01852, USA;
- KaviKrishna Laboratory, Department of Cancer and Stem Cell Biology, GBP, Indian Institute of Technology, Guwahati 781039, India
| | - Myron R. Szewczuk
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| |
Collapse
|
113
|
Asgarzade A, Ziyabakhsh A, Asghariazar V, Safarzadeh E. Myeloid-derived suppressor cells: Important communicators in systemic lupus erythematosus pathogenesis and its potential therapeutic significance. Hum Immunol 2021; 82:782-790. [PMID: 34272089 DOI: 10.1016/j.humimm.2021.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/01/2021] [Accepted: 06/22/2021] [Indexed: 01/26/2023]
Abstract
Systemic lupus erythematosus (SLE) is a recognized chronic condition associated with immune system disorders that affect women nine times more commonly than men. SLE is characterized by over-secretion and release of autoantibodies in response to different cellular compartments and self-tolerance breaks to its own antigens. The detailed immunological dysregulation as an associated event that elicits the onset of clinical manifestations of SLE has not been clarified yet. Though, research using several animal models in the last two decades has indicated the role of the immune system in the pathogenesis of this disease. Myeloid-derived suppressor cells (MDSCs) as heterogeneous myeloid cells, are responsible for severe pathological conditions, including infection, autoimmunity, and cancer, by exerting considerable immunosuppressive effects on T-cells responses. It has been reported that these cells are involved in the regulation process of the immune response in several autoimmune diseases, particularly SLE. The function of MDSC is deleterious in infection and cancer diseases, though their role is more complicated in autoimmune diseases. In this review, we summarized the role and function of MDSCs in the pathogenesis and progression of SLE and its possible therapeutic approach.
Collapse
Affiliation(s)
- Ali Asgarzade
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Ziyabakhsh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Deputy of Research and Technology, Ardabil University of Medical Sciences, Ardabil, Iran; Immunology Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Department of Microbiology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
114
|
Zhao R, Cui Y, Zheng Y, Li S, Lv J, Wu Q, Long Y, Wang S, Yao Y, Wei W, Yang J, Wang BC, Zhang Z, Zeng H, Li Y, Li P. Human Hyaluronidase PH20 Potentiates the Antitumor Activities of Mesothelin-Specific CAR-T Cells Against Gastric Cancer. Front Immunol 2021; 12:660488. [PMID: 34326835 PMCID: PMC8313856 DOI: 10.3389/fimmu.2021.660488] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/28/2021] [Indexed: 01/04/2023] Open
Abstract
T cell infiltration into tumors is essential for successful immunotherapy against solid tumors. Herein, we found that the expression of hyaluronic acid synthases (HAS) was negatively correlated with patient survival in multiple types of solid tumors including gastric cancer. HA impeded in vitro anti-tumor activities of anti-mesothelin (MSLN) chimeric antigen receptor T cells (CAR-T cells) against gastric cancer cells by restricting CAR-T cell mobility in vitro. We then constructed a secreted form of the human hyaluronidase PH20 (termed sPH20-IgG2) by replacing the PH20 signal peptide with a tPA signal peptide and attached with IgG2 Fc fragments. We found that overexpression of sPH20-IgG2 promoted CAR-T cell transmigration through an HA-containing matrix but did not affect the cytotoxicity or cytokine secretion of the CAR-T cells. In BGC823 and MKN28 gastric cancer cell xenografts, sPH20-IgG2 promoted anti-mesothelin CAR-T cell infiltration into tumors. Furthermore, mice infused with sPH20-IgG2 overexpressing anti-MSLN CAR-T cells had smaller tumors than mice injected with anti-MSLN CAR-T cells. Thus, we demonstrated that sPH20-IgG2 can enhance the antitumor activity of CAR-T cells against solid tumors by promoting CAR-T cell infiltration.
Collapse
Affiliation(s)
- Ruocong Zhao
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China.,Center for Cell Regeneration and Biotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuanbin Cui
- Center for Cell Regeneration and Biotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yongfang Zheng
- Center for Cell Regeneration and Biotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shanglin Li
- Center for Cell Regeneration and Biotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiang Lv
- Center for Cell Regeneration and Biotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiting Wu
- Center for Cell Regeneration and Biotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Youguo Long
- Center for Cell Regeneration and Biotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Suna Wang
- Center for Cell Regeneration and Biotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yao Yao
- Center for Cell Regeneration and Biotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Wei Wei
- Guangdong Cord Blood Bank, Guangzhou, China
| | - Jie Yang
- Guangdong Women and Children Hospital, Panyu, Guangzhou, China
| | - Bin-Chao Wang
- Guangdong Lung Cancer Institute, Guangdong General Hospital (GGH) & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhenfeng Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui Zeng
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Peng Li
- Center for Cell Regeneration and Biotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
115
|
Gamba JC, Roldán C, Prochetto E, Lupi G, Bontempi I, Poncini CV, Vermeulen M, Pérez AR, Marcipar I, Cabrera G. Targeting Myeloid-Derived Suppressor Cells to Enhance a Trans-Sialidase-Based Vaccine Against Trypanosoma cruzi. Front Cell Infect Microbiol 2021; 11:671104. [PMID: 34295832 PMCID: PMC8290872 DOI: 10.3389/fcimb.2021.671104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Trypanosoma cruzi (T. cruzi) is a hemoflagellate protozoan parasite that causes Chagas disease, a neglected tropical disease that affects more than 6 million people around the world, mostly in Latin America. Despite intensive research, there is no vaccine available; therefore, new approaches are needed to further improve vaccine efficacy. It is well established that experimental T. cruzi infection induces a marked immunosuppressed state, which includes notably increases of CD11b+ GR-1+ myeloid-derived suppressor cells (MDSCs) in the spleen, liver and heart of infected mice. We previously showed that a trans-sialidase based vaccine (TSf-ISPA) is able to confer protection against a virulent T. cruzi strain, stimulating the effector immune response and decreasing CD11b+ GR-1+ splenocytes significantly. Here, we show that even in the immunological context elicited by the TSf-ISPA vaccine, the remaining MDSCs are still able to influence several immune populations. Depletion of MDSCs with 5 fluorouracil (5FU) at day 15 post-infection notably reshaped the immune response, as evidenced by flow cytometry of spleen cells obtained from mice after 21 days post-infection. After infection, TSf-ISPA-vaccinated and 5FU-treated mice showed a marked increase of the CD8 response, which included an increased expression of CD107a and CD44 markers in CD8+ cultured splenocytes. In addition, vaccinated and MDSC depleted mice showed an increase in the percentage and number of CD4+ Foxp3+ regulatory T cells (Tregs) as well as in the expression of Foxp3+ in CD4+ splenocytes. Furthermore, depletion of MDSCs also caused changes in the percentage and number of CD11chigh CD8α+ dendritic cells as well as in activation/maturation markers such as CD80, CD40 and MHCII. Thus, the obtained results suggest that MDSCs not only play a role suppressing the effector response during T. cruzi infection, but also strongly modulate the immune response in vaccinated mice, even when the vaccine formulation has a significant protective capacity. Although MDSC depletion at day 15 post-infection did not ameliorated survival or parasitemia levels, depletion of MDSCs during the first week of infection caused a beneficial trend in parasitemia and mice survival of vaccinated mice, supporting the possibility to target MDSCs from different approaches to enhance vaccine efficacy. Finally, since we previously showed that TSf-ISPA immunization causes a slight but significant increase of CD11b+ GR-1+ splenocytes, here we also targeted those cells at the stage of immunization, prior to T. cruzi challenge. Notably, 5FU administration before each dose of TSf-ISPA vaccine was able to significantly ameliorate survival and decrease parasitemia levels of TSf-ISPA-vaccinated and infected mice. Overall, this work supports that targeting MDSCs may be a valuable tool during vaccine design against T. cruzi, and likely for other pathologies that are characterized by the subversion of the immune system.
