101
|
Liu S, Wang S, Gu R, Che N, Wang J, Cheng J, Yuan Z, Cheng Y, Liao Y. The XPO1 Inhibitor KPT-8602 Ameliorates Parkinson's Disease by Inhibiting the NF-κB/NLRP3 Pathway. Front Pharmacol 2022; 13:847605. [PMID: 35721113 PMCID: PMC9200340 DOI: 10.3389/fphar.2022.847605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/13/2022] [Indexed: 01/16/2023] Open
Abstract
Exportin 1 (XPO1) is an important transport receptor that mediates the nuclear export of various proteins and RNA. KPT-8602 is a second-generation inhibitor of XPO1, demonstrating the lowest level of side effects, and is currently in clinical trials for the treatment of cancers. Previous studies suggest that several first-generation inhibitors of XPO1 demonstrate anti-inflammation activities, indicating the application of this drug in inflammation-related diseases. In this study, our results suggested the potent anti-inflammatory effect of KPT-8602 in vitro and in vivo. KPT-8602 inhibited the activation of the NF-κB pathway by blocking the phosphorylation and degradation of IκBα, and the priming of NLRP3. Importantly, the administration of KPT-8602 attenuated both lipopolysaccharide (LPS)-induced peripheral inflammation and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neuroinflammation in vivo. In addition, the tissue damage was also ameliorated by KPT-8602, indicating that KPT-8602 could be used as a novel potential therapeutic agent for the treatment of inflammasome-related diseases such as Parkinson’s disease, through the regulation of the NF-κB signaling pathway and the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Shuhan Liu
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.,Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
| | - Shengxiang Wang
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Runze Gu
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Na Che
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Jing Wang
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Jinbo Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Zengqiang Yuan
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.,The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.,Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
| | - Yajin Liao
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.,Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China.,The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
102
|
Wong YY, Wu CY, Yu D, Kim E, Wong M, Elez R, Zebarth J, Ouk M, Tan J, Liao J, Haydarian E, Li S, Fang Y, Li P, Pakosh M, Tartaglia MC, Masellis M, Swardfager W. Biofluid markers of blood-brain barrier disruption and neurodegeneration in Lewy body spectrum diseases: A systematic review and meta-analysis. Parkinsonism Relat Disord 2022; 101:119-128. [PMID: 35760718 DOI: 10.1016/j.parkreldis.2022.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mixed evidence supports blood-brain barrier (BBB) dysfunction in Lewy body spectrum diseases. METHODS We compare biofluid markers in people with idiopathic Parkinson's disease (PD) and people with PD dementia (PDD) and/or dementia with Lewy bodies (DLB), compared with healthy controls (HC). Seven databases were searched up to May 10, 2021. Outcomes included cerebrospinal fluid to blood albumin ratio (Qalb), and concentrations of 7 blood protein markers that also reflect BBB disruption and/or neurodegenerative co-pathology. We further explore differences between PD patients with and without evidence of dementia. Random-effects models were used to obtain standardized mean differences (SMD) with 95% confidence interval. RESULTS Of 13,949 unique records, 51 studies were meta-analyzed. Compared to HC, Qalb was higher in PD (NPD/NHC = 224/563; SMD = 0.960 [0.227-1.694], p = 0.010; I2 = 92.2%) and in PDD/DLB (NPDD/DLB/NHC = 265/670; SMD = 1.126 [0.358-1.893], p < 0.001; I2 = 78.2%). Blood neurofilament light chain (NfL) was higher in PD (NPD/NHC = 1848/1130; SMD = 0.747 [0.442-1.052], p < 0.001; I2 = 91.9%) and PDD/DLB (NPDD/DLB/NHC = 183/469; SMD = 1.051 [0.678-1.423], p = 0.004; I2 = 92.7%) than in HC. p-tau 181 (NPD/NHC = 276/164; SMD = 0.698 [0.149-1.247], p = 0.013; I2 = 82.7%) was also higher in PD compared to HC. In exploratory analyses, blood NfL was higher in PD without dementia (NPDND/NHC = 1005/740; SMD = 0.252 [0.042-0.462], p = 0.018; I2 = 71.8%) and higher in PDD (NPDD/NHC = 100/111; SMD = 0.780 [0.347-1.214], p < 0.001; I2 = 46.7%) compared to HC. Qalb (NPDD/NPDND = 63/191; SMD = 0.482 [0.189-0.774], p = 0.010; I2<0.001%) and NfL (NPDD/NPDND = 100/223; SMD = 0.595 [0.346-0.844], p < 0.001; I2 = 3.4%) were higher in PDD than in PD without dementia. CONCLUSIONS Biofluid markers suggest BBB disruption and neurodegenerative co-pathology involvement in common Lewy body diseases. Greater evidence of BBB breakdown was seen in Lewy body disease with cognitive impairment.
Collapse
Affiliation(s)
- Yuen Yan Wong
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Che-Yuan Wu
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Di Yu
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Esther Kim
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Melissa Wong
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Renata Elez
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Julia Zebarth
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Michael Ouk
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jocelyn Tan
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jiamin Liao
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Eileen Haydarian
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Siming Li
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Yaolu Fang
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Peihao Li
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Maureen Pakosh
- Library & Information Services, UHN Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Mario Masellis
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Walter Swardfager
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; KITE UHN Toronto Rehabilitation Institute, Toronto, Ontario, Canada.
| |
Collapse
|
103
|
Cheng Y, Wang T, Zhang T, Yi S, Zhao S, Li N, Yang Y, Zhang F, Xu L, Shan B, Xu X, Xu J. Increased blood-brain barrier permeability of the thalamus and the correlation with symptom severity and brain volume alterations in schizophrenia patients. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1025-1034. [PMID: 35738480 DOI: 10.1016/j.bpsc.2022.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cumulative evidence of microvascular dysfunction has suggested the blood-brain barrier (BBB) disruption in schizophrenia, while the direct in vivo evidence from patients is inadequate. In this study, using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) methods, we tried to test the hypothesis that there was increased BBB permeability in schizophrenia patients, and correlated with the clinical characters, and brain volumetric alterations. METHODS Structural MRI and DCE-MRI data from 29 schizophrenia patients and 18 age- and sex- matched controls (HC) were obtained. We calculated the volume transfer constant (Ktrans) value and compared the difference between two groups. The regions with the abnormal Ktrans value were extracted as ROIs (thalamus), and the correlation with the clinical characters and grey matter volume were analysed. RESULTS The results revealed that, compared with the HC, the volume transfer constant (Ktrans) value of the bilateral thalamus in the schizophrenia group was increased (p < 0.001). There were significant positive correlations between thalamic mean Ktrans value with disease duration (p < 0.05) and symptom severity (p < 0.001). Analysis of the thalamic subregions revealed that the BBB disruption was significant in pulvinar, especially the medial pulvinar nucleus (PuM) and lateral pulvinar nucleus (PuL) (p < 0.001). The Ktrans value of the whole brain, thalamus, and thalamic subregions was negatively correlated with their volume separately. CONCLUSION These results provided the first in vivo evidence of BBB disruption of thalamus in schizophrenia patients, and the BBB dysfunction might contribute to the pathological brain structural alterations in schizophrenia.
Collapse
Affiliation(s)
- Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China, 650032; Yunnan Clinical Research Centre for Mental Health, Kunming, China, 650032.
| | - Ting Wang
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China, 650032
| | - Tianhao Zhang
- Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049
| | - Shu Yi
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China, 650032
| | - Shilun Zhao
- Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049
| | - Na Li
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China, 650032
| | - Yifan Yang
- Department of Rheumatology, First Affiliated Hospital of Kunming Medical University, Kunming, China, 650032
| | - Fengrui Zhang
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, China, 650032
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China, 650223
| | - Baoci Shan
- Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China, 650032
| | - Jian Xu
- Department of Rheumatology, First Affiliated Hospital of Kunming Medical University, Kunming, China, 650032.
| |
Collapse
|
104
|
Microbial-derived metabolites as a risk factor of age-related cognitive decline and dementia. Mol Neurodegener 2022; 17:43. [PMID: 35715821 PMCID: PMC9204954 DOI: 10.1186/s13024-022-00548-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
A consequence of our progressively ageing global population is the increasing prevalence of worldwide age-related cognitive decline and dementia. In the absence of effective therapeutic interventions, identifying risk factors associated with cognitive decline becomes increasingly vital. Novel perspectives suggest that a dynamic bidirectional communication system between the gut, its microbiome, and the central nervous system, commonly referred to as the microbiota-gut-brain axis, may be a contributing factor for cognitive health and disease. However, the exact mechanisms remain undefined. Microbial-derived metabolites produced in the gut can cross the intestinal epithelial barrier, enter systemic circulation and trigger physiological responses both directly and indirectly affecting the central nervous system and its functions. Dysregulation of this system (i.e., dysbiosis) can modulate cytotoxic metabolite production, promote neuroinflammation and negatively impact cognition. In this review, we explore critical connections between microbial-derived metabolites (secondary bile acids, trimethylamine-N-oxide (TMAO), tryptophan derivatives and others) and their influence upon cognitive function and neurodegenerative disorders, with a particular interest in their less-explored role as risk factors of cognitive decline.
Collapse
|
105
|
Yonezu Y, Tanabe S, Misawa H, Muramatsu R. Lysophosphatidic acid stimulates pericyte migration via LPA receptor 1. Biochem Biophys Res Commun 2022; 618:61-66. [PMID: 35716596 DOI: 10.1016/j.bbrc.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/06/2022] [Indexed: 11/02/2022]
Abstract
Lysophosphatidic acid (LPA) is a bioactive compound known to regulate various vascular functions. However, despite the fact that many vascular functions are regulated by peri-vascular cells such as pericytes, the effect of LPA on brain pericytes has not been fully evaluated. Thus, we designed this study to evaluate the effects of LPA on brain pericytes. These experiments revealed that while LPA receptors (LPARs) are expressed in cultured pericytes from mouse brains, LPA treatment does not influence the proliferation of these cells but does have a profound impact on their migration, which is regulated via the expression of LPAR1. LPAR1 expression was also detected in human pericyte culture and LPA treatment of these cells also induced migration. Taken together these findings imply that LPA-LPAR1 signaling is one of the key mechanisms modulating pericyte migration, which may help to control vascular function during development and repair processes.
Collapse
Affiliation(s)
- Yoshino Yonezu
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, 187-8502, Japan; Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, 105-8512, Japan
| | - Shogo Tanabe
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, 187-8502, Japan
| | - Hidemi Misawa
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, 105-8512, Japan
| | - Rieko Muramatsu
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, 187-8502, Japan.
| |
Collapse
|
106
|
Montagne A, Barnes SR, Nation DA, Kisler K, Toga AW, Zlokovic BV. Imaging subtle leaks in the blood-brain barrier in the aging human brain: potential pitfalls, challenges, and possible solutions. GeroScience 2022; 44:1339-1351. [PMID: 35469116 PMCID: PMC9213625 DOI: 10.1007/s11357-022-00571-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/10/2022] [Indexed: 02/06/2023] Open
Abstract
Recent studies using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with gadolinium-based contrast agents (GBCA) have demonstrated subtle blood-brain barrier (BBB) leaks in the human brain during normal aging, in individuals with age-related cognitive dysfunction, genetic risk for Alzheimer's disease (AD), mild cognