101
|
Cho SJ, Park E, Baker A, Reid AY. Age Bias in Zebrafish Models of Epilepsy: What Can We Learn From Old Fish? Front Cell Dev Biol 2020; 8:573303. [PMID: 33015065 PMCID: PMC7511771 DOI: 10.3389/fcell.2020.573303] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Zebrafish are a powerful tool for investigating epilepsy. Mammalian seizures can be recapitulated molecularly, behaviorally, and electrophysiologically, using a fraction of the resources required for experiments in mammals. Larval zebrafish offer exceptionally economical and high-throughput approaches and are amenable to state-of-the-art genetic engineering techniques, providing valuable transgenic models of human diseases. For these reasons, larvae tend to be chosen for studying epilepsy, but the value of adult zebrafish may be underappreciated. Zebrafish exhibit transient larval - adult duality. The incompletely developed neural system of larval zebrafish may limit the translation of complex neurological disorders. Larval zebrafish go through dynamic changes during ontogenesis, whereas adult zebrafish are physiologically more stable. Adult zebrafish have a full range of complex brain structures and functions, such as an endothelial blood-brain barrier and adult neurogenesis, both are significant factors in epilepsy research. This review highlights the differences between larval and adult zebrafish that should be considered in pathophysiological and pharmacological studies of epilepsy.
Collapse
Affiliation(s)
- Sung-Joon Cho
- Division of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Collaborative Program in Neuroscience, University of Toronto, Toronto, ON, Canada
- Keenan Research Center, St. Michael’s Hospital, Li Ka Shing Knowledge Institute, Toronto, ON, Canada
| | - Eugene Park
- Keenan Research Center, St. Michael’s Hospital, Li Ka Shing Knowledge Institute, Toronto, ON, Canada
| | - Andrew Baker
- Keenan Research Center, St. Michael’s Hospital, Li Ka Shing Knowledge Institute, Toronto, ON, Canada
- Department of Anesthesia and Surgery, University of Toronto, Toronto, ON, Canada
| | - Aylin Y. Reid
- Division of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
102
|
Groneberg AH, Marques JC, Martins AL, Diez Del Corral R, de Polavieja GG, Orger MB. Early-Life Social Experience Shapes Social Avoidance Reactions in Larval Zebrafish. Curr Biol 2020; 30:4009-4021.e4. [PMID: 32888479 DOI: 10.1016/j.cub.2020.07.088] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/30/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Social experiences greatly define subsequent social behavior. Lack of such experiences, especially during critical phases of development, can severely impede the ability to behave adequately in social contexts. To date, it is not well characterized how early-life social isolation leads to social deficits and impacts development. In many model species, it is challenging to fully control social experiences, because they depend on parental care. Moreover, complex social behaviors involve multiple sensory modalities, contexts, and actions. Hence, when studying social isolation effects, it is important to parse apart social deficits from general developmental effects, such as abnormal motor learning. Here, we characterized how social experiences during early development of zebrafish larvae modulate their social behavior at 1 week of age, when social avoidance reactions can be measured as discrete swim events. We show that raising larvae in social isolation leads to enhanced social avoidance, in terms of the distance at which larvae react to one another and the strength of swim movement they use. Specifically, larvae raised in isolation use a high-acceleration escape swim, the short latency C-start, more frequently during social interactions. These behavioral differences are absent in non-social contexts. By ablating the lateral line and presenting the fish with local water vibrations, we show that lateral line inputs are both necessary and sufficient to drive enhanced social avoidance reactions. Taken together, our results show that social experience during development is a critical factor in shaping mechanosensory avoidance reactions in larval zebrafish.
Collapse
Affiliation(s)
- Antonia H Groneberg
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - João C Marques
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - A Lucas Martins
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Ruth Diez Del Corral
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | | | - Michael B Orger
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.
| |
Collapse
|
103
|
Fore S, Acuña-Hinrichsen F, Mutlu KA, Bartoszek EM, Serneels B, Faturos NG, Chau KTP, Cosacak MI, Verdugo CD, Palumbo F, Ringers C, Jurisch-Yaksi N, Kizil C, Yaksi E. Functional properties of habenular neurons are determined by developmental stage and sequential neurogenesis. SCIENCE ADVANCES 2020; 6:6/36/eaaz3173. [PMID: 32917624 PMCID: PMC7473745 DOI: 10.1126/sciadv.aaz3173] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 07/17/2020] [Indexed: 05/17/2023]
Abstract
The developing brain undergoes drastic alterations. Here, we investigated developmental changes in the habenula, a brain region that mediates behavioral flexibility during learning, social interactions, and aversive experiences. We showed that developing habenular circuits exhibit multiple alterations that lead to an increase in the structural and functional diversity of cell types, inputs, and functional modules. As the habenula develops, it sequentially transforms into a multisensory brain region that can process visual, olfactory, mechanosensory, and aversive stimuli. Moreover, we observed that the habenular neurons display spatiotemporally structured spontaneous activity that shows prominent alterations and refinement with age. These alterations in habenular activity are accompanied by sequential neurogenesis and the integration of distinct neural clusters across development. Last, we revealed that habenular neurons with distinct functional properties are born sequentially at distinct developmental time windows. Our results highlight a strong link between the functional properties of habenular neurons and their precise birthdate.
Collapse
Affiliation(s)
- Stephanie Fore
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Francisca Acuña-Hinrichsen
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Kadir Aytac Mutlu
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Ewelina Magdalena Bartoszek
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Bram Serneels
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Nicholas Guy Faturos
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Khac Thanh Phong Chau
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Tatzberg 41, 01307 Dresden, Germany
| | - Carmen Diaz Verdugo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Fabrizio Palumbo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Christa Ringers
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St Olav University Hospital, Edvard Griegs Gate 8, 7030 Trondheim, Norway
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Tatzberg 41, 01307 Dresden, Germany
- Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway.
| |
Collapse
|
104
|
Marino KM, Silva ER, Windelborn JA. A comparison between chemical and gas hypoxia as models of global ischemia in zebrafish ( Danio rerio). Animal Model Exp Med 2020; 3:256-263. [PMID: 33024947 PMCID: PMC7529334 DOI: 10.1002/ame2.12132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/26/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Zebrafish models for neurovascular diseases offer new methods for elucidation of molecular pathways to tissue damage. External fertilization and high fecundity provide opportunities for transgenics and other forms of genetic manipulation that are more accessible than offered by mammalian models of disease. Furthermore, behavioral analyses of zebrafish allow for connection of molecular pathways to organismal outputs such as locomotion, learning, and memory. Unfortunately, a zebrafish model of hypoxia-ischemia has been slow to catch on, possibly due to hypoxia exposure protocols that are challenging to reproduce and result in high mortality. METHODS In this study, we have introduced a predictable and simple method of hypoxia induction, the addition of sodium sulfite to aquarium water. The effects of this treatment on zebrafish locomotion were compared to those of zebrafish exposed to hypoxia induced by nitrogen gas bubbling, a method used in previous reports. RESULTS We found that hypoxia induced by sodium sulfite significantly impaired locomotion in the hours following treatment, and its effects did not differ from those caused by nitrogen gas hypoxia. CONCLUSION These results indicate that hypoxia by sodium sulfite represents an effective and easily reproducible method for the study of hypoxia-ischemia in zebrafish.
Collapse
Affiliation(s)
- Kaitlyn M Marino
- Department of Biology Washington College Chestertown MD USA
- Department of Psychology Washington College Chestertown MD USA
| | - Emani R Silva
- Department of Biology Washington College Chestertown MD USA
| | | |
Collapse
|
105
|
Palumbo F, Serneels B, Pelgrims R, Yaksi E. The Zebrafish Dorsolateral Habenula Is Required for Updating Learned Behaviors. Cell Rep 2020; 32:108054. [PMID: 32846116 PMCID: PMC7479510 DOI: 10.1016/j.celrep.2020.108054] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/23/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022] Open
Abstract
Operant learning requires multiple cognitive processes, such as learning, prediction of potential outcomes, and decision-making. It is less clear how interactions of these processes lead to the behavioral adaptations that allow animals to cope with a changing environment. We show that juvenile zebrafish can perform conditioned place avoidance learning, with improving performance across development. Ablation of the dorsolateral habenula (dlHb), a brain region involved in associative learning and prediction of outcomes, leads to an unexpected improvement in performance and delayed memory extinction. Interestingly, the control animals exhibit rapid adaptation to a changing learning rule, whereas dlHb-ablated animals fail to adapt. Altogether, our results show that the dlHb plays a central role in switching animals' strategies while integrating new evidence with prior experience.
