101
|
Zhang L, Zhang M, Xu J, Li S, Chen Y, Wang W, Yang J, Li S, Gu M. The role of the programmed cell death protein-1/programmed death-ligand 1 pathway, regulatory T cells and T helper 17 cells in tumor immunity: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1526. [PMID: 33313271 PMCID: PMC7729304 DOI: 10.21037/atm-20-6719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tumor immunotherapy, especially that involving programmed cell death protein-1 (PD-1)/programmed death-ligand 1 (PD-L1) immunosuppressive checkpoint inhibitors, has become an important part of tumor treatment strategy in the past decade. Blocking PD-1/PD-L1 signaling pathway can reduce the inhibitory effect of PD-1 pathway on T cells, promote the anti-tumor activity of activated T cells, and prolong the remission period of tumor. While PD-1/PD-L1 immunotherapy is effective in the treatment of solid malignant tumors, it also has shortcomings, due to the complexity of the tumor microenvironment (TME). Regulatory T cells (Tregs) and T helper 17 (Th17) cells play an important role in the TME and are closely related to the occurrence and development of tumors. Tregs can inhibit the anti-tumor immune effect, while Th17 cells play a dual role in tumor immunity, which not only promotes tumorigenesis but also promotes anti-tumor immunity. In the occurrence and development of tumor, PD-1/PD-L1 pathway, Tregs and Th17 cells are interrelated. However, the complicated relationship between the PD-1/PD-L1 pathway, Tregs, and Th17 cells has not been fully clarified. Here, we summarize the immunoregulation mechanisms and discuss the crosstalk between the PD-1/PD-L1 pathway, Tregs, and Th17 cells, with the aim of providing novel insights for future cancer treatment.
Collapse
Affiliation(s)
- Lanfang Zhang
- Department of Chemotherapy Unit 2, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Mingjuan Zhang
- Department of Chemotherapy Unit 2, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Jinxiu Xu
- Department of Chemotherapy Unit 2, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Shan Li
- Department of Chemotherapy Unit 2, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Yu Chen
- Department of Chemotherapy Unit 2, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Wenjing Wang
- Department of Chemotherapy Unit 2, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Juntian Yang
- Department of Chemotherapy Unit 2, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Shengyun Li
- Department of Chemotherapy Unit 2, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Meiling Gu
- Department of Chemotherapy Unit 2, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| |
Collapse
|
102
|
Wang Y, Kong D, Wang C, Chen J, Li J, Liu Z, Li X, Wang Z, Yao G, Wang X. A Systematic Review and Meta-Analysis of Immune-Related Adverse Events of Anti-PD-1 Drugs in Randomized Controlled Trials. Technol Cancer Res Treat 2020; 19:1533033820967454. [PMID: 33084525 PMCID: PMC7588773 DOI: 10.1177/1533033820967454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective: We aimed to evaluate immune-related adverse events occurring in clinical
trials of anti-programmed cell death 1 (PD-1) drugs, compared with control
treatments, including chemotherapy, targeted drugs, or placebo. Further we
compared the occurrence of immune -related events in patients treated with
different anti-PD-1 drugs. Data Sources: Randomized controlled trial (RCT) data were sourced from PubMed, Embase, and
the Cochrane Central Register of Controlled Trials combined with https://clinicaltrials.gov. Methods: Randomized controlled trial of anti-PD-1 drugs compared with control
treatments published between January 1, 1970 and March 1,2019, were searched
and data on trial patient characteristics, and adverse events extracted,
reviewed, and subjected to meta-analysis. Results: Eighteen Randomized controlled trials were included in our study. The
Randomized controlled trials compared nivolumab (n = 12), pembrolizumab (n =
6), with chemotherapy (n = 13), targeted drugs (n = 2), or placebo (n = 3).
Compared with the control group, the risk of any immune-related adverse
events in patients treated with anti-PD-1 drugs was increased (RR, 2.65; 95%
confidence interval, 1.84–3.83; P < 0.00001). Of the
immune-related adverse events, the risk rates of pneumonitis (risk ratio,
2.10; 95% CI, 0.85-5.18), colitis (2.96;1.62-5.38),
hypophysitis(4.79;1.54-14.89), hypothyroidism(7.87;5.36-11.57),
hyperthyroidism (7.03;4.35-11.34), rash (1.58;0.98-2.54), pruritus (2.28;
1.38-3.76), and hepatitis (9.31;2.18-39.85) were increased by anti-PD-1
drugs. Further, the risk of immune-related adverse events was similar for
patients treated with pembrolizumab and nivolumab (P =
0.14). Conclusions: In addition to previously reported organ-specific immune-related adverse
events, we found that the risk of hyperthyroidism was also increased, in
anit-PD-1-treated patients, relative to control treatments. The risk of
total immune-related adverse events, was similar for pembrolizumab and
nivolumab.
Collapse
Affiliation(s)
- Yukun Wang
- Henan Key Laboratory of Cancer Epigenetics; Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Dejiu Kong
- Henan Key Laboratory of Cancer Epigenetics; Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Chaokun Wang
- Henan Key Laboratory of Cancer Epigenetics; Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jing Chen
- Henan Key Laboratory of Cancer Epigenetics; Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jing Li
- Henan Key Laboratory of Cancer Epigenetics; Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Zhiwei Liu
- Henan Key Laboratory of Cancer Epigenetics; Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xinyang Li
- Henan Key Laboratory of Cancer Epigenetics; Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Ziming Wang
- Henan Key Laboratory of Cancer Epigenetics; Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Ge Yao
- Henan Key Laboratory of Cancer Epigenetics; Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xinshuai Wang
- Henan Key Laboratory of Cancer Epigenetics; Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
103
|
Janssens I, Cools N. Regulating the regulators: Is introduction of an antigen-specific approach in regulatory T cells the next step to treat autoimmunity? Cell Immunol 2020; 358:104236. [PMID: 33137651 DOI: 10.1016/j.cellimm.2020.104236] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/22/2022]
Abstract
In autoimmunity, the important and fragile balance between immunity and tolerance is disturbed, resulting in abnormal immune responses to the body's own tissues and cells. CD4+CD25hiFoxP3+ regulatory T cells (Tregs) induce peripheral tolerance in vivo by means of direct cell-cell contact and release of soluble factors, or indirectly through antigen-presenting cells (APC), thereby controlling auto-reactive effector T cells. Based on these unique capacities of Tregs, preclinical studies delivered proof-of-principle for the clinical use of Tregs for the treatment of autoimmune diseases. To date, the first clinical trials using ex vivo expanded polyclonal Tregs have been completed. These pioneering studies demonstrate the feasibility of generating large numbers of polyclonal Tregs in a good manufacturing practices (GMP)-compliant manner, and that infusion of Tregs is well tolerated by patients with no evidence of general immunosuppression. Nonetheless, only modest clinical results were observed, arguing that a more antigen-specific approach might be needed to foster a durable patient-specific clinical cell therapy without the risk for general immunosuppression. In this review, we discuss current knowledge, applications and future goals of adoptive immune-modulatory Treg therapy for the treatment of autoimmune disease and transplant rejection. We describe the key advances and prospects of the potential use of T cell receptor (TCR)- and chimeric antigen receptor (CAR)-engineered Tregs in future clinical applications. These approaches could deliver the long-awaited breakthrough in stopping undesired autoimmune responses and transplant rejections.
Collapse
Affiliation(s)
- Ibo Janssens
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
104
|
Tumor Microenvironment: Implications in Melanoma Resistance to Targeted Therapy and Immunotherapy. Cancers (Basel) 2020; 12:cancers12102870. [PMID: 33036192 PMCID: PMC7601592 DOI: 10.3390/cancers12102870] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The response to pharmacological treatments is deeply influenced by the tight interactions between the tumor cells and the microenvironment. In this review we describe, for melanoma, the most important mechanisms of resistance to targeted therapy and immunotherapy mediated by the components of the microenvironment. In addition, we briefly describe the most recent therapeutic advances for this pathology. The knowledge of molecular mechanisms, which are underlying of drug resistance, is fundamental for the development of new therapeutic approaches for the treatment of melanoma patients. Abstract Antitumor therapies have made great strides in recent decades. Chemotherapy, aggressive and unable to discriminate cancer from healthy cells, has given way to personalized treatments that, recognizing and blocking specific molecular targets, have paved the way for targeted and effective therapies. Melanoma was one of the first tumor types to benefit from this new care frontier by introducing specific inhibitors for v-Raf murine sarcoma viral oncogene homolog B (BRAF), mitogen-activated protein kinase kinase (MEK), v-kit Hardy–Zuckerman 4 feline sarcoma viral oncogene homolog (KIT), and, recently, immunotherapy. However, despite the progress made in the melanoma treatment, primary and/or acquired drug resistance remains an unresolved problem. The molecular dynamics that promote this phenomenon are very complex but several studies have shown that the tumor microenvironment (TME) plays, certainly, a key role. In this review, we will describe the new melanoma treatment approaches and we will analyze the mechanisms by which TME promotes resistance to targeted therapy and immunotherapy.
Collapse
|
105
|
Seledtsov VI, von Delwig A. Clinically feasible and prospective immunotherapeutic interventions in multidirectional comprehensive treatment of cancer. Expert Opin Biol Ther 2020; 21:323-342. [PMID: 32981358 DOI: 10.1080/14712598.2021.1828338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The immune system is able to exert both tumor-destructive and tumor-protective functions. Immunotherapeutic technologies aim to enhance immune-based anti-tumor activity and (or) weaken tumor-protective immunity. AREAS COVERED Cancer vaccination, antibody (Ab)-mediated cytotoxicity, Ab-based checkpoint molecule inhibition, Ab-based immunostimulation, cytokine therapy, oncoviral therapy, drug-mediated immunostimulation, exovesicular therapy, anti-inflammatory therapy, neurohormonal immunorehabilitation, metabolic therapy, as well as adoptive cell immunotherapy, could be coherently used to synergize and amplify each other in achieving robust anti-cancer responses in cancer patients. Tumor-specific immunotherapy applied at early stages is capable of eliminating remaining tumor cells after surgery, thus preventing the development of minimal residual disease. Patients with advanced disease stages could benefit from combined immunotherapy, which would be aimed at providing tumor cell/mass dormancy. Traditional therapeutic anti-cancer interventions (chemoradiotherapy, hyperthermia, anti-hormonal therapy) could significantly enhance tumor sensitivity to anti-cancer immunotherapy. It is important that lower-dose (metronomic) chemotherapy regimens, which are well-tolerated by normal cells, could advance immune-mediated control over tumor growth. EXPERT OPINION We envisage that combined immunotherapy regimens in the context of traditional treatment could become the mainstream modality for treating cancers in all phases of the tumorigenesis. The effectiveness of the anti-cancer treatment could be monitored by the following blood parameters: C-reactive protein, lactate dehydrogenase, and neutrophil-to-lymphocyte ratio.
Collapse
Affiliation(s)
- Victor I Seledtsov
- Center for Integral Immunotherapy, Central Clinical Hospital of the Russian Academy of Sciences, Moscow, Russia.,Department of Immunology, Innovita Research Company, Vilnius, Lithuania
| | - Alexei von Delwig
- Department of Immunology, Innovita Research Company, Vilnius, Lithuania
| |
Collapse
|
106
|
Jafari S, Molavi O, Kahroba H, Hejazi MS, Maleki-Dizaji N, Barghi S, Kiaie SH, Jadidi-Niaragh F. Clinical application of immune checkpoints in targeted immunotherapy of prostate cancer. Cell Mol Life Sci 2020; 77:3693-3710. [PMID: 32006051 PMCID: PMC11104895 DOI: 10.1007/s00018-020-03459-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/27/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
Immunotherapy is considered as an effective method for cancer treatment owing to the induction of specific and long-lasting anti-cancer effects. Immunotherapeutic strategies have shown significant success in human malignancies, particularly in prostate cancer (PCa), a major global health issue regarding its high metastatic rates. In fact, the first cancer vaccine approved by FDA was Provenge, which has been successfully used for treatment of PCa. Despite the remarkable success of cancer immunotherapy in PCa, many of the developed immunotherapy methods show poor therapeutic outcomes. Immunosuppression in tumor microenvironment (TME) induced by non-functional T cells (CD4+ and CD8+), tolerogenic dendritic cells (DCs), and regulatory T cells, has been reported to be the main obstacle to the effectiveness of anti-tumor immune responses induced by an immunotherapy method. The present review particularly focuses on the latest findings of the immune checkpoints (ICPs), including CTLA-4, PD-1, PD-L1, LAG-3, OX40, B7-H3, 4-1BB, VISTA, TIM-3, and ICOS; these checkpoints are able to have immune modulatory effects on the TME of PCa. This paper further discusses different approaches in ICPs targeting therapy and summarizes the latest advances in the clinical application of ICP-targeted therapy as monotherapy or in combination with other cancer therapy modalities in PCa.
Collapse
Affiliation(s)
- Sevda Jafari
- Biotechnology Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Biotechnology Research Center, Tabriz University of Medical Science, Tabriz, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran.
| | - Houman Kahroba
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saied Hejazi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Nasrin Maleki-Dizaji
- Department of Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siamak Barghi
- Department of Medical Laboratory Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Seyed Hossein Kiaie
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
107
|
Holbrook BC, Alexander-Miller MA. Higher Frequency and Increased Expression of Molecules Associated with Suppression on T Regulatory Cells from Newborn Compared with Adult Nonhuman Primates. THE JOURNAL OF IMMUNOLOGY 2020; 205:2128-2136. [PMID: 32878911 DOI: 10.4049/jimmunol.2000461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/04/2020] [Indexed: 01/17/2023]
Abstract
T regulatory cells (Tregs) play a critical role in controlling the immune response, often limiting pathogen-specific cells to curb immune-mediated damage. Studies in human infants have reported an increased representation of Tregs in these individuals. However, how these cells differ from those in adults at various sites and how they respond to activation signals is relatively unknown. In this study, we used a newborn nonhuman primate model to assess Treg populations present at multiple sites with regard to frequency and phenotype in comparison with those present in adult animals. We found that Foxp3+ cells were more highly represented in the T cell compartment of newborn nonhuman primates for all sites examined (i.e., the spleen, lung, and circulation). In the spleen and circulation, newborn-derived Tregs expressed significantly higher levels of Foxp3 and CD25 compared with adults, consistent with an effector phenotype. Strikingly, the phenotype of Tregs in the lungs of adult and infant animals was relatively similar, with both adult and newborn Tregs exhibiting a more uniform PD-1+CD39+ phenotype. Finally, in vitro, newborn Tregs exhibited an increased requirement for TCR engagement for survival. Further, these cells upregulated CD39 more robustly than their adult counterpart. Together, these data provide new insights into the quantity of Tregs in newborns, their activation state, and their potential to respond to activation signals.
Collapse
Affiliation(s)
- Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101
| | | |
Collapse
|
108
|
Chutipongtanate A, Prukviwat S, Pongsakul N, Srisala S, Kamanee N, Arpornsujaritkun N, Gesprasert G, Apiwattanakul N, Hongeng S, Ittichaikulthol W, Sumethkul V, Chutipongtanate S. Effects of Desflurane and Sevoflurane anesthesia on regulatory T cells in patients undergoing living donor kidney transplantation: a randomized intervention trial. BMC Anesthesiol 2020; 20:215. [PMID: 32854613 PMCID: PMC7450591 DOI: 10.1186/s12871-020-01130-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Volatile anesthetic agents used during surgery have immunomodulatory effects which could affect postoperative outcomes. Recognizing that regulatory T cells (Tregs) plays crucial roles in transplant tolerance and high peripheral blood Tregs associated with stable kidney graft function, knowing which volatile anesthetic agents can induce peripheral blood Tregs increment would have clinical implications. This study aimed to compare effects of desflurane and sevoflurane anesthesia on peripheral blood Tregs induction in patients undergoing living donor kidney transplantation. METHODS A prospective, randomized, double-blind trial in living donor kidney transplant recipients was conducted at a single center, tertiary-care, academic university hospital in Thailand during August 2015 - June 2017. Sixty-six patients were assessed for eligibility and 40 patients who fulfilled the study requirement were equally randomized and allocated to desflurane versus sevoflurane anesthesia during transplant surgery. The primary outcome included absolute changes of peripheral blood CD4+CD25+FoxP3+Tregs which measured by flow cytometry and expressed as the percentage of the total population of CD4+ T lymphocytes at pre-exposure (0-h) and post-exposure (2-h and 24-h) to anesthetic gas. P-value < 0.05 denoted statistical significance. RESULTS Demographic data were comparable between groups. No statistical difference of peripheral blood Tregs between desflurane and sevoflurane groups observed at the baseline pre-exposure (3.6 ± 0.4% vs. 3.1 ± 0.4%; p = 0.371) and 2-h post-exposure (3.0 ± 0.3% vs. 3.5 ± 0.4%; p = 0.319). At 24-h post-exposure, peripheral blood Tregs was significantly higher in desflurane group (5.8 ± 0.5% vs. 4.1 ± 0.3%; p = 0.008). Within group analysis showed patients receiving desflurane, but not sevoflurane, had 2.7% increase in peripheral blood Treg over 24-h period (p < 0.001). CONCLUSION This study provides the clinical trial-based evidence that desflurane induced peripheral blood Tregs increment after 24-h exposure, which could be beneficial in the context of kidney transplantation. Mechanisms of action and clinical advantages of desflurane anesthesia based on Treg immunomodulation should be investigated in the future. TRIAL REGISTRATION ClinicalTrials.gov, NCT02559297 . Registered 22 September 2015 - retrospectively registered.
Collapse
Affiliation(s)
- Arpa Chutipongtanate
- Department of Anesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Sasichol Prukviwat
- Department of Anesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Nutkridta Pongsakul
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Supanart Srisala
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Nakarin Kamanee
- Department of Anesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Nuttapon Arpornsujaritkun
- Vascular and Transplantation Unit, Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Goragoch Gesprasert
- Vascular and Transplantation Unit, Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Nopporn Apiwattanakul
- Division of Infectious Disease, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Wichai Ittichaikulthol
- Department of Anesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Vasant Sumethkul
- Division of Nephrology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
109
|
Lotfinejad P, Kazemi T, Mokhtarzadeh A, Shanehbandi D, Jadidi Niaragh F, Safaei S, Asadi M, Baradaran B. PD-1/PD-L1 axis importance and tumor microenvironment immune cells. Life Sci 2020; 259:118297. [PMID: 32822718 DOI: 10.1016/j.lfs.2020.118297] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 12/23/2022]
Abstract
Triple-negative breast cancer (TNBC) is heterogeneous cancer with poor prognosis among the other breast tumors. Rapid recurrence and increased progression rate could be reasons for the poor prognosis of this type of breast cancer. Recently, because of the lack of specific targets in multiple cancer treatment, immune checkpoint blockade therapies with targeting PD-1/PD-L1 axis have displayed significant advances and improved survival. Among different types of breast cancers, TNBC is considered more immunogenic with high T-cell and other immune cells infiltration compared to other breast cancer subtypes. This immunogenic characteristic of TNBC is a beneficial marker in the immunotherapy of these tumors. Clinical studies with a focus on immune checkpoint therapy have demonstrated promising results in TNBC treatment. In this review, we summarize clinical trials with the immunotherapy-based treatment of different cancers and also discuss the interaction between infiltrating immune cells and breast tumor microenvironment. In addition, we focus on the signaling pathway that controls PD-L1 expression and continues with CAR T-cell therapy and siRNA as novel strategies and potential tools in targeted therapy.
Collapse
Affiliation(s)
- Parisa Lotfinejad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
110
|
Zhai X, Zhang J, Tian Y, Li J, Jing W, Guo H, Zhu H. The mechanism and risk factors for immune checkpoint inhibitor pneumonitis in non-small cell lung cancer patients. Cancer Biol Med 2020; 17:599-611. [PMID: 32944393 PMCID: PMC7476083 DOI: 10.20892/j.issn.2095-3941.2020.0102] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are new and promising therapeutic agents for non-small cell lung cancer (NSCLC). However, along with demonstrating remarkable efficacy, ICIs can also trigger immune-related adverse events. Checkpoint inhibitor pneumonitis (CIP) has been reported to have a morbidity rate of 3% to 5% and a mortality rate of 10% to 17%. Moreover, the incidence of CIP in NSCLC is higher than that in other tumor types, reaching 7% to 13%. With the increased use of ICIs in NSCLC, CIP has drawn extensive attention from oncologists and cancer researchers. Identifying high risk factors for CIP and the potential mechanism of CIP are key points in preventing and monitoring serious adverse events. In this review, the results of our analysis and summary of previous studies suggested that the risk factors for CIP may include previous lung disease, prior thoracic irradiation, and combinations with other drugs. Our review also explored potential mechanisms closely related to CIP, including increased T cell activity against associated antigens in tumor and normal tissues, preexisting autoantibodies, and inflammatory cytokines.
Collapse
Affiliation(s)
- Xiaoyang Zhai
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Jian Zhang
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yaru Tian
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute affiliated with Shandong University, Jinan 250012, China
| | - Ji Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Wang Jing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Hongbo Guo
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| |
Collapse
|
111
|
Dong Y, Han Y, Huang Y, Jiang S, Huang Z, Chen R, Yu Z, Yu K, Zhang S. PD-L1 Is Expressed and Promotes the Expansion of Regulatory T Cells in Acute Myeloid Leukemia. Front Immunol 2020; 11:1710. [PMID: 32849603 PMCID: PMC7412746 DOI: 10.3389/fimmu.2020.01710] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Intratumoral accumulation of CD4+CD25+Foxp3+ regulatory T (Treg) cells occurs in acute myeloid leukemia (AML), but little is known about the role of tumor cells themselves in this process. Here, we showed that an immune checkpoint PD-L1 expressed by AML cells promoted the conversion and expansion of Treg cells sustaining high expression of Foxp3 and PD-1 as well as a suppressive function. Furthermore, an AML cell line HEL overexpressed PD-L1 promoted the conversion and expansion of Treg cells and CD4+PD-1+Foxp3+ T (PD-1+Treg) cells from the conventional CD4+ T cells. CD4+CD25highPD-1+ T cells secreted more IL-10 production than CD4+CD25highPD-1− T cells. IL-35, another cytokine secreted by Treg cells, promoted the proliferation of HL-60 cells and enhanced chemoresistance to cytarabine. Blockade of PD-1 signaling using anti-PD-L1 antibody dramatically impaired the generation of Treg cells and sharply retarded the progression of a murine AML model injected with C1498 cells. The frequency of intratumoral PD-1+ Treg cells was capable of predicting patient survival in patients with AML. In conclusion, our data suggest that PD-L1 expression by AML cells may directly drive Treg cell expansion as a mechanism of immune evasion and the frequency of PD-1+ Treg cells is a potential prognostic predictor in patients with AML.
Collapse
Affiliation(s)
- Yuqing Dong
- Wenzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yixiang Han
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yisha Huang
- Wenzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Songfu Jiang
- Wenzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ziyang Huang
- Wenzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongrong Chen
- Wenzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhijie Yu
- Wenzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kang Yu
- Wenzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shenghui Zhang
- Wenzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Division of Clinical Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
112
|
Mechanistic dissection of the PD-L1:B7-1 co-inhibitory immune complex. PLoS One 2020; 15:e0233578. [PMID: 32497097 PMCID: PMC7272049 DOI: 10.1371/journal.pone.0233578] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
The B7 family represents one of the best-studied subgroups within the Ig superfamily, yet new interactions continue to be discovered. However, this binding promiscuity represents a major challenge for defining the biological contribution of each specific interaction. We developed a strategy for addressing these challenges by combining cell microarray and high-throughput FACS methods to screen for promiscuous binding events, map binding interfaces, and generate functionally selective reagents. Applying this approach to the interactions of mPD-L1 with its receptor mPD-1 and its ligand mB7-1, we identified the binding interface of mB7-1 on mPD-L1 and as a result generated mPD-L1 mutants with binding selectivity for mB7-1 or mPD-1. Next, using a panel of mB7-1 mutants, we mapped the binding sites of mCTLA-4, mCD28 and mPD-L1. Surprisingly, the mPD-L1 binding site mapped to the dimer interface surface of mB7-1, placing it distal from the CTLA-4/CD28 recognition surface. Using two independent approaches, we demonstrated that mPD-L1 and mB7-1 bind in cis, consistent with recent reports from Chaudhri A et al. and Sugiura D et al. We further provide evidence that while CTLA-4 and CD28 do not directly compete with PD-L1 for binding to B7-1, they can disrupt the cis PD-L1:B7-1 complex by reorganizing B7-1 on the cell surface. These observations offer new functional insights into the regulatory mechanisms associated with this group of B7 family proteins and provide new tools to elucidate their function in vitro and in vivo.
Collapse
|
113
|
Suppressive Characteristics of Umbilical Cord Blood-derived Regulatory T Cells After Ex Vivo Expansion on Autologous and Allogeneic T Effectors and Various Lymphoblastic Cells. J Immunother 2020; 42:110-118. [PMID: 30921263 DOI: 10.1097/cji.0000000000000262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The third-party umbilical cord blood (UCB)-derived regulatory T cells (Treg) are an alternative to donor-derived Treg as cellular therapy of graft-versus-host disease following hematopoietic stem cell transplantation. However, their suppressive characteristics against autologous and allogeneic T effector cells (Teff) have rarely been documented. The exact role of UCB-Treg in hematologic malignancies is also uncertain. Here, we investigated the direct effects of UCB-Treg on the proliferation of autologous Teff, as compared with allogeneic Teff, and also determined cellular fates of lymphoblasts after UCB-Treg co-culture. UCB-Treg were isolated from 8 UCB samples using 2-step immunomagnetic bead sorting. After 10-day ex vivo expansion, up to 60-fold increase in cell number with 76.7%±4.9% of CD4CD25CD127FoxP UCB-Treg was obtained. Further characterization showed that ex vivo-expanded UCB-Treg contained a higher proportion of CD95CD45RACCR4Treg-B subpopulation compared with the CD95CD45RACCR4Treg-A subpopulation (13.0%±4.8% vs. 0.8%±0.7%; P<0.05), along with the detecting of substantial amounts of secretory IL-10 (57.7±17.8 pg/mL) and TGF-β1 (196.5±29.7 pg/mL) in culture supernatants. After 4 days co-culture with UCB-Treg (at the ratio of 1:1), the proliferation of autologous and allogeneic Teff was decreased comparably (43.6%±17.5% vs. 37.6±17.7%; P=0.437). Suppression was independent of HLA-A, B, and DRB1 compatibility between UCB-Treg and Teff. UCB-Treg co-culture with various lymphoblasts showed proliferative suppression of Jurkat T lymphoblasts (45.4%±20.5% at the ratio of 1:1), but not Namalwa and Raji B lymphoblasts. All lymphoblasts had no significant cell apoptosis or death after co-culture. In conclusion, the ex vivo-expanded UCB-Treg had no difference in autologous and allogeneic Teff suppression. UCB-Treg therapy in patients with graft-versus-host disease who have a primary disease of T-cell leukemia may have additional benefits in the prevention of relapsed disease.
Collapse
|
114
|
Ozay EI, Shanthalingam S, Sherman HL, Torres JA, Osborne BA, Tew GN, Minter LM. Cell-Penetrating Anti-Protein Kinase C Theta Antibodies Act Intracellularly to Generate Stable, Highly Suppressive Regulatory T Cells. Mol Ther 2020; 28:1987-2006. [PMID: 32492367 PMCID: PMC7474270 DOI: 10.1016/j.ymthe.2020.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/21/2020] [Accepted: 05/19/2020] [Indexed: 01/27/2023] Open
Abstract
Regulatory T cells maintain immunological tolerance and dampen inflammatory responses. Administering regulatory T cells can prevent the immune-mediated tissue destruction of graft-versus-host disease, which frequently accompanies hematopoietic stem cell transfer. Neutralizing the T cell-specific kinase, protein kinase C theta, which promotes T cell effector functions and represses regulatory T cell differentiation, augments regulatory T cell immunosuppression and stability. We used a synthetic, cell-penetrating peptide mimic to deliver antibodies recognizing protein kinase C theta into primary human CD4 T cells. When differentiated ex vivo into induced regulatory T cells, treated cells expressed elevated levels of the regulatory T cell transcriptional regulator forkhead box P3, the surface-bound immune checkpoint receptor programmed death receptor-1, and pro-inflammatory interferon gamma, previously ascribed to a specific population of stable, highly suppressive human induced regulatory T cells. The in vitro suppressive capacity of these induced regulatory T cells was 10-fold greater than that of T cells differentiated without antibody delivery. When administered at the time of graft-versus-host disease induction, using a humanized mouse model, antibody-treated regulatory T cells were superior to non-treated T cells in attenuating lethal outcomes. This antibody delivery approach may overcome obstacles currently encountered using patient-derived regulatory T cells as a cell-based therapy for immune modulation.
Collapse
Affiliation(s)
- E Ilker Ozay
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sudarvili Shanthalingam
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Heather L Sherman
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Joe A Torres
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Barbara A Osborne
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Gregory N Tew
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Lisa M Minter
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
115
|
Ramos-Casals M, Brahmer JR, Callahan MK, Flores-Chávez A, Keegan N, Khamashta MA, Lambotte O, Mariette X, Prat A, Suárez-Almazor ME. Immune-related adverse events of checkpoint inhibitors. Nat Rev Dis Primers 2020; 6:38. [PMID: 32382051 PMCID: PMC9728094 DOI: 10.1038/s41572-020-0160-6] [Citation(s) in RCA: 720] [Impact Index Per Article: 180.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapies have changed the landscape of cancer treatment during the past few decades. Among them, immune checkpoint inhibitors, which target PD-1, PD-L1 and CTLA-4, are increasingly used for certain cancers; however, this increased use has resulted in increased reports of immune-related adverse events (irAEs). These irAEs are unique and are different to those of traditional cancer therapies, and typically have a delayed onset and prolonged duration. IrAEs can involve any organ or system. These effects are frequently low grade and are treatable and reversible; however, some adverse effects can be severe and lead to permanent disorders. Management is primarily based on corticosteroids and other immunomodulatory agents, which should be prescribed carefully to reduce the potential of short-term and long-term complications. Thoughtful management of irAEs is important in optimizing quality of life and long-term outcomes.
Collapse
Affiliation(s)
- Manuel Ramos-Casals
- Department of Autoimmune Diseases, ICMiD, Barcelona, Spain. .,Laboratory of Autoimmune Diseases Josep Font, IDIBAPS-CELLEX, Barcelona, Spain. .,Department of Medicine, University of Barcelona, Hospital Clínic, Barcelona, Spain.
| | - Julie R. Brahmer
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Margaret K. Callahan
- Melanoma and Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Weill Cornell Medical College, New York, NY, USA,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Niamh Keegan
- Melanoma and Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Weill Cornell Medical College, New York, NY, USA
| | - Munther A. Khamashta
- Lupus Clinic, Rheumatology Department, Dubai Hospital, Dubai, United Arab Emirates
| | - Olivier Lambotte
- APHP Médecine Interne/Immunologie Clinique, Hôpital Bicêtre, Paris, France,Université Paris-Saclay – INSERM U1184 - CEA, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses and Le Kremlin-Bicêtre, France
| | - Xavier Mariette
- Université Paris-Saclay, INSERM, CEA, Centre de recherche en Immunologie des infections virales et des maladies auto-immunes ; AP-HP.Université Paris-Saclay, Hôpital Bicêtre, Rheumatology Department, Le Kremlin Bicêtre, France
| | - Aleix Prat
- Translational Genomic and Targeted Therapeutics in Solid Tumors, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Department of Medical Oncology, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Maria E. Suárez-Almazor
- Section of Rheumatology/Clinical Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
116
|
Motwani K, Peters LD, Vliegen WH, El-sayed AG, Seay HR, Lopez MC, Baker HV, Posgai AL, Brusko MA, Perry DJ, Bacher R, Larkin J, Haller MJ, Brusko TM. Human Regulatory T Cells From Umbilical Cord Blood Display Increased Repertoire Diversity and Lineage Stability Relative to Adult Peripheral Blood. Front Immunol 2020; 11:611. [PMID: 32351504 PMCID: PMC7174770 DOI: 10.3389/fimmu.2020.00611] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 03/17/2020] [Indexed: 12/22/2022] Open
Abstract
The human T lymphocyte compartment is highly dynamic over the course of a lifetime. Of the many changes, perhaps most notable is the transition from a predominantly naïve T cell state at birth to the acquisition of antigen-experienced memory and effector subsets following environmental exposures. These phenotypic changes, including the induction of T cell exhaustion and senescence, have the potential to negatively impact efficacy of adoptive T cell therapies (ACT). When considering ACT with CD4+CD25+CD127-/lo regulatory T cells (Tregs) for the induction of immune tolerance, we previously reported ex vivo expanded umbilical cord blood (CB) Tregs remained more naïve, suppressed responder T cells equivalently, and exhibited a more diverse T cell receptor (TCR) repertoire compared to expanded adult peripheral blood (APB) Tregs. Herein, we hypothesized that upon further characterization, we would observe increased lineage heterogeneity and phenotypic diversity in APB Tregs that might negatively impact lineage stability, engraftment capacity, and the potential for Tregs to home to sites of tissue inflammation following ACT. We compared the phenotypic profiles of human Tregs isolated from CB versus the more traditional source, APB. We conducted analysis of fresh and ex vivo expanded Treg subsets at both the single cell (scRNA-seq and flow cytometry) and bulk (microarray and cytokine profiling) levels. Single cell transcriptional profiles of pre-expansion APB Tregs highlighted a cluster of cells that showed increased expression of genes associated with effector and pro-inflammatory phenotypes (CCL5, GZMK, CXCR3, LYAR, and NKG7) with low expression of Treg markers (FOXP3 and IKZF2). CB Tregs were more diverse in TCR repertoire and homogenous in phenotype, and contained fewer effector-like cells in contrast with APB Tregs. Interestingly, expression of canonical Treg markers, such as FOXP3, TIGIT, and IKZF2, were increased in CB CD4+CD127+ conventional T cells (Tconv) compared to APB Tconv, post-expansion, implying perinatal T cells may adopt a default regulatory program. Collectively, these data identify surface markers (namely CXCR3) that could be depleted to improve purity and stability of APB Tregs, and support the use of expanded CB Tregs as a potentially optimal ACT modality for the treatment of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Keshav Motwani
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Leeana D. Peters
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Willem H. Vliegen
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Ahmed Gomaa El-sayed
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Howard R. Seay
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - M. Cecilia Lopez
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Henry V. Baker
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Amanda L. Posgai
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Maigan A. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Daniel J. Perry
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Joseph Larkin
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Michael J. Haller
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
117
|
Tuning T helper cell differentiation by ITK. Biochem Soc Trans 2020; 48:179-185. [PMID: 32049330 DOI: 10.1042/bst20190486] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/28/2019] [Accepted: 01/13/2020] [Indexed: 12/24/2022]
Abstract
CD4+ effector T cells effectuate T cell immune responses, producing cytokines to orchestrate the nature and type of immune responses. The non-receptor tyrosine kinase IL-2 inducible T cell kinase (ITK), a mediator of T cell Receptor signaling, plays a critical role in tuning the development of these effector cells. In this review we discussed the role that signals downstream of ITK, including the Ras/MAPK pathway, play in differentially controlling the differentiation of TH17, Foxp3+ T regulatory (Treg) cells, and Type 1 regulatory T (Tr1) cells, supporting a model of ITK signals controlling a decision point in the effector T cell differentiation process.
Collapse
|
118
|
Peyster EG, Wang C, Ishola F, Remeniuk B, Hoyt C, Feldman MD, Margulies KB. In Situ Immune Profiling of Heart Transplant Biopsies Improves Diagnostic Accuracy and Rejection Risk Stratification. JACC Basic Transl Sci 2020; 5:328-340. [PMID: 32368693 PMCID: PMC7188920 DOI: 10.1016/j.jacbts.2020.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 12/15/2022]
Abstract
Recognizing that guideline-directed histologic grading of endomyocardial biopsy tissue samples for rejection surveillance has limited diagnostic accuracy, quantitative, in situ characterization was performed of several important immune cell types in a retrospective cohort of clinical endomyocardial tissue samples. Differences between cases were identified and were grouped by histologic grade versus clinical rejection trajectory, with significantly increased programmed death ligand 1+, forkhead box P3+, and cluster of differentiation 68+ cells suppressed in clinically evident rejections, especially cases with marked clinical-histologic discordance. Programmed death ligand 1+, forkhead box P3+, and cluster of differentiation 68+ cell proportions are also significantly higher in "never-rejection" when compared with "future-rejection." These findings suggest that in situ immune modulators regulate the severity of cardiac allograft rejection.
Collapse
Affiliation(s)
- Eliot G Peyster
- Cardiovascular Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | - Michael D Feldman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kenneth B Margulies
- Cardiovascular Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
119
|
Wang WJ, Salazar Garcia MD, Deutsch G, Sung N, Yang X, He Q, Jubiz G, Bilal M, Dambaeva S, Gilman-Sachs A, Beaman K, Kwak-Kim J. PD-1 and PD-L1 expression on T-cell subsets in women with unexplained recurrent pregnancy losses. Am J Reprod Immunol 2020; 83:e13230. [PMID: 32086851 DOI: 10.1111/aji.13230] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022] Open
Abstract
PROBLEM Does programmed death-1 (PD-1)/programmed death ligand-1 (PD-L1) expression on the T-cell subsets such as T helper (Th) 1, Th17, and Treg cells differentiate women with recurrent pregnancy losses (RPL) from normal fertile women? METHOD OF STUDY The study was designed as a prospective cohort study. Forty-five women with two or more RPL of unknown etiology and twenty fertile women who had at least one or more live-born infants were enrolled prospectively from Jan 2017 to Jul 2019. PD-1 and PD-L1 expression on T-cell subsets were measured by flow cytometric analysis. RESULTS The proportions of PD-1+ Th1 (CD4+ /IFN-γ+ /CD279+ and CD4+ /TNF-α+ /CD279+ ) and PD-1+ Th17 cells (CD4+ /IL17+ /CD279+ ) were significantly lower in RPL group than those of controls (P < .05, respectively). The proportion of PD-1+ Tregs (CD4+ /CD25+ /CD127dim/- /CD279+ ) in RPL group was not different from that of controls. The proportion of PD-L1+ Th17 cells (CD4+ IL17+ CD274+ ) was significantly lower as compared with that of /controls (P < .05). However, the proportions of PD-L1+ Th1 (CD4+ /IFN-γ+ /CD274+ and CD4+ /TNF-α+ /CD274+ ) and PD-L1+ Treg (CD4+ /CD25+ /CD127dim/- /CD274+ ) cells were not different between the RPL group and controls (P > .05, respectively). In Th1, Th17 and Treg cells, the proportions of PD-L1+ (CD274+ ) cells were significantly higher than those of PD-1+ (CD279+ ) cells in both RPL group and controls (P < .05, respectively). CONCLUSION PD-1 and PD-L1 expressions on Th17 cells as well as PD-1 expression on Th1 cells were significantly downregulated in women with RPL, which may lead to increased Th1 and Th17 immunity, and imbalance between Th17, Th1, and Treg cells in women with RPL.
Collapse
Affiliation(s)
- Wen-Juan Wang
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL, USA.,Reproduction Medical Center, The affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Maria Dinorah Salazar Garcia
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL, USA
| | - Gloria Deutsch
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL, USA
| | - Nayoung Sung
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL, USA
| | - Xiuhua Yang
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL, USA
| | - Qiaohua He
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL, USA
| | - Giovanni Jubiz
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL, USA
| | - Mahmood Bilal
- Clinical Immunology Lab, Microbiology and Immunology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Svetlana Dambaeva
- Clinical Immunology Lab, Microbiology and Immunology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Alice Gilman-Sachs
- Clinical Immunology Lab, Microbiology and Immunology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kenneth Beaman
- Clinical Immunology Lab, Microbiology and Immunology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL, USA.,Clinical Immunology Lab, Microbiology and Immunology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
120
|
Castagnoli L, De Santis F, Volpari T, Vernieri C, Tagliabue E, Di Nicola M, Pupa SM. Cancer Stem Cells: Devil or Savior-Looking behind the Scenes of Immunotherapy Failure. Cells 2020; 9:E555. [PMID: 32120774 PMCID: PMC7140486 DOI: 10.3390/cells9030555] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Although the introduction of immunotherapy has tremendously improved the prognosis of patients with metastatic cancers of different histological origins, some tumors fail to respond or develop resistance. Broadening the clinical efficacy of currently available immunotherapy strategies requires an improved understanding of the biological mechanisms underlying cancer immune escape. Globally, tumor cells evade immune attack using two main strategies: avoiding recognition by immune cells and instigating an immunosuppressive tumor microenvironment. Emerging data suggest that the clinical efficacy of chemotherapy or molecularly targeted therapy is related to the ability of these therapies to target cancer stem cells (CSCs). However, little is known about the role of CSCs in mediating tumor resistance to immunotherapy. Due to their immunomodulating features and plasticity, CSCs can be especially proficient at evading immune surveillance, thus potentially representing the most prominent malignant cell component implicated in primary or acquired resistance to immunotherapy. The identification of immunomodulatory properties of CSCs that include mechanisms that regulate their interactions with immune cells, such as bidirectional release of particular cytokines/chemokines, fusion of CSCs with fusogenic stromal cells, and cell-to-cell communication exerted by extracellular vesicles, may significantly improve the efficacy of current immunotherapy strategies. The purpose of this review is to discuss the current scientific evidence linking CSC biological, immunological, and epigenetic features to tumor resistance to immunotherapy.
Collapse
Affiliation(s)
- Lorenzo Castagnoli
- Department of Research, Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133 Milan, Italy; (L.C.); (E.T.)
| | - Francesca De Santis
- Department of Medical Oncology and Hematology, Unit of Immunotherapy and Anticancer Innovative Therapeutics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Venezian 1, 20133 Milan, Italy; (F.D.S.); (T.V.); (M.D.N.)
| | - Tatiana Volpari
- Department of Medical Oncology and Hematology, Unit of Immunotherapy and Anticancer Innovative Therapeutics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Venezian 1, 20133 Milan, Italy; (F.D.S.); (T.V.); (M.D.N.)
| | - Claudio Vernieri
- Department of Medical Oncology and Hematology, FIRC Institute of Molecular Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy;
- IFOM, FIRC Institute of Molecular Oncology, via Adamello 16, 20139 Milan, Italy
| | - Elda Tagliabue
- Department of Research, Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133 Milan, Italy; (L.C.); (E.T.)
| | - Massimo Di Nicola
- Department of Medical Oncology and Hematology, Unit of Immunotherapy and Anticancer Innovative Therapeutics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Venezian 1, 20133 Milan, Italy; (F.D.S.); (T.V.); (M.D.N.)
| | - Serenella M. Pupa
- Department of Research, Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133 Milan, Italy; (L.C.); (E.T.)
| |
Collapse
|
121
|
PDL1-targeted vaccine exhibits potent antitumor activity by simultaneously blocking PD1/PDL1 pathway and activating PDL1-specific immune responses. Cancer Lett 2020; 476:170-182. [PMID: 32092355 DOI: 10.1016/j.canlet.2020.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/30/2022]
Abstract
Despite the clinical success of immune checkpoint blockade, only a subset of people exhibits durable responses, suggesting that an alternative immunotherapeutic strategy is required. This paper reported a two-in-one cancer vaccine that targets programmed death ligand 1 (PDL1) that blocks the PD1/PDL1 pathway and also activates antitumor immune response. The PDL1- NitraTh vaccine, which consists of the extracellular domain of PDL1 and nitrated T cell epitope, effectively broke the immune tolerance of PDL1 and elicited PDL1-specific humoral and cellular immunity. The treatment of PDL1-NitraTh exhibited potent antitumor activity. Moreover, immunization of PDL1 vaccine increased the infiltration of tumor lymphocytes and decreased the proportion of Treg cells in tumor tissues, suggesting that the vaccine may remodel the tumor microenvironment. The upregulation of PDL1 in tumor tissues was induced by PDL1-NitraTh vaccine but not in spleen and lymphomas. This upregulation of PDL1 is beneficial to the antitumor activity of PDL1-specific humoral and cellular immunity induced by PDL1-NitraTh. In summary, PDL1-targeted vaccine exhibits potent antitumor activity and may provide an alternative immunotherapy strategy for patients who are not sensitive to PDL1 antibody drugs.
Collapse
|
122
|
Xu Y, Cai Y, Zu J, Wang X, Wang Y, Sun C, Guo Y, Shao G, Yang Z, Qiu S, Ma K. Aggravation of depigmentation for a non-small-cell lung cancer patient with pre-existing vitiligo using anti-programmed cell death-1 therapy: case report. Immunotherapy 2020; 12:175-181. [PMID: 32064977 DOI: 10.2217/imt-2019-0090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Immune checkpoint inhibitors can enhance the antitumor activity of the immune system by mainly promoting CD8+ T lymphocyte immune function. However, they can also induce immune-related adverse events, especially skin toxicity. Some studies found that patients with autoimmune or inflammatory disease are susceptible to immune checkpoint inhibitors and were associated with a significantly increased risk of immune-related adverse events. In our present report, we described a newly diagnosed non-small-cell lung cancer patient who suffered from focal vitiligo for approximately ten years and was treated with the anti-programmed cell death-1 receptor antibody camrelizumab (SHR-1210), which accelerated the aggravation of depigmentation of the skin over the whole body in just half a year.
Collapse
Affiliation(s)
- Yinghui Xu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yangyang Cai
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jianjiao Zu
- Dermatological Department, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xu Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yizhuo Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Chao Sun
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Ye Guo
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Guoguang Shao
- Thoracic Surgery Department, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zhiguang Yang
- Thoracic Surgery Department, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Shi Qiu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Kewei Ma
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
123
|
Bastaki S, Irandoust M, Ahmadi A, Hojjat-Farsangi M, Ambrose P, Hallaj S, Edalati M, Ghalamfarsa G, Azizi G, Yousefi M, Chalajour H, Jadidi-Niaragh F. PD-L1/PD-1 axis as a potent therapeutic target in breast cancer. Life Sci 2020; 247:117437. [PMID: 32070710 DOI: 10.1016/j.lfs.2020.117437] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022]
Abstract
Although both the incidence and the mortality rate of breast cancer is rising, there is no potent and practical option for the treatment of these patients, particularly in advanced stages. One of the most critical challenges for treatment is the presence of complicated and extensive tumor escape mechanisms in the tumor microenvironment. Immune checkpoint molecules are of the main immunosuppressive mechanisms used by cancerous cells to block anti-cancer immune responses. Among these molecules, PD-1 (Programmed cell death) and PD-L1 (programmed cell death-ligand 1) have been considered as worthy therapeutic targets for breast cancer therapy. In this review, we intend to discuss the immunobiology and signaling of the PD-1/PD-L1 axis and highlight its importance as a worthy therapeutic target in breast cancer. We believe that the prognostic value of PD-L1 depends on the breast cancer subtype. Moreover, the combination of PD-1/PD-L1 targeting with immune-stimulating vaccines can be considered as an effective therapeutic strategy in breast cancer.
Collapse
Affiliation(s)
- Shima Bastaki
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, East Azarbaijan, Iran
| | - Mahzad Irandoust
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin Ahmadi
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Alabama 35899, USA
| | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden; The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Shahin Hallaj
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Edalati
- Department of Laboratory Sciences, Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj. Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hengameh Chalajour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
124
|
Kim JH, Kim BS, Lee SK. Regulatory T Cells in Tumor Microenvironment and Approach for Anticancer Immunotherapy. Immune Netw 2020; 20:e4. [PMID: 32158592 PMCID: PMC7049587 DOI: 10.4110/in.2020.20.e4] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/21/2022] Open
Abstract
Tregs have a role in immunological tolerance and immune homeostasis by suppressing immune reactions, and its therapeutic potential is critical in autoimmune diseases and cancers. There have been multiple studies conducted on Tregs because of their roles in immune suppression and therapeutic potential. In tumor immunity, Tregs can promote the development and progression of tumors by preventing effective anti-tumor immune responses in tumor-bearing hosts. High infiltration of Tregs into tumor tissue results in poor survival in various types of cancer patients. Identifying factors specifically expressed in Tregs that affect the maintenance of stability and function of Tregs is important for understanding cancer pathogenesis and identifying therapeutic targets. Thus, manipulation of Tregs is a promising anticancer strategy, but finding markers for Treg-specific depletion and controlling these cells require fine-tuning and further research. Here, we discuss the role of Tregs in cancer and the development of Treg-targeted therapies to promote cancer immunotherapy.
Collapse
Affiliation(s)
- Jung-Ho Kim
- Research Institute for Precision Immune-Medicine, Good T Cells, Inc., Seoul 03722, Korea
| | - Beom Seok Kim
- Research Institute for Precision Immune-Medicine, Good T Cells, Inc., Seoul 03722, Korea
| | - Sang-Kyou Lee
- Research Institute for Precision Immune-Medicine, Good T Cells, Inc., Seoul 03722, Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
125
|
Shankwitz K, Pallikkuth S, Sirupangi T, Kirk Kvistad D, Russel KB, Pahwa R, Gama L, Koup RA, Pan L, Villinger F, Pahwa S, Petrovas C. Compromised steady-state germinal center activity with age in nonhuman primates. Aging Cell 2020; 19:e13087. [PMID: 31840398 PMCID: PMC6996951 DOI: 10.1111/acel.13087] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022] Open
Abstract
Age-related reductions in vaccine-induced B cells in aging indicate that germinal centers (GCs), the anatomical site where the development of humoral responses takes place, may lose efficacy with age. We have investigated the baseline follicular and GC composition in nonhuman primates (NHPs) with respect to their age. There was a marked reduction in follicular area in old animals. We found significantly lower normalized numbers of follicular PD1hi CD4 T (Tfh) and proliferating (Ki67hi ) GC B cells with aging, a profile associated with significantly higher numbers of potential follicular suppressor FoxP3hi Lag3hi CD4 T cells. Furthermore, a positive correlation was found between Tfh and follicular CD8 T cells (fCD8) only in young animals. Despite the increased levels of circulating preinflammatory factors in aging, young animals had higher numbers of monocytes and granulocytes in the follicles, a profile negatively associated with numbers of Tfh cells. Multiple regression analysis showed an altered association between GC B cells and other GC immune cell populations in old animals suggesting a differential mechanistic regulation of GC activity in aging. Our data demonstrate defective baseline GC composition in old NHPs and provide an immunological base for further understanding the adaptive humoral responses with respect to aging.
Collapse
Affiliation(s)
- Kimberly Shankwitz
- Tissue Analysis CoreImmunology LaboratoryVaccine Research CenterNIAIDNIHBethesdaMDUSA
- New Iberia Research CenterUniversity of Louisiana at LafayetteLafayetteLAUSA
| | - Suresh Pallikkuth
- Microbiology and ImmunologyUniversity of Miami Miller School MedicineMiamiFLUSA
| | | | - Daniel Kirk Kvistad
- Microbiology and ImmunologyUniversity of Miami Miller School MedicineMiamiFLUSA
| | - Kyle Blaine Russel
- Microbiology and ImmunologyUniversity of Miami Miller School MedicineMiamiFLUSA
| | - Rajendra Pahwa
- Microbiology and ImmunologyUniversity of Miami Miller School MedicineMiamiFLUSA
| | - Lucio Gama
- Department of Molecular and Comparative PathobiologyJohns Hopkins School of MedicineBaltimoreUSA
- Vaccine Research CenterNIAIDNIHBethesdaMDUSA
- Immunology LaboratoryVaccine Research CenterNIAIDNIHBethesdaMDUSA
| | - Richard A. Koup
- Immunology LaboratoryVaccine Research CenterNIAIDNIHBethesdaMDUSA
| | - Li Pan
- Microbiology and ImmunologyUniversity of Miami Miller School MedicineMiamiFLUSA
| | - Francois Villinger
- New Iberia Research CenterUniversity of Louisiana at LafayetteLafayetteLAUSA
| | - Savita Pahwa
- Microbiology and ImmunologyUniversity of Miami Miller School MedicineMiamiFLUSA
| | - Constantinos Petrovas
- Tissue Analysis CoreImmunology LaboratoryVaccine Research CenterNIAIDNIHBethesdaMDUSA
| |
Collapse
|
126
|
Reduced PD-1 expression on circulating follicular and conventional FOXP3+ Treg cells in children with new onset type 1 diabetes and autoantibody-positive at-risk children. Clin Immunol 2020; 211:108319. [DOI: 10.1016/j.clim.2019.108319] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022]
|
127
|
Modulation of Vaccine-Induced HIV-1-Specific Immune Responses by Co-Electroporation of PD-L1 Encoding DNA. Vaccines (Basel) 2020; 8:vaccines8010027. [PMID: 31947643 PMCID: PMC7157229 DOI: 10.3390/vaccines8010027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/31/2022] Open
Abstract
The importance of a balanced TH1/TH2 humoral immune response against the HIV-1 envelope protein (Env) for antibody-mediated HIV-1 control is increasingly recognized. However, there is no defined vaccination strategy to raise it. Since immune checkpoints are involved in the induction of adoptive immunity and their inhibitors (monoclonal antibodies) are licensed for cancer therapy, we investigated the effect of checkpoint blockade after HIV-1 genetic vaccination on enhancement and modulation of antiviral antibody responses. By intraperitoneal administration of checkpoint antibodies in mice we observed an induction of anti-drug antibodies which may interfere with immunomodulation by checkpoint inhibitors. Therefore, we blocked immune checkpoints locally by co-electroporation of DNA vaccines encoding the active soluble ectodomains of programmed cell death protein-1 (PD-1) or its ligand (PD-L1), respectively. Plasmid-encoded immune checkpoints did not elicit a detectable antibody response, suggesting no interference with their immunomodulatory effects. Co-electroporation of a HIV-1 DNA vaccine formulation with soluble PD-L1 ectodomain increased HIV-1 Env-specific TH1 CD4 T cell and IgG2a antibody responses. The overall antibody response was hereby shifted towards a more TH1/TH2 balanced subtype pattern. These findings indicate that co-electroporation of soluble checkpoint ectodomains together with DNA-based vaccines has modulatory effects on vaccine-induced immune responses that could improve vaccine efficacies.
Collapse
|
128
|
Shevyrev D, Tereshchenko V. Treg Heterogeneity, Function, and Homeostasis. Front Immunol 2020; 10:3100. [PMID: 31993063 PMCID: PMC6971100 DOI: 10.3389/fimmu.2019.03100] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
T-regulatory cells (Tregs) represent a unique subpopulation of helper T-cells by maintaining immune equilibrium using various mechanisms. The role of T-cell receptors (TCR) in providing homeostasis and activation of conventional T-cells is well-known; however, for Tregs, this area is understudied. In the last two decades, evidence has accumulated to confirm the importance of the TCR in Treg homeostasis and antigen-specific immune response regulation. In this review, we describe the current view of Treg subset heterogeneity, homeostasis and function in the context of TCR involvement. Recent studies of the TCR repertoire of Tregs, combined with single-cell gene expression analysis, revealed the importance of TCR specificity in shaping Treg phenotype diversity, their functions and homeostatic maintenance in various tissues. We propose that Tregs, like conventional T-helper cells, act to a great extent in an antigen-specific manner, which is provided by a specific distribution of Tregs in niches.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Research Institute for Fundamental and Clinical Immunology (RIFCI), Novosibirsk, Russia
| | - Valeriy Tereshchenko
- Research Institute for Fundamental and Clinical Immunology (RIFCI), Novosibirsk, Russia
| |
Collapse
|
129
|
Yoshida K, Okamoto M, Sasaki J, Kuroda C, Ishida H, Ueda K, Ideta H, Kamanaka T, Sobajima A, Takizawa T, Tanaka M, Aoki K, Uemura T, Kato H, Haniu H, Saito N. Anti-PD-1 antibody decreases tumour-infiltrating regulatory T cells. BMC Cancer 2020; 20:25. [PMID: 31914969 PMCID: PMC6950856 DOI: 10.1186/s12885-019-6499-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/24/2019] [Indexed: 12/31/2022] Open
Abstract
Background There are many types of therapies for cancer. In these days, immunotherapies, especially immune checkpoint inhibitors, are focused on. Though many types of immune checkpoint inhibitors are there, the difference of effect and its mechanism are unclear. Some reports suggest the response rate of anti-PD-1 antibody is superior to that of anti-PD-L1 antibody and could potentially produce different mechanisms of action. On the other hand, Treg also express PD-1; however, their relationship remains unclear. Methods In this study, we used osteosarcoma cell lines in vitro and osteosarcoma mouse model in vivo. In vitro, we analyzed the effect of IFNγ for expression of PD-L1 on the surface of cell lines by flowcytometry. In vivo, murine osteosarcoma cell line LM8 was subcutaneously transplanted into the dorsum of mice. Mouse anti-PD-1 antibody was intraperitoneally administered. we analysed the effect for survival of anti-PD-1 antibody and proportion of T cells in the tumour by flowcytometry. Results We discovered that IFNγ increased PD-L1 expression on the surface of osteosarcoma cell lines. In assessing the relationship between anti-PD-1 antibody and Treg, we discovered the administration of anti-PD-1 antibody suppresses increases in tumour volume and prolongs overall survival time. In the tumour microenvironment, we found that the administration of anti-PD-1 antibody decreased Treg within the tumour and increased tumour-infiltrating lymphocytes. Conclusions Here we clarify for the first time an additional mechanism of anti-tumour effect—as exerted by anti-PD-1 antibody decreasing Treg— we anticipate that our findings will lead to the development of new methods for cancer treatment.
Collapse
Affiliation(s)
- Kazushige Yoshida
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masanori Okamoto
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Jun Sasaki
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Chika Kuroda
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Haruka Ishida
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Katsuya Ueda
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Hirokazu Ideta
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takayuki Kamanaka
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Atsushi Sobajima
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takashi Takizawa
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Manabu Tanaka
- Department of Orthopedic Surgery, Okaya City Hospital, Okaya, Japan
| | - Kaoru Aoki
- Physical Therapy Division, School of Health Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeshi Uemura
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Hiroyuki Kato
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hisao Haniu
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Naoto Saito
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Asahi 3-1-1, Matsumoto, 390-8621, Japan.
| |
Collapse
|
130
|
De los Santos MI, Bacos DM, Bernal SD. WITHDRAWN: A novel bifunctional T regulatory cell engaging (BiTE) TGF-β1/PD-L1 fusion protein with therapeutic potential for autoimmune diseases. J Transl Autoimmun 2020. [DOI: 10.1016/j.jtauto.2020.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
131
|
Sasidharan Nair V, Toor SM, Taouk G, Pfister G, Ouararhni K, Alajez NM, Elkord E. Pembrolizumab Interferes with the Differentiation of Human FOXP3+–Induced T Regulatory Cells, but Not with FOXP3 Stability, through Activation of mTOR. THE JOURNAL OF IMMUNOLOGY 2019; 204:199-211. [DOI: 10.4049/jimmunol.1900575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/27/2019] [Indexed: 12/16/2022]
|
132
|
Boonpiyathad T, Satitsuksanoa P, Akdis M, Akdis CA. Il-10 producing T and B cells in allergy. Semin Immunol 2019; 44:101326. [PMID: 31711770 DOI: 10.1016/j.smim.2019.101326] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
The molecular and cellular mechanisms of allergen tolerance in humans have been intensively studied in the past few decades. The demonstration of epitope-specific T cell tolerance, particularly mediated by the immune suppressor functions of IL-10 led to a major conceptual change in this area more than 20 years ago. Currently, the known essential components of allergen tolerance include the induction of allergen-specific regulatory of T and B cells, the immune suppressive function of secreted factors, such as IL-10, IL-35, IL-1 receptor antagonist and TGF-β, immune suppressive functions of surface molecules such as CTLA-4 and PD-1, the production IgG4 isotype allergen-specific blocking antibodies, and decreased allergic inflammatory responses by mast cells, basophils, and eosinophils in inflamed tissues. In this review, we explain the importance of the role of IL-10 in allergen tolerance.
Collapse
Affiliation(s)
- Tadech Boonpiyathad
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Allergy and Clinical Immunology, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.
| |
Collapse
|
133
|
Rauch DA, Conlon KC, Janakiram M, Brammer JE, Harding JC, Ye BH, Zang X, Ren X, Olson S, Cheng X, Miljkovic MD, Sundaramoorthi H, Joseph A, Skidmore ZL, Griffith O, Griffith M, Waldmann TA, Ratner L. Rapid progression of adult T-cell leukemia/lymphoma as tumor-infiltrating Tregs after PD-1 blockade. Blood 2019; 134:1406-1414. [PMID: 31467059 PMCID: PMC6839957 DOI: 10.1182/blood.2019002038] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022] Open
Abstract
Immune checkpoint inhibitors are a powerful new tool in the treatment of cancer, with prolonged responses in multiple diseases, including hematologic malignancies, such as Hodgkin lymphoma. However, in a recent report, we demonstrated that the PD-1 inhibitor nivolumab led to rapid progression in patients with adult T-cell leukemia/lymphoma (ATLL) (NCT02631746). We obtained primary cells from these patients to determine the cause of this hyperprogression. Analyses of clonality, somatic mutations, and gene expression in the malignant cells confirmed the report of rapid clonal expansion after PD-1 blockade in these patients, revealed a previously unappreciated origin of these malignant cells, identified a novel connection between ATLL cells and tumor-resident regulatory T cells (Tregs), and exposed a tumor-suppressive role for PD-1 in ATLL. Identifying the mechanisms driving this alarming outcome in nivolumab-treated ATLL may be broadly informative for the growing problem of rapid progression with immune checkpoint therapies.
Collapse
Affiliation(s)
- Daniel A Rauch
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Kevin C Conlon
- Lymphoid Malignancies Branch, National Institutes of Health, Bethesda, MD
| | - Murali Janakiram
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Jonathan E Brammer
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH; and
| | - John C Harding
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - Xingxing Zang
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
- Department of Microbiology and Immunology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Xiaoxin Ren
- Department of Microbiology and Immunology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Sydney Olson
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Xiaogang Cheng
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Milos D Miljkovic
- Lymphoid Malignancies Branch, National Institutes of Health, Bethesda, MD
| | - Hemalatha Sundaramoorthi
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Ancy Joseph
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Zachary L Skidmore
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Obi Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Malachi Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, National Institutes of Health, Bethesda, MD
| | - Lee Ratner
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
134
|
Cai J, Wang D, Zhang G, Guo X. The Role Of PD-1/PD-L1 Axis In Treg Development And Function: Implications For Cancer Immunotherapy. Onco Targets Ther 2019; 12:8437-8445. [PMID: 31686860 PMCID: PMC6800566 DOI: 10.2147/ott.s221340] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/21/2019] [Indexed: 12/17/2022] Open
Abstract
During the past decade, immunotherapy targeting immune checkpoints has become an important component of the treatment paradigm for numerous malignancies, especially PD-1/PD-L1 blockade which was demonstrated to rejuvenate disabled T cells in cancer patients to achieve long-term remissions. However, the clinical outcome of PD-1/PD-L1 targeted monotherapy against solid malignancies is not satisfactory which may be related with the intricate tumor microenvironment. As a vital suppressive immunocyte in tumor microenvironment, Tregs are characterized by PD-1 and PD-L1 and demonstrated to contribute to the tumor progression. The latest studies have suggested that Tregs might be involved in the treatment of PD-1/PD-L1 blockade and PD-1/PD-L1 axis could influence Treg differentiation and function. However, the complicated relationship between PD-1/PD-L1 pathway and Tregs has not been fully clarified. Here, we explored the role of PD-1/PD-L1 axis in Treg development and function, as well as the potential mechanisms of PD-1/PD-L1 blockade resistance related with Tregs. Meanwhile, we discussed the combination therapy aimed at targeting PD-1/PD-L1 axis and Tregs, hoping to provide novel insights for the future cancer treatment.
Collapse
Affiliation(s)
- Jiajing Cai
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, People's Republic of China
| | - Dongsheng Wang
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, People's Republic of China
| | - Guoyuan Zhang
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, People's Republic of China
| | - Xiaolan Guo
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, People's Republic of China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, People's Republic of China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637000, People's Republic of China
| |
Collapse
|
135
|
Kumar P, Kumar A, Parveen S, Murphy JR, Bishai W. Recent advances with Treg depleting fusion protein toxins for cancer immunotherapy. Immunotherapy 2019; 11:1117-1128. [PMID: 31361167 PMCID: PMC7006781 DOI: 10.2217/imt-2019-0060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023] Open
Abstract
T regulatory cells (Tregs) are an important T cell population for immune tolerance, prevention of autoimmune diseases and inhibition of antitumor immunity. The tumor-promoting role played by Tregs in cancer has prompted numerous approaches to develop immunotherapeutics targeting Tregs. One approach to depletion of Treg cells is retargeting the highly potent cytotoxic activity of bacterial toxins. These agents capitalize on the well-characterized bacterial toxins, diphtheria toxin and Pseudomonas aeruginosa exotoxin A-both of which harbor membrane translocation domains and enzymatic domains that catalytically halt protein synthesis within intoxicated eukaryotic cells and act at picomolar or subpicomolar concentrations. In this review, we summarize the preclinical and clinical development of several Treg-depleting cancer immunotherapies based on these two bacterial toxins.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Medicine, Johns Hopkins School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
- Present address: Department of Biochemistry, Jamia Hamdard University, Delhi, India
| | - Amit Kumar
- Department of Medicine, Johns Hopkins School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Sadiya Parveen
- Department of Medicine, Johns Hopkins School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - John R Murphy
- Department of Medicine, Johns Hopkins School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - William Bishai
- Department of Medicine, Johns Hopkins School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| |
Collapse
|
136
|
Perazella MA, Shirali AC. Immune checkpoint inhibitor nephrotoxicity: what do we know and what should we do? Kidney Int 2019; 97:62-74. [PMID: 31685311 DOI: 10.1016/j.kint.2019.07.022] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 01/13/2023]
Abstract
Immune checkpoint inhibitors have dramatically improved cancer therapy for many patients. These humanized monoclonal antibodies against various immune checkpoints (receptors and ligands) effectively treat a number of malignancies by unleashing the immune system to destroy cancer cells. These drugs are not excreted by the kidneys or liver, have a long half-life, and undergo receptor-mediated clearance. Although these agents have greatly improved the prognosis of many cancers, immune-related end organ injury is a complication that has come to light in clinical practice. Although less common than other organ involvement, kidney lesions resulting in acute kidney injury and/or proteinuria are being described. Acute tubulointerstitial nephritis is the most common lesion seen on kidney biopsy, while acute tubular injury and glomerular lesions occur less commonly. Clinical findings and laboratory tests are suboptimal in predicting the underlying renal lesion, making kidney biopsy necessary in the majority of cases to definitely diagnose the lesion and potentially guide therapy. Immune checkpoint inhibitor discontinuation and corticosteroid therapy are recommended for acute tubulointerstitial nephritis. Based on a handful of cases, re-exposure to these drugs in patients who previously developed acute tubulointerstitial nephritis has been mixed. Although it is unclear whether re-exposure is appropriate, it should perhaps be considered in patients with limited options. When this approach is taken, patients should be closely monitored for recurrence of acute kidney injury. Treatment of cancer in patients with a kidney transplant with immune checkpoint inhibitors risks the development of acute rejection in some patients and requires close surveillance.
Collapse
Affiliation(s)
- Mark A Perazella
- Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut, USA; Veterans Affairs Medical Center, West Haven, Connecticut, USA.
| | - Anushree C Shirali
- Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
137
|
Suresh K, Naidoo J, Zhong Q, Xiong Y, Mammen J, de Flores MV, Cappelli L, Balaji A, Palmer T, Forde PM, Anagnostou V, Ettinger DS, Marrone KA, Kelly RJ, Hann CL, Levy B, Feliciano JL, Lin CT, Feller-Kopman D, Lerner AD, Lee H, Shafiq M, Yarmus L, Lipson EJ, Soloski M, Brahmer JR, Danoff SK, D'Alessio F. The alveolar immune cell landscape is dysregulated in checkpoint inhibitor pneumonitis. J Clin Invest 2019; 129:4305-4315. [PMID: 31310589 DOI: 10.1172/jci128654] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Checkpoint inhibitor pneumonitis (CIP) is a highly morbid complication of immune checkpoint immunotherapy (ICI), one which precludes the continuation of ICI. Yet, the mechanistic underpinnings of CIP are unknown. METHODS To better understand the mechanism of lung injury in CIP, we prospectively collected bronchoalveolar lavage (BAL) samples in ICI-treated patients with (n=12) and without CIP (n=6), prior to initiation of first-line therapy for CIP (high dose corticosteroids. We analyzed BAL immune cell populations using a combination of traditional multicolor flow cytometry gating, unsupervised clustering analysis and BAL supernatant cytokine measurements. RESULTS We found increased BAL lymphocytosis, predominantly CD4+ T cells, in CIP. Specifically, we observed increased numbers of BAL central memory T-cells (Tcm), evidence of Type I polarization, and decreased expression of CTLA-4 and PD-1 in BAL Tregs, suggesting both activation of pro-inflammatory subsets and an attenuated suppressive phenotype. CIP BAL myeloid immune populations displayed enhanced expression of IL-1β and decreased expression of counter-regulatory IL-1RA. We observed increased levels of T cell chemoattractants in the BAL supernatant, consistent with our pro-inflammatory, lymphocytic cellular landscape. CONCLUSION We observe several immune cell subpopulations that are dysregulated in CIP, which may represent possible targets that could lead to therapeutics for this morbid immune related adverse event.
Collapse
Affiliation(s)
| | - Jarushka Naidoo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University, Baltimore, Maryland, USA
| | - Qiong Zhong
- Division of Pulmonary Critical Care Medicine, and
| | - Ye Xiong
- Division of Pulmonary Critical Care Medicine, and
| | | | | | | | - Aanika Balaji
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tsvi Palmer
- Division of Pulmonary Critical Care Medicine, and
| | - Patrick M Forde
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University, Baltimore, Maryland, USA
| | - Valsamo Anagnostou
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University, Baltimore, Maryland, USA
| | - David S Ettinger
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristen A Marrone
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University, Baltimore, Maryland, USA
| | - Ronan J Kelly
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University, Baltimore, Maryland, USA
| | - Christine L Hann
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University, Baltimore, Maryland, USA
| | - Benjamin Levy
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University, Baltimore, Maryland, USA
| | - Josephine L Feliciano
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University, Baltimore, Maryland, USA
| | - Cheng-Ting Lin
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Hans Lee
- Division of Pulmonary Critical Care Medicine, and
| | - Majid Shafiq
- Division of Pulmonary Critical Care Medicine, and
| | - Lonny Yarmus
- Division of Pulmonary Critical Care Medicine, and
| | - Evan J Lipson
- Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University, Baltimore, Maryland, USA.,Division of Endocrinology
| | | | - Julie R Brahmer
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University, Baltimore, Maryland, USA
| | | | | |
Collapse
|
138
|
Czaja AJ. Immune inhibitory proteins and their pathogenic and therapeutic implications in autoimmunity and autoimmune hepatitis. Autoimmunity 2019; 52:144-160. [PMID: 31298041 DOI: 10.1080/08916934.2019.1641200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Key inhibitory proteins can blunt immune responses to self-antigens, and deficiencies in this repertoire may promote autoimmunity. The goals of this review are to describe the key immune inhibitory proteins, indicate their possible impact on the development of autoimmune disease, especially autoimmune hepatitis, and encourage studies to clarify their pathogenic role and candidacy as therapeutic targets. English abstracts were identified in PubMed by multiple search terms. Full length articles were selected for review, and secondary and tertiary bibliographies were developed. Cytotoxic T lymphocyte antigen-4 impairs ligation of CD28 to B7 ligands on antigen presenting cells and inhibits the adaptive immune response by increasing anti-inflammatory cytokines, generating regulatory T cells, and reducing T cell activation and proliferation. Programed cell death antigen-1 inhibits T cell selection, activation, and proliferation by binding with two ligands at different phases and locations of the immune response. A soluble alternatively spliced variant of this protein can dampen the inhibitory signal. Autoimmune hepatitis has been associated with polymorphisms of the cytotoxic T lymphocyte antigen-4 gene, reduced hepatic expression of a ligand of programed cell death antigen-1, an interfering soluble variant of this key inhibitory protein, and antibodies against it. Findings have been associated with laboratory indices of liver injury and suboptimal treatment response. Abatacept, belatacept, CD28 blockade, and induction of T cell exhaustion are management considerations that require scrutiny. In conclusion, deficiencies in key immune inhibitory proteins may promote the occurrence of autoimmune diseases, such as autoimmune hepatitis, and emerging interventions may overcome these deficiencies. Investigations should define the nature, impact and management of these inhibitory disturbances in autoimmune hepatitis.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science , Rochester , MN , USA
| |
Collapse
|
139
|
Pu N, Gao S, Yin H, Li JA, Wu W, Fang Y, Zhang L, Rong Y, Xu X, Wang D, Kuang T, Jin D, Yu J, Lou W. Cell-intrinsic PD-1 promotes proliferation in pancreatic cancer by targeting CYR61/CTGF via the hippo pathway. Cancer Lett 2019; 460:42-53. [PMID: 31233838 DOI: 10.1016/j.canlet.2019.06.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/27/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a refractory disease. Programmed cell death protein-1 (PD-1) monotherapy has shown strong performance in targeting several malignancies. However, the effect and mechanism of intrinsic PD-1 in pancreatic cancer cells is still unknown. In this study, associations between clinicopathological characteristics and stained tissue microarrays of PDAC specimens were analyzed along with profiling and functional analyses. The results showed that cell-intrinsic PD-1 was significantly correlated with overall survival (OS). Independently of adaptive immunity, intrinsic PD-1 promoted tumor growth in PDAC. Concomitantly, the overexpression of intrinsic PD-1 enhanced cancer proliferation and inhibited cell apoptosis in vitro and in vivo. Mechanistically, PD-1 binds to the downstream MOB1, thereby inhibiting its phosphorylation. Moreover, greater synergistic tumor suppression in vitro resulted from combining Hippo inhibitors with anti-PD-1 treatment compared with the suppression achieved by either single agent alone. Additionally, Hippo downstream targets, CYR61 (CCN1) and CTGF (CCN2), were directly affected by PD-1 mediated Hippo signaling activation in concert with survival outcomes. Finally, the formulated nomogram showed superior predictive accuracy for OS in comparison with the TNM stage alone. Therefore, PD-1 immunotherapy in combination with Hippo pathway inhibitors may optimize the anti-tumor efficacy in PDAC patients via targeting cell-intrinsic PD-1.
Collapse
Affiliation(s)
- Ning Pu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Shanshan Gao
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hanlin Yin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian-Ang Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenchuan Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuan Fang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yefei Rong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xuefeng Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dansong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tiantao Kuang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dayong Jin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun Yu
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Wenhui Lou
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
140
|
Ohue Y, Nishikawa H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci 2019; 110:2080-2089. [PMID: 31102428 PMCID: PMC6609813 DOI: 10.1111/cas.14069] [Citation(s) in RCA: 641] [Impact Index Per Article: 128.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
Regulatory T (Treg) cells suppress abnormal/excessive immune responses to self‐ and nonself‐antigens to maintain immune homeostasis. In tumor immunity, Treg cells are involved in tumor development and progression by inhibiting antitumor immunity. There are several Treg cell immune suppressive mechanisms: inhibition of costimulatory signals by CD80 and CD86 expressed by dendritic cells through cytotoxic T‐lymphocyte antigen‐4, interleukin (IL)‐2 consumption by high‐affinity IL‐2 receptors with high CD25 (IL‐2 receptor α‐chain) expression, secretion of inhibitory cytokines, metabolic modulation of tryptophan and adenosine, and direct killing of effector T cells. Infiltration of Treg cells into the tumor microenvironment (TME) occurs in multiple murine and human tumors. Regulatory T cells are chemoattracted to the TME by chemokine gradients such as CCR4‐CCL17/22, CCR8‐CCL1, CCR10‐CCL28, and CXCR3‐CCL9/10/11. Regulatory T cells are then activated and inhibit antitumor immune responses. A high infiltration by Treg cells is associated with poor survival in various types of cancer. Therefore, strategies to deplete Treg cells and control of Treg cell functions to increase antitumor immune responses are urgently required in the cancer immunotherapy field. Various molecules that are highly expressed by Treg cells, such as immune checkpoint molecules, chemokine receptors, and metabolites, have been targeted by Abs or small molecules, but additional strategies are needed to fine‐tune and optimize for augmenting antitumor effects restricted in the TME while avoiding systemic autoimmunity. Here, we provide a brief synopsis of these cells in cancer and how they can be controlled to achieve therapeutic outcomes.
Collapse
Affiliation(s)
- Yoshihiro Ohue
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan.,Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
141
|
Hildebrand D, Metz-Zumaran C, Jaschkowitz G, Heeg K. Silencing SOCS1 via Liposome-Packed siRNA Sustains TLR4-Ligand Adjuvant. Front Immunol 2019; 10:1279. [PMID: 31214204 PMCID: PMC6558036 DOI: 10.3389/fimmu.2019.01279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/20/2019] [Indexed: 11/13/2022] Open
Abstract
Infectious diseases remain one of the leading causes of death worldwide. Vaccination is a powerful instrument to avert a variety of those by inducing a pathogen-specific immune response and ensure a long-lasting protection against the respective infection. Nevertheless, due to increasing numbers of immunocompromised patients and emergence of more aggressive pathogens existing vaccination techniques are limited. In our study we investigated a new strategy to strengthen vaccine adjuvant in order to increase immunity against infectious diseases. The strategy is based on an amplification of Toll-like receptor 4 (TLR4) -induced activation of antigen-presenting cells (APCs) by turning off a powerful endogenous inhibitor of APC-activation. TLR4 signaling induces the release of cytokines that bind autocrine and paracrine to receptors, activating the Janus kinase (JAK) 2/signal transducers and activators of transcription (STAT) 3 cascade. Subsequently, STAT3 induces expression of suppressor of cytokine signaling (SOCS) 1 that terminates the inflammatory response. In the approach, TLR4-adjuvant monophosphoryl lipid A (MPLA)-stimulated monocyte-activation is reinforced and sustained by silencing SOCS1 via lipid nanoparticle-enclosed siRNA (L-siRNA). L-siRNA is transported into primary cells without any toxic side effects and protected from early degradation. Through lipid core-embedded functional groups the lipid particle escapes from endosomes and releases the siRNA when translocated into the cytoplasm. SOCS1 is potently silenced, and SOCS1-mediated termination of NFκB signaling is abrogated. Consequently, the MPLA-stimulated activation of APCs, monitored by release of pro-inflammatory cytokines such as IL-6, TNFα, and IL-1β, upregulation of MHC class II molecules and costimulatory CD80/CD86 is strongly enhanced and prolonged. SOCS1-silenced APCs, pulsed with liposomal tetanus light chain toxin (TeTxLC) antigen, activate autologous T cells much more intensively than SOCS1-expressing cells. Importantly, expansion of cocultured CD4+ as well as CD8+ T cells is remarkably enhanced. Furthermore, our results point toward a broad T helper cell response as TH1 typical as well as TH2 characteristic cytokines are elevated. Taken together, this study in the human system comprises a translational potential to develop more effective vaccines against infectious diseases by inhibition of the endogenous negative-feedback loop in APCs.
Collapse
Affiliation(s)
- Dagmar Hildebrand
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany.,DZIF German Center for Infection Research, Braunschweig, Germany
| | - Camila Metz-Zumaran
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany.,DZIF German Center for Infection Research, Braunschweig, Germany
| | - Greta Jaschkowitz
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Heeg
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany.,DZIF German Center for Infection Research, Braunschweig, Germany
| |
Collapse
|
142
|
Abstract
Introduction: Advanced cancers that did not respond to chemotherapy were once a death sentence, but now there are newer therapies utilizing the patient's own immune system to fight cancer that are proving effective in chemotherapy-refractory malignancies. However, this success against cancer cells may be accompanied by immune-related adverse events that can affect the kidneys. Areas covered: Using Medline and Scopus, we compiled all publications through February 2019 that pertained to immune checkpoint inhibitors (ICPIs) and chimeric antigen receptor T-cells (CAR T-cells). The focus of this review is the discussion of these new cancer therapies, with attention to the reported kidney-related adverse effects.. Expert opinion: Autoimmunity is repressed by molecular pathways that inhibit T-cell activation against selected antigens. These self-protective mechanisms have been appropriated by tumor cells as a means of evading immune detection and destruction. New immunotherapies such as immune checkpoint inhibitors and chimeric antigen receptor T-cell therapy incite an aggressive immune response directed against tumor cells. This unrestrained activation of the immune system may result in kidney injury via multiple mechanisms.
Collapse
Affiliation(s)
- Krishna Sury
- a Section of Nephrology, Department of Medicine , Yale University School of Medicine , New Haven , CT , USA
| | - Mark A Perazella
- a Section of Nephrology, Department of Medicine , Yale University School of Medicine , New Haven , CT , USA.,b Section of Nephrology , Veterans Affairs Medical Center , West Haven , CT , USA
| |
Collapse
|
143
|
Wang G, Wang L, Zhou J, Xu X. The Possible Role of PD-1 Protein in Ganoderma lucidum-Mediated Immunomodulation and Cancer Treatment. Integr Cancer Ther 2019; 18:1534735419880275. [PMID: 31595795 PMCID: PMC6876169 DOI: 10.1177/1534735419880275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/12/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022] Open
Abstract
Background:Ganoderma lucidum has been used in Chinese medicine for thousands years to improve health and to promote longevity. One important function of G lucidum is to modulate the immune system. However, the underlying mechanism is not well understood. Programmed cell death protein 1 (PD-1) is a cell surface protein present in certain immune cells (eg, B- and Tcells) and plays an important role in modulating the immune response. The role of PD-1 protein in G lucidum-mediated immunomodulation is unknown. Methods: Cultured human Blymphocytes and extract prepared from G lucidum spores (GLE) were used to determine PD-1 protein in G lucidum-mediated immunomodulation. Both western blotting and immunofluorescence (IF) microscopy assays were used to determine the effect of GLE treatment on PD-1 protein expression. A reverse transcription-based quantitative polymerase chain reaction (real-time PCR) assay was used to determine the effect of GLE on transcription of pdcd-1 gene. Results: Both our western blotting and IF staining results demonstrated great reduction in PD-1 protein and in proportion of PD-1+ cells in these B-lymphocytes. Our real-time PCR results indicated that this PD-1 protein reduction was not caused by a transcriptional inhibition of the gene. In addition, our western blotting study further revealed that the GLE treatment caused an increase in expression of CCL5 chemokine in the cultured B-lymphocytes. Conclusions: PD-1 protein is an important target of G lucidum-mediated immunomodulation. G lucidum and its bioactive compounds can be developed into novel immunomodulators for prevention and treatment of cancer and many other diseases.
Collapse
Affiliation(s)
- Gan Wang
- Wayne State University, Detroit, MI,
USA
| | - Le Wang
- Wayne State University, Detroit, MI,
USA
| | - Jianlong Zhou
- Longevity Valley Pharmaceuticals Co Ltd,
Wuyi, Zhejiang Province, People’s Republic of China
| | - Xiaoxin Xu
- Lutuo Pharmaceuticals Inc, Jinan,
Shandong Province, People’s Republic of China
| |
Collapse
|