101
|
Zhang J, Huang H, Zhou X, Xu Y, Chen B, Tang W, Xu K. N-Benzylanilines as Fatty Acid Synthesis Inhibitors against Biofilm-related Methicillin-resistant Staphylococcus aureus. ACS Med Chem Lett 2019; 10:329-333. [PMID: 30891135 DOI: 10.1021/acsmedchemlett.8b00612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/28/2019] [Indexed: 01/07/2023] Open
Abstract
Bacterial fatty acid synthase system is a well validated target for the development of novel antimicrobial agents. This study reports the synthesis of Schiff bases and their reductive N-benzylanilines. Most N-benzylanilines were active against Gram-positive bacteria, among which compound 4k performed best against both S. aureus and MRSA with the MIC value at 0.5 mg/L. Moreover, we identified the strong antibacterial activity for compound 4k against 19 clinical MRSA strains isolated from different specimen, which indicated its potential in clinical application. In vitro biofilm inhibition and microscopy assay revealed compound 4k inhibits biofilm formation and eradicates preformed biofilm effectively. The size-exclusion chromatography and docking study indicated that compound 4k mimics the binding mode of triclosan with saFabI. The efficiency of the protein-inhibitor interaction was evaluated by measuring NADPH reduction using trans-2-octenoyl-CoA as substrate. Overall, our data demonstrate that N-benzylaniline is a promising scaffold for anti-staphylococcal drug development.
Collapse
Affiliation(s)
- Jing Zhang
- Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People’s Hospital, Hefei 230022, China
| | - Hao Huang
- College of Basic Medical, Anhui Medical University, Hefei 230032, China
| | - Xueting Zhou
- College of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yingying Xu
- College of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Baochun Chen
- Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People’s Hospital, Hefei 230022, China
| | - Wenjian Tang
- College of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Kehan Xu
- College of Basic Medical, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
102
|
Ebrahimi A, Babaaie A, Boniadian M, Lotfalian S. Antibacterial and Ciprofloxacin-Potentiation Activities of Cinnamomum zeylanicum Extracts against Some Pathogenic Bacteria. MEDICAL LABORATORY JOURNAL 2019. [DOI: 10.29252/mlj.13.3.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
103
|
Seoane P, Tapia-Paniagua ST, Bautista R, Alcaide E, Esteve C, Martínez-Manzanares E, Balebona MC, Claros MG, Moriñigo MA. TarSynFlow, a workflow for bacterial genome comparisons that revealed genes putatively involved in the probiotic character of Shewanella putrefaciens strain Pdp11. PeerJ 2019; 7:e6526. [PMID: 30842906 PMCID: PMC6397758 DOI: 10.7717/peerj.6526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/26/2019] [Indexed: 11/20/2022] Open
Abstract
Probiotic microorganisms are of great interest in clinical, livestock and aquaculture. Knowledge of the genomic basis of probiotic characteristics can be a useful tool to understand why some strains can be pathogenic while others are probiotic in the same species. An automatized workflow called TarSynFlow (Targeted Synteny Workflow) has been then developed to compare finished or draft bacterial genomes based on a set of proteins. When used to analyze the finished genome of the probiotic strain Pdp11 of Shewanella putrefaciens and genome drafts from seven known non-probiotic strains of the same species obtained in this work, 15 genes were found exclusive of Pdp11. Their presence was confirmed by PCR using Pdp11-specific primers. Functional inspection of the 15 genes allowed us to hypothesize that Pdp11 underwent genome rearrangements spurred by plasmids and mobile elements. As a result, Pdp11 presents specific proteins for gut colonization, bile salt resistance and gut pathogen adhesion inhibition, which can explain some probiotic features of Pdp11.
Collapse
Affiliation(s)
- Pedro Seoane
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, Málaga, Spain
| | | | - Rocío Bautista
- Andalusian Platform for Bioinformatics, Universidad de Málaga, Málaga, Spain
| | - Elena Alcaide
- Department of Microbiology and Ecology, Universidad de Valencia, Valencia, Spain
| | - Consuelo Esteve
- Department of Microbiology and Ecology, Universidad de Valencia, Valencia, Spain
| | | | | | - M. Gonzalo Claros
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, Málaga, Spain
- Andalusian Platform for Bioinformatics, Universidad de Málaga, Málaga, Spain
| | | |
Collapse
|
104
|
Jo I, Kim JS, Xu Y, Hyun J, Lee K, Ha NC. Recent paradigm shift in the assembly of bacterial tripartite efflux pumps and the type I secretion system. J Microbiol 2019; 57:185-194. [PMID: 30806976 DOI: 10.1007/s12275-019-8520-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/26/2018] [Accepted: 01/10/2019] [Indexed: 01/15/2023]
Abstract
Tripartite efflux pumps and the type I secretion system of Gram-negative bacteria are large protein complexes that span the entire cell envelope. These complexes expel antibiotics and other toxic substances or transport protein toxins from bacterial cells. Elucidating the binary and ternary complex structures at an atomic resolution are crucial to understanding the assembly and working mechanism. Recent advances in cryoelectron microscopy along with the construction of chimeric proteins drastically shifted the assembly models. In this review, we describe the current assembly models from a historical perspective and emphasize the common assembly mechanism for the assembly of diverse tripartite pumps and type I secretion systems.
Collapse
Affiliation(s)
- Inseong Jo
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Sik Kim
- Unit on Structural and Chemical Biology of Membrane Proteins, Cell Biology and Neurobiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, 116600, P. R. China
| | - Jaekyung Hyun
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
105
|
Proof of an Outer Membrane Target of the Efflux Inhibitor Phe-Arg-β-Naphthylamide from Random Mutagenesis. Molecules 2019; 24:molecules24030470. [PMID: 30699887 PMCID: PMC6384556 DOI: 10.3390/molecules24030470] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/17/2022] Open
Abstract
Phe-Arg-β-naphthylamide (PAβN) has been characterized as an efflux pump inhibitor (EPI) acting on the major multidrug resistance efflux transporters of Gram-negative bacteria, such as AcrB in Eschericha coli. In the present study, in vitro random mutagenesis was used to evolve resistance to the sensitizing activity of PAβN with the aim of elucidating its mechanism of action. A strain was obtained that was phenotypically similar to a previously reported mutant from a serial selection approach that had no efflux-associated mutations. We could confirm that acrB mutations in the new mutant were unrelated to PAβN resistance. The next-generation sequencing of the two mutants revealed loss-of-function mutations in lpxM. An engineered lpxM knockout strain showed up to 16-fold decreased PAβN activity with large lipophilic drugs, while its efflux capacity, as well as the efficacy of other EPIs, remained unchanged. LpxM is responsible for the last acylation step in lipopolysaccharide (LPS) synthesis, and lpxM deficiency has been shown to result in penta-acylated instead of hexa-acylated lipid A. Modeling the two lipid A types revealed steric conformational changes due to underacylation. The findings provide evidence of a target site of PAβN in the LPS layer, and prove membrane activity contributing to its drug-sensitizing potency.
Collapse
|
106
|
Swetha Y, Reddy ER, Kumar JR, Trivedi R, Giribabu L, Sridhar B, Rathod B, Prakasham RS. Synthesis, characterization and antimicrobial evaluation of ferrocene–oxime ether benzyl 1H-1,2,3-triazole hybrids. NEW J CHEM 2019. [DOI: 10.1039/c9nj00660e] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A series of ferrocene–oxime ether benzyl 1H-1,2,3 triazole hybrids has been synthesized by employing Cu(i) catalyzed azide–alkyne [3+2] cycloaddition reaction and their antibacterial and antifungal activities are reported.
Collapse
Affiliation(s)
- Yagnam Swetha
- Catalysis and Fine Chemicals Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Eda Rami Reddy
- Catalysis and Fine Chemicals Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Department of Chemistry
| | - Jakku Ranjith Kumar
- Catalysis and Fine Chemicals Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Rajiv Trivedi
- Catalysis and Fine Chemicals Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Lingamallu Giribabu
- Academy of Scientific and Innovative Research (AcSIR)
- CSIR-IICT Campus
- Hyderabad 500007
- India
- Polymer and Functional Materials Division
| | - Balasubramanian Sridhar
- Centre for X-ray Crystallography
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Balaji Rathod
- Organic Synthesis and Process Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Reddy Shetty Prakasham
- Organic Synthesis and Process Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| |
Collapse
|
107
|
Molecules that Inhibit Bacterial Resistance Enzymes. Molecules 2018; 24:molecules24010043. [PMID: 30583527 PMCID: PMC6337270 DOI: 10.3390/molecules24010043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Antibiotic resistance mediated by bacterial enzymes constitutes an unmet clinical challenge for public health, particularly for those currently used antibiotics that are recognized as "last-resort" defense against multidrug-resistant (MDR) bacteria. Inhibitors of resistance enzymes offer an alternative strategy to counter this threat. The combination of inhibitors and antibiotics could effectively prolong the lifespan of clinically relevant antibiotics and minimize the impact and emergence of resistance. In this review, we first provide a brief overview of antibiotic resistance mechanism by bacterial secreted enzymes. Furthermore, we summarize the potential inhibitors that sabotage these resistance pathways and restore the bactericidal activity of inactive antibiotics. Finally, the faced challenges and an outlook for the development of more effective and safer resistance enzyme inhibitors are discussed.
Collapse
|
108
|
Shriram V, Khare T, Bhagwat R, Shukla R, Kumar V. Inhibiting Bacterial Drug Efflux Pumps via Phyto-Therapeutics to Combat Threatening Antimicrobial Resistance. Front Microbiol 2018; 9:2990. [PMID: 30619113 PMCID: PMC6295477 DOI: 10.3389/fmicb.2018.02990] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/19/2018] [Indexed: 12/04/2022] Open
Abstract
Antibiotics, once considered the lifeline for treating bacterial infections, are under threat due to the emergence of threatening antimicrobial resistance (AMR). These drug-resistant microbes (or superbugs) are non-responsive to most of the commonly used antibiotics leaving us with few treatment options and escalating mortality-rates and treatment costs. The problem is further aggravated by the drying-pipeline of new and potent antibiotics effective particularly against the drug-resistant strains. Multidrug efflux pumps (EPs) are established as principal determinants of AMR, extruding multiple antibiotics out of the cell, mostly in non-specific manner and have therefore emerged as potent drug-targets for combating AMR. Plants being the reservoir of bioactive compounds can serve as a source of potent EP inhibitors (EPIs). The phyto-therapeutics with noteworthy drug-resistance-reversal or re-sensitizing activities may prove significant for reviving the otherwise fading antibiotics arsenal and making this combination-therapy effective. Contemporary attempts to potentiate the antibiotics with plant extracts and pure phytomolecules have gained momentum though with relatively less success against Gram-negative bacteria. Plant-based EPIs hold promise as potent drug-leads to combat the EPI-mediated AMR. This review presents an account of major bacterial multidrug EPs, their roles in imparting AMR, effective strategies for inhibiting drug EPs with phytomolecules, and current account of research on developing novel and potent plant-based EPIs for reversing their AMR characteristics. Recent developments including emergence of in silico tools, major success stories, challenges and future prospects are also discussed.