Collapse
Affiliation(s)
- Fabrizio Palumbo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Bram Serneels
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030 Trondheim, Norway; KU Leuven, 3000 Leuven, Belgium
| | - Robbrecht Pelgrims
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030 Trondheim, Norway.
| |
Collapse
|
106
|
Vauti F, Stegemann LA, Vögele V, Köster RW. All-age whole mount in situ hybridization to reveal larval and juvenile expression patterns in zebrafish. PLoS One 2020; 15:e0237167. [PMID: 32764780 PMCID: PMC7413480 DOI: 10.1371/journal.pone.0237167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
The zebrafish Danio rerio is a valuable and common model for scientists in the fields of genetics and developmental biology. Since zebrafish are also amenable to genetic manipulation, modelling of human diseases or behavioral experiments have moved into the focus of zebrafish research. Consequently, gene expression data beyond embryonic and larval stages become more important, yet there is a dramatic knowledge gap of gene expression beyond day four of development. Like in other model organisms, the visualization of spatial and temporal gene expression by whole mount in situ hybridization (ISH) becomes increasingly difficult when zebrafish embryos develop further and hence the growing tissues become dense and less permeable. Here we introduce a modified method for whole mount ISH, which overcomes these penetration and detection problem. The method is an all in one solution that enables the detection and visualization of gene expression patterns up to the late larval stage in a 3D manner without the need for tissue sectioning and offers a valuable extension for whole mount ISH by immunohistochemistry in the zebrafish field.
Collapse
Affiliation(s)
- Franz Vauti
- Division of Cellular & Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- * E-mail:
| | - Luisa A. Stegemann
- Division of Cellular & Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viktoria Vögele
- Division of Cellular & Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Reinhard W. Köster
- Division of Cellular & Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
107
|
de Abreu MS, C V V Giacomini A, Genario R, Fontana BD, Parker MO, Marcon L, Scolari N, Bueno B, Demin KA, Galstyan D, Kolesnikova TO, Amstislavskaya TG, Zabegalov KN, Strekalova T, Kalueff AV. Zebrafish models of impulsivity and impulse control disorders. Eur J Neurosci 2020; 52:4233-4248. [PMID: 32619029 DOI: 10.1111/ejn.14893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022]
Abstract
Impulse control disorders (ICDs) are characterized by generalized difficulty controlling emotions and behaviors. ICDs are a broad group of the central nervous system (CNS) disorders including conduct disorder, intermittent explosive, oppositional-defiant disorder, antisocial personality disorder, kleptomania, pyromania and other illnesses. Although they all share a common feature (aberrant impulsivity), their pathobiology is complex and poorly understood. There are also currently no ICD-specific therapies to treat these illnesses. Animal models are a valuable tool for studying ICD pathobiology and potential therapies. The zebrafish (Danio rerio) has become a useful model organism to study CNS disorders due to high genetic and physiological homology to mammals, and sensitivity to various pharmacological and genetic manipulations. Here, we summarize experimental models of impulsivity and ICD in zebrafish and highlight their growing translational significance. We also emphasize the need for further development of zebrafish ICD models to improve our understanding of their pathogenesis and to search for novel therapeutic treatments.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil.,Postgraduate Program in Environmental Sciences, University of Passo Fundo, Passo Fundo, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Leticia Marcon
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Naiara Scolari
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Barbara Bueno
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - David Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Tatyana O Kolesnikova
- Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | | | | | - Tatyana Strekalova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Institute of General Pathology and Pathophysiology, University of Würzburg, Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China.,Laboratory of Petrochemistry, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
108
|
Lucon-Xiccato T, Bertolucci C. Inhibitory control in zebrafish, Danio rerio. JOURNAL OF FISH BIOLOGY 2020; 97:416-423. [PMID: 32402095 DOI: 10.1111/jfb.14380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
We assessed whether zebrafish, Danio rerio, display inhibitory control using a simple and rapid behavioural test. Zebrafish were exposed to a prey stimulus placed inside a transparent tube, which initially elicited attack behaviour. However, zebrafish showed a rapid reduction in the number of attacks towards the prey, which indicated the ability to inhibit their foraging behaviour. Zebrafish also exhibited mnemonic retention of foraging inhibition, as indicated by a reduced number of attacks in a subsequent exposure to the unreachable prey. The ability to inhibit the foraging behaviour varied across three genetically separated wild-type strains and across different individuals within strains, suggesting that zebrafish show heritable within-species differences in inhibitory control. Our behavioural test might be suitable for screening large zebrafish populations in mutational studies and assessing the effects of pharmacologically active substances on inhibitory control.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
109
|
Golla A, Østby H, Kermen F. Chronic unpredictable stress induces anxiety-like behaviors in young zebrafish. Sci Rep 2020; 10:10339. [PMID: 32587370 PMCID: PMC7316714 DOI: 10.1038/s41598-020-67182-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/02/2020] [Indexed: 01/12/2023] Open
Abstract
Exposure to stress during early life affects subsequent behaviors and increases the vulnerability to adult pathologies, a phenomenon that has been well documented in humans and rodents. In this study, we introduce a chronic unpredictable stress protocol adapted to young zebrafish, which is an increasingly popular vertebrate model in neuroscience research. We exposed zebrafish to a series of intermittent and unpredictable mild stressors from day 10 to 17 post-fertilization. The stressed fish showed a reduced exploration of a novel environment one day post-stress and an increased responsiveness to dark-light transition two days post-stress, indicative of heightened anxiety-related behaviors. The stress-induced decrease in exploration lasted for at least three days and returned to control levels within one week. Moreover, stressed fish were on average 8% smaller than their control siblings two days post-stress and returned to control levels within one week. All together, our results demonstrate that young zebrafish exposed to chronic unpredictable stress develop growth and behavioral alterations akin to those observed in rodent models.
Collapse
Affiliation(s)
- Archana Golla
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Henrik Østby
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Florence Kermen
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030, Trondheim, Norway.
| |
Collapse
|
110
|
Fontana BD, Gibbon AJ, Cleal M, Sudwarts A, Pritchett D, Miletto Petrazzini ME, Brennan CH, Parker MO. Moderate early life stress improves adult zebrafish (Danio rerio) working memory but does not affect social and anxiety-like responses. Dev Psychobiol 2020; 63:54-64. [PMID: 32497270 DOI: 10.1002/dev.21986] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/26/2022]
Abstract
Early life stress (ELS) is defined as a short or chronic period of trauma, environmental or social deprivation, which can affect different neurochemical and behavioral patterns during adulthood. Zebrafish (Danio rerio) have been widely used as a model system to understand human neurodevelopmental disorders and display translationally relevant behavioral and stress-regulating systems. In this study, we aimed to investigate the effects of moderate ELS by exposing young animals (6-weeks postfertilization), for 3 consecutive days, to three stressors, and analyzing the impact of this on adult zebrafish behavior (16-week postfertilization). The ELS impact in adults was assessed through analysis of performance on tests of unconditioned memory (free movement pattern Y-maze test), exploratory and anxiety-related task (novel tank diving test), and social cohesion (shoaling test). Here, we show for the first time that moderate ELS increases the number of alternations in turn-direction compared to repetitions in the unconditioned Y-maze task, suggesting increased working memory, but has no effect on shoal cohesion, locomotor profile, or anxiety-like behavior. Overall, our data suggest that moderate ELS may be linked to adaptive flexibility which contributes to build "resilience" in adult zebrafish by improving working memory performance.
Collapse
Affiliation(s)
- Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Alistair J Gibbon
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Madeleine Cleal
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Ari Sudwarts
- School of Biological and Chemical Sciences, Queen Mary University London, London, UK
| | - David Pritchett
- School of Biological and Chemical Sciences, Queen Mary University London, London, UK
| | | | - Caroline H Brennan
- School of Biological and Chemical Sciences, Queen Mary University London, London, UK
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| |
Collapse
|
111
|
Jurisch-Yaksi N, Yaksi E, Kizil C. Radial glia in the zebrafish brain: Functional, structural, and physiological comparison with the mammalian glia. Glia 2020; 68:2451-2470. [PMID: 32476207 DOI: 10.1002/glia.23849] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/01/2023]
Abstract
The neuroscience community has witnessed a tremendous expansion of glia research. Glial cells are now on center stage with leading roles in the development, maturation, and physiology of brain circuits. Over the course of evolution, glia have highly diversified and include the radial glia, astroglia or astrocytes, microglia, oligodendrocytes, and ependymal cells, each having dedicated functions in the brain. The zebrafish, a small teleost fish, is no exception to this and recent evidences point to evolutionarily conserved roles for glia in the development and physiology of its nervous system. Due to its small size, transparency, and genetic amenability, the zebrafish has become an increasingly prominent animal model for brain research. It has enabled the study of neural circuits from individual cells to entire brains, with a precision unmatched in other vertebrate models. Moreover, its high neurogenic and regenerative potential has attracted a lot of attention from the research community focusing on neural stem cells and neurodegenerative diseases. Hence, studies using zebrafish have the potential to provide fundamental insights about brain development and function, and also elucidate neural and molecular mechanisms of neurological diseases. We will discuss here recent discoveries on the diverse roles of radial glia and astroglia in neurogenesis, in modulating neuronal activity and in regulating brain homeostasis at the brain barriers. By comparing insights made in various animal models, particularly mammals and zebrafish, our goal is to highlight the similarities and differences in glia biology among species, which could set new paradigms relevant to humans.
Collapse
Affiliation(s)
- Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St Olav University Hospital, Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Dresden, Germany.,Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, Dresden, Germany
| |
Collapse
|
112
|
Li T, Li F, Lin J, Zhang Y, Zhang Q, Sun Y, Chen X, Xu M, Wang X, Li Q. Deletion of c16orf45 in zebrafish results in a low fertilization rate and increased thigmotaxis. Dev Psychobiol 2020; 62:1003-1010. [PMID: 32421859 DOI: 10.1002/dev.21984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/28/2020] [Accepted: 04/13/2020] [Indexed: 11/06/2022]
Abstract
c16orf45 is located at 16p13.11, an important locus related to neurodevelopmental diseases. Clinical studies have demonstrated that c16orf45 is associated with various neurodevelopmental diseases. To further elucidate the effect of c16orf45 on neural development, we constructed a zebrafish model with a stably inherited c16orf45 deletion via CRISPR/Cas9 technology. We found that deletion of c16orf45 significantly reduced the zebrafish fertilization rate, and both females and males showed reduced fertility. Meanwhile, the homozygous c16orf45 knockout zebrafish showed a developmental delay at 24 hr postfertilization (hpf). However, morphological changes were not apparent after 2 days postfertilization (dpf). Notably, the results of behavioral experiments revealed increased thigmotaxis in c16orf45- / - zebrafish at 2 months. In conclusion, these findings demonstrate that c16orf45 plays an important role in nervous system and reproductive system.
Collapse
Affiliation(s)
- Tingting Li
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Fei Li
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Jia Lin
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Yinglan Zhang
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Qi Zhang
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Yanhe Sun
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Xudong Chen
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Wang
- Cancer Metabolism Laboratory, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qiang Li
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
113
|
Rapid well-plate assays for motor and social behaviors in larval zebrafish. Behav Brain Res 2020; 391:112625. [PMID: 32428631 DOI: 10.1016/j.bbr.2020.112625] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/04/2020] [Accepted: 03/23/2020] [Indexed: 12/27/2022]
Abstract
Behavior phenotypes are a powerful means of uncovering subtle xenobiotic chemical impacts on vertebrate nervous system development. Rodents manifest complex and informative behavior phenotypes but are generally not practical models in which to screen large numbers of chemicals. Zebrafish recapitulate much of the behavioral complexity of higher vertebrates, develop externally and are amenable to assay automation. Short duration automated assays can be leveraged to screen large numbers of chemicals or comprehensive dose-response for fewer chemicals. Here we describe a series of mostly automated assays including larval photomotor response, strobe light response, blue color avoidance, shoaling and mirror stimulus-response performed on the ZebraBox (ViewPoint Behavior Technologies) instrument platform. To explore the sensitivity and uniqueness of each assay endpoint, larval cohorts from 5 to 28 days post fertilization were acutely exposed to several chemicals broadly understood to impact different neuro-activities. We highlight the throughput advantages of using the same instrument platform for multiple assays and the ability of different assays to detect unique phenotypes among different chemicals.
Collapse
|
114
|
Tunbak H, Vazquez-Prada M, Ryan TM, Kampff AR, Dreosti E. Whole-brain mapping of socially isolated zebrafish reveals that lonely fish are not loners. eLife 2020; 9:55863. [PMID: 32366356 PMCID: PMC7282805 DOI: 10.7554/elife.55863] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
The zebrafish was used to assess the impact of social isolation on behaviour and brain function. As in humans and other social species, early social deprivation reduced social preference in juvenile zebrafish. Whole-brain functional maps of anti-social isolated (lonely) fish were distinct from anti-social (loner) fish found in the normal population. These isolation-induced activity changes revealed profound disruption of neural activity in brain areas linked to social behaviour, social cue processing, and anxiety/stress. Several of the affected regions are modulated by serotonin, and we found that social preference in isolated fish could be rescued by acutely reducing serotonin levels. Socialising is good for people’s mental health and wellbeing. The connections and relationships that we form can make us more resilient and healthier. Researchers also know that prolonged periods of social isolation, and feeling lonely, can be detrimental to our health, especially in early childhood. The paradox is that loneliness often results in an even lower desire for social contact, leading to further isolation. But not everyone craves social contact. Some people prefer to be alone and feel more comfortable avoiding social interaction. Zebrafish display the same social preferences. This, along with their transparent brains, makes them a useful model to study the links between social behaviour and brain activity. Like humans, zebrafish are social animals, with most fish taking a strong liking to social interactions by the time they are a few weeks old. A small number of ‘loner’ fish, however, prefer to avoid interacting with their siblings or tank mates. And so, if loneliness quells the desire for more social contact, the question becomes, does isolation turn otherwise social fish into loners? Here, Tunbak et al. use zebrafish to study how social isolation changes brain activity and behaviour. Social fish were isolated from others in the tank for a few days. These so-called ‘lonely fish’ were then allowed back in contact with the other fish. This revealed that, after isolation, previously social fish did avoid interacting with others. With this experimental set-up, Tunbak et al. also compared the brains of lonely and loner fish. When fish that prefer social interaction were deprived of social contact, they had increased activity in areas of the brain related to stress and anxiety. These lonely fish became anxious and very sensitive to stimuli; and their brain activity suggested that social interaction became overwhelming rather than rewarding. Positively, the lonely fish quickly recovered their normal, social behaviour when given a drug that reduces anxiety. This work provides a glimpse into how human behaviour could be affected by lengthy periods in isolation. These results suggest that humans could feel anxious upon returning to normal life after spending a long time alone. Moreover, the findings show the impact that social interaction and isolation can have on the young, developing brain.
Collapse
Affiliation(s)
- Hande Tunbak
- The Wolfson Institute for Biomedical Research, University Street, University College London, London, United Kingdom
| | - Mireya Vazquez-Prada
- The Wolfson Institute for Biomedical Research, University Street, University College London, London, United Kingdom
| | - Thomas Michael Ryan
- The Wolfson Institute for Biomedical Research, University Street, University College London, London, United Kingdom
| | - Adam Raymond Kampff
- Sainsbury Wellcome Centre, Howland Street, University College London, London, United Kingdom
| | - Elena Dreosti
- The Wolfson Institute for Biomedical Research, University Street, University College London, London, United Kingdom
| |
Collapse
|
115
|
Conserved Serotonergic Background of Experience-Dependent Behavioral Responsiveness in Zebrafish ( Danio rerio). J Neurosci 2020; 40:4551-4564. [PMID: 32350040 DOI: 10.1523/jneurosci.2178-19.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 01/28/2023] Open
Abstract
Forming effective responses to threatening stimuli requires the adequate and coordinated emergence of stress-related internal states. Such ability depends on early-life experiences and, in connection, the adequate formation of neuromodulatory systems, particularly serotonergic signaling. Here, we assess the serotonergic background of experience-dependent behavioral responsiveness using male and female zebrafish (Danio rerio). For the first time, we have characterized a period during behavioral metamorphosis in which zebrafish are highly reactive to their environment. Absence of social stimuli during this phase established by isolated rearing fundamentally altered the behavioral phenotype of postmetamorphic zebrafish in a challenge-specific manner, partially due to reduced responsiveness and an inability to develop stress-associated arousal state. In line with this, isolation differentially affected whole-brain serotonergic signaling in resting and stress-induced conditions, an effect that was localized in the dorsal pallium and was negatively associated with responsiveness. Administration of the serotonin receptor 1A partial agonist buspirone prevented the isolation-induced serotonin response to novelty in the level of the whole brain and the forebrain as well, without affecting catecholamine levels, and rescued stress-induced arousal along with challenge-induced behaviors, which together indicates functional connection between these changes. In summary, there is a consistent negative association between behavioral responsiveness and serotonergic signaling in zebrafish, which is well recognizable through the modifying effects of developmental perturbation and pharmacological manipulations as well. Our results imply a conserved serotonergic mechanism that context-dependently modulates environmental reactivity and is highly sensitive to experiences acquired during a specific early-life time window, a phenomenon that was previously only suggested in mammals.SIGNIFICANCE STATEMENT The ability to respond to challenges is a fundamental factor in survival. We show that zebrafish that lack appropriate social stimuli in a sensitive developmental period show exacerbated alertness in nonstressful conditions while failing to react adequately to stressors. This shift is reflected inversely by central serotonergic signaling, a system that is implicated in numerous mental disorders in humans. Serotonergic changes in brain regions modulating responsivity and behavioral impairment were both prevented by the pharmacological blockade of serotonergic function. These results imply a serotonergic mechanism in zebrafish that transmits early-life experiences to the later phenotype by shaping stress-dependent behavioral reactivity, a phenomenon that was previously only suggested in mammals. Zebrafish provide new insights into early-life-dependent neuromodulation of behavioral stress-responses.