Collapse
Affiliation(s)
- Juan Cruz Gamba
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Carolina Roldán
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Estefanía Prochetto
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Giuliana Lupi
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Iván Bontempi
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Carolina Verónica Poncini
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mónica Vermeulen
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Ana Rosa Pérez
- IDICER-CONICET and Instituto de Inmunología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe, Argentina
| | - Iván Marcipar
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gabriel Cabrera
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
116
|
Mbugua SN, Njenga LW, Odhiambo RA, Wandiga SO, Onani MO. Beyond DNA-targeting in Cancer Chemotherapy. Emerging Frontiers - A Review. Curr Top Med Chem 2021; 21:28-47. [PMID: 32814532 DOI: 10.2174/1568026620666200819160213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Modern anti-cancer drugs target DNA specifically for rapid division of malignant cells. One downside of this approach is that they also target other rapidly dividing healthy cells, such as those involved in hair growth leading to serious toxic side effects and hair loss. Therefore, it would be better to develop novel agents that address cellular signaling mechanisms unique to cancerous cells, and new research is now focussing on such approaches. Although the classical chemotherapy area involving DNA as the set target continues to produce important findings, nevertheless, a distinctly discernible emerging trend is the divergence from the cisplatin operation model that uses the metal as the primary active center of the drug. Many successful anti-cancer drugs present are associated with elevated toxicity levels. Cancers also develop immunity against most therapies and the area of cancer research can, therefore, be seen as an area with a high unaddressed need. Hence, ongoing work into cancer pathogenesis is important to create accurate preclinical tests that can contribute to the development of innovative drugs to manage and treat cancer. Some of the emergent frontiers utilizing different approaches include nanoparticles delivery, use of quantum dots, metal complexes, tumor ablation, magnetic hypothermia and hyperthermia by use of Superparamagnetic Iron oxide Nanostructures, pathomics and radiomics, laser surgery and exosomes. This review summarizes these new approaches in good detail, giving critical views with necessary comparisons. It also delves into what they carry for the future, including their advantages and disadvantages.
Collapse
Affiliation(s)
- Simon N Mbugua
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Lydia W Njenga
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Ruth A Odhiambo
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Shem O Wandiga
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Martin O Onani
- Organometallics and Nanomaterials, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| |
Collapse
|
117
|
Hauth F, Ho AY, Ferrone S, Duda DG. Radiotherapy to Enhance Chimeric Antigen Receptor T-Cell Therapeutic Efficacy in Solid Tumors: A Narrative Review. JAMA Oncol 2021; 7:1051-1059. [PMID: 33885725 DOI: 10.1001/jamaoncol.2021.0168] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Immunotherapy has emerged as a new pillar of cancer therapy over the past decade. Adoptive immunotherapy in particular has become a major area of research interest, with advances seen in the development of T-cell engineering. As a result, chimeric antigen receptor (CAR) T-cell therapy has become a new and highly effective treatment option, especially for patients with refractory or resistant blood cell cancers. However, CAR T-cell therapy has shown limited efficacy for the treatment of solid tumors thus far. Observations Combinatorial treatment approaches, such as addition of radiotherapy to CAR T cells, may provide a strategy to prevent resistance to CAR T-cell therapy of solid tumors. These approaches need to overcome obstacles that include abnormal vessels and adhesion molecule expression on tumor vasculature, leading to reduced transmigration of effector immune cells, including CAR T cells, and immunosuppressive cues in the tumor microenvironment, including regional hypoxia. Conclusions and Relevance This review provides an overview of the current developments in CAR T-cell therapy and highlights the unique opportunities and challenges in combining CAR T-cell therapy with radiotherapy.
Collapse
Affiliation(s)
- Franziska Hauth
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Radiation Oncology, University Clinic Tuebingen, Tuebingen, Germany
| | - Alice Y Ho
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dan G Duda
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
118
|
De La Fuente A, Zilio S, Caroli J, Van Simaeys D, Mazza EMC, Ince TA, Bronte V, Bicciato S, Weed DT, Serafini P. Aptamers against mouse and human tumor-infiltrating myeloid cells as reagents for targeted chemotherapy. Sci Transl Med 2021; 12:12/548/eaav9760. [PMID: 32554710 DOI: 10.1126/scitranslmed.aav9760] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/09/2019] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Local delivery of anticancer agents has the potential to maximize treatment efficacy and minimize the acute and long-term systemic toxicities. Here, we used unsupervised systematic evolution of ligands by exponential enrichment to identify four RNA aptamers that specifically recognized mouse and human myeloid cells infiltrating tumors but not their peripheral or circulating counterparts in multiple mouse models and from patients with head and neck squamous cell carcinoma (HNSCC). The use of these aptamers conjugated to doxorubicin enhanced the accumulation and bystander release of the chemotherapeutic drug in both primary and metastatic tumor sites in breast and fibrosarcoma mouse models. In the 4T1 mammary carcinoma model, these doxorubicin-conjugated aptamers outperformed Doxil, the first clinically approved highly optimized nanoparticle for targeted chemotherapy, promoting tumor regression after just three administrations with no detected changes in weight loss or blood chemistry. These RNA aptamers recognized tumor infiltrating myeloid cells in a variety of mouse tumors in vivo and from human HNSCC ex vivo. This work suggests the use of RNA aptamers for the detection of myeloid-derived suppressor cells in humans and for a targeted delivery of chemotherapy to the tumor microenvironment in multiple malignancies.
Collapse
Affiliation(s)
- Adriana De La Fuente
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Serena Zilio
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Jimmy Caroli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41100, Italy
| | - Dimitri Van Simaeys
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Emilia M C Mazza
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41100, Italy
| | - Tan A Ince
- Department of Pathology, Weill Cornell Medicine, Cornell University and New York Presbyterian Brooklyn Methodist Hospital, NY 11215, USA
| | - Vincenzo Bronte
- Department of Medicine, Verona University Hospital, Verona 37100, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41100, Italy
| | - Donald T Weed
- Department of Otolaryngology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Paolo Serafini
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA. .,Department of Otolaryngology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
119
|
Immunotherapy in AML: a brief review on emerging strategies. Clin Transl Oncol 2021; 23:2431-2447. [PMID: 34160771 DOI: 10.1007/s12094-021-02662-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML), the most common form of leukemia amongst adults, is one of the most important hematological malignancies. Epidemiological data show both high incidence rates and low survival rates, especially in secondary cases among adults. Although classic and novel chemotherapeutic approaches have extensively improved disease prognosis and survival, the need for more personalized and target-specific methods with less side effects have been inevitable. Therefore, immunotherapeutic methods are of importance. In the following review, primarily a brief understanding of the molecular basis of the disease has been represented. Second, prior to the introduction of immunotherapeutic approaches, the entangled relationship of AML and patient's immune system has been discussed. At last, mechanistic and clinical evidence of each of the immunotherapy approaches have been covered.
Collapse
|
120
|
Hendricks-Wenger A, Hutchison R, Vlaisavljevich E, Allen IC. Immunological Effects of Histotripsy for Cancer Therapy. Front Oncol 2021; 11:681629. [PMID: 34136405 PMCID: PMC8200675 DOI: 10.3389/fonc.2021.681629] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second leading cause of death worldwide despite major advancements in diagnosis and therapy over the past century. One of the most debilitating aspects of cancer is the burden brought on by metastatic disease. Therefore, an ideal treatment protocol would address not only debulking larger primary tumors but also circulating tumor cells and distant metastases. To address this need, the use of immune modulating therapies has become a pillar in the oncology armamentarium. A therapeutic option that has recently emerged is the use of focal ablation therapies that can destroy a tumor through various physical or mechanical mechanisms and release a cellular lysate with the potential to stimulate an immune response. Histotripsy is a non-invasive, non-ionizing, non-thermal, ultrasound guided ablation technology that has shown promise over the past decade as a debulking therapy. As histotripsy therapies have developed, the full picture of the accompanying immune response has revealed a wide range of immunogenic mechanisms that include DAMP and anti-tumor mediator release, changes in local cellular immune populations, development of a systemic immune response, and therapeutic synergism with the inclusion of checkpoint inhibitor therapies. These studies also suggest that there is an immune effect from histotripsy therapies across multiple murine tumor types that may be reproducible. Overall, the effects of histotripsy on tumors show a positive effect on immunomodulation.
Collapse
Affiliation(s)
- Alissa Hendricks-Wenger
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Ruby Hutchison
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Eli Vlaisavljevich
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
- Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Blacksburg, VA, United States
| | - Irving Coy Allen
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States
- Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Blacksburg, VA, United States
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
121
|
Varayathu H, Sarathy V, Thomas BE, Mufti SS, Naik R. Combination Strategies to Augment Immune Check Point Inhibitors Efficacy - Implications for Translational Research. Front Oncol 2021; 11:559161. [PMID: 34123767 PMCID: PMC8193928 DOI: 10.3389/fonc.2021.559161] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 04/30/2021] [Indexed: 12/22/2022] Open
Abstract
Immune checkpoint inhibitor therapy has revolutionized the field of cancer immunotherapy. Even though it has shown a durable response in some solid tumors, several patients do not respond to these agents, irrespective of predictive biomarker (PD-L1, MSI, TMB) status. Multiple preclinical, as well as early-phase clinical studies are ongoing for combining immune checkpoint inhibitors with anti-cancer and/or non-anti-cancer drugs for beneficial therapeutic interactions. In this review, we discuss the mechanistic basis behind the combination of immune checkpoint inhibitors with other drugs currently being studied in early phase clinical studies including conventional chemotherapy drugs, metronomic chemotherapy, thalidomide and its derivatives, epigenetic therapy, targeted therapy, inhibitors of DNA damage repair, other small molecule inhibitors, anti-tumor antibodies hormonal therapy, multiple checkpoint Inhibitors, microbiome therapeutics, oncolytic viruses, radiotherapy, drugs targeting myeloid-derived suppressor cells, drugs targeting Tregs, drugs targeting renin-angiotensin system, drugs targeting the autonomic nervous system, metformin, etc. We also highlight how translational research strategies can help better understand the true therapeutic potential of such combinations.
Collapse
Affiliation(s)
- Hrishi Varayathu
- Department of Translational Medicine and Therapeutics, HealthCare Global Enterprises Limited, Bangalore, India
| | - Vinu Sarathy
- Department of Medical Oncology, HealthCare Global Enterprises Limited, Bangalore, India
| | - Beulah Elsa Thomas
- Department of Clinical Pharmacology, HealthCare Global Enterprises Limited, Bangalore, India
| | - Suhail Sayeed Mufti
- Department of Translational Medicine and Therapeutics, HealthCare Global Enterprises Limited, Bangalore, India
| | - Radheshyam Naik
- Department of Medical Oncology, HealthCare Global Enterprises Limited, Bangalore, India
| |
Collapse
|
122
|
Hijacked Immune Cells in the Tumor Microenvironment: Molecular Mechanisms of Immunosuppression and Cues to Improve T Cell-Based Immunotherapy of Solid Tumors. Int J Mol Sci 2021; 22:ijms22115736. [PMID: 34072260 PMCID: PMC8199456 DOI: 10.3390/ijms22115736] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/13/2022] Open
Abstract
The understanding of the tumor microenvironment (TME) has been expanding in recent years in the context of interactions among different cell types, through direct cell–cell communication as well as through soluble factors. It has become evident that the development of a successful antitumor response depends on several TME factors. In this context, the number, type, and subsets of immune cells, as well as the functionality, memory, and exhaustion state of leukocytes are key factors of the TME. Both the presence and functionality of immune cells, in particular T cells, are regulated by cellular and soluble factors of the TME. In this regard, one fundamental reason for failure of antitumor responses is hijacked immune cells, which contribute to the immunosuppressive TME in multiple ways. Specifically, reactive oxygen species (ROS), metabolites, and anti-inflammatory cytokines have central roles in generating an immunosuppressive TME. In this review, we focused on recent developments in the immune cell constituents of the TME, and the micromilieu control of antitumor responses. Furthermore, we highlighted the current challenges of T cell-based immunotherapies and potential future strategies to consider for strengthening their effectiveness.
Collapse
|
123
|
Kumar A, Swain CA, Shevde LA. Informing the new developments and future of cancer immunotherapy : Future of cancer immunotherapy. Cancer Metastasis Rev 2021; 40:549-562. [PMID: 34003425 DOI: 10.1007/s10555-021-09967-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
The application of cancer immunotherapy (CIT) in reinforcing anti-tumor immunity in response to carcinogenesis and metastasis has shown promising advances, along with new therapeutic challenges, in the landscape of cancer care. To promote tumor growth and metastasis, cancer cells aim to manipulate their microenvironment by mediating a crosstalk with various immune cells through the secretion of chemokines, cytokines, and other associated factors. Understanding this crosstalk is the key to discovering the best targets for improved immunotherapies and clinical strategies in cancer treatment. Here, we review the tumor immune crosstalk in cancer growth and metastasis. This review also highlights the development and expansion of CIT over the years. Moreover, we highlight clinical challenges and limitations involving immune-related adverse events, treating cancer patients with pre-existing autoimmune diseases, and the management of immunotherapy-induced treatment resistance. Possible clinical solutions to these current challenges in CIT are also proposed. Altogether, this review can contribute to the formation of pre-clinical and treatment-related strategies that further develop the availability and effectiveness of CIT.
Collapse
Affiliation(s)
- Atul Kumar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Courtney A Swain
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA. .,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
124
|
MicroRNA-150 inhibits myeloid-derived suppressor cells proliferation and function through negative regulation of ARG-1 in sepsis. Life Sci 2021; 278:119626. [PMID: 34004247 DOI: 10.1016/j.lfs.2021.119626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 01/01/2023]
Abstract
AIMS Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. The majority of sepsis-related deaths occur during late sepsis, which presents as a state of immunosuppression. Myeloid-derived suppressor cells (MDSCs) have been reported to promote immunosuppression during sepsis. Here we aim to understand the role of microRNAs in regulating MDSCs proliferation and immunosuppression function during sepsis. MAIN METHODS Murine sepsis model was established using cecal ligation and puncture (CLP). A microarray was used to identify microRNAs with differential expression in murine sepsis. The effect of microRNA-150 on MDSCs proliferation and function was then evaluated. 140 multiple trauma patients from Tongji Hospital and 10 healthy controls were recruited. Peripheral blood samples were taken and the serum level of miR-150 was measured. KEY FINDINGS In the murine model of sepsis, MDSCs expansion was noted in the spleen and bone marrow, while expression of miR-150 in MDSCs decreased. Replenishing miR-150 inhibited the expansion of MDSCs in both monocytic and polymorphonuclear subpopulations, as well as decreasing the immunosuppressive function of MDSCs, through down-regulation of ARG1. Both pro-inflammatory cytokine IL-6 and anti-inflammatory cytokines TGF-β and IL-10 were reduced by miR-150. In human, the serum level of miR-150 was down-regulated in septic patients and elevated in non-septic trauma patients compared to healthy controls. SIGNIFICANCE Our study showed that MiR-150 is down-regulated during sepsis. Replenishing miR-150 reduces the immunosuppression function of MDSCs by down-regulating ARG1 in late sepsis. MiR-150 might serve as a potential therapeutic option for sepsis.
Collapse
|
125
|
Cell interactions in the bone marrow microenvironment affecting myeloid malignancies. Blood Adv 2021; 4:3795-3803. [PMID: 32780848 DOI: 10.1182/bloodadvances.2020002127] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
The bone marrow is a complex tissue in which heterogeneous populations of stromal cells interact with hematopoietic cells to dynamically respond to organismal needs in defense, hemostasis, and oxygen delivery. Physiologic challenges modify stromal/hematopoietic cell interactions to generate changes in blood cell production. When either stroma or hematopoietic cells are impaired, the system distorts. The distortions associated with myeloid malignancy are reviewed here and may provide opportunities for therapeutic intervention.
Collapse
|
126
|
Zhang Y, Li Y, Chen K, Qian L, Wang P. Oncolytic virotherapy reverses the immunosuppressive tumor microenvironment and its potential in combination with immunotherapy. Cancer Cell Int 2021; 21:262. [PMID: 33985527 PMCID: PMC8120729 DOI: 10.1186/s12935-021-01972-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
It has been intensively reported that the immunosuppressive tumor microenvironment (TME) results in tumor resistance to immunotherapy, especially immune checkpoint blockade and chimeric T cell antigen therapy. As an emerging therapeutic agent, oncolytic viruses (OVs) can specifically kill malignant cells and modify immune and non-immune TME components through their intrinsic properties or genetically incorporated with TME regulators. Strategies of manipulating OVs against the immunosuppressive TME include serving as a cancer vaccine, expressing proinflammatory factors and immune checkpoint inhibitors, and regulating nonimmune stromal constituents. In this review, we summarized the mechanisms and applications of OVs against the immunosuppressive TME, and strategies of OVs in combination with immunotherapy. We also introduced future directions to achieve efficient clinical translation including optimization of preclinical models that simulate the human TME and achieving systemic delivery of OVs.
Collapse
Affiliation(s)
- Yalei Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ye Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
| | - Kun Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling Qian
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
127
|
Immunosuppressive Effects of Myeloid-Derived Suppressor Cells in Cancer and Immunotherapy. Cells 2021; 10:cells10051170. [PMID: 34065010 PMCID: PMC8150533 DOI: 10.3390/cells10051170] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
The primary function of myeloid cells is to protect the host from infections. However, during cancer progression or states of chronic inflammation, these cells develop into myeloid-derived suppressor cells (MDSCs) that play a prominent role in suppressing anti-tumor immunity. Overcoming the suppressive effects of MDSCs is a major hurdle in cancer immunotherapy. Therefore, understanding the mechanisms by which MDSCs promote tumor growth is essential for improving current immunotherapies and developing new ones. This review explores mechanisms by which MDSCs suppress T-cell immunity and how this impacts the efficacy of commonly used immunotherapies.
Collapse
|
128
|
Myeloid-derived suppressor cells regulate the immunosuppressive functions of PD-1 -PD-L1 + Bregs through PD-L1/PI3K/AKT/NF-κB axis in breast cancer. Cell Death Dis 2021; 12:465. [PMID: 33967272 PMCID: PMC8107179 DOI: 10.1038/s41419-021-03745-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid cells that are closely related to tumor immune escape, but the mechanism by which MDSCs regulate B cells has not been elucidated. Our previous studies revealed that breast cancer-derived MDSCs could induce a group of PD-1-PD-L1+ Bregs with immunosuppressive functions. Here, we reported that blocking PD-1/PD-L1 interaction between MDSCs and B cells could reverse the immunosuppressive functions of PD-1-PD-L1+ Bregs. The activation of PI3K/AKT/NF-κB signaling pathway is essential for PD-1-PD-L1+ Bregs to exert immunosuppressive effects. MDSCs activated the PI3K/AKT/NF-κB pathway in B cells via the PD-1/PD-L1 axis. Furthermore, inhibition of PD-1/PD-L1 or PI3K/AKT signaling suppressed both tumor growth and the immunosuppressive functions of PD-1-PD-L1+ Bregs. Dual suppression of PD-1/PD-L1 and PI3K/AKT exerted better antitumor effect. Finally, MDSCs and PD-1-PD-L1+ Bregs were colocalized in breast cancer tissues and PD-1-PD-L1+ Bregs were positively correlated with poor prognosis. Thus, MDSC-educated PD-1-PD-L1+ Bregs and their regulatory mechanisms could contribute to the immunosuppressive tumor microenvironment. Our study proposes a novel mechanism for MDSC-mediated regulation of B cell immunity, which might shed new light on tumor immunotherapy.
Collapse
|
129
|
Zalfa C, Paust S. Natural Killer Cell Interactions With Myeloid Derived Suppressor Cells in the Tumor Microenvironment and Implications for Cancer Immunotherapy. Front Immunol 2021; 12:633205. [PMID: 34025641 PMCID: PMC8133367 DOI: 10.3389/fimmu.2021.633205] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
The tumor microenvironment (TME) is a complex and heterogeneous environment composed of cancer cells, tumor stroma, a mixture of tissue-resident and infiltrating immune cells, secreted factors, and extracellular matrix proteins. Natural killer (NK) cells play a vital role in fighting tumors, but chronic stimulation and immunosuppression in the TME lead to NK cell exhaustion and limited antitumor functions. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid cells with potent immunosuppressive activity that gradually accumulate in tumor tissues. MDSCs interact with innate and adaptive immune cells and play a crucial role in negatively regulating the immune response to tumors. This review discusses MDSC-mediated NK cell regulation within the TME, focusing on critical cellular and molecular interactions. We review current strategies that target MDSC-mediated immunosuppression to enhance NK cell cytotoxic antitumor activity. We also speculate on how NK cell-based antitumor immunotherapy could be improved.
Collapse
Affiliation(s)
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
130
|
Mandula JK, Rodriguez PC. Tumor-related stress regulates functional plasticity of MDSCs. Cell Immunol 2021; 363:104312. [PMID: 33652258 PMCID: PMC8026602 DOI: 10.1016/j.cellimm.2021.104312] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/15/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) impair protective anti-tumor immunity and remain major obstacles that stymie the effectiveness of promising cancer therapies. Diverse tumor-derived stressors galvanize the differentiation, intra-tumoral expansion, and immunomodulatory function of MDSCs. These tumor-associated 'axes of stress' underwrite the immunosuppressive programming of MDSCs in cancer and contribute to the phenotypic/functional heterogeneity that characterize tumor-MDSCs. This review discusses various tumor-associated axes of stress that direct MDSC development, accumulation, and immunosuppressive function, as well as current strategies aimed at overcoming the detrimental impact of MDSCs in cancer. To better understand the constellation of signals directing MDSC biology, we herein summarize the pivotal roles, signaling mediators, and effects of reactive oxygen/nitrogen species-related stress, chronic inflammatory stress, hypoxia-linked stress, endoplasmic reticulum stress, metabolic stress, and therapy-associated stress on MDSCs. Although therapeutic targeting of these processes remains mostly pre-clinical, intercepting signaling through the axes of stress could overcome MDSC-related immune suppression in tumor-bearing hosts.
Collapse
Affiliation(s)
- Jessica K Mandula
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
131
|
Sharma V, Aggarwal A, Jacob J, Sahni D. Myeloid-derived suppressor cells: Bridging the gap between inflammation and pancreatic adenocarcinoma. Scand J Immunol 2021; 93:e13021. [PMID: 33455004 DOI: 10.1111/sji.13021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/09/2021] [Accepted: 01/10/2021] [Indexed: 12/29/2022]
Abstract
Pancreatic cancer has been identified as one of the deadliest malignancies because it remains asymptomatic and usually presents in the advanced stage. Tumour immune evasion is a well-known mechanism of tumorigenesis in various forms of human malignancies. Chronic inflammation via complex networking of various inflammatory cytokines in the local tissue microenvironment dysregulates the immune system and support tumour development. Pro-inflammatory mediators present in the tumour microenvironment increase the tumour burden by causing immune suppression through the generation of myeloid-derived suppressor cells (MDSCs) and T regulatory cells. These cells, along-with myofibroblasts, create a highly immunosuppressive and resistant tumour microenvironment and are thus considered as one of the culprits for the failure of anti-cancer chemotherapies in pancreatic adenocarcinoma patients. Targeting these MDSCs using various combinatorial approaches might have the potential for abrogating the resistance and suppressive nature of the pancreatic tumour microenvironment. Therefore, there is more curiosity in studying the crosstalk of MDSCs with other immune cells during pathological conditions and the underlying mechanisms of immunosuppression in the current scenario. In this article, the possible role of MDSCs in inflammation-mediated tumour progression of pancreatic adenocarcinoma has been discussed.
Collapse
Affiliation(s)
- Vinit Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anjali Aggarwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Justin Jacob
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Daisy Sahni
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
132
|
Gallage S, García-Beccaria M, Szydlowska M, Rahbari M, Mohr R, Tacke F, Heikenwalder M. The therapeutic landscape of hepatocellular carcinoma. MED 2021; 2:505-552. [DOI: 10.1016/j.medj.2021.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
|
133
|
Hegde S, Leader AM, Merad M. MDSC: Markers, development, states, and unaddressed complexity. Immunity 2021; 54:875-884. [PMID: 33979585 DOI: 10.1016/j.immuni.2021.04.004] [Citation(s) in RCA: 329] [Impact Index Per Article: 109.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/20/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are one of the most discussed biological entities in immunology. While the context and classification of this group of cells has evolved, MDSCs most commonly describe cells arising during chronic inflammation, especially late-stage cancers, and are defined by their T cell immunosuppressive functions. This MDSC concept has helped explain myeloid phenomena associated with disease outcome, but currently lacks clear definitions and a unifying framework across pathologies. Here, we propose such a framework to classify MDSCs as discrete cell states based on activation signals in myeloid populations leading to suppressive modes characterized by specific, measurable effects. Developing this level of knowledge of myeloid states across pathological conditions may ultimately transform how disparate diseases are grouped and treated.
Collapse
Affiliation(s)
- Samarth Hegde
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew M Leader
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
134
|
R S J. The Immune Microenvironment in Human Papilloma Virus-Induced Cervical Lesions-Evidence for Estrogen as an Immunomodulator. Front Cell Infect Microbiol 2021; 11:649815. [PMID: 33996630 PMCID: PMC8120286 DOI: 10.3389/fcimb.2021.649815] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
Globally, human papilloma virus (HPV) infection is a common sexually transmitted disease. However, most of the HPV infections eventually resolve aided by the body’s efficient cell-mediated immune responses. In the vast majority of the small group of patients who develop overt disease too, it is the immune response that culminates in regression of lesions. It is therefore a rarity that persistent infection by high-risk genotypes of HPV compounded by other risk factors progresses through precancer (various grades of cervical intraepithelial neoplasia—CIN) to cervical cancer (CxCa). Hence, although CxCa is a rare culmination of HPV infection, the latter is nevertheless causally linked to >90% of cancer. The three ‘Es’ of cancer immunoediting viz. elimination, equilibrium, and escape come into vogue during the gradual evolution of CIN 1 to CxCa. Both cell-intrinsic and extrinsic mechanisms operate to eliminate virally infected cells: cell-extrinsic players are anti-tumor/antiviral effectors like Th1 subset of CD4+ T cells, CD8+ cytotoxic T cells, Natural Killer cells, etc. and pro-tumorigenic/immunosuppressive cells like regulatory T cells (Tregs), Myeloid-Derived Suppressor Cells (MDSCs), type 2 macrophages, etc. And accordingly, when immunosuppressive cells overpower the effectors e.g., in high-grade lesions like CIN 2 or 3, the scale is tilted towards immune escape and the disease progresses to cancer. Estradiol has long been considered as a co-factor in cervical carcinogenesis. In addition to the gonads, the Peyer’s patches in the gut synthesize estradiol. Over and above local production of the hormone in the tissues, estradiol metabolism by the gut microbiome: estrobolome versus tryptophan non-metabolizing microbiome, regulates free estradiol levels in the intestine and extraintestinal mucosal sites. Elevated tissue levels of the hormone serve more than one purpose: besides a direct growth-promoting action on cervical epithelial cells, estradiol acting genomically via Estrogen Receptor-α also boosts the function of the stromal and infiltrating immunosuppressive cells viz. Tregs, MDSCs, and carcinoma-associated fibroblasts. Hence as a corollary, therapeutic repurposing of Selective Estrogen Receptor Disruptors or aromatase inhibitors could be useful for modulating immune function in cervical precancer/cancer. The immunomodulatory role of estradiol in HPV-mediated cervical lesions is reviewed.
Collapse
Affiliation(s)
- Jayshree R S
- Department of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India
| |
Collapse
|
135
|
Coudereau R, Waeckel L, Cour M, Rimmele T, Pescarmona R, Fabri A, Jallades L, Yonis H, Gossez M, Lukaszewicz AC, Argaud L, Venet F, Monneret G. Emergence of immunosuppressive LOX-1+ PMN-MDSC in septic shock and severe COVID-19 patients with acute respiratory distress syndrome. J Leukoc Biol 2021; 111:489-496. [PMID: 33909917 PMCID: PMC8242532 DOI: 10.1002/jlb.4covbcr0321-129r] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Myeloid‐derived suppressor cells (MDSC) are a heterogeneous population of immature myeloid cells with immunosuppressive properties. In cancer patients, the expression of lectin‐type oxidized LDL receptor 1 (LOX‐1) on granulocytic MDSC identifies a subset of MDSC that retains the most potent immunosuppressive properties. The main objective of the present work was to explore the presence of LOX‐1+ MDSC in bacterial and viral sepsis. To this end, whole blood LOX‐1+ cells were phenotypically, morphologically, and functionally characterized. They were monitored in 39 coronavirus disease‐19 (COVID‐19, viral sepsis) and 48 septic shock (bacterial sepsis) patients longitudinally sampled five times over a 3 wk period in intensive care units (ICUs). The phenotype, morphology, and immunosuppressive functions of LOX‐1+ cells demonstrated that they were polymorphonuclear MDSC. In patients, we observed the significant emergence of LOX‐1+ MDSC in both groups. The peak of LOX‐1+ MDSC was 1 wk delayed with respect to ICU admission. In COVID‐19, their elevation was more pronounced in patients with acute respiratory distress syndrome. The persistence of these cells may contribute to long lasting immunosuppression leaving the patient unable to efficiently resolve infections.
Collapse
Affiliation(s)
- Rémy Coudereau
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France.,EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Lyon, France
| | - Louis Waeckel
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France.,EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Lyon, France
| | - Martin Cour
- Hospices Civils de Lyon, Edouard Herriot Hospital, Medical Intensive Care Department, Lyon, France
| | - Thomas Rimmele
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Lyon, France.,Hospices Civils de Lyon, Edouard Herriot Hospital, Anesthesia and Critical Care Medicine Department, Lyon, France
| | - Rémi Pescarmona
- Hospices Civils de Lyon, Lyon-Sud University Hospital, Immunology Laboratory, PierreBénite, France
| | - Astrid Fabri
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France.,EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Lyon, France
| | - Laurent Jallades
- Hospices Civils de Lyon, Lyon-Sud University Hospital, Hematology Laboratory, PierreBénite, France
| | - Hodane Yonis
- Hospices Civils de Lyon, Croix-Rousse University Hospital, Medical Intensive Care Department
| | - Morgane Gossez
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France.,EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Lyon, France.,International Research Center on Infectiology (CIRI), Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon 1, Team "NLRP3 inflammation and immune response to sepsis, Lyon, France
| | - Anne-Claire Lukaszewicz
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Lyon, France.,Hospices Civils de Lyon, Edouard Herriot Hospital, Anesthesia and Critical Care Medicine Department, Lyon, France
| | - Laurent Argaud
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France
| | -
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France
| | - Fabienne Venet
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France.,EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Lyon, France.,International Research Center on Infectiology (CIRI), Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon 1, Team "NLRP3 inflammation and immune response to sepsis, Lyon, France
| | - Guillaume Monneret
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France.,EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Lyon, France
| |
Collapse
|
136
|
Sauer S, Reed DR, Ihnat M, Hurst RE, Warshawsky D, Barkan D. Innovative Approaches in the Battle Against Cancer Recurrence: Novel Strategies to Combat Dormant Disseminated Tumor Cells. Front Oncol 2021; 11:659963. [PMID: 33987095 PMCID: PMC8111294 DOI: 10.3389/fonc.2021.659963] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer recurrence remains a great fear for many cancer survivors following their initial, apparently successful, therapy. Despite significant improvement in the overall survival of many types of cancer, metastasis accounts for ~90% of all cancer mortality. There is a growing understanding that future therapeutic practices must accommodate this unmet medical need in preventing metastatic recurrence. Accumulating evidence supports dormant disseminated tumor cells (DTCs) as a source of cancer recurrence and recognizes the need for novel strategies to target these tumor cells. This review presents strategies to target dormant quiescent DTCs that reside at secondary sites. These strategies aim to prevent recurrence by maintaining dormant DTCs at bay, or eradicating them. Various approaches are presented, including: reinforcing the niche where dormant DTCs reside in order to keep dormant DTCs at bay; promoting cell intrinsic mechanisms to induce dormancy; preventing the engagement of dormant DTCs with their supportive niche in order to prevent their reactivation; targeting cell-intrinsic mechanisms mediating long-term survival of dormant DTCs; sensitizing dormant DTCs to chemotherapy treatments; and, inhibiting the immune evasion of dormant DTCs, leading to their demise. Various therapeutic approaches, some of which utilize drugs that are already approved, or have been tested in clinical trials and may be considered for repurposing, will be discussed. In addition, clinical evidence for the presence of dormant DTCs will be reviewed, along with potential prognostic biomarkers to enable the identification and stratification of patients who are at high risk of recurrence, and who could benefit from novel dormant DTCs targeting therapies. Finally, we will address the shortcomings of current trial designs for determining activity against dormant DTCs and provide novel approaches.
Collapse
Affiliation(s)
- Scott Sauer
- Vuja De Sciences Inc., Hoboken, NJ, United States
| | - Damon R Reed
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States.,Adolescent and Young Adult Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Michael Ihnat
- Department of Pharmaceutical Sciences, College of Pharmacy, Oklahoma University Health Sciences Center, Oklahoma City, OK, United States
| | | | | | - Dalit Barkan
- Department of Human Biology and Medical Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
137
|
Tissues and Tumor Microenvironment (TME) in 3D: Models to Shed Light on Immunosuppression in Cancer. Cells 2021; 10:cells10040831. [PMID: 33917037 PMCID: PMC8067689 DOI: 10.3390/cells10040831] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 12/26/2022] Open
Abstract
Immunosuppression in cancer has emerged as a major hurdle to immunotherapy efforts. Immunosuppression can arise from oncogene-induced signaling within the tumor as well as from tumor-associated immune cells. Understanding various mechanisms by which the tumor can undermine and evade therapy is critical in improving current cancer immunotherapies. While mouse models have allowed for the characterization of key immune cell types and their role in tumor development, extrapolating these mechanisms to patients has been challenging. There is need for better models to unravel the effects of genetic alterations inherent in tumor cells and immune cells isolated from tumors on tumor growth and to investigate the feasibility of immunotherapy. Three-dimensional (3D) organoid model systems have developed rapidly over the past few years and allow for incorporation of components of the tumor microenvironment such as immune cells and the stroma. This bears great promise for derivation of patient-specific models in a dish for understanding and determining the impact on personalized immunotherapy. In this review, we will highlight the significance of current experimental models employed in the study of tumor immunosuppression and evaluate current tumor organoid-immune cell co-culture systems and their potential impact in shedding light on cancer immunosuppression.
Collapse
|
138
|
Joiner JB, Pylayeva-Gupta Y, Dayton PA. Focused Ultrasound for Immunomodulation of the Tumor Microenvironment. THE JOURNAL OF IMMUNOLOGY 2021; 205:2327-2341. [PMID: 33077668 DOI: 10.4049/jimmunol.1901430] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
Focused ultrasound (FUS) has recently emerged as a modulator of the tumor microenvironment, paving the way for FUS to become a safe yet formidable cancer treatment option. Several mechanisms have been proposed for the role of FUS in facilitating immune responses and overcoming drug delivery barriers. However, with the wide variety of FUS parameters used in diverse tumor types, it is challenging to pinpoint FUS specifications that may elicit the desired antitumor response. To clarify FUS bioeffects, we summarize four mechanisms of action, including thermal ablation, hyperthermia/thermal stress, mechanical perturbation, and histotripsy, each inducing unique vascular and immunological effects. Notable tumor responses to FUS include enhanced vascular permeability, increased T cell infiltration, and tumor growth suppression. In this review, we have categorized and reviewed recent methods of using therapeutic ultrasound to elicit an antitumor immune response with examples that reveal specific solutions and challenges in this new research area.
Collapse
Affiliation(s)
- Jordan B Joiner
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Yuliya Pylayeva-Gupta
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; .,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Paul A Dayton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; .,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and.,Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599
| |
Collapse
|
139
|
Lee YS, Saxena V, Bromberg JS, Scalea JR. G-CSF promotes alloregulatory function of MDSCs through a c-Kit dependent mechanism. Cell Immunol 2021; 364:104346. [PMID: 33848847 DOI: 10.1016/j.cellimm.2021.104346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/04/2021] [Accepted: 03/21/2021] [Indexed: 12/30/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature myeloid cells that expand in inflammatory conditions including transplantation. MDSCs may be capable of controlling rejection. The critical mechanisms underlying MDSC mediated alloregulation remain unexplored. G-CSF potently stimulates MDSC expansion. We hypothesized that G-CSF-induced MDSCs use a novel mechanism to suppress T cell responses. G-CSF promoted expansion of MDSCs and enhanced their suppressive function against T cell proliferation. Gene expression analysis revealed MDSCs expanded with G-CSF upregulated immune-related genes, but downregulated proliferation-related genes when compared to naïve control MDSCs. The KIT oncogene, encoding the c-Kit (CD117) transmembrane tyrosine kinase receptor, was the most significantly increased in MDSCs expanded with G-CSF. c-Kit inhibition with both imatinib and monoclonal blocking antibody reduced expression of ARG-1, iNOS, PD-L1, and SAA3. Further, imatinib also reduced MDSC-mediated T cell suppression in vitro. Modulation of c-Kit activity may represent a therapeutic target for alloregulatory MDSCs.
Collapse
Affiliation(s)
- Young S Lee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, United States; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, United States
| | - Vikas Saxena
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, United States
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, United States; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, United States; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Joseph R Scalea
- Department of Surgery, University of Maryland School of Medicine, Baltimore, United States; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, United States; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States.
| |
Collapse
|
140
|
Chen S, Wang X, Ha D, Yoshitake R. White Button Mushroom (Agaricus bisporus) Interrupts Tissue AR-TMPRSS2 Expression and Attenuates Pro-inflammatory Cytokines in C57BL/6 Mice: Implication for COVID-19 Dietary Intervention. RESEARCH SQUARE 2021:rs.3.rs-244245. [PMID: 33791688 PMCID: PMC8010737 DOI: 10.21203/rs.3.rs-244245/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transmembrane protease serine 2 (TMPRSS2), an androgen-induced protease associated with prostate cancer, is one putative receptor for coronavirus entry into host cells, where triggering aggressive inflammatory cytokine storm and possibly death in COVID-19 patients. We previously reported that dietary white button mushroom (WBM) antagonized dihydrotestosterone (DHT)-induced androgen receptor (AR) activation and reduced myeloid-derived suppressor cells (MDSCs) in prostate cancer animal models and patients. The present study on C57BL/6 mice revealed that WBM is a unique food that A ) interrupts DHT induced AR-TMPRSS2 expression in putative COVID-19 targeted organs through its AR antagonistic activity and B ) attenuates serum pro-inflammatory cytokines which have been implicated in COVID-19 pathogenesis. We hereby propose WBM intake as a potentially low-cost, efficient, and safe dietary intervention to mitigate COVID-19.
Collapse
Affiliation(s)
| | | | - Desiree Ha
- Beckman Research Institute, City of Hope
| | | |
Collapse
|
141
|
Wang X, Zhong L, Zhao Y. Oncolytic adenovirus: A tool for reversing the tumor microenvironment and promoting cancer treatment (Review). Oncol Rep 2021; 45:49. [PMID: 33760203 PMCID: PMC7934214 DOI: 10.3892/or.2021.8000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Immunogene therapy can enhance the antitumor immune effect by introducing genes encoding co‑stimulation molecules, cytokines, chemokines and tumor‑associated antigens into treatment cells or human cells through genetic engineering techniques. Oncolytic viruses can specifically target tumor cells and replicate indefinitely until they kill tumor cells. If combined with immunogene therapy, oncolytic viruses can play a more powerful antitumor role. The high pressure, hypoxia and acidity in the tumor microenvironment (TME) provide suitable conditions for tumor cells to survive. To maximize the potency of oncolytic viruses, various methods are being developed to promote the reversal of the TME, thereby maximizing transmission of replication and immunogenicity. The aim of the present review was to discuss the basic mechanisms underlying the effects of oncolytic adenoviruses on the TME, and suggest how to combine the modification of the adenovirus with the TME to further combat malignant tumors.
Collapse
Affiliation(s)
- Xiaoxi Wang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Liping Zhong
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yongxiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
142
|
Yang D, Yang L, Cai J, Hu X, Li H, Zhang X, Zhang X, Chen X, Dong H, Nie H, Li Y. A sweet spot for macrophages: Focusing on polarization. Pharmacol Res 2021; 167:105576. [PMID: 33771700 DOI: 10.1016/j.phrs.2021.105576] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/21/2022]
Abstract
Macrophages are a type of functionally plastic cells that can create a pro-/anti-inflammatory microenvironment for organs by producing different kinds of cytokines, chemokines, and growth factors to regulate immunity and inflammatory responses. In addition, they can also be induced to adopt different phenotypes in response to extracellular and intracellular signals, a process defined as M1/M2 polarization. Growing evidence indicates that glycobiology is closely associated with this polarization process. In this research, we review studies of the roles of glycosylation, glucose metabolism, and key lectins in the regulation of macrophages function and polarization to provide a new perspective for immunotherapies for multiple diseases.
Collapse
Affiliation(s)
- Depeng Yang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Lijun Yang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Jialing Cai
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110000, China
| | - Xibo Hu
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huaxin Li
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xiaoqing Zhang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xiaohan Zhang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xinghe Chen
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Haiyang Dong
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huan Nie
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Yu Li
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
143
|
Suszczyk D, Skiba W, Jakubowicz-Gil J, Kotarski J, Wertel I. The Role of Myeloid-Derived Suppressor Cells (MDSCs) in the Development and/or Progression of Endometriosis-State of the Art. Cells 2021; 10:cells10030677. [PMID: 33803806 PMCID: PMC8003224 DOI: 10.3390/cells10030677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Endometriosis (EMS) is a common gynecological disease characterized by the presence of endometrial tissue outside the uterus. Approximately 10% of women around the world suffer from this disease. Recent studies suggest that endometriosis has potential to transform into endometriosis-associated ovarian cancer (EAOC). Endometriosis is connected with chronic inflammation and changes in the phenotype, activity, and function of immune cells. The underlying mechanisms include quantitative and functional disturbances of neutrophils, monocytes/macrophages (MO/MA), natural killer cells (NK), and T cells. A few reports have shown that immunosuppressive cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) may promote the progression of endometriosis. MDSCs are a heterogeneous population of immature myeloid cells (dendritic cells, granulocytes, and MO/MA precursors), which play an important role in the development of immunological diseases such as chronic inflammation and cancer. The presence of MDSCs in pathological conditions correlates with immunosuppression, angiogenesis, or release of growth factors and cytokines, which promote progression of these diseases. In this paper, we review the impact of MDSCs on different populations of immune cells, focusing on their immunosuppressive role in the immune system, which may be related with the pathogenesis and/or progression of endometriosis and its transformation into ovarian cancer.
Collapse
Affiliation(s)
- Dorota Suszczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland; (D.S.); (W.S.)
| | - Wiktoria Skiba
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland; (D.S.); (W.S.)
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Jan Kotarski
- Department of Gynaecologic Oncology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland;
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland; (D.S.); (W.S.)
- Correspondence:
| |
Collapse
|
144
|
Yue D, Liu S, Zhang T, Wang Y, Qin G, Chen X, Zhang H, Wang D, Huang L, Wang F, Wang L, Zhao S, Zhang Y. NEDD9 promotes cancer stemness by recruiting myeloid-derived suppressor cells via CXCL8 in esophageal squamous cell carcinoma. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0290. [PMID: 33710809 PMCID: PMC8330544 DOI: 10.20892/j.issn.2095-3941.2020.0290] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Esophageal squamous cell carcinoma (ESCC) has high morbidity and mortality rates worldwide. Cancer stem cells (CSCs) may cause tumor initiation, metastasis, and recurrence and are also responsible for chemotherapy and radiotherapy failures. Myeloid-derived suppressor cells (MDSCs), in contrast, are known to be involved in mediating immunosuppression. Here, we aimed to investigate the mechanisms of interaction of CSCs and MDSCs in the tumor microenvironment. METHODS ESCC tissues and cell lines were evaluated. Neural precursor cell expressed, developmentally downregulated 9 (NEDD9) was knocked down and overexpressed by lentiviral transfection. Quantitative PCR, Western blot, immunohistochemistry, cell invasion, flow cytometry, cell sorting, multiplex chemokine profiling, and tumor growth analyses were performed. RESULTS Microarray analysis revealed 10 upregulated genes in esophageal CSCs. Only NEDD9 was upregulated in CSCs using the sphere-forming method. NEDD9 expression was correlated with tumor invasion (P = 0.0218), differentiation (P = 0.0153), and poor prognosis (P = 0.0373). Additionally, NEDD9 was required to maintain the stem-like phenotype. Screening of chemokine expression in ESCC cells with NEDD9 overexpression and knockdown showed that NEDD9 regulated C-X-C motif chemokine ligand 8 (CXCL8) expression via the ERK pathway. CXCL8 mediated the recruitment of MDSCs induced by NEDD9 in vitro and in vivo. MDSCs promoted the stemness of ESCC cells through NEDD9 via the Notch pathway. CONCLUSIONS As a marker of ESCC, NEDD9 maintained the stemness of ESCC cells and regulated CXCL8 through the ERK pathway to recruit MDSCs into the tumor, suggesting NEDD9 as a therapeutic target and novel prognostic marker for ESCC.
Collapse
Affiliation(s)
- Dongli Yue
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shasha Liu
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Tengfei Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yong Wang
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100730, China
- Biomed Innovation Center, Yehoo Group, Shenzhen 518067, China
| | - Guohui Qin
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xinfeng Chen
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huanyu Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dong Wang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lan Huang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Feng Wang
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Liping Wang
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Song Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- School of Life Sciences, Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou 450052, China
| |
Collapse
|
145
|
Shackleton EG, Ali HY, Khan M, Pockley GA, McArdle SE. Novel Combinatorial Approaches to Tackle the Immunosuppressive Microenvironment of Prostate Cancer. Cancers (Basel) 2021; 13:1145. [PMID: 33800156 PMCID: PMC7962457 DOI: 10.3390/cancers13051145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is the second-most common cancer in men worldwide and treatment options for patients with advanced or aggressive prostate cancer or recurrent disease continue to be of limited success and are rarely curative. Despite immune checkpoint blockade (ICB) efficacy in some melanoma, lung, kidney and breast cancers, immunotherapy efforts have been remarkably unsuccessful in PCa. One hypothesis behind this lack of efficacy is the generation of a distinctly immunosuppressive prostate tumor microenvironment (TME) by regulatory T cells, MDSCs, and type 2 macrophages which have been implicated in a variety of pathological conditions including solid cancers. In PCa, Tregs and MDSCs are attracted to TME by low-grade chronic inflammatory signals, while tissue-resident type 2 macrophages are induced by cytokines such as IL4, IL10, IL13, transforming growth factor beta (TGFβ) or prostaglandin E2 (PGE2) produced by Th2 cells. These then drive tumor progression, therapy resistance and the generation of castration resistance, ultimately conferring a poor prognosis. The biology of MDSC and Treg is highly complex and the development, proliferation, maturation or function can each be pharmacologically mediated to counteract the immunosuppressive effects of these cells. Herein, we present a critical review of Treg, MDSC and M2 involvement in PCa progression but also investigate a newly recognized type of immune suppression induced by the chronic stimulation of the sympathetic adrenergic signaling pathway and propose targeted strategies to be used in a combinatorial modality with immunotherapy interventions such as ICB, Sipuleucel-T or antitumor vaccines for an enhanced anti-PCa tumor immune response. We conclude that a strategic sequence of therapeutic interventions in combination with additional holistic measures will be necessary to achieve maximum benefit for PCa patients.
Collapse
Affiliation(s)
- Erin G. Shackleton
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (E.G.S.); (H.Y.A.); (G.A.P.)
| | - Haleema Yoosuf Ali
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (E.G.S.); (H.Y.A.); (G.A.P.)
| | - Masood Khan
- Department of Urology, University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, UK;
| | - Graham A. Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (E.G.S.); (H.Y.A.); (G.A.P.)
- Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Stephanie E. McArdle
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (E.G.S.); (H.Y.A.); (G.A.P.)
- Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
146
|
Lin E, Liu X, Liu Y, Zhang Z, Xie L, Tian K, Liu J, Yu Y. Roles of the Dynamic Tumor Immune Microenvironment in the Individualized Treatment of Advanced Clear Cell Renal Cell Carcinoma. Front Immunol 2021; 12:653358. [PMID: 33746989 PMCID: PMC7970116 DOI: 10.3389/fimmu.2021.653358] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/12/2021] [Indexed: 02/05/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are currently a first-line treatment option for clear cell renal cell carcinoma (ccRCC). However, recent clinical studies have shown that a large number of patients do not respond to ICIs. Moreover, only a few patients achieve a stable and durable response even with combination therapy based on ICIs. Available studies have concluded that the response to immunotherapy and targeted therapy in patients with ccRCC is affected by the tumor immune microenvironment (TIME), which can be manipulated by targeted therapy and tumor genomic characteristics. Therefore, an in-depth understanding of the dynamic nature of the TIME is important for improving the efficacy of immunotherapy or combination therapy in patients with advanced ccRCC. Here, we explore the possible mechanisms by which the TIME affects the efficacy of immunotherapy and targeted therapy, as well as the factors that drive dynamic changes in the TIME in ccRCC, including the immunomodulatory effect of targeted therapy and genomic changes. We also describe the progress on novel therapeutic modalities for advanced ccRCC based on the TIME. Overall, this review provides valuable information on the optimization of combination therapy and development of individualized therapy for advanced ccRCC.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/mortality
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/genetics
- Kidney Neoplasms/immunology
- Kidney Neoplasms/mortality
- Molecular Targeted Therapy/methods
- Precision Medicine/methods
- Progression-Free Survival
- Randomized Controlled Trials as Topic
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Enyu Lin
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Xuechao Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanjun Liu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Zedan Zhang
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Lu Xie
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kaiwen Tian
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuming Yu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
147
|
Ostrand-Rosenberg S. Myeloid-Derived Suppressor Cells: Facilitators of Cancer and Obesity-Induced Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2021. [DOI: 10.1146/annurev-cancerbio-042120-105240] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immature myeloid cells at varied stages of differentiation, known as myeloid-derived suppressor cells (MDSC), are present in virtually all cancer patients. MDSC are profoundly immune-suppressive cells that impair adaptive and innate antitumor immunity and promote tumor progression through nonimmune mechanisms. Their widespread presence combined with their multitude of protumor activities makes MDSC a major obstacle to cancer immunotherapies. MDSC are derived from progenitor cells in the bone marrow and traffic through the blood to infiltrate solid tumors. Their accumulation and suppressive potency are driven by multiple tumor- and host-secreted proinflammatory factors and adrenergic signals that act via diverse but sometimes overlapping transcriptional pathways. MDSC also accumulate in response to the chronic inflammation and lipid deposition characteristic of obesity and contribute to the more rapid progression of cancers in obese individuals. This article summarizes the key aspects of tumor-induced MDSC with a focus on recent progress in the MDSC field.
Collapse
Affiliation(s)
- Suzanne Ostrand-Rosenberg
- Department of Pathology and Huntsman Cancer Institute (HCI), University of Utah, Salt Lake City, Utah 84112, USA
- Emeritus at: Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| |
Collapse
|
148
|
Pre-conditioning modifies the TME to enhance solid tumor CAR T cell efficacy and endogenous protective immunity. Mol Ther 2021; 29:2335-2349. [PMID: 33647456 PMCID: PMC8261088 DOI: 10.1016/j.ymthe.2021.02.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/23/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has led to impressive clinical responses in patients with hematological malignancies; however, its effectiveness in patients with solid tumors has been limited. While CAR T cells for the treatment of advanced prostate and pancreas cancer, including those targeting prostate stem cell antigen (PSCA), are being clinically evaluated and are anticipated to show bioactivity, their safety and the impact of the immunosuppressive tumor microenvironment (TME) have not been faithfully explored preclinically. Using a novel human PSCA knockin (hPSCA-KI) immunocompetent mouse model, we evaluated the safety and therapeutic efficacy of PSCA-CAR T cells. We demonstrated that cyclophosphamide (Cy) pre-conditioning significantly modified the immunosuppressive TME and was required to uncover the efficacy of PSCA-CAR T cells in metastatic prostate and pancreas cancer models, with no observed toxicities in normal tissues with endogenous expression of PSCA. This combination dampened the immunosuppressive TME, generated pro-inflammatory myeloid and T cell signatures in tumors, and enhanced the recruitment of antigen-presenting cells, as well as endogenous and adoptively transferred T cells, resulting in long-term anti-tumor immunity.
Collapse
|
149
|
Lewinsky H, Gunes EG, David K, Radomir L, Kramer MP, Pellegrino B, Perpinial M, Chen J, He TF, Mansour AG, Teng KY, Bhattacharya S, Caserta E, Troadec E, Lee P, Feng M, Keats J, Krishnan A, Rosenzweig M, Yu J, Caligiuri MA, Cohen Y, Shevetz O, Becker-Herman S, Pichiorri F, Rosen S, Shachar I. CD84 is a regulator of the immunosuppressive microenvironment in multiple myeloma. JCI Insight 2021; 6:141683. [PMID: 33465053 PMCID: PMC7934939 DOI: 10.1172/jci.insight.141683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/15/2021] [Indexed: 12/30/2022] Open
Abstract
Multiple myeloma (MM) is characterized by an accumulation of malignant plasma cells (PCs) within the BM. The BM microenvironment supports survival of the malignant cells and is composed of cellular fractions that foster myeloma development and progression by suppression of the immune response. Despite major progress in understanding the biology and pathophysiology of MM, this disease is still incurable and requires aggressive treatment with significant side effects. CD84 is a self-binding immunoreceptor belonging to the signaling lymphocyte activation molecule (SLAM) family. Previously, we showed that CD84 bridges between chronic lymphocytic leukemia cells and their microenvironment, and it regulates T cell function. In the current study, we investigated the role of CD84 in MM. Our results show that MM cells express low levels of CD84. However, these cells secrete the cytokine macrophage migration inhibitory factor (MIF), which induces CD84 expression on cells in their microenvironment. Its activation leads to an elevation of expression of genes regulating differentiation to monocytic/granulocytic-myeloid-derived suppressor cells (M-MDSCs and G-MDSCs, respectively) and upregulation of PD-L1 expression on MDSCs, which together suppress T cell function. Downregulation of CD84 or its blocking reduce MDSC accumulation, resulting in elevated T cell activity and reduced tumor load. Our data suggest that CD84 might serve as a novel therapeutic target in MM.
Collapse
Affiliation(s)
- Hadas Lewinsky
- Department of Immunology, Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Emine G. Gunes
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, California, USA
- Department of Hematologic Malignancies Translational Science and
| | - Keren David
- Department of Immunology, Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Lihi Radomir
- Department of Immunology, Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Matthias P. Kramer
- Department of Immunology, Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Bianca Pellegrino
- Department of Immunology, Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Perpinial
- Department of Immunology, Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Jing Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Ting-fang He
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | | | - Kun-Yu Teng
- Department of Hematologic Malignancies Translational Science and
| | - Supriyo Bhattacharya
- Translational Bioinformatics, Center for Informatics, Department of Computational and Quantitative Medicine, City of Hope, Duarte, California, USA
| | - Enrico Caserta
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, California, USA
- Department of Hematologic Malignancies Translational Science and
| | - Estelle Troadec
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, California, USA
- Department of Hematologic Malignancies Translational Science and
| | - Peter Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Jonathan Keats
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, California, USA
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Amrita Krishnan
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, California, USA
- Department of Hematologic Malignancies Translational Science and
| | - Michael Rosenzweig
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, California, USA
- Department of Hematologic Malignancies Translational Science and
| | - Jianhua Yu
- Department of Hematologic Malignancies Translational Science and
| | | | - Yosef Cohen
- Sanz Medical Center, Laniado Medical Center, Netanya, Israel
| | - Olga Shevetz
- Hematology Institute, Kaplan Medical Center, Rehovot, Israel
| | - Shirly Becker-Herman
- Department of Immunology, Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Flavia Pichiorri
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, California, USA
- Department of Hematologic Malignancies Translational Science and
| | - Steven Rosen
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, California, USA
- Department of Hematologic Malignancies Translational Science and
| | - Idit Shachar
- Department of Immunology, Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
150
|
Peng M, Wei G, Zhang Y, Li H, Lai Y, Guo Y, Chen Y, Liu L, Xiao H, Guan H, Li Y. Single-cell transcriptomic landscape reveals the differences in cell differentiation and immune microenvironment of papillary thyroid carcinoma between genders. Cell Biosci 2021; 11:39. [PMID: 33588924 PMCID: PMC7885238 DOI: 10.1186/s13578-021-00549-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/30/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is the main pathological type of thyroid carcinoma (TC). Gender is a prominent background parameter for patients with PTC. Here, we aimed to delineate the differences in cell clusters and immune microenvironment in relation to gender in PTC. METHODS We generated 6720, 14,666, and 33,373 single-cell transcriptomes that were pooled from the tissues of four male patients with PTC, seven female patients with PTC, and three patients with nodular goiter, respectively. We performed single-cell RNA-sequencing (scRNA-seq) based on BD Rhapsody and characterized the first single-cell transcriptomic landscape of PTC involving gender. The differential cell clusters and their gene profiles were identified and analyzed via a multi-resolution network in male and female patients. The interactions of fibroblasts and endothelial cells with malignant epithelial cells and the difference in the immune infiltration of B and T lymphocytes according to gender were assessed. RESULTS Malignant epithelial cells were divided into two distinct subsets in male and female patients with PTC. Moreover, significant differences involving inferred copy-number variations (CNVs), gene profiles, and cell differentiation were detected between male and female patients. Regarding the interactions of fibroblasts and endothelial cells with malignant epithelial cells, members of the human leukocyte antigen (HLA) family and their receptors were considered as typical in female patients with PTC, while transforming growth factor beta 1 (TGFB1) and its receptors were typical of male patients with PTC. The characteristics of B cells, including cell clusters, cell differentiation, and dominant gene sets, were significantly different between genders. CONCLUSIONS Our data revealed the detailed differences in cell clusters and immune microenvironment in PTC according to gender at the single-cell level, which provided new insights into the understanding of the impact of gender on PTC.
Collapse
Affiliation(s)
- Miaoguan Peng
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangdong, 510080, Guangzhou, China
| | - Guohong Wei
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangdong, 510080, Guangzhou, China
| | - Yunjian Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangdong, 510080, Guangzhou, China
| | - Hai Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangdong, 510080, Guangzhou, China
| | - Yingrong Lai
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangdong, 510080, Guangzhou, China
| | - Yan Guo
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangdong, 510080, Guangzhou, China
| | - Yuxin Chen
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangdong, 510080, Guangzhou, China
| | - Liehua Liu
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangdong, 510080, Guangzhou, China
| | - Haipeng Xiao
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangdong, 510080, Guangzhou, China
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangdong, 510080, Guangzhou, China.
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangdong, 510080, Guangzhou, China.
| |
Collapse
|