Collapse
Affiliation(s)
- Varsha Shriram
- Department of Botany, Prof. Ramkrishna More College, Savitribai Phule Pune University, Pune, India
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Pune, India
| | - Rohit Bhagwat
- Department of Environmental Science, Savitribai Phule Pune University, Pune, India
| | - Ravi Shukla
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Pune, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
109
|
Hickey SM, Ashton TD, Boer G, Bader CA, Thomas M, Elliott AG, Schmuck C, Yu HY, Li J, Nation RL, Cooper MA, Plush SE, Brooks DA, Pfeffer FM. Norbornane-based cationic antimicrobial peptidomimetics targeting the bacterial membrane. Eur J Med Chem 2018; 160:9-22. [PMID: 30316060 DOI: 10.1016/j.ejmech.2018.09.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/14/2018] [Accepted: 09/29/2018] [Indexed: 11/27/2022]
Abstract
The design, synthesis and evaluation of a small series of potent amphiphilic norbornane antibacterial agents has been performed (compound 10 MIC = 0.25 μg/mL against MRSA). Molecular modelling indicates rapid aggregation of this class of antibacterial agent prior to membrane association and insertion. Two fluorescent analogues (compound 29 with 4-amino-naphthalimide and 34 with 4-nitrobenz-2-oxa-1,3-diazole fluorophores) with good activity (MIC = 0.5 μg/mL against MRSA) were also constructed and confocal microscopy studies indicate that the primary site of interaction for this family of compounds is the bacterial membrane.
Collapse
Affiliation(s)
- Shane M Hickey
- Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| | - Trent D Ashton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Gareth Boer
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Christie A Bader
- Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Michael Thomas
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia
| | - Alysha G Elliott
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Carsten Schmuck
- Institute for Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | - Heidi Y Yu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Science, Royal Parade, Parkville, Victoria, 3052, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Science, Royal Parade, Parkville, Victoria, 3052, Australia
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Science, Royal Parade, Parkville, Victoria, 3052, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Sally E Plush
- Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Douglas A Brooks
- Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Frederick M Pfeffer
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia.
| |
Collapse
|
110
|
Atac N, Kurt-Azap O, Dolapci I, Yesilkaya A, Ergonul O, Gonen M, Can F. The Role of AcrAB-TolC Efflux Pumps on Quinolone Resistance of E. coli ST131. Curr Microbiol 2018; 75:1661-1666. [PMID: 30283991 DOI: 10.1007/s00284-018-1577-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 09/28/2018] [Indexed: 01/06/2023]
Abstract
Escherichia coli ST131 is a cause for global concern because of its high multidrug resistance and several virulence factors. In this study, the contribution of acrAB-TolC efflux system of E. coli ST131 to fluoroquinolone resistance was evaluated. A total of nonrepetitive 111 ciprofloxacin-resistant E. coli isolates were included in the study. Multilocus sequence typing was used for genotyping. Expressions of acrA, acrB, and TolC efflux pump genes were measured by RT-PCR. Mutations in marA, gyrA, parC, and aac(6')-lb-cr positivity were studied by Sanger sequencing. Sixty-four (57.7%) of the isolates were classified as ST131, and 52 (81.3%) of the ST131 isolates belonged to H30-Rx subclone. In ST131, CTX-M 15 positivity (73%) and aac(6')-lb-cr carriage (75%) were significantly higher than those in non-ST131 (12.8% and 51%, respectively) (P < 0.05). The ampicillin-sulbactam (83%) resistance was higher, and gentamicin resistance (20%) was lower in ST131 than that in non-ST131 (64% and 55%, respectively) (P = 0.001 and P = 0.0002). Numbers of the isolates with MDR or XDR profiles did not differ in both groups. Multiple in-dels (up to 16) were recorded in all quinolone-resistant isolates. However, marA gene was more overexpressed in ST131 compared to that in non-ST131 (median 5.98 vs. 3.99; P = 0.0007). Belonging to H30-Rx subclone, isolation site, ciprofloxacin MIC values did not correlate with efflux pump expressions. In conclusion, the marA regulatory gene of AcrAB-TolC efflux pump system has a significant impact on quinolone resistance and progression to MDR profile in ST131 clone. Efflux pump inhibitors might be alternative drugs for the treatment of infections caused by E. coli ST131 if used synergistically in combination with antibiotics.
Collapse
Affiliation(s)
- N Atac
- Department of Medical Microbiology, Koc University School of Medicine, Istanbul, Turkey.
| | - O Kurt-Azap
- Department of Infectious Diseases and Clinical Microbiology, Baskent University School of Medicine, Ankara, Turkey
| | - I Dolapci
- Department of Medical Microbiology, Ankara University School of Medicine, Ankara, Turkey
| | - A Yesilkaya
- Department of Infectious Diseases and Clinical Microbiology, Baskent University School of Medicine, Ankara, Turkey
| | - O Ergonul
- Department of Infectious Diseases and Clinical Microbiology, Koc University School of Medicine, Istanbul, Turkey
| | - M Gonen
- Industrial Engineering, Koc University College of Engineering, Istanbul, Turkey
| | - F Can
- Department of Medical Microbiology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
111
|
Blanco P, Sanz-García F, Hernando-Amado S, Martínez JL, Alcalde-Rico M. The development of efflux pump inhibitors to treat Gram-negative infections. Expert Opin Drug Discov 2018; 13:919-931. [PMID: 30198793 DOI: 10.1080/17460441.2018.1514386] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION One of the possibilities for reducing the emergence and spread of antibiotic resistance is the use of anti-resistance compounds capable of resensitizing resistant microorganisms to current antimicrobials. For this purpose, multidrug efflux pumps, whose inhibition may increase bacterial susceptibility to several antibiotics, including macrolides to which Gram-negatives are considered intrinsically resistant, have emerged as suitable targets. Areas covered: In the current review, the authors discuss different mechanisms that can be exploited for inhibiting multidrug efflux pumps and describe the properties and the potential therapeutic value of already studied efflux pumps inhibitors. Although efforts have already been made to develop these inhibitors, there are currently no good candidates for treating infectious diseases. Consequently, the authors also discuss potential approaches for their development. Expert opinion: Classical anti-resistance drugs such as beta-lactamases inhibitors, while useful, are only purposeful for treating infections caused by beta-lactamase producers. However, inhibitors of multidrug efflux pumps, which are present on all organisms, can sensitize both susceptible and resistant bacteria to antibiotics belonging to several different structural families. Since some efflux pumps are involved in bacterial infections, their inhibition may also reduce the infectivity of Gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Paula Blanco
- a Department of Microbial Biotechnology , Centro Nacional de Biotecnología. CSIC , Madrid , Spain
| | - Fernando Sanz-García
- a Department of Microbial Biotechnology , Centro Nacional de Biotecnología. CSIC , Madrid , Spain
| | - Sara Hernando-Amado
- a Department of Microbial Biotechnology , Centro Nacional de Biotecnología. CSIC , Madrid , Spain
| | - José Luis Martínez
- a Department of Microbial Biotechnology , Centro Nacional de Biotecnología. CSIC , Madrid , Spain
| | - Manuel Alcalde-Rico
- a Department of Microbial Biotechnology , Centro Nacional de Biotecnología. CSIC , Madrid , Spain
| |
Collapse
|
112
|
Qian C, Chen H, Johs A, Lu X, An J, Pierce EM, Parks JM, Elias DA, Hettich RL, Gu B. Quantitative Proteomic Analysis of Biological Processes and Responses of the Bacterium Desulfovibrio desulfuricans ND132 upon Deletion of Its Mercury Methylation Genes. Proteomics 2018; 18:e1700479. [PMID: 30009483 DOI: 10.1002/pmic.201700479] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/17/2018] [Indexed: 11/10/2022]
Abstract
Recent studies of microbial mercury (Hg) methylation revealed a key gene pair, hgcAB, which is essential for methylmercury (MeHg) production in the environment. However, many aspects of the mechanism and biological processes underlying Hg methylation, as well as any additional physiological functions of the hgcAB genes, remain unknown. Here, quantitative proteomics are used to identify changes in potential functional processes related to hgcAB gene deletion in the Hg-methylating bacterium Desulfovibrio desulfuricans ND132. Global proteomics analyses indicate that the wild type and ΔhgcAB strains are similar with respect to the whole proteome and the identified number of proteins, but differ significantly in the abundance of specific proteins. The authors observe changes in the abundance of proteins related to the glycolysis pathway and one-carbon metabolism, suggesting that the hgcAB gene pair is linked to carbon metabolism. Unexpectedly, the authors find that the deletion of hgcAB significantly impacts a range of metal transport proteins, specifically membrane efflux pumps such as those associated with heavy metal copper (Cu) export, leading to decreased Cu uptake in the ΔhgcAB mutant. This observation indicates possible linkages between this set of proteins and metal homeostasis in the cell. However, hgcAB gene expression is not induced by Hg, as evidenced by similarly low abundance of HgcA and HgcB proteins in the absence or presence of Hg (500 nm). Taken together, these results suggest an apparent link between HgcAB, one-carbon metabolism, and metal homeostasis, thereby providing insights for further exploration of biochemical mechanisms and biological functions of microbial Hg methylation.
Collapse
Affiliation(s)
- Chen Qian
- Chemical Sciences Division, Oak Ridge National Laboratory, 37831 Oak Ridge, TN, USA.,Graduate School of Genome Science and Technology, University of Tennessee, 37996 Knoxville, TN, USA
| | - Hongmei Chen
- Environmental Sciences Division, Oak Ridge National Laboratory, 37831 Oak Ridge, TN, USA
| | - Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory, 37831 Oak Ridge, TN, USA
| | - Xia Lu
- Environmental Sciences Division, Oak Ridge National Laboratory, 37831 Oak Ridge, TN, USA
| | - Jing An
- Environmental Sciences Division, Oak Ridge National Laboratory, 37831 Oak Ridge, TN, USA
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, 37831 Oak Ridge, TN, USA
| | - Jerry M Parks
- Biosciences Division, Oak Ridge National Laboratory, 37831 Oak Ridge, TN, USA
| | - Dwayne A Elias
- Biosciences Division, Oak Ridge National Laboratory, 37831 Oak Ridge, TN, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, 37831 Oak Ridge, TN, USA.,Graduate School of Genome Science and Technology, University of Tennessee, 37996 Knoxville, TN, USA
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, 37831 Oak Ridge, TN, USA
| |
Collapse
|
113
|
Anes J, Martins M, Fanning S. Reversing Antimicrobial Resistance in Multidrug-Resistant Klebsiella pneumoniae of Clinical Origin Using 1-(1-Naphthylmethyl)-Piperazine. Microb Drug Resist 2018; 24:1497-1506. [PMID: 30004292 DOI: 10.1089/mdr.2017.0386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Eleven clinical Klebsiella pneumoniae fluoroquinolone-resistant isolates were tested to access the potential of adjuvant therapies to reduce antimicrobial resistance using fixed concentrations of the chemosensitizers chlorpromazine (CPZ), thioridazine (TZ), phenylalanine-arginine-β-naphthylamide (PAβN), and 1-(1-naphthylmethyl)-piperazine-(NMP) with varying concentrations of antimicrobial agents nalidixic acid (NAL), ciprofloxacin (CIP), moxifloxacin (MXF), tetracycline (TET), and chloramphenicol (CHL). Ethidium bromide dye was used together with the chemosensitizers to investigate permeabilization effects. NMP was assessed for its capacity to reduce the mass of biofilm alone and in combination with CIP and MXF. Of the selected chemosensitizers, NMP exhibited the greatest capacity to reverse resistance and inhibit efflux, based on the concentrations tested. Susceptibility to antimicrobial agents including (fluoro)quinolones, TET, and CHL were found to be increased in the presence of NMP, in a concentration-dependent manner. PAβN also demonstrated similar effects when combined with the chemosensitizers tested. In the case of half of the isolates studied, NMP alone reduced preformed biofilm biomass. Combinations of latter along with CIP or MXF were also found to reduce the mass of preformed biofilm, in the case of only some of the bacterial isolates. The capacity of NMP to reduce antimicrobial resistance could be of relevance as a strategy to limit bacterial colonization on abiotic surfaces.
Collapse
Affiliation(s)
- João Anes
- 1 School of Public Health, Physiotherapy and Sports Science, UCD Centre for Food Safety, University College Dublin , Dublin, Ireland
| | - Marta Martins
- 1 School of Public Health, Physiotherapy and Sports Science, UCD Centre for Food Safety, University College Dublin , Dublin, Ireland
| | - Séamus Fanning
- 1 School of Public Health, Physiotherapy and Sports Science, UCD Centre for Food Safety, University College Dublin , Dublin, Ireland
- 2 Institute for Global Food Security, Queen's University Belfast , Belfast, United Kingdom
| |
Collapse
|
114
|
Lamoree B, Hubbard RE. Using Fragment-Based Approaches to Discover New Antibiotics. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2018; 23:495-510. [PMID: 29923463 PMCID: PMC6024353 DOI: 10.1177/2472555218773034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/16/2018] [Accepted: 04/05/2018] [Indexed: 12/29/2022]
Abstract
Fragment-based lead discovery has emerged over the past two decades as a successful approach to generate novel lead candidates in drug discovery programs. The two main advantages over conventional high-throughput screening (HTS) are more efficient sampling of chemical space and tighter control over the physicochemical properties of the lead candidates. Antibiotics are a class of drugs with particularly strict property requirements for efficacy and safety. The development of novel antibiotics has slowed down so much that resistance has now evolved against every available antibiotic drug. Here we give an overview of fragment-based approaches in screening and lead discovery projects for new antibiotics. We discuss several successful hit-to-lead development examples. Finally, we highlight the current challenges and opportunities for fragment-based lead discovery toward new antibiotics.
Collapse
Affiliation(s)
- Bas Lamoree
- YSBL, Department of Chemistry, University of York, Heslington, York, UK
| | - Roderick E. Hubbard
- YSBL, Department of Chemistry, University of York, Heslington, York, UK
- Vernalis Research, Granta Park, Abington, Cambridge, UK
| |
Collapse
|
115
|
Opoku-Temeng C, Naclerio GA, Mohammad H, Dayal N, Abutaleb NS, Seleem MN, Sintim HO. N-(1,3,4-oxadiazol-2-yl)benzamide analogs, bacteriostatic agents against methicillin- and vancomycin-resistant bacteria. Eur J Med Chem 2018; 155:797-805. [PMID: 29957525 DOI: 10.1016/j.ejmech.2018.06.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/17/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022]
Abstract
Various reports of multidrug-resistant bacteria that are immune to all available FDA-approved drugs demand the development of novel chemical scaffolds as antibiotics. From screening a chemical library, we identified compounds with antibacterial activity. The most potent compounds, F6-5 and F6, inhibited growth of various drug-resistant Gram-positive bacterial pathogens at concentrations ranging from 1 μg/mL to 2 μg/mL. Both compounds were active against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-intermediate and vancomycin-resistant S. aureus (VISA and VRSA respectively) and vancomycin-resistant Enterococcus faecalis (VRE). Resistance generation experiments revealed that MRSA could develop resistance to the antibiotic ciprofloxacin but not to F6. Excitingly, F6 was found to be non-toxic against mammalian cells. In a mouse skin wound infection model, F6 was equipotent to the antibiotic fusidic acid in reducing MRSA burden.
Collapse
Affiliation(s)
- Clement Opoku-Temeng
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA; Graduate Program in Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - George A Naclerio
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Haroon Mohammad
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, N47907, USA
| | - Neetu Dayal
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, N47907, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, N47907, USA
| | - Herman O Sintim
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
116
|
Fleeman RM, Debevec G, Antonen K, Adams JL, Santos RG, Welmaker GS, Houghten RA, Giulianotti MA, Shaw LN. Identification of a Novel Polyamine Scaffold With Potent Efflux Pump Inhibition Activity Toward Multi-Drug Resistant Bacterial Pathogens. Front Microbiol 2018; 9:1301. [PMID: 29963035 PMCID: PMC6010545 DOI: 10.3389/fmicb.2018.01301] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/28/2018] [Indexed: 02/02/2023] Open
Abstract
We have previously reported the use of combinatorial chemistry to identify broad-spectrum antibacterial agents. Herein, we extend our analysis of this technology toward the discovery of anti-resistance molecules, focusing on efflux pump inhibitors. Using high-throughput screening against multi-drug resistant Pseudomonas aeruginosa, we identified a polyamine scaffold that demonstrated strong efflux pump inhibition without possessing antibacterial effects. We determined that these molecules were most effective with an amine functionality at R1 and benzene functionalities at R2 and R3. From a library of 188 compounds, we studied the properties of 5 lead agents in detail, observing a fivefold to eightfold decrease in the 90% effective concentration of tetracycline, chloramphenicol, and aztreonam toward P. aeruginosa isolates. Additionally, we determined that our molecules were not only active toward P. aeruginosa, but toward Acinetobacter baumannii and Staphylococcus aureus as well. The specificity of our molecules to efflux pump inhibition was confirmed using ethidium bromide accumulation assays, and in studies with strains that displayed varying abilities in their efflux potential. When assessing off target effects we observed no disruption of bacterial membrane polarity, no general toxicity toward mammalian cells, and no inhibition of calcium channel activity in human kidney cells. Finally, combination treatment with our lead agents engendered a marked increase in the bactericidal capacity of tetracycline, and significantly decreased viability within P. aeruginosa biofilms. As such, we report a unique polyamine scaffold that has strong potential for the future development of novel and broadly active efflux pump inhibitors targeting multi-drug resistant bacterial infections.
Collapse
Affiliation(s)
- Renee M. Fleeman
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Ginamarie Debevec
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, United States
| | - Kirsten Antonen
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Jessie L. Adams
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Radleigh G. Santos
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, United States
| | - Gregory S. Welmaker
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, United States
| | - Richard A. Houghten
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, United States
| | - Marc A. Giulianotti
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, United States
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
117
|
Reens AL, Crooks AL, Su CC, Nagy TA, Reens DL, Podoll JD, Edwards ME, Yu EW, Detweiler CS. A cell-based infection assay identifies efflux pump modulators that reduce bacterial intracellular load. PLoS Pathog 2018; 14:e1007115. [PMID: 29879224 PMCID: PMC6007937 DOI: 10.1371/journal.ppat.1007115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/19/2018] [Accepted: 05/21/2018] [Indexed: 12/20/2022] Open
Abstract
Bacterial efflux pumps transport small molecules from the cytoplasm or periplasm outside the cell. Efflux pump activity is typically increased in multi-drug resistant (MDR) pathogens; chemicals that inhibit efflux pumps may have potential for antibiotic development. Using an in-cell screen, we identified three efflux pump modulators (EPMs) from a drug diversity library. The screening platform uses macrophages infected with the human Gram-negative pathogen Salmonella enterica (Salmonella) to identify small molecules that prevent bacterial replication or survival within the host environment. A secondary screen for hit compounds that increase the accumulation of an efflux pump substrate, Hoechst 33342, identified three small molecules with activity comparable to the known efflux pump inhibitor PAβN (Phe-Arg β-naphthylamide). The three putative EPMs demonstrated significant antibacterial activity against Salmonella within primary and cell culture macrophages and within a human epithelial cell line. Unlike traditional antibiotics, the three compounds did not inhibit bacterial growth in standard microbiological media. The three compounds prevented energy-dependent efflux pump activity in Salmonella and bound the AcrB subunit of the AcrAB-TolC efflux system with KDs in the micromolar range. Moreover, the EPMs display antibacterial synergy with antimicrobial peptides, a class of host innate immune defense molecules present in body fluids and cells. The EPMs also had synergistic activity with antibiotics exported by AcrAB-TolC in broth and in macrophages and inhibited efflux pump activity in MDR Gram-negative ESKAPE clinical isolates. Thus, an in-cell screening approach identified EPMs that synergize with innate immunity to kill bacteria and have potential for development as adjuvants to antibiotics.
Collapse
Affiliation(s)
- Abigail L. Reens
- Department of Molecular, Cellular, & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Amy L. Crooks
- Department of Molecular, Cellular, & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Chih-Chia Su
- Department of Pharmacology, Case Western Reserve, Cleveland OH, United States of America
| | - Toni A. Nagy
- Department of Molecular, Cellular, & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - David L. Reens
- Department of Physics, University of Colorado Boulder, Boulder, CO, United States of America
- JILA, National Institutes of Standards and Technology and University of Colorado Boulder, Boulder, CO, United States of America
| | - Jessica D. Podoll
- Department of Molecular, Cellular, & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Madeline E. Edwards
- Department of Molecular, Cellular, & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve, Cleveland OH, United States of America
| | - Corrella S. Detweiler
- Department of Molecular, Cellular, & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| |
Collapse
|
118
|
Ramaswamy VK, Vargiu AV, Malloci G, Dreier J, Ruggerone P. Molecular Determinants of the Promiscuity of MexB and MexY Multidrug Transporters of Pseudomonas aeruginosa. Front Microbiol 2018; 9:1144. [PMID: 29910784 PMCID: PMC5992780 DOI: 10.3389/fmicb.2018.01144] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/14/2018] [Indexed: 12/14/2022] Open
Abstract
Secondary multidrug transporters of the resistance-nodulation-cell division (RND) superfamily contribute crucially to antibiotic resistance in Gram-negative bacteria. Compared to the most studied transporter AcrB of Escherichia coli, little is known about the molecular determinants of distinct polyspecificities of the most important RND transporters MexB and MexY of Pseudomonas aeruginosa. In an effort to add knowledge on this topic, we performed an exhaustive atomic-level comparison of the main putative recognition sites (access and deep binding pockets) in these two Mex transporters. We identified an underlying link between some structural, chemical and dynamical features of the binding pockets and the physicochemical nature of the corresponding substrates recognized by either one or both pumps. In particular, mosaic-like lipophilic and electrostatic surfaces of the binding pockets provide for both proteins several multifunctional sites for diffuse binding of diverse substrates. Specific lipophilicity signatures of the weakly conserved deep pocket suggest a key role of this site as a selectivity filter as in Acr transporters. Finally, the different dynamics of the bottom-loop in MexB and MexY support its possible role in binding of large substrates. Our work represents the first comparative study of the major RND transporters in P. aeruginosa and also the first structure-based study of MexY, for which no experimental structure is available yet.
Collapse
Affiliation(s)
| | - Attilio V Vargiu
- Department of Physics, University of Cagliari, Monserrato, Italy
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Monserrato, Italy
| | - Jürg Dreier
- Basilea Pharmaceutica International Ltd., Basel, Switzerland
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Monserrato, Italy
| |
Collapse
|
119
|
de Morais Oliveira-Tintino CD, Tintino SR, Limaverde PW, Figueredo FG, Campina FF, da Cunha FAB, da Costa RHS, Pereira PS, Lima LF, de Matos YMLS, Coutinho HDM, Siqueira-Júnior JP, Balbino VQ, da Silva TG. Inhibition of the essential oil from Chenopodium ambrosioides L. and α-terpinene on the NorA efflux-pump of Staphylococcus aureus. Food Chem 2018; 262:72-77. [PMID: 29751924 DOI: 10.1016/j.foodchem.2018.04.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 12/19/2022]
Abstract
This study was carried out to test the essential oil from C. ambrosioides leaves and its main constituent, α-Terpinene, in an antibacterial activity assay. As well, it was evaluated ability reduce resistance to norfloxacin and ethidium bromide was compared the Staphylococcus aureus 1199B whith 1199 wild type strain. The MIC of the C. ambrosioides essential oil and α-Terpinene were determined by microdilution method. The MIC of the essential oil and α-Terpinene presented a value ≥ 1024 μg/mL. However, when associated with antibacterials, the essential oil from C. ambrosioides leaves significantly reduced the MIC of antibiotics and ethidium bromide, characterizing an efflux pump inhibition. The C. ambrosioides essential oil, despite having no direct antibacterial activity against the S. aureus 1199B strain, showed a potentiating action when associated with antibacterial agents, this being attributed to an inhibition of efflux pumps.
Collapse
Affiliation(s)
- Cícera Datiane de Morais Oliveira-Tintino
- Laboratory of Microbiology and Molecular Biology, Department of Chemical Biology, Regional University of Cariri, Crato, Brazil; Laboratory of Farmatoxicological Prospecting of Bioactive Products (BIOFARMATOX), Department of Antibiotics, Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Saulo Relison Tintino
- Laboratory of Microbiology and Molecular Biology, Department of Chemical Biology, Regional University of Cariri, Crato, Brazil
| | - Paulo W Limaverde
- Laboratory of Microbiology and Molecular Biology, Department of Chemical Biology, Regional University of Cariri, Crato, Brazil
| | - Fernando G Figueredo
- Laboratory of Microbiology and Molecular Biology, Department of Chemical Biology, Regional University of Cariri, Crato, Brazil
| | - Fábia F Campina
- Laboratory of Microbiology and Molecular Biology, Department of Chemical Biology, Regional University of Cariri, Crato, Brazil
| | - Francisco A B da Cunha
- Laboratory of Microbiology and Molecular Biology, Department of Chemical Biology, Regional University of Cariri, Crato, Brazil
| | - Roger H S da Costa
- Pharmacology and Medicinal Chemistry Laboratory, Department of Chemical Biology, Regional University of Cariri, Crato, Ceara, Brazil
| | - Pedro Silvino Pereira
- Laboratory of Farmatoxicological Prospecting of Bioactive Products (BIOFARMATOX), Department of Antibiotics, Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Luciene F Lima
- Laboratory of Microbiology and Molecular Biology, Department of Chemical Biology, Regional University of Cariri, Crato, Brazil
| | - Yedda M L S de Matos
- Laboratory of Microbiology and Molecular Biology, Department of Chemical Biology, Regional University of Cariri, Crato, Brazil
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Chemical Biology, Regional University of Cariri, Crato, Brazil.
| | - José P Siqueira-Júnior
- Laboratory of Microrganisms Genetics (LGM), Department of Molecular Biology - CCEN, UFPB, Brazil
| | - Valdir Q Balbino
- Evolutionary Biology and Bioinformatics Laboratory (LABBE), Department of Genetics - CCB, UFPE, Brazil
| | - Teresinha Gonçalves da Silva
- Laboratory of Farmatoxicological Prospecting of Bioactive Products (BIOFARMATOX), Department of Antibiotics, Federal University of Pernambuco (UFPE), Recife, Brazil
| |
Collapse
|
120
|
Lu WJ, Lin HJ, Janganan TK, Li CY, Chin WC, Bavro VN, Lin HTV. ATP-Binding Cassette Transporter VcaM from Vibrio cholerae is Dependent on the Outer Membrane Factor Family for Its Function. Int J Mol Sci 2018; 19:ijms19041000. [PMID: 29584668 PMCID: PMC5979437 DOI: 10.3390/ijms19041000] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 11/16/2022] Open
Abstract
Vibrio cholerae ATP-binding cassette transporter VcaM (V. cholerae ABC multidrug resistance pump) has previously been shown to confer resistance to a variety of medically important drugs. In this study, we set to analyse its properties both in vitro in detergent-solubilised state and in vivo to differentiate its dependency on auxiliary proteins for its function. We report the first detailed kinetic parameters of purified VcaM and the rate of phosphate (Pi) production. To determine the possible functional dependencies of VcaM on the tripartite efflux pumps we then utilized different E. coli strains lacking the principal secondary transporter AcrB (Acriflavine resistance protein), as well as cells lacking the outer membrane factor (OMF) TolC (Tolerance to colicins). Consistent with the ATPase function of VcaM we found it to be susceptible to sodium orthovanadate (NaOV), however, we also found a clear dependency of VcaM function on TolC. Inhibitors targeting secondary active transporters had no effects on either VcaM-conferred resistance or Hoechst 33342 accumulation, suggesting that VcaM might be capable of engaging with the TolC-channel without periplasmic mediation by additional transporters. Our findings are indicative of VcaM being capable of a one-step substrate translocation from cytosol to extracellular space utilising the TolC-channel, making it the only multidrug ABC-transporter outside of the MacB-family with demonstrable TolC-dependency.
Collapse
Affiliation(s)
- Wen-Jung Lu
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| | - Hsuan-Ju Lin
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| | - Thamarai K Janganan
- School of Life Sciences, University of Bedfordshire, University Square, Luton LU1 3JU, UK.
| | - Cheng-Yi Li
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| | - Wei-Chiang Chin
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| | - Vassiliy N Bavro
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| | - Hong-Ting Victor Lin
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| |
Collapse
|
121
|
Slipski CJ, Zhanel GG, Bay DC. Biocide Selective TolC-Independent Efflux Pumps in Enterobacteriaceae. J Membr Biol 2018; 251:15-33. [PMID: 29063140 PMCID: PMC5840245 DOI: 10.1007/s00232-017-9992-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/04/2017] [Indexed: 02/03/2023]
Abstract
Bacterial resistance to biocides used as antiseptics, dyes, and disinfectants is a growing concern in food preparation, agricultural, consumer manufacturing, and health care industries, particularly among Gram-negative Enterobacteriaceae, some of the most common community and healthcare-acquired bacterial pathogens. Biocide resistance is frequently associated with antimicrobial cross-resistance leading to reduced activity and efficacy of both antimicrobials and antiseptics. Multidrug resistant efflux pumps represent an important biocide resistance mechanism in Enterobacteriaceae. An assortment of structurally diverse efflux pumps frequently co-exist in these species and confer both unique and overlapping biocide and antimicrobial selectivity. TolC-dependent multicomponent systems that span both the plasma and outer membranes have been shown to confer clinically significant resistance to most antimicrobials including many biocides, however, a growing number of single component TolC-independent multidrug resistant efflux pumps are specifically associated with biocide resistance: small multidrug resistance (SMR), major facilitator superfamily (MFS), multidrug and toxin extruder (MATE), cation diffusion facilitator (CDF), and proteobacterial antimicrobial compound efflux (PACE) families. These efflux systems are a growing concern as they are rapidly spread between members of Enterobacteriaceae on conjugative plasmids and mobile genetic elements, emphasizing their importance to antimicrobial resistance. In this review, we will summarize the known biocide substrates of these efflux pumps, compare their structural relatedness, Enterobacteriaceae distribution, and significance. Knowledge gaps will be highlighted in an effort to unravel the role that these apparent "lone wolves" of the efflux-mediated resistome may offer.
Collapse
Affiliation(s)
- Carmine J Slipski
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Rm 514C Basic Medical Sciences Bldg., 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Rm 514C Basic Medical Sciences Bldg., 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Denice C Bay
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Rm 514C Basic Medical Sciences Bldg., 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
122
|
Vargiu AV, Ramaswamy VK, Malloci G, Malvacio I, Atzori A, Ruggerone P. Computer simulations of the activity of RND efflux pumps. Res Microbiol 2018; 169:384-392. [PMID: 29407044 DOI: 10.1016/j.resmic.2017.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 12/25/2022]
Abstract
The putative mechanism by which bacterial RND-type multidrug efflux pumps recognize and transport their substrates is a complex and fascinating enigma of structural biology. How a single protein can recognize a huge number of unrelated compounds and transport them through one or just a few mechanisms is an amazing feature not yet completely unveiled. The appearance of cooperativity further complicates the understanding of structure-dynamics-activity relationships in these complex machineries. Experimental techniques may have limited access to the molecular determinants and to the energetics of key processes regulating the activity of these pumps. Computer simulations are a complementary approach that can help unveil these features and inspire new experiments. Here we review recent computational studies that addressed the various molecular processes regulating the activity of RND efflux pumps.