Collapse
|
116
|
A Model to Study NMDA Receptors in Early Nervous System Development. J Neurosci 2020; 40:3631-3645. [PMID: 32245827 DOI: 10.1523/jneurosci.3025-19.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 11/21/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels that play critical roles in neuronal development and nervous system function. Here, we developed a model to study NMDARs in early development in zebrafish, by generating CRISPR-mediated lesions in the NMDAR genes, grin1a and grin1b, which encode the obligatory GluN1 subunits. While receptors containing grin1a or grin1b show high Ca2+ permeability, like their mammalian counterpart, grin1a is expressed earlier and more broadly in development than grin1b Both grin1a -/- and grin1b -/- zebrafish are viable. Unlike in rodents, where the grin1 knockout is embryonic lethal, grin1 double-mutant fish (grin1a -/- ; grin1b -/-), which lack all NMDAR-mediated synaptic transmission, survive until ∼10 d dpf (days post fertilization), providing a unique opportunity to explore NMDAR function during development and in generating behaviors. Many behavioral defects in the grin1 double-mutant larvae, including abnormal evoked responses to light and acoustic stimuli, prey-capture deficits, and a failure to habituate to acoustic stimuli, are replicated by short-term treatment with the NMDAR antagonist MK-801, suggesting that they arise from acute effects of compromised NMDAR-mediated transmission. Other defects, however, such as periods of hyperactivity and alterations in place preference, are not phenocopied by MK-801, suggesting a developmental origin. Together, we have developed a unique model to study NMDARs in the developing vertebrate nervous system.SIGNIFICANCE STATEMENT Rapid communication between cells in the nervous system depends on ion channels that are directly activated by chemical neurotransmitters. One such ligand-gated ion channel, the NMDAR, impacts nearly all forms of nervous system function. It has been challenging, however, to study the prolonged absence of NMDARs in vertebrates, and hence their role in nervous system development, due to experimental limitations. Here, we demonstrate that zebrafish lacking all NMDAR transmission are viable through early development and are capable of a wide range of stereotypic behaviors. As such, this zebrafish model provides a unique opportunity to study the role of NMDAR in the development of the early vertebrate nervous system.
Collapse
|
117
|
Bruzzone M, Gatto E, Lucon Xiccato T, Dalla Valle L, Fontana CM, Meneghetti G, Bisazza A. Measuring recognition memory in zebrafish larvae: issues and limitations. PeerJ 2020; 8:e8890. [PMID: 32368416 PMCID: PMC7192156 DOI: 10.7717/peerj.8890] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/11/2020] [Indexed: 01/23/2023] Open
Abstract
Recognition memory is the capacity to recognize previously encountered objects, events or places. This ability is crucial for many fitness-related activities, and it appears very early in the development of several species. In the laboratory, recognition memory is most often investigated using the novel object recognition test (NORt), which exploits the tendency of most vertebrates to explore novel objects over familiar ones. Despite that the use of larval zebrafish is rapidly increasing in research on brain, cognition and neuropathologies, it is unknown whether larvae possess recognition memory and whether the NORt can be used to assess it. Here, we tested a NOR procedure in zebrafish larvae of 7-, 14- and 21-days post-fertilization (dpf) to investigate when recognition memory first appears during ontogeny. Overall, we found that larvae explored a novel stimulus longer than a familiar one. This response was fully significant only for 14-dpf larvae. A control experiment evidenced that larvae become neophobic at 21-dpf, which may explain the poor performance at this age. The preference for the novel stimulus was also affected by the type of stimulus, being significant with tri-dimensional objects varying in shape and bi-dimensional geometrical figures but not with objects differing in colour. Further analyses suggest that lack of effect for objects with different colours was due to spontaneous preference for one colour. This study highlights the presence of recognition memory in zebrafish larvae but also revealed non-cognitive factors that may hinder the application of NORt paradigms in the early developmental stages of zebrafish.
Collapse
Affiliation(s)
- Matteo Bruzzone
- Department of General Psychology, University of Padova, Padova, Italy
| | - Elia Gatto
- Department of General Psychology, University of Padova, Padova, Italy
| | - Tyrone Lucon Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | | | | | - Angelo Bisazza
- Department of General Psychology, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
118
|
Neuropeptide Y deficiency induces anxiety-like behaviours in zebrafish (Danio rerio). Sci Rep 2020; 10:5913. [PMID: 32246073 PMCID: PMC7125123 DOI: 10.1038/s41598-020-62699-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/11/2020] [Indexed: 01/01/2023] Open
Abstract
Neuropeptide Y (NPY) controls energy homeostasis including orexigenic actions in mammalians and non-mammalians. Recently, NPY has attracted attention as a mediator of emotional behaviour and psychosomatic diseases. However, its functions are not fully understood. We established npy gene-deficient (NPY-KO) zebrafish (Danio rerio) to assess the relationship between NPY and emotional behaviours. The NPY-KO zebrafish exhibited similar growth, but pomc and avp mRNA levels in the brain were higher as compared to wild-type fish. NPY-KO zebrafish exhibited several anxiety-like behaviours, such as a decrease in social interaction in mirror test and decreased locomotion in black-white test. The acute cold stress-treated NPY-KO zebrafish exhibited anxiety-like behaviours such as remaining stationary and swimming along the side of the tank in the mirror test. Moreover, expression levels of anxiety-associated genes (orx and cck) and catecholamine production (gr, mr, th1 and th2) were significantly higher in NPY-KO zebrafish than in wild-type fish. We demonstrated that NPY-KO zebrafish have an anxiety phenotype and a stress-vulnerability like NPY-KO mice, whereby orx and/or catecholamine signalling may be involved in the mechanism actions.
Collapse
|
119
|
Abstract
With a strong tendency to socialise, the zebrafish is a useful model to study social behaviour, with implications for better treatments of social impairments, for instance in autism spectrum disorders. Although oxytocin is crucial for social behaviour in mammals, the importance of the fish orthologue – isotocin or zebrafish oxytocin (zOT) – for social behaviour in zebrafish is unclear. The aims of this study were firstly, to elucidate the receptor specificity of zOT and the related vasotocin or zebrafish vasopressin (zVP; the orthologue of mammalian vasopressin) and the nonpeptidergic oxytocin receptor antagonist L-368,899, and secondly to investigate if L-368,899 inhibits social preference in zebrafish. The potencies of ligands were evaluated for zOT/zVP family receptors in HEK293 cells. Adult and larval zebrafish were treated with L-368,899 or vehicle and subsequently assessed for social behaviour and anxiety (adults only). The antagonist L-368,899 specifically inhibited the two zOT receptors, but not the two zVP-1 receptors. The antagonist decreased social preference in adult and larval zebrafish. It did not affect anxiety in adults. These results indicate that endogenous zOT, and possibly zVP, is involved in social behaviour in zebrafish via either or both of the two zOT receptors, and show promise for future explorations of the anatomy and evolution of networks underlying social behaviour.
Collapse
|
120
|
A virtual reality system to analyze neural activity and behavior in adult zebrafish. Nat Methods 2020; 17:343-351. [PMID: 32123394 PMCID: PMC7100911 DOI: 10.1038/s41592-020-0759-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/22/2020] [Indexed: 11/09/2022]
Abstract
Virtual realities are powerful tools to analyze and manipulate interactions between animals and their environment and to enable measurements of neuronal activity during behavior. In many species, however, optical access to the brain and/or the behavioral repertoire are limited. We developed a high-resolution virtual reality for head-restrained adult zebrafish, which exhibit cognitive behaviors not shown by larvae. We noninvasively measured activity throughout the dorsal telencephalon by multiphoton calcium imaging. Fish in the virtual reality showed regular swimming patterns and were attracted to animations of conspecifics. Manipulations of visuo-motor feedback revealed neurons that responded selectively to the mismatch between the expected and the actual visual consequences of motor output. Such error signals were prominent in multiple telencephalic areas, consistent with models of predictive processing. A virtual reality system for adult zebrafish therefore provides opportunities to analyze neuronal processing mechanisms underlying higher brain functions including decision making, associative learning, and social interactions.
Collapse
|
121
|
Nunes AR, Carreira L, Anbalagan S, Blechman J, Levkowitz G, Oliveira RF. Perceptual mechanisms of social affiliation in zebrafish. Sci Rep 2020; 10:3642. [PMID: 32107434 PMCID: PMC7046791 DOI: 10.1038/s41598-020-60154-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/06/2020] [Indexed: 12/22/2022] Open
Abstract
Social living animals need to recognize the presence of conspecifics in the environment in order to engage in adaptive social interactions. Social cues can be detected through different sensory modalities, including vision. Two main visual features can convey information about the presence of conspecifics: body form and biological motion (BM). Given the role that oxytocin plays in social behavior regulation across vertebrates, particularly in the salience and reward values of social stimuli, we hypothesized that it may also be involved in the modulation of perceptual mechanisms for conspecific detection. Here, using videoplaybacks, we assessed the role of conspecific form and BM in zebrafish social affiliation, and how oxytocin regulates the perception of these cues. We demonstrated that while each visual cue is important for social attraction, BM promotes a higher fish engagement than the static conspecific form alone. Moreover, using a mutant line for one of the two oxytocin receptors, we show that oxytocin signaling is involved in the regulation of BM detection but not conspecific form recognition. In summary, our results indicate that, apart from oxytocin role in the regulation of social behaviors through its effect on higher-order cognitive mechanisms, it may regulate social behavior by modulating very basic perceptual mechanisms underlying the detection of socially-relevant cues.
Collapse
Affiliation(s)
| | | | - Savani Anbalagan
- Weizmann Institute of Science, Rehovot, Israel.,ReMedy-International Research Agenda Unit, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; Laboratory of Glial Biology, Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
| | | | | | - Rui F Oliveira
- Gulbenkian Institute of Science, Oeiras, Portugal. .,ISPA - Instituto Universitário, Lisboa, Portugal.
| |
Collapse
|
122
|
Shahar OD, Schuman EM. Large-scale cell-type-specific imaging of protein synthesis in a vertebrate brain. eLife 2020; 9:50564. [PMID: 32091983 PMCID: PMC7048392 DOI: 10.7554/elife.50564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/20/2020] [Indexed: 12/30/2022] Open
Abstract
Despite advances in methods to detect protein synthesis, it has not been possible to measure endogenous protein synthesis levels in vivo in an entire vertebrate brain. We developed a transgenic zebrafish line that allows for cell-type-specific labeling and imaging of nascent proteins in the entire animal. By replacing leucine with glycine in the zebrafish MetRS-binding pocket (MetRS-L270G), we enabled the cell-type-specific incorporation of the azide-bearing non-canonical-amino-acid azidonorleucine (ANL) during protein synthesis. Newly synthesized proteins were then labeled via 'click chemistry'. Using a Gal4-UAS-ELAV3 line to express MetRS-L270G in neurons, we measured protein synthesis intensities across the entire nervous system. We visualized endogenous protein synthesis and demonstrated that seizure-induced neural activity results in enhanced translation levels in neurons. This method allows for robust analysis of endogenous protein synthesis in a cell-type-specific manner, in vivo at single-cell resolution.
Collapse
|
123
|
Abstract
Zebrafish (Danio rerio) are highly social animals that engage in a diverse variety of nonreproductive social behaviors that emerge as early as 14 days postfertilization (dpf). However, we observe considerable behavioral variability at this stage, and comparisons across studies are potentially complicated both by chronological gaps in measurements and inconsistencies in developmental staging. To address these issues, we adapted our assay for social orienting and cueing in the adult zebrafish and used it to probe behavior in a critical window of larval development. In addition, we performed measurements of body length and tested a cohort of larvae with impaired growth to understand if this morphological feature is predictive of individual sociality. We report that zebrafish exhibit increasingly complex social behaviors between 10 and 16 dpf, including place preference, orienting, and social cueing. Furthermore, social behavior is related to standard length on an individual basis beginning at 14 dpf, such that developmentally stunted 14 dpf zebrafish raised on dry feed do not exhibit social behaviors, suggesting some morphological features are more predictive than chronological age. This highly variable and early stage in development provides an opportunity to further understand how genetic and environmental factors affect the assembly of neural circuits underlying complex behaviors.
Collapse
|
124
|
Johnson RE, Linderman S, Panier T, Wee CL, Song E, Herrera KJ, Miller A, Engert F. Probabilistic Models of Larval Zebrafish Behavior Reveal Structure on Many Scales. Curr Biol 2020; 30:70-82.e4. [PMID: 31866367 PMCID: PMC6958995 DOI: 10.1016/j.cub.2019.11.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/11/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022]
Abstract
Nervous systems have evolved to combine environmental information with internal state to select and generate adaptive behavioral sequences. To better understand these computations and their implementation in neural circuits, natural behavior must be carefully measured and quantified. Here, we collect high spatial resolution video of single zebrafish larvae swimming in a naturalistic environment and develop models of their action selection across exploration and hunting. Zebrafish larvae swim in punctuated bouts separated by longer periods of rest called interbout intervals. We take advantage of this structure by categorizing bouts into discrete types and representing their behavior as labeled sequences of bout types emitted over time. We then construct probabilistic models-specifically, marked renewal processes-to evaluate how bout types and interbout intervals are selected by the fish as a function of its internal hunger state, behavioral history, and the locations and properties of nearby prey. Finally, we evaluate the models by their predictive likelihood and their ability to generate realistic trajectories of virtual fish swimming through simulated environments. Our simulations capture multiple timescales of structure in larval zebrafish behavior and expose many ways in which hunger state influences their action selection to promote food seeking during hunger and safety during satiety.
Collapse
Affiliation(s)
- Robert Evan Johnson
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Graduate Program in Neuroscience, Harvard University, 220 Longwood Avenue, Boston, MA 02115, USA.
| | - Scott Linderman
- Department of Statistics, Stanford University, 390 Serra Mall, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Thomas Panier
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, 4 Place Jussieu, 75005 Paris, France
| | - Caroline Lei Wee
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Graduate Program in Neuroscience, Harvard University, 220 Longwood Avenue, Boston, MA 02115, USA; Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, 138673 Singapore, Singapore
| | - Erin Song
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Kristian Joseph Herrera
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Andrew Miller
- Data Science Institute, Columbia University, 550 W 120th Street, New York City, NY 10027, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
125
|
Ferri SL, Pallathra AA, Kim H, Dow HC, Raje P, McMullen M, Bilker WB, Siegel SJ, Abel T, Brodkin ES. Sociability development in mice with cell-specific deletion of the NMDA receptor NR1 subunit gene. GENES BRAIN AND BEHAVIOR 2019; 19:e12624. [PMID: 31721416 DOI: 10.1111/gbb.12624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022]
Abstract
Social affiliative behavior is an important component of everyday life in many species and is likely to be disrupted in disabling ways in various neurodevelopmental and neuropsychiatric disorders. Therefore, determining the mechanisms involved in these processes is crucial. A link between N-methyl-d-aspartate (NMDA) receptor function and social behaviors has been clearly established. The cell types in which NMDA receptors are critical for social affiliative behavior, however, remain unclear. Here, we use mice carrying a conditional allele of the NMDA R1 subunit to address this question. Mice bearing a floxed NMDAR1 (NR1) allele were crossed with transgenic calcium/calmodulin-dependent kinase IIα (CaMKIIα)-Cre mice or parvalbumin (PV)-Cre mice targeting postnatal excitatory forebrain or PV-expressing interneurons, respectively, and assessed using the three-chambered Social Approach Test. We found that deletion of NR1 in PV-positive interneurons had no effect on social sniffing, but deletion of NR1 in glutamatergic pyramidal cells resulted in a significant increase in social approach behavior, regardless of age or sex. Therefore, forebrain excitatory neurons expressing NR1 play an important role in regulating social affiliative behavior.
Collapse
Affiliation(s)
- Sarah L Ferri
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Ashley A Pallathra
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hyong Kim
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Holly C Dow
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Praachi Raje
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mary McMullen
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Warren B Bilker
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven J Siegel
- Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Edward S Brodkin
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
126
|
Robinson KJ, Bosch OJ, Levkowitz G, Busch KE, Jarman AP, Ludwig M. Social creatures: Model animal systems for studying the neuroendocrine mechanisms of social behaviour. J Neuroendocrinol 2019; 31:e12807. [PMID: 31679160 PMCID: PMC6916380 DOI: 10.1111/jne.12807] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/11/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022]
Abstract
The interaction of animals with conspecifics, termed social behaviour, has a major impact on the survival of many vertebrate species. Neuropeptide hormones modulate the underlying physiology that governs social interactions, and many findings concerning the neuroendocrine mechanisms of social behaviours have been extrapolated from animal models to humans. Neurones expressing neuropeptides show similar distribution patterns within the hypothalamic nucleus, even when evolutionarily distant species are compared. During evolution, hypothalamic neuropeptides and releasing hormones have retained not only their structures, but also their biological functions, including their effects on behaviour. Here, we review the current understanding of the mechanisms of social behaviours in several classes of animals, such as worms, insects and fish, as well as laboratory, wild and domesticated mammals.
Collapse
Affiliation(s)
- Kelly J. Robinson
- Sea Mammal Research UnitScottish Oceans InstituteUniversity of St AndrewsSt AndrewsUK
| | - Oliver J. Bosch
- Department of Behavioural and Molecular NeurobiologyUniversity of RegensburgRegensburgGermany
| | - Gil Levkowitz
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | | | - Andrew P. Jarman
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Mike Ludwig
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- Centre for NeuroendocrinologyDepartment of ImmunologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
127
|
Hong X, Zha J. Fish behavior: A promising model for aquatic toxicology research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:311-321. [PMID: 31181518 DOI: 10.1016/j.scitotenv.2019.06.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/02/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
Fish behaviors have great potential as models for the study of pharmacology, genetics, and neuroscience. Zebrafish (Danio rerio), Japanese medaka (Oryzias latipes) and Chinese rare minnow (Gobiocypris rarus) are popular freshwater animal models. However, their behavioral use in aquatic toxicology research is generally hampered by oversimplified behavioral tasks and the fact that they are not well-developed animal models for toxicology. Here, this study presented a comparative analysis of multiple behavioral traits (i.e., anxiety-like behavior, novel object recognition, social preferences, habituation to light-dark stimulus and noise stimulus, and spatial learning and memory). We found that only medaka (d-rR) presented a weak or no response to repeated light-dark stimulus and noise stimulus. In addition, no significant behavioral changes were observed for the three species of juvenile fish models after 7 days of exposure to 0.01% v/v carrier solvents (i.e., ethanol, acetone, and DMSO). In contrast to zebrafish and Chinese rare minnow, medaka showed no significant changes in spatial memory after subacute exposure to 1 mg/L imidacloprid or 2.5 μg/L chlorpyrifos (cpf); instead, a hyperactivity response in the open field test and reduced social time were induced by cpf and imidacloprid, respectively. Our results suggest that: (1) behavioral effects are negligible when using <0.01% v/v carrier solvents for behavioral assessment; (2) given the differences in sensitivities of behavioral responses, a single behavior used alone as an endpoint may be insufficient for estimating the toxic impacts of pesticides or other environmental contaminants. In conclusion, these results could have major implications for aquatic toxicology research and water quality monitoring and ecotoxicological risk assessment.
Collapse
Affiliation(s)
- Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
128
|
Abstract
Visual stimuli can evoke complex behavioral responses, but the underlying streams of neural activity in mammalian brains are difficult to follow because of their size. Here, I review the visual system of zebrafish larvae, highlighting where recent experimental evidence has localized the functional steps of visuomotor transformations to specific brain areas. The retina of a larva encodes behaviorally relevant visual information in neural activity distributed across feature-selective ganglion cells such that signals representing distinct stimulus properties arrive in different areas or layers of the brain. Motor centers in the hindbrain encode motor variables that are precisely tuned to behavioral needs within a given stimulus setting. Owing to rapid technological progress, larval zebrafish provide unique opportunities for obtaining a comprehensive understanding of the intermediate processing steps occurring between visual and motor centers, revealing how visuomotor transformations are implemented in a vertebrate brain.
Collapse
Affiliation(s)
- Johann H. Bollmann
- Developmental Biology, Institute of Biology I, Faculty of Biology, and Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
129
|
Fernandes Y, Rampersad M, Jones EM, Eberhart JK. Social deficits following embryonic ethanol exposure arise in post-larval zebrafish. Addict Biol 2019; 24:898-907. [PMID: 30178621 PMCID: PMC6629526 DOI: 10.1111/adb.12649] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022]
Abstract
Prenatal alcohol exposure is the leading cause of birth defects, collectively termed fetal alcohol spectrum disorders (FASD). In the United States and Canada, 1 in 100 children will be born with FASD. Some of the most commonly debilitating defects of FASD are in social behavior. Zebrafish are highly social animals, and embryonic ethanol exposure from 24 to 26 hours post-fertilization disrupts this social (shoaling) response in adult zebrafish. Recent findings have suggested that social behaviors are present in zebrafish larvae as young as 3 weeks, but how they relate to adult shoaling is unclear. We tested the same ethanol-exposed zebrafish for social impairments at 3 weeks then again at 16 weeks. At both ages, live conspecifics were used to elicit a social response. We did not find alcohol-induced differences in behavior in 3-week-old fish when they were able to see conspecifics. We do find evidence that control zebrafish are able to use nonvisual stimuli to detect conspecifics, and this behavior is disrupted in the alcohol-exposed fish. As adults, these fish displayed a significant decrease in social behavior when conspecifics are visible. This surprising finding demonstrates that the adult and larval social behaviors are, at least partly, separable. Future work will investigate the nature of these nonvisual cues and how the neurocircuitry differs between the larval and adult social behaviors.
Collapse
|
130
|
Ruzzo EK, Pérez-Cano L, Jung JY, Wang LK, Kashef-Haghighi D, Hartl C, Singh C, Xu J, Hoekstra JN, Leventhal O, Leppä VM, Gandal MJ, Paskov K, Stockham N, Polioudakis D, Lowe JK, Prober DA, Geschwind DH, Wall DP. Inherited and De Novo Genetic Risk for Autism Impacts Shared Networks. Cell 2019; 178:850-866.e26. [PMID: 31398340 PMCID: PMC7102900 DOI: 10.1016/j.cell.2019.07.015] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/08/2019] [Accepted: 07/11/2019] [Indexed: 02/08/2023]
Abstract
We performed a comprehensive assessment of rare inherited variation in autism spectrum disorder (ASD) by analyzing whole-genome sequences of 2,308 individuals from families with multiple affected children. We implicate 69 genes in ASD risk, including 24 passing genome-wide Bonferroni correction and 16 new ASD risk genes, most supported by rare inherited variants, a substantial extension of previous findings. Biological pathways enriched for genes harboring inherited variants represent cytoskeletal organization and ion transport, which are distinct from pathways implicated in previous studies. Nevertheless, the de novo and inherited genes contribute to a common protein-protein interaction network. We also identified structural variants (SVs) affecting non-coding regions, implicating recurrent deletions in the promoters of DLG2 and NR3C2. Loss of nr3c2 function in zebrafish disrupts sleep and social function, overlapping with human ASD-related phenotypes. These data support the utility of studying multiplex families in ASD and are available through the Hartwell Autism Research and Technology portal.
Collapse
Affiliation(s)
- Elizabeth K Ruzzo
- Department of Psychiatry and Biobehavioral Sciences, Semel Institue, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Laura Pérez-Cano
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Jae-Yoon Jung
- Department of Pediatrics, Division of Systems Medicine, Stanford University, Stanford, CA, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Lee-Kai Wang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institue, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Dorna Kashef-Haghighi
- Department of Pediatrics, Division of Systems Medicine, Stanford University, Stanford, CA, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Chris Hartl
- Bioinformatics IDP, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chanpreet Singh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jin Xu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jackson N Hoekstra
- Department of Psychiatry and Biobehavioral Sciences, Semel Institue, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Olivia Leventhal
- Department of Psychiatry and Biobehavioral Sciences, Semel Institue, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Virpi M Leppä
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Michael J Gandal
- Department of Psychiatry and Biobehavioral Sciences, Semel Institue, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Kelley Paskov
- Department of Pediatrics, Division of Systems Medicine, Stanford University, Stanford, CA, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Nate Stockham
- Department of Pediatrics, Division of Systems Medicine, Stanford University, Stanford, CA, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Damon Polioudakis
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Jennifer K Lowe
- Department of Psychiatry and Biobehavioral Sciences, Semel Institue, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - David A Prober
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Daniel H Geschwind
- Department of Psychiatry and Biobehavioral Sciences, Semel Institue, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| | - Dennis P Wall
- Department of Pediatrics, Division of Systems Medicine, Stanford University, Stanford, CA, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
| |
Collapse
|
131
|
Geng Y, Peterson RT. The zebrafish subcortical social brain as a model for studying social behavior disorders. Dis Model Mech 2019; 12:dmm039446. [PMID: 31413047 PMCID: PMC6737945 DOI: 10.1242/dmm.039446] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Social behaviors are essential for the survival and reproduction of social species. Many, if not most, neuropsychiatric disorders in humans are either associated with underlying social deficits or are accompanied by social dysfunctions. Traditionally, rodent models have been used to model these behavioral impairments. However, rodent assays are often difficult to scale up and adapt to high-throughput formats, which severely limits their use for systems-level science. In recent years, an increasing number of studies have used zebrafish (Danio rerio) as a model system to study social behavior. These studies have demonstrated clear potential in overcoming some of the limitations of rodent models. In this Review, we explore the evolutionary conservation of a subcortical social brain between teleosts and mammals as the biological basis for using zebrafish to model human social behavior disorders, while summarizing relevant experimental tools and assays. We then discuss the recent advances gleaned from zebrafish social behavior assays, the applications of these assays to studying related disorders, and the opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Yijie Geng
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S. 2000 East, Salt Lake City, UT 84112, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S. 2000 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
132
|
The Serotonergic Raphe Promote Sleep in Zebrafish and Mice. Neuron 2019; 103:686-701.e8. [PMID: 31248729 DOI: 10.1016/j.neuron.2019.05.038] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/11/2019] [Accepted: 05/22/2019] [Indexed: 01/01/2023]
Abstract
The role of serotonin (5-HT) in sleep is controversial: early studies suggested a sleep-promoting role, but eventually the paradigm shifted toward a wake-promoting function for the serotonergic raphe. Here, we provide evidence from zebrafish and mice that the raphe are critical for the initiation and maintenance of sleep. In zebrafish, genetic ablation of 5-HT production by the raphe reduces sleep, sleep depth, and the homeostatic response to sleep deprivation. Pharmacological inhibition or ablation of the raphe reduces sleep, while optogenetic stimulation increases sleep. Similarly, in mice, ablation of the raphe increases wakefulness and impairs the homeostatic response to sleep deprivation, whereas tonic optogenetic stimulation at a rate similar to baseline activity induces sleep. Interestingly, burst optogenetic stimulation induces wakefulness in accordance with previously described burst activity of the raphe during arousing stimuli. These results indicate that the serotonergic system promotes sleep in both diurnal zebrafish and nocturnal rodents. VIDEO ABSTRACT.
Collapse
|
133
|
Diversity of neurons and circuits controlling the speed and coordination of locomotion. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
134
|
Endothelin neurotransmitter signalling controls zebrafish social behaviour. Sci Rep 2019; 9:3040. [PMID: 30816294 PMCID: PMC6395658 DOI: 10.1038/s41598-019-39907-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/30/2019] [Indexed: 12/31/2022] Open
Abstract
The formation of social groups is an adaptive behaviour that can provide protection from predators, improve foraging and facilitate social learning. However, the costs of proximity can include competition for resources, aggression and kleptoparasitism meaning that the decision whether to interact represents a trade-off. Here we show that zebrafish harbouring a mutation in endothelin receptor aa (ednraa) form less cohesive shoals than wild-types. ednraa−/− mutants exhibit heightened aggression and decreased whole-body cortisol levels suggesting that they are dominant. These behavioural changes correlate with a reduction of parvocellular arginine vasopressin (AVP)-positive neurons in the preoptic area, an increase in the size of magnocellular AVP neurons and a higher concentration of 5-HT and dopamine in the brain. Manipulation of AVP or 5-HT signalling can rescue the shoaling phenotype of ednraa−/− providing an insight into how the brain controls social interactions.
Collapse
|
135
|
Knogler LD, Kist AM, Portugues R. Motor context dominates output from purkinje cell functional regions during reflexive visuomotor behaviours. eLife 2019; 8:e42138. [PMID: 30681408 PMCID: PMC6374073 DOI: 10.7554/elife.42138] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022] Open
Abstract
The cerebellum integrates sensory stimuli and motor actions to enable smooth coordination and motor learning. Here we harness the innate behavioral repertoire of the larval zebrafish to characterize the spatiotemporal dynamics of feature coding across the entire Purkinje cell population during visual stimuli and the reflexive behaviors that they elicit. Population imaging reveals three spatially-clustered regions of Purkinje cell activity along the rostrocaudal axis. Complementary single-cell electrophysiological recordings assign these Purkinje cells to one of three functional phenotypes that encode a specific visual, and not motor, signal via complex spikes. In contrast, simple spike output of most Purkinje cells is strongly driven by motor-related tail and eye signals. Interactions between complex and simple spikes show heterogeneous modulation patterns across different Purkinje cells, which become temporally restricted during swimming episodes. Our findings reveal how sensorimotor information is encoded by individual Purkinje cells and organized into behavioral modules across the entire cerebellum.
Collapse
Affiliation(s)
- Laura D Knogler
- Max Planck Institute of Neurobiology, Sensorimotor Control Research GroupMartinsriedGermany
| | - Andreas M Kist
- Max Planck Institute of Neurobiology, Sensorimotor Control Research GroupMartinsriedGermany
| | - Ruben Portugues
- Max Planck Institute of Neurobiology, Sensorimotor Control Research GroupMartinsriedGermany
| |
Collapse
|
136
|
Ariyasiri K, Choi TI, Kim OH, Hong TI, Gerlai R, Kim CH. Pharmacological (ethanol) and mutation (sam2 KO) induced impairment of novelty preference in zebrafish quantified using a new three-chamber social choice task. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:53-65. [PMID: 29958859 DOI: 10.1016/j.pnpbp.2018.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/06/2018] [Accepted: 06/19/2018] [Indexed: 01/08/2023]
Abstract
Social behavior is a fundamental aspect of our own species, a feature without which our society would not function. There are numerous human brain disorders associated with abnormal social behavior, among them are the autism spectrum disorders whose causal factors include a genetic component. Environmental factors, including drugs of abuse such as alcohol, also contribute to numerous abnormalities related to social behavior. Several such disorders have been modeled using laboratory animals. Perhaps one of the newest among them is the zebrafish. However, the paucity of standardized behavioral assays specifically developed for the zebrafish have hindered progress. Here, we present a newly developed zebrafish behavioral paradigm, the three-chamber social choice task. This task, which was adapted from a murine model, assesses sociality and social novelty preference in zebrafish in three phases: habituation, phase-I to evaluate sociality, and phase-II to quantify social novelty preference. Test fish are placed in the middle chamber, while conspecifics are introduced to the flanking chambers during phase-I and II. Both male and female zebrafish displayed sociality (preference for conspecifics) during phase-I and social novelty preference (preference for unfamiliar conspecifics) during phase-II. We found the paradigm to be able to detect both environmentally (alcohol) as well as genetically (targeted knock out of sam2) induced alterations of behavioral phenotypes. Although ethanol-treated fish displayed similar levels of sociality to those of control (not alcohol exposed) male and female zebrafish, they were found to exhibit significantly impaired social novelty preference, a finding compatible with altered motivational or perhaps mnemonic processes. Moreover, we found that knock out of sam2, previously shown to lead to emotional dysregulation, also disrupted social novelty preference, while leaving sociality relatively intact. We conclude that our novel behavioral paradigm is appropriate for the modeling and quantification of social behavior deficits in zebrafish.
Collapse
Affiliation(s)
- Krishan Ariyasiri
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Oc-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Ted Inpyo Hong
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
137
|
Prenatal Neuropathologies in Autism Spectrum Disorder and Intellectual Disability: The Gestation of a Comprehensive Zebrafish Model. J Dev Biol 2018; 6:jdb6040029. [PMID: 30513623 PMCID: PMC6316217 DOI: 10.3390/jdb6040029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) and intellectual disability (ID) are neurodevelopmental disorders with overlapping diagnostic behaviors and risk factors. These include embryonic exposure to teratogens and mutations in genes that have important functions prenatally. Animal models, including rodents and zebrafish, have been essential in delineating mechanisms of neuropathology and identifying developmental critical periods, when those mechanisms are most sensitive to disruption. This review focuses on how the developmentally accessible zebrafish is contributing to our understanding of prenatal pathologies that set the stage for later ASD-ID behavioral deficits. We discuss the known factors that contribute prenatally to ASD-ID and the recent use of zebrafish to model deficits in brain morphogenesis and circuit development. We conclude by suggesting that a future challenge in zebrafish ASD-ID modeling will be to bridge prenatal anatomical and physiological pathologies to behavioral deficits later in life.
Collapse
|
138
|
The swimming plus-maze test: a novel high-throughput model for assessment of anxiety-related behaviour in larval and juvenile zebrafish (Danio rerio). Sci Rep 2018; 8:16590. [PMID: 30410116 PMCID: PMC6224510 DOI: 10.1038/s41598-018-34989-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/10/2018] [Indexed: 01/17/2023] Open
Abstract
Larval zebrafish (Danio rerio) has the potential to supplement rodent models due to the availability of resource-efficient, high-throughput screening and high-resolution imaging techniques. Although behavioural models are available in larvae, only a few can be employed to assess anxiety. Here we present the swimming plus-maze (SPM) test paradigm, a tool to assess anxiety-related avoidance of shallow water bodies in early developmental stages. The “+” shaped apparatus consists of arms of different depth, representing different levels of aversiveness similarly to the rodent elevated plus-maze. The paradigm was validated (i) in larval and juvenile zebrafish, (ii) after administration of compounds affecting anxiety and (iii) in differentially aversive experimental conditions. Furthermore, we compared the SPM with conventional “anxiety tests” of zebrafish to identify their shared characteristics. We have clarified that the preference of deeper arms is ontogenetically conserved and can be abolished by anxiolytic or enhanced by anxiogenic agents, respectively. The behavioural readout is insensitive to environmental aversiveness and is unrelated to behaviours assessed by conventional tests involving young zebrafish. Taken together, we have developed a sensitive high-throughput test allowing the assessment of anxiety-related responses of zebrafish regardless of developmental stage, granting the opportunity to combine larva-based state-of-the-art methods with detailed behavioral analysis.
Collapse
|
139
|
Larsch J, Baier H. Biological Motion as an Innate Perceptual Mechanism Driving Social Affiliation. Curr Biol 2018; 28:3523-3532.e4. [DOI: 10.1016/j.cub.2018.09.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/13/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022]
|
140
|
Rapid olfactory discrimination learning in adult zebrafish. Exp Brain Res 2018; 236:2959-2969. [PMID: 30088022 PMCID: PMC6223846 DOI: 10.1007/s00221-018-5352-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/02/2018] [Indexed: 01/24/2023]
Abstract
The zebrafish is a model organism to study olfactory information processing, but efficient behavioral procedures to analyze olfactory discrimination and memory are lacking. We devised an automated odor discrimination task for adult zebrafish based on olfactory conditioning of feeding behavior. Presentation of a conditioned odor (CS+), but not a neutral odor (CS−) was followed by food delivery at a specific location. Fish developed differential behavioral responses to CS+ and CS− within a few trials. The behavioral response to the CS+ was complex and included components reminiscent of food search such as increased swimming speed and water surface sampling. Appetitive behavior was therefore quantified by a composite score that combined measurements of multiple behavioral parameters. Robust discrimination behavior was observed in different strains, even when odors were chemically similar, and learned preferences could overcome innate odor preferences. These results confirm that zebrafish can rapidly learn to make fine odor discriminations. The procedure is efficient and provides novel opportunities to dissect the neural mechanisms underlying olfactory discrimination and memory.
Collapse
|
141
|
|
142
|
Stednitz SJ, McDermott EM, Ncube D, Tallafuss A, Eisen JS, Washbourne P. Forebrain Control of Behaviorally Driven Social Orienting in Zebrafish. Curr Biol 2018; 28:2445-2451.e3. [PMID: 30057306 DOI: 10.1016/j.cub.2018.06.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/08/2018] [Accepted: 06/11/2018] [Indexed: 01/16/2023]
Abstract
Deficits in social engagement are diagnostic of multiple neurodevelopmental disorders, including autism and schizophrenia [1]. Genetically tractable animal models like zebrafish (Danio rerio) could provide valuable insight into developmental factors underlying these social impairments, but this approach is predicated on the ability to accurately and reliably quantify subtle behavioral changes. Similarly, characterizing local molecular and morphological phenotypes requires knowledge of the neuroanatomical correlates of social behavior. We leveraged behavioral and genetic tools in zebrafish to both refine our understanding of social behavior and identify brain regions important for driving it. We characterized visual social interactions between pairs of adult zebrafish and discovered that they perform a stereotyped orienting behavior that reflects social attention [2]. Furthermore, in pairs of fish, the orienting behavior of one individual is the primary factor driving the same behavior in the other individual. We used manual and genetic lesions to investigate the forebrain contribution to this behavior and identified a population of neurons in the ventral telencephalon whose ablation suppresses social interactions, while sparing other locomotor and visual behaviors. These neurons are cholinergic and express the gene encoding the transcription factor Lhx8a, which is required for development of cholinergic neurons in the mouse forebrain [3]. The neuronal population identified in zebrafish lies in a region homologous to mammalian forebrain regions implicated in social behavior such as the lateral septum [4]. Our data suggest that an evolutionarily conserved population of neurons controls social orienting in zebrafish.
Collapse
Affiliation(s)
- Sarah J Stednitz
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Erin M McDermott
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Denver Ncube
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Alexandra Tallafuss
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Judith S Eisen
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Philip Washbourne
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
143
|
Captive-reared juvenile box turtles innately prefer naturalistic habitat: Implications for translocation. Appl Anim Behav Sci 2018. [DOI: 10.1016/j.applanim.2018.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
144
|
Pandey S, Shekhar K, Regev A, Schier AF. Comprehensive Identification and Spatial Mapping of Habenular Neuronal Types Using Single-Cell RNA-Seq. Curr Biol 2018; 28:1052-1065.e7. [PMID: 29576475 DOI: 10.1016/j.cub.2018.02.040] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/10/2018] [Accepted: 02/15/2018] [Indexed: 12/26/2022]
Abstract
The identification of cell types and marker genes is critical for dissecting neural development and function, but the size and complexity of the brain has hindered the comprehensive discovery of cell types. We combined single-cell RNA-seq (scRNA-seq) with anatomical brain registration to create a comprehensive map of the zebrafish habenula, a conserved forebrain hub involved in pain processing and learning. Single-cell transcriptomes of ∼13,000 habenular cells with 4× cellular coverage identified 18 neuronal types and dozens of marker genes. Registration of marker genes onto a reference atlas created a resource for anatomical and functional studies and enabled the mapping of active neurons onto neuronal types following aversive stimuli. Strikingly, despite brain growth and functional maturation, cell types were retained between the larval and adult habenula. This study provides a gene expression atlas to dissect habenular development and function and offers a general framework for the comprehensive characterization of other brain regions.
Collapse
Affiliation(s)
- Shristi Pandey
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Karthik Shekhar
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute and Koch Institute of Integrative Cancer Research Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02140, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA; Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; Biozentrum, University of Basel, Basel, Switzerland; Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
145
|
Imaging Neuronal Activity in the Optic Tectum of Late Stage Larval Zebrafish. J Dev Biol 2018; 6:jdb6010006. [PMID: 29615555 PMCID: PMC5875565 DOI: 10.3390/jdb6010006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/01/2018] [Accepted: 03/06/2018] [Indexed: 12/03/2022] Open
Abstract
The zebrafish is an established model to study the development and function of visual neuronal circuits in vivo, largely due to their optical accessibility at embryonic and larval stages. In the past decade multiple experimental paradigms have been developed to study visually-driven behaviours, particularly those regulated by the optic tectum, the main visual centre in lower vertebrates. With few exceptions these techniques are limited to young larvae (7–9 days post-fertilisation, dpf). However, many forms of visually-driven behaviour, such as shoaling, emerge at later developmental stages. Consequently, there is a need for an experimental paradigm to image the visual system in zebrafish larvae beyond 9 dpf. Here, we show that using NBT:GCaMP3 line allows for imaging neuronal activity in the optic tectum in late stage larvae until at least 21 dpf. Utilising this line, we have characterised the receptive field properties of tectal neurons of the 2–3 weeks old fish in the cell bodies and the neuropil. The NBT:GCaMP3 line provides a complementary approach and additional opportunities to study neuronal activity in late stage zebrafish larvae.
Collapse
|
146
|
Shams S, Rihel J, Ortiz JG, Gerlai R. The zebrafish as a promising tool for modeling human brain disorders: A review based upon an IBNS Symposium. Neurosci Biobehav Rev 2018; 85:176-190. [DOI: 10.1016/j.neubiorev.2017.09.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/28/2017] [Accepted: 09/02/2017] [Indexed: 12/12/2022]
|
147
|
Shams S, Amlani S, Buske C, Chatterjee D, Gerlai R. Developmental social isolation affects adult behavior, social interaction, and dopamine metabolite levels in zebrafish. Dev Psychobiol 2018; 60:43-56. [PMID: 29091281 PMCID: PMC5747993 DOI: 10.1002/dev.21581] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/28/2017] [Indexed: 12/18/2022]
Abstract
The zebrafish is a social vertebrate and an excellent translational model for a variety of human disorders. Abnormal social behavior is a hallmark of several human brain disorders. Social behavioral problems can arise as a result of adverse early social environment. Little is known about the effects of early social isolation in adult zebrafish. We compared zebrafish that were isolated for either short (7 days) or long duration (180 days) to socially housed zebrafish, testing their behavior across ontogenesis (ages 10, 30, 60, 90, 120, 180 days), and shoal cohesion and whole-brain monoamines and their metabolites in adulthood. Long social isolation increased locomotion and decreased shoal cohesion and anxiety in the open-field in adult. Additionally, both short and long social isolation reduced dopamine metabolite levels in response to social stimuli. Thus, early social isolation has lasting effects in zebrafish, and may be employed to generate zebrafish models of human neuropsychiatric conditions.
Collapse
Affiliation(s)
- Soaleha Shams
- Department of Cell & Systems Biology, University of Toronto
| | - Shahid Amlani
- Department of Psychology, University of Toronto Mississauga
| | | | - Diptendu Chatterjee
- Department of Nutritional Sciences, University of Toronto
- Department of Psychology, University of Toronto Mississauga
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto
- Department of Psychology, University of Toronto Mississauga
| |
Collapse
|
148
|
Structure of the Zebrafish Locomotor Repertoire Revealed with Unsupervised Behavioral Clustering. Curr Biol 2018; 28:181-195.e5. [DOI: 10.1016/j.cub.2017.12.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/29/2017] [Accepted: 12/01/2017] [Indexed: 12/13/2022]
|
149
|
Zebrafish models of autism spectrum disorder. Exp Neurol 2018; 299:207-216. [DOI: 10.1016/j.expneurol.2017.02.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/23/2017] [Accepted: 02/01/2017] [Indexed: 11/19/2022]
|
150
|
Neuropeptide Y Regulates Sleep by Modulating Noradrenergic Signaling. Curr Biol 2017; 27:3796-3811.e5. [PMID: 29225025 DOI: 10.1016/j.cub.2017.11.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 10/11/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022]
Abstract
Sleep is an essential and evolutionarily conserved behavioral state whose regulation remains poorly understood. To identify genes that regulate vertebrate sleep, we recently performed a genetic screen in zebrafish, and here we report the identification of neuropeptide Y (NPY) as both necessary for normal daytime sleep duration and sufficient to promote sleep. We show that overexpression of NPY increases sleep, whereas mutation of npy or ablation of npy-expressing neurons decreases sleep. By analyzing sleep architecture, we show that NPY regulates sleep primarily by modulating the length of wake bouts. To determine how NPY regulates sleep, we tested for interactions with several systems known to regulate sleep, and provide anatomical, molecular, genetic, and pharmacological evidence that NPY promotes sleep by inhibiting noradrenergic signaling. These data establish NPY as an important vertebrate sleep/wake regulator and link NPY signaling to an established arousal-promoting system.
Collapse
|