Collapse
Affiliation(s)
- Attilio Vittorio Vargiu
- Department of Physics, University of Cagliari, Cittadella Universitaria, S.P. Monserrato-Sestu km 0.700, 09042 Monserrato (CA), Italy.
| | - Venkata Krishnan Ramaswamy
- Department of Physics, University of Cagliari, Cittadella Universitaria, S.P. Monserrato-Sestu km 0.700, 09042 Monserrato (CA), Italy
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Cittadella Universitaria, S.P. Monserrato-Sestu km 0.700, 09042 Monserrato (CA), Italy
| | - Ivana Malvacio
- Department of Physics, University of Cagliari, Cittadella Universitaria, S.P. Monserrato-Sestu km 0.700, 09042 Monserrato (CA), Italy
| | - Alessio Atzori
- Department of Physics, University of Cagliari, Cittadella Universitaria, S.P. Monserrato-Sestu km 0.700, 09042 Monserrato (CA), Italy
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Cittadella Universitaria, S.P. Monserrato-Sestu km 0.700, 09042 Monserrato (CA), Italy.
| |
Collapse
|
123
|
Perrin E, Maggini V, Maida I, Gallo E, Lombardo K, Madarena MP, Buroni S, Scoffone VC, Firenzuoli F, Mengoni A, Fani R. Antimicrobial activity of six essential oils against Burkholderia cepacia complex: insights into mechanism(s) of action. Future Microbiol 2018; 13:59-67. [DOI: 10.2217/fmb-2017-0121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the activity and mechanisms of action of six essential oils (EOs) against Burkholderia cepacia complex, opportunistic human pathogens highly resistant to antibiotics. Materials & methods: Minimal inhibitory concentration of EOs alone, plus antibiotics or efflux pump inhibitors was determined. Results: Origanum vulgare, Thymus vulgaris and Eugenia caryophyllata EOs resulted to be more active than the other EOs. EOs did not enhance antibiotic activity against the model strain B. cenocepacia J2315. EOs resulted more active in the presence of an efflux pump inhibitor acting on Resistance-Nodulation Cell Division efflux pumps and against B. cenocepacia J2315 Resistance-Nodulation Cell Division knocked-out mutants. Conclusion: EOs showed intracellular mechanisms of action and, thus, the efflux pumps inhibitor addition could boost their activity.
Collapse
Affiliation(s)
- Elena Perrin
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
| | - Valentina Maggini
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
- Department of Experimental & Clinical Medicine, University of Florence, I-50134, Florence, Italy
- Center for Integrative Medicine, Careggi University Hospital, University of Florence, I-50134, Florence, Italy
| | - Isabel Maida
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
| | - Eugenia Gallo
- Department of Experimental & Clinical Medicine, University of Florence, I-50134, Florence, Italy
- Center for Integrative Medicine, Careggi University Hospital, University of Florence, I-50134, Florence, Italy
| | - Katia Lombardo
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
| | - Maria Pia Madarena
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
| | - Silvia Buroni
- Department of Biology & Biotechnology, University of Pavia, Via Ferrata 1, I-27100, Pavia, Italy
| | - Viola Camilla Scoffone
- Department of Biology & Biotechnology, University of Pavia, Via Ferrata 1, I-27100, Pavia, Italy
| | - Fabio Firenzuoli
- Center for Integrative Medicine, Careggi University Hospital, University of Florence, I-50134, Florence, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
| |
Collapse
|
124
|
Zhang XC, Liu M, Lu G, Heng J. Thermodynamic secrets of multidrug resistance: A new take on transport mechanisms of secondary active antiporters. Protein Sci 2017; 27:595-613. [PMID: 29193407 DOI: 10.1002/pro.3355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022]
Abstract
Multidrug resistance (MDR) presents a growing challenge to global public health. Drug extrusion transporters play a critical part in MDR; thus, their mechanisms of substrate recognition are being studied in great detail. In this work, we review common structural features of key transporters involved in MDR. Based on our membrane potential-driving hypothesis, we propose a general energy-coupling mechanism for secondary-active antiporters. This putative mechanism provides a common framework for understanding poly-specificity of most-if not all-MDR transporters.
Collapse
Affiliation(s)
- Xuejun C Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangyuan Lu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Heng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| |
Collapse
|
125
|
Wang Y, Mowla R, Ji S, Guo L, De Barros Lopes MA, Jin C, Song D, Ma S, Venter H. Design, synthesis and biological activity evaluation of novel 4-subtituted 2-naphthamide derivatives as AcrB inhibitors. Eur J Med Chem 2017; 143:699-709. [PMID: 29220791 DOI: 10.1016/j.ejmech.2017.11.102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 11/14/2017] [Accepted: 11/29/2017] [Indexed: 10/18/2022]
Abstract
A novel series of 4-substituted 2-naphthamide derivatives were designed, synthesized and evaluated for their biological activity. In particular, the ability of the compounds to potentiate the action of antibiotics, to inhibit Nile Red efflux and to target AcrB specifically was investigated. The results indicated that most of the 4-substituted 2-naphthamide derivatives were able to synergize with the antibiotics tested, and inhibit Nile Red efflux by AcrB in the resistant phenotype. Subsequent exclusion of compounds with off target effects such as outer- or inner membrane permeabilization identified compounds 7c, 7g, 12c, 12i and 13g as efflux pump inhibitors (EPIs). Particularly, compounds 7c, 7g and 12i were found to be the most potent EPIs, which synergized with the two substrates tested at lower concentrations than that of parent A3, demonstrating an improvement in potency as compared to A3. Additionally, when the outer membrane of E. coli was permeabilized, compound 12c displayed a huge increase in efficacy and was able to synergize with erythromycin at a concentration that was 16 times lower than that of the parent A3. Hence we were able to design and synthesize compounds that displayed significant increase in efficacy as EPIs against AcrB.
Collapse
Affiliation(s)
- Yinhu Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Rumana Mowla
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5000, Australia
| | - Shengli Ji
- ReaLi Tide Biological Technology (Weihai) Co. Ltd, Weihai 264207, China
| | - Liwei Guo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Miguel A De Barros Lopes
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5000, Australia
| | - Chaobin Jin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Di Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China.
| | - Henrietta Venter
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
126
|
Lo CC, Lin PT, Chiang-Ni C, Lin KH, Lee SL, Kuo TF, Lo HR. Contribution of efflux systems to the detergent resistance, cytotoxicity, and biofilm formation of Vibrio vulnificus. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
127
|
Prabhala BK, Aduri NG, Sharma N, Shaheen A, Sharma A, Iqbal M, Hansen PR, Brasen C, Gajhede M, Rahman M, Mirza O. The prototypical proton-coupled oligopeptide transporter YdgR from Escherichia coli facilitates chloramphenicol uptake into bacterial cells. J Biol Chem 2017; 293:1007-1017. [PMID: 29150447 DOI: 10.1074/jbc.m117.805960] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/07/2017] [Indexed: 11/06/2022] Open
Abstract
Chloramphenicol (Cam) is a broad-spectrum antibiotic used to combat bacterial infections in humans and animals. Cam export from bacterial cells is one of the mechanisms by which pathogens resist Cam's antibacterial effects, and several different proteins are known to facilitate this process. However, to date no report exists on any specific transport protein that facilitates Cam uptake. The proton-coupled oligopeptide transporter (POT) YdgR from Escherichia coli is a prototypical member of the POT family, functioning in proton-coupled uptake of di- and tripeptides. By following bacterial growth and conducting LC-MS-based assays we show here that YdgR facilitates Cam uptake. Some YdgR variants displaying reduced peptide uptake also exhibited reduced Cam uptake, indicating that peptides and Cam bind YdgR at similar regions. Homology modeling of YdgR, Cam docking, and mutational studies suggested a binding mode that resembles that of Cam binding to the multidrug resistance transporter MdfA. To our knowledge, this is the first report of Cam uptake into bacterial cells mediated by a specific transporter protein. Our findings suggest a specific bacterial transporter for drug uptake that might be targeted to promote greater antibiotic influx to increase cytoplasmic antibiotic concentration for enhanced cytotoxicity.
Collapse
Affiliation(s)
- Bala K Prabhala
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark and
| | - Nanda G Aduri
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark and
| | - Neha Sharma
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark and
| | - Aqsa Shaheen
- the Health Biotechnology Divisions, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Arpan Sharma
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark and
| | - Mazhar Iqbal
- the Health Biotechnology Divisions, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Paul R Hansen
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark and
| | - Christoffer Brasen
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark and
| | - Michael Gajhede
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark and
| | - Moazur Rahman
- the Health Biotechnology Divisions, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Osman Mirza
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark and
| |
Collapse
|
128
|
Srimani JK, Huang S, Lopatkin AJ, You L. Drug detoxification dynamics explain the postantibiotic effect. Mol Syst Biol 2017; 13:948. [PMID: 29061668 PMCID: PMC5658699 DOI: 10.15252/msb.20177723] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 01/06/2023] Open
Abstract
The postantibiotic effect (PAE) refers to the temporary suppression of bacterial growth following transient antibiotic treatment. This effect has been observed for decades for a wide variety of antibiotics and microbial species. However, despite empirical observations, a mechanistic understanding of this phenomenon is lacking. Using a combination of modeling and quantitative experiments, we show that the PAE can be explained by the temporal dynamics of drug detoxification in individual cells after an antibiotic is removed from the extracellular environment. These dynamics are dictated by both the export of the antibiotic and the intracellular titration of the antibiotic by its target. This mechanism is generally applicable for antibiotics with different modes of action. We further show that efflux inhibition is effective against certain antibiotic motifs, which may help explain mixed cotreatment success.
Collapse
Affiliation(s)
- Jaydeep K Srimani
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Shuqiang Huang
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen, China
| | | | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
129
|
Sandhu P, Akhter Y. Evolution of structural fitness and multifunctional aspects of mycobacterial RND family transporters. Arch Microbiol 2017; 200:19-31. [PMID: 28951954 DOI: 10.1007/s00203-017-1434-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/07/2017] [Accepted: 09/20/2017] [Indexed: 12/11/2022]
Abstract
Drug resistance is a major concern due to the evolution and emergence of pathogenic bacterial strains with novel strategies to resist the antibiotics in use. Mycobacterium tuberculosis (Mtb) is one of such pathogens with reported strains, which are not treatable with any of the available anti-TB drugs. This scenario has led to the need to look for some novel drug targets in Mtb, which may be exploited to design effective treatment strategies against the infection. The goal of this review is to discuss one such class of emerging drug targets in Mtb. MmpL (mycobacterial membrane protein large) proteins from Mtb are reported to be involved in multi-substrate transport including drug efflux and considered as one of the contributing factors for the emergence of multidrug-resistant strains. MmpL proteins belong to resistance nodulation division permeases superfamily of membrane transporters, which are viably and pathogenetically important and their inhibition could be lethal for the bacteria.
Collapse
Affiliation(s)
- Padmani Sandhu
- Structural Bioinformatics Group, Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Shahpur District, Kangra, Himachal Pradesh, 176206, India
| | - Yusuf Akhter
- Structural Bioinformatics Group, Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Shahpur District, Kangra, Himachal Pradesh, 176206, India.
| |
Collapse
|
130
|
Mowla R, Wang Y, Ma S, Venter H. Kinetic analysis of the inhibition of the drug efflux protein AcrB using surface plasmon resonance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:878-886. [PMID: 28890187 DOI: 10.1016/j.bbamem.2017.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/19/2017] [Accepted: 08/31/2017] [Indexed: 11/24/2022]
Abstract
Multidrug efflux protein complexes such as AcrAB-TolC from Escherichia coli are paramount in multidrug resistance in Gram-negative bacteria and are also implicated in other processes such as virulence and biofilm formation. Hence efflux pump inhibition, as a means to reverse antimicrobial resistance in clinically relevant pathogens, has gained increased momentum over the past two decades. Significant advances in the structural and functional analysis of AcrB have informed the selection of efflux pump inhibitors (EPIs). However, an accurate method to determine the kinetics of efflux pump inhibition was lacking. In this study we standardised and optimised surface plasmon resonance (SPR) to probe the binding kinetics of substrates and inhibitors to AcrB. The SPR method was also combined with a fluorescence drug binding method by which affinity of two fluorescent AcrB substrates were determined using the same conditions and controls as for SPR. Comparison of the results from the fluorescent assay to those of the SPR assay showed excellent correlation and provided validation for the methods and conditions used for SPR. The kinetic parameters of substrate (doxorubicin, novobiocin and minocycline) binding to AcrB were subsequently determined. Lastly, the kinetics of inhibition of AcrB were probed for two established inhibitors (phenylalanine arginyl β-naphthylamide and 1-1-naphthylmethyl-piperazine) and three novel EPIs: 4-isobutoxy-2-naphthamide (A2), 4-isopentyloxy-2-naphthamide (A3) and 4-benzyloxy-2-naphthamide (A9) have also been probed. The kinetic data obtained could be correlated with inhibitor efficacy and mechanism of action. This study is the first step in the quantitative analysis of the kinetics of inhibition of the clinically important RND-class of multidrug efflux pumps and will allow the design of improved and more potent inhibitors of drug efflux pumps. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.
Collapse
Affiliation(s)
- Rumana Mowla
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, SA 5000, Australia
| | - Yinhu Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Henrietta Venter
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, SA 5000, Australia.
| |
Collapse
|
131
|
Siriyong T, Srimanote P, Chusri S, Yingyongnarongkul BE, Suaisom C, Tipmanee V, Voravuthikunchai SP. Conessine as a novel inhibitor of multidrug efflux pump systems in Pseudomonas aeruginosa. Altern Ther Health Med 2017; 17:405. [PMID: 28806947 PMCID: PMC5557310 DOI: 10.1186/s12906-017-1913-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 08/07/2017] [Indexed: 11/18/2022]
Abstract
Background Holarrhena antidysenterica has been employed as an ethnobotanical plant for the treatment of dysentery, diarrhoea, fever, and bacterial infections. Biological activities of the principle compound, conessine including anti-diarrhoea and anti-plasmodial effects were documented. Our previous study reported potency of Holarrhena antidysenterica extract and conessine as resistance modifying agents against extensively drug-resistant Acinetobacter baumannii. This study aimed to investigate (i) whether conessine, a steroidal alkaloid compound, could act as a resistance modifying agent against multidrug-resistant Pseudomonas aeruginosa, and (ii) whether MexAB-OprM efflux pump involved in the mechanism. Methods Conessine combined with various antibiotics were determined for synergistic activity against P. aeruginosa PAO1 strain K767 (wild-type), K1455 (MexAB-OprM overexpressed), and K1523 (MexB deletion). H33342 accumulation assay was used to evaluate efflux pump inhibition while NPN uptake assay was assessed membrane permeabilization. Results Conessine significantly reduced MICs of all antibiotics by at least 8-fold in MexAB-OprM overexpressed strain. The levels were comparable to those obtained in wild-type strain for cefotaxime, levofloxacin, and tetracycline. With erythromycin, novobiocin, and rifampicin, MICs were 4- to 8-fold less than MICs of the wild-type strain. Loss of MexAB-OprM due to deletion of mexB affected susceptibility to almost all antibiotics, except novobiocin. Synergistic activities between other antibiotics (except novobiocin) and conessine observed in MexB deletion strain suggested that conessine might inhibit other efflux systems present in P. aeruginosa. Inhibition of H33342 efflux in the tested strains clearly demonstrated that conessine inhibited MexAB-OprM pump. In contrast, the mode of action as a membrane permeabilizer was not observed after treatment with conessine as evidenced by no accumulation of 1-N-phenylnaphthylamine. Conclusions The results suggested that conessine could be applied as a novel efflux pump inhibitor to restore antibiotic activity by inhibiting efflux pump systems in P. aeruginosa. The findings speculated that conessine may also have a potential to be active against homologous resistance–nodulation–division (RND) family in other Gram-negative pathogens.
Collapse
|
132
|
Haynes KM, Abdali N, Jhawar V, Zgurskaya HI, Parks JM, Green AT, Baudry J, Rybenkov VV, Smith JC, Walker JK. Identification and Structure-Activity Relationships of Novel Compounds that Potentiate the Activities of Antibiotics in Escherichia coli. J Med Chem 2017. [PMID: 28650638 DOI: 10.1021/acs.jmedchem.7b00453] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In Gram-negative bacteria, efflux pumps are able to prevent effective cellular concentrations from being achieved for a number of antibiotics. Small molecule adjuvants that act as efflux pump inhibitors (EPIs) have the potential to reinvigorate existing antibiotics that are currently ineffective due to efflux mechanisms. Through a combination of rigorous experimental screening and in silico virtual screening, we recently identified novel classes of EPIs that interact with the membrane fusion protein AcrA, a critical component of the AcrAB-TolC efflux pump in Escherichia coli. Herein, we present initial optimization efforts and structure-activity relationships around one of those previously described hits, NSC 60339 (1). From these efforts we identified two compounds, SLUPP-225 (17h) and SLUPP-417 (17o), which demonstrate favorable properties as potential EPIs in E. coli cells including the ability to penetrate the outer membrane, improved inhibition of efflux relative to 1, and potentiation of the activity of novobiocin and erythromycin.
Collapse
Affiliation(s)
- Keith M Haynes
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine , St Louis, Missouri 63104, United States
| | - Narges Abdali
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Varsha Jhawar
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Jerry M Parks
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States.,Graduate School of Genome Science and Technology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Adam T Green
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States.,Graduate School of Genome Science and Technology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Jerome Baudry
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - John K Walker
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine , St Louis, Missouri 63104, United States.,Department of Chemistry, Saint Louis University , St. Louis, Missouri 63104, United States
| |
Collapse
|
133
|
de Aguiar Coletti TMSF, de Freitas LM, Almeida AMF, Fontana CR. Optimization of Antimicrobial Photodynamic Therapy in Biofilms by Inhibiting Efflux Pump. Photomed Laser Surg 2017. [DOI: 10.1089/pho.2016.4246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Laura Marise de Freitas
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Campus Araraquara, Departamento de Análises Clínicas, Araraquara, São Paulo, Brazil
| | - Ana Marisa Fusco Almeida
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Campus Araraquara, Departamento de Análises Clínicas, Araraquara, São Paulo, Brazil
| | - Carla Raquel Fontana
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Campus Araraquara, Departamento de Análises Clínicas, Araraquara, São Paulo, Brazil
| |
Collapse
|
134
|
Osei Sekyere J, Amoako DG. Genomic and phenotypic characterisation of fluoroquinolone resistance mechanisms in Enterobacteriaceae in Durban, South Africa. PLoS One 2017. [PMID: 28636609 PMCID: PMC5479536 DOI: 10.1371/journal.pone.0178888] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Resistance to fluoroquinolones (FQ) is being increasingly reported and found to be mediated by efflux pumps, plasmid-mediated quinolone resistance genes (PMQR) and mutations in gyrA, gyrB, parC and parE. However, studies reporting on FQ resistance mechanisms (FQRM), particularly in Africa, are focused mostly on Salmonella. This study used a whole-genome-based approach to describe FQRM in forty-eight clinical Enterobacteriaceae isolates comprising of Klebsiella pneumoniae (n = 21), Serratia marcescens (n = 12), Enterobacter spp. (n = 10), Citrobacter freundii (n = 3), Escherichia coli (n = 1), and Klebsiella michiganensis (n = 1) with reduced susceptibility to FQ in Enterobacteriaceae. All the isolates exhibited exceptionally high-level resistance (MIC of 4-512mg/L) to all three FQs, which could not be reversed by carbonyl cyanide m-chlorophenyl hydrazine (CCCP), verapamil (VRP) or reserpine (RSP). PMQR genes such as oqxAB (n = 43), aac(6’)-Ib-cr (n = 28), and qnr(S1, B1, B2, B9, B49, B66) (n = 23) were identified without transposons or integrons in their immediate environments. Multiple and diverse mutations were found in gyrA (including S83I/Y and T/I83I/T), gyrB, parC and parE, which were clonally specific. There were vertical and horizontal transmission of high-level FQ resistance in Enterobacteriaceae in hospitals in Durban, South Africa, which are mediated by efflux, PMQR genes, and gyrA, gyrB, parC and parE mutations.
Collapse
Affiliation(s)
- John Osei Sekyere
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, KNUST, Kumasi, Ghana
- * E-mail:
| | - Daniel Gyamfi Amoako
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal; Durban, South Africa
| |
Collapse
|
135
|
Schillaci D, Spanò V, Parrino B, Carbone A, Montalbano A, Barraja P, Diana P, Cirrincione G, Cascioferro S. Pharmaceutical Approaches to Target Antibiotic Resistance Mechanisms. J Med Chem 2017; 60:8268-8297. [PMID: 28594170 DOI: 10.1021/acs.jmedchem.7b00215] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is urgent need for new therapeutic strategies to fight the global threat of antibiotic resistance. The focus of this Perspective is on chemical agents that target the most common mechanisms of antibiotic resistance such as enzymatic inactivation of antibiotics, changes in cell permeability, and induction/activation of efflux pumps. Here we assess the current landscape and challenges in the treatment of antibiotic resistance mechanisms at both bacterial cell and community levels. We also discuss the potential clinical application of chemical inhibitors of antibiotic resistance mechanisms as add-on treatments for serious drug-resistant infections. Enzymatic inhibitors, such as the derivatives of the β-lactamase inhibitor avibactam, are closer to the clinic than other molecules. For example, MK-7655, in combination with imipenem, is in clinical development for the treatment of infections caused by carbapenem-resistant Enterobacteriaceae and Pseudomonas aeruginosa, which are difficult to treat. In addition, other molecules targeting multidrug-resistance mechanisms, such as efflux pumps, are under development and hold promise for the treatment of multidrug resistant infections.
Collapse
Affiliation(s)
- Domenico Schillaci
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Virginia Spanò
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Anna Carbone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Alessandra Montalbano
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Paola Barraja
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
136
|
Yılmaz Ç, Özcengiz G. Antibiotics: Pharmacokinetics, toxicity, resistance and multidrug efflux pumps. Biochem Pharmacol 2017; 133:43-62. [DOI: 10.1016/j.bcp.2016.10.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/14/2016] [Indexed: 02/03/2023]
|
137
|
Klahn P, Brönstrup M. Bifunctional antimicrobial conjugates and hybrid antimicrobials. Nat Prod Rep 2017; 34:832-885. [PMID: 28530279 DOI: 10.1039/c7np00006e] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to the end of 2016Novel antimicrobial drugs are continuously needed to counteract bacterial resistance development. An innovative molecular design strategy for novel antibiotic drugs is based on the hybridization of an antibiotic with a second functional entity. Such conjugates can be grouped into two major categories. In the first category (antimicrobial hybrids), both functional elements of the hybrid exert antimicrobial activity. Due to the dual targeting, resistance development can be significantly impaired, the pharmacokinetic properties can be superior compared to combination therapies with the single antibiotics, and the antibacterial potency is often enhanced in a synergistic manner. In the second category (antimicrobial conjugates), one functional moiety controls the accumulation of the other part of the conjugate, e.g. by mediating an active transport into the bacterial cell or blocking the efflux. This approach is mostly applied to translocate compounds across the cell envelope of Gram-negative bacteria through membrane-embedded transporters (e.g. siderophore transporters) that provide nutrition and signalling compounds to the cell. Such 'Trojan Horse' approaches can expand the antibacterial activity of compounds against Gram-negative pathogens, or offer new options for natural products that could not be developed as standalone antibiotics, e.g. due to their toxicity.
Collapse
Affiliation(s)
- P Klahn
- Department for Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany. and Institute for Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| | - M Brönstrup
- Department for Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany.
| |
Collapse
|
138
|
Bruns MM, Kakarla P, Floyd JT, Mukherjee MM, Ponce RC, Garcia JA, Ranaweera I, Sanford LM, Hernandez AJ, Willmon TM, Tolson GL, Varela MF. Modulation of the multidrug efflux pump EmrD-3 from Vibrio cholerae by Allium sativum extract and the bioactive agent allyl sulfide plus synergistic enhancement of antimicrobial susceptibility by A. sativum extract. Arch Microbiol 2017; 199:1103-1112. [PMID: 28432381 DOI: 10.1007/s00203-017-1378-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/25/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
The causative agent of cholera, Vibrio cholerae, is a public health concern. Multidrug-resistant V. cholerae variants may reduce chemotherapeutic efficacies of severe cholera. We previously reported that the multidrug efflux pump EmrD-3 from V. cholerae confers resistance to multiple structurally distinct antimicrobials. Medicinal plant compounds are potential candidates for EmrD-3 efflux pump modulation. The antibacterial activities of garlic Allium sativum, although poorly understood, predicts that a main bioactive component, allyl sulfide, modulates EmrD-3 efflux. Thus, we tested whether A. sativum extract acts in synergy with antimicrobials and that a main bioactive component allyl sulfide inhibits EmrD-3 efflux. We found that A. sativum extract and allyl sulfide inhibited ethidium bromide efflux in cells harboring EmrD-3 and that A. sativum lowered the MICs of multiple antibacterials. We conclude that A. sativum and allyl sulfide inhibit EmrD-3 and that A. sativum extract synergistically enhances antibacterial agents.
Collapse
Affiliation(s)
- Merissa M Bruns
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Prathusha Kakarla
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Jared T Floyd
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Mun Mun Mukherjee
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Robert C Ponce
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - John A Garcia
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Indrika Ranaweera
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Leslie M Sanford
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Alberto J Hernandez
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - T Mark Willmon
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Grace L Tolson
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA.
| |
Collapse
|
139
|
Wang Z, Fan G, Hryc CF, Blaza JN, Serysheva II, Schmid MF, Chiu W, Luisi BF, Du D. An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump. eLife 2017; 6. [PMID: 28355133 PMCID: PMC5404916 DOI: 10.7554/elife.24905] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022] Open
Abstract
Bacterial efflux pumps confer multidrug resistance by transporting diverse antibiotics from the cell. In Gram-negative bacteria, some of these pumps form multi-protein assemblies that span the cell envelope. Here, we report the near-atomic resolution cryoEM structures of the Escherichia coli AcrAB-TolC multidrug efflux pump in resting and drug transport states, revealing a quaternary structural switch that allosterically couples and synchronizes initial ligand binding with channel opening. Within the transport-activated state, the channel remains open even though the pump cycles through three distinct conformations. Collectively, our data provide a dynamic mechanism for the assembly and operation of the AcrAB-TolC pump. DOI:http://dx.doi.org/10.7554/eLife.24905.001
Collapse
Affiliation(s)
- Zhao Wang
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, United States.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Guizhen Fan
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, The University of Texas Health Science Center at Houston Medical School, Houston, United States
| | - Corey F Hryc
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, United States.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States.,Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, United States
| | - James N Blaza
- MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, The University of Texas Health Science Center at Houston Medical School, Houston, United States
| | - Michael F Schmid
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, United States.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Wah Chiu
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, United States.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States.,Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, United States
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Dijun Du
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
140
|
Yamamoto N, Kawahara R, Akeda Y, Shanmugakani RK, Yoshida H, Hagiya H, Hara N, Nishi I, Yukawa S, Asada R, Sasaki Y, Maeda K, Sakamoto N, Hamada S, Tomono K. Development of selective medium for IMP-type carbapenemase-producing Enterobacteriaceae in stool specimens. BMC Infect Dis 2017; 17:229. [PMID: 28340557 PMCID: PMC5366124 DOI: 10.1186/s12879-017-2312-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 03/08/2017] [Indexed: 01/07/2023] Open
Abstract
Background Identification of carbapenemase-producing Enterobacteriaceae (CPE) in faecal specimens is challenging. This fact is particularly critical because low-level carbapenem-resistant organisms such as IMP-producing CPE are most prevalent in Japan. We developed a modified selective medium more suitable for IMP-type CPE. Methods Fifteen reference CPE strains producing different types of β-lactamases were used to evaluate the commercially available CHROMagar KPC and chromID CARBA as well as the newly prepared MC-ECC medium (CHROMagar ECC supplemented with meropenem, cloxacillin, and ZnSO4) and M-ECC medium (CHROMagar ECC supplemented with meropenem and ZnSO4). A total of 1035 clinical samples were then examined to detect CPE using chromID CARBA and M-ECC medium. Results All tested strains producing NDM-, KPC-, and OXA-48-carbapenemases were successfully cultured in the media employed. Although most of the IMP-positive strains did not grow in CHROMagar KPC, chromID CARBA, or MC-ECC, all tested strains grew on M-ECC. When faecal samples were applied to the media, M-ECC medium allowed the best growth of IMP-type CPE with a significantly higher sensitivity (99.3%) than that of chromID CARBA (13.9%). Conclusions M-ECC medium was determined as the most favourable selective medium for the detection of IMP-type CPE as well as other types of CPE. Electronic supplementary material The online version of this article (doi:10.1186/s12879-017-2312-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Norihisa Yamamoto
- Department of Infection Control and Prevention, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ryuji Kawahara
- Department of Bacteriology, Osaka Prefectural Institute of Public Health, Osaka, Japan
| | - Yukihiro Akeda
- Department of Infection Control and Prevention, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| | - Rathina Kumar Shanmugakani
- Department of Infection Control and Prevention, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hisao Yoshida
- Department of Infection Control and Prevention, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hideharu Hagiya
- Department of Infection Control and Prevention, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Naohiro Hara
- Department of Infection Control and Prevention, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Isao Nishi
- Laboratory for Clinical Investigation, Osaka University Hospital, Osaka, Japan
| | - Satomi Yukawa
- Department of Infection Control and Prevention, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | - Yumi Sasaki
- Clinical Laboratory Department Section 1, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Kazuhiro Maeda
- Clinical Laboratory Department Section 1, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Noriko Sakamoto
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shigeyuki Hamada
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kazunori Tomono
- Department of Infection Control and Prevention, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
141
|
Spengler G, Kincses A, Gajdács M, Amaral L. New Roads Leading to Old Destinations: Efflux Pumps as Targets to Reverse Multidrug Resistance in Bacteria. Molecules 2017; 22:molecules22030468. [PMID: 28294992 PMCID: PMC6155429 DOI: 10.3390/molecules22030468] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 01/05/2023] Open
Abstract
Multidrug resistance (MDR) has appeared in response to selective pressures resulting from the incorrect use of antibiotics and other antimicrobials. This inappropriate application and mismanagement of antibiotics have led to serious problems in the therapy of infectious diseases. Bacteria can develop resistance by various mechanisms and one of the most important factors resulting in MDR is efflux pump-mediated resistance. Because of the importance of the efflux-related multidrug resistance the development of new therapeutic approaches aiming to inhibit bacterial efflux pumps is a promising way to combat bacteria having over-expressed MDR efflux systems. The definition of an efflux pump inhibitor (EPI) includes the ability to render the bacterium increasingly more sensitive to a given antibiotic or even reverse the multidrug resistant phenotype. In the recent years numerous EPIs have been developed, although so far their clinical application has not yet been achieved due to their in vivo toxicity and side effects. In this review, we aim to give a short overview of efflux mediated resistance in bacteria, EPI compounds of plant and synthetic origin, and the possible methods to investigate and screen EPI compounds in bacterial systems.
Collapse
Affiliation(s)
- Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
| | - Annamária Kincses
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
| | - Márió Gajdács
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
| | - Leonard Amaral
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
- Travel Medicine, Institute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal.
| |
Collapse
|
142
|
Kim J, Shin B, Park C, Park W. Indole-Induced Activities of β-Lactamase and Efflux Pump Confer Ampicillin Resistance in Pseudomonas putida KT2440. Front Microbiol 2017; 8:433. [PMID: 28352264 PMCID: PMC5348495 DOI: 10.3389/fmicb.2017.00433] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/01/2017] [Indexed: 11/13/2022] Open
Abstract
Indole, which is widespread in microbial communities, has received attention because of its effects on bacterial physiology. Pseudomonas putida and Pseudomonas aeruginosa can acquire ampicillin (Amp) resistance during growth on indole-Amp agar. Transcriptome, mutant, and inhibitor studies have suggested that Amp resistance induced by indole can be attributed to increased gene expression of ttgAB encoding two genes of RND-type multidrug efflux operons and an ampC encoding β-lactamase. Expression, enzyme activities, and mutational analyses indicated that AmpC β-lactamase is important for acquiring Amp resistance of P. putida in the presence of indole. Here, we show, for the first time, that volatile indole increased Amp-resistant cells. Consistent with results of the volatile indole assay, a low concentration of indole in liquid culture promoted growth initially, but led to mutagenesis after indole was depleted, which could not be observed at high indole concentrations. Interestingly, ttgAB and ampC gene expression levels correlate with the concentration of indole, which might explain the low number of Amp-mutated cells in high indole concentrations. The expression levels of genes involved in mutagenesis, namely rpoS, recA, and mutS, were also modulated by indole. Our data indicates that indole reduces Amp-induced heterogeneity by promoting expression of TtgABC or MexAB-OprM efflux pumps and the indole-induced β-lactamase in P. putida and P. aeruginosa.
Collapse
Affiliation(s)
- Jisun Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul Korea
| | - Bora Shin
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul Korea
| | - Chulwoo Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul Korea
| |
Collapse
|
143
|
Computational modelling of efflux pumps and their inhibitors. Essays Biochem 2017; 61:141-156. [PMID: 28258237 DOI: 10.1042/ebc20160065] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 11/17/2022]
Abstract
Antimicrobial resistance is based on the multifarious strategies that bacteria adopt to face antibiotic therapies, making it a key public health concern of our era. Among these strategies, efflux pumps (EPs) contribute significantly to increase the levels and profiles of resistance by expelling a broad range of unrelated compounds - buying time for the organisms to develop specific resistance. In Gram-negative bacteria, many of these chromosomally encoded transporters form multicomponent 'pumps' that span both inner and outer membranes and are driven energetically by a primary or secondary transporter component.One of the strategies to reinvigorate the efficacy of antimicrobials is by joint administration with EP inhibitors (EPI), which either block the substrate binding and/or hinder any of the transport-dependent steps of the pump. In this review, we provide an overview of multidrug-resistance EPs, their inhibition strategies and the relevant findings from the various computational simulation studies reported to date with respect to deciphering the mechanism of action of inhibitors with the purpose of improving their rational design.
Collapse
|
144
|
Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria. Nat Microbiol 2017; 2:17001. [PMID: 28224989 DOI: 10.1038/nmicrobiol.2017.1] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/23/2016] [Indexed: 01/26/2023]
|
145
|
Osei Sekyere J, Amoako DG. Carbonyl Cyanide m-Chlorophenylhydrazine (CCCP) Reverses Resistance to Colistin, but Not to Carbapenems and Tigecycline in Multidrug-Resistant Enterobacteriaceae. Front Microbiol 2017; 8:228. [PMID: 28261184 PMCID: PMC5306282 DOI: 10.3389/fmicb.2017.00228] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/01/2017] [Indexed: 01/11/2023] Open
Abstract
Background: Carbapenems (CAR), colistin (CST), and tigecycline (TGC) alone or in combination therapy has become the last-resort antibiotics for treating infections caused by multidrug resistant (MDR) bacteria. However, resistance to these reserve antibiotics are increasingly being reported worldwide. Hence, the quest to find other agents that will synergistically restore the efficacy of these antibiotics have increased. Methods: Sixty-three clinical Enterobacteriaceae isolates comprising of Klebsiella pneumoniae (n = 24), Enterobacter spp. (n = 15), Serratia marcescens (n = 12), Citrobacter freundii (n = 8), Escherichia coli (n = 2), and K. oxytoca/michiganensis (n = 2) with known carbapenem resistance mechanisms and undescribed CST and TGC resistance mechanisms were subjected to broth microdilution and meropenem (MEM) disc synergy test in the presence and absence of carbonyl cyanide m-chlorophenylhydrazine (CCCP), a H+ conductor (protonophore). Results and conclusions: Susceptibility to MEM, imipenem (IMP), CST, and TGC was found in only 2, 0, 17, and 9 isolates respectively. Addition of CCCP reversed resistance to CST, TGC, IMP, and MEM in 44, 3, 0, and 0 isolates respectively; CST had the highest mean minimum inhibitory concentration (MIC) fold change (193.12; p < 0.0001) post CCCP compared to that of MEM (1.70), IMP (1.49) and TGC (1.16). Eight isolates tested positive for the MEM-CCCP disc synergy test. We concluded that CCCP reverse CST resistance in CST-resistant Enterobacteriaceae. Although CCCP is an experimental agent with no therapeutic value clinically, further studies are necessary to decipher the mechanisms underlying the CST-CCCP synergy to inform the development of adjuvants that could be therapeutically effective in CST-resistant infections.
Collapse
Affiliation(s)
- John Osei Sekyere
- Division of Microbiology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kwame Nkrumah University of Science and TechnologyKumasi, Ghana; Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-NatalDurban, South Africa
| | - Daniel G Amoako
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-NatalDurban, South Africa; Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurban, South Africa
| |
Collapse
|
146
|
Zeng H, Liu J, Ling J. Efflux inhibitor suppresses Streptococcus mutans virulence properties. FEMS Microbiol Lett 2017; 364:2975576. [DOI: 10.1093/femsle/fnx033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/07/2017] [Indexed: 01/26/2023] Open
Affiliation(s)
- Huihui Zeng
- Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Applied Oral Sciences, Faculty of Dentistry, University of HongKong, HongKong
| | - Jia Liu
- Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Junqi Ling
- Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
147
|
Evaluation of a series of 2-napthamide derivatives as inhibitors of the drug efflux pump AcrB for the reversal of antimicrobial resistance. Bioorg Med Chem Lett 2017; 27:733-739. [DOI: 10.1016/j.bmcl.2017.01.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 11/18/2022]
|
148
|
Abdali N, Parks JM, Haynes KM, Chaney JL, Green AT, Wolloscheck D, Walker JK, Rybenkov VV, Baudry J, Smith JC, Zgurskaya HI. Reviving Antibiotics: Efflux Pump Inhibitors That Interact with AcrA, a Membrane Fusion Protein of the AcrAB-TolC Multidrug Efflux Pump. ACS Infect Dis 2017; 3:89-98. [PMID: 27768847 DOI: 10.1021/acsinfecdis.6b00167] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Antibiotic resistance is a major threat to human welfare. Inhibitors of multidrug efflux pumps (EPIs) are promising alternative therapeutics that could revive activities of antibiotics and reduce bacterial virulence. Identification of new druggable sites for inhibition is critical for the development of effective EPIs, especially in light of constantly emerging resistance. Here, we describe EPIs that interact with periplasmic membrane fusion proteins, critical components of efflux pumps that are responsible for the activation of the transporter and the recruitment of the outer-membrane channel. The discovered EPIs bind to AcrA, a component of the prototypical AcrAB-TolC pump, change its structure in vivo, inhibit efflux of fluorescent probes, and potentiate the activities of antibiotics in Escherichia coli and other Gram-negative bacteria. Our findings expand the chemical and mechanistic diversity of EPIs, suggest the mechanism for regulation of the efflux pump assembly and activity, and provide a promising path for reviving the activities of antibiotics in resistant bacteria.
Collapse
Affiliation(s)
- Narges Abdali
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Jerry M. Parks
- UT/ORNL Center
for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Biochemistry and Cellular
and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Keith M. Haynes
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Julie L. Chaney
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Adam T. Green
- UT/ORNL Center
for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - David Wolloscheck
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - John K. Walker
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Valentin V. Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Jerome Baudry
- UT/ORNL Center
for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Biochemistry and Cellular
and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jeremy C. Smith
- UT/ORNL Center
for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Biochemistry and Cellular
and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
149
|
Mahmood HY, Jamshidi S, Sutton JM, Rahman KM. Current Advances in Developing Inhibitors of Bacterial Multidrug Efflux Pumps. Curr Med Chem 2016; 23:1062-81. [PMID: 26947776 PMCID: PMC5425656 DOI: 10.2174/0929867323666160304150522] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/27/2016] [Accepted: 03/10/2016] [Indexed: 01/30/2023]
Abstract
Antimicrobial resistance represents a significant challenge to future healthcare provision. An acronym ESKAPEE has been derived from the names of the organisms recognised as the major threats although there are a number of other organisms, notably Neisseria gonorrhoeae, that have become equally challenging to treat in the clinic. These pathogens are characterised by the ability to rapidly develop and/or acquire resistance mechanisms in response to exposure to different antimicrobial agents. A key part of the armoury of these pathogens is a series of efflux pumps, which effectively exclude or reduce the intracellular concentration of a large number of antibiotics, making the pathogens significantly more resistant. These efflux pumps are the topic of considerable interest, both from the perspective of basic understanding of efflux pump function, and its role in drug resistance but also as targets for the development of novel adjunct therapies. The necessity to overcome antimicrobial resistance has encouraged investigations into the characterisation of resistance-modifying efflux pump inhibitors to block the mechanisms of drug extrusion, thereby restoring antibacterial susceptibility and returning existing antibiotics into the clinic. A greater understanding of drug recognition and transport by multidrug efflux pumps is needed to develop clinically useful inhibitors, given the breadth of molecules that can be effluxed by these systems. This review discusses different bacterial EPIs originating from both natural source and chemical synthesis and examines the challenges to designing successful EPIs that can be useful against multidrug resistant bacteria.
Collapse
Affiliation(s)
| | | | | | - Khondaker M Rahman
- Institute of Pharmaceutical Science, King's College London, Britannia House, London SE1 1DB, UK.
| |
Collapse
|
150
|
Willers C, Wentzel JF, du Plessis LH, Gouws C, Hamman JH. Efflux as a mechanism of antimicrobial drug resistance in clinical relevant microorganisms: the role of efflux inhibitors. Expert Opin Ther Targets 2016; 21:23-36. [PMID: 27892739 DOI: 10.1080/14728222.2017.1265105] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Microbial resistance against antibiotics is a serious threat to the effective treatment of infectious diseases. Several mechanisms exist through which microorganisms can develop resistance against antimicrobial drugs, of which the overexpression of genes to produce efflux pumps is a major concern. Several efflux transporters have been identified in microorganisms, which infer resistance against specific antibiotics and even multidrug resistance. Areas covered: This paper focuses on microbial resistance against antibiotics by means of the mechanism of efflux and gives a critical overview of studies conducted to overcome this problem by combining efflux pump inhibitors with antibiotics. Information was obtained from a literature search done with MEDLINE, Pubmed, Scopus, ScienceDirect, OneSearch and EBSCO host. Expert opinion: Efflux as a mechanism of multidrug resistance has presented a platform for improved efficacy against resistant microorganisms by co-administration of efflux pump inhibitors with antimicrobial agents. Although proof of concept has been shown for this approach with in vitro experiments, further research is needed to develop more potent inhibitors with low toxicity which is clinically effective.
Collapse
Affiliation(s)
- Clarissa Willers
- a Centre of Excellence for Pharmaceutical Sciences , North-West University , Potchefstroom , South Africa
| | - Johannes Frederik Wentzel
- a Centre of Excellence for Pharmaceutical Sciences , North-West University , Potchefstroom , South Africa
| | - Lissinda Hester du Plessis
- a Centre of Excellence for Pharmaceutical Sciences , North-West University , Potchefstroom , South Africa
| | - Chrisna Gouws
- a Centre of Excellence for Pharmaceutical Sciences , North-West University , Potchefstroom , South Africa
| | - Josias Hendrik Hamman
- a Centre of Excellence for Pharmaceutical Sciences , North-West University , Potchefstroom , South Africa
| |
Collapse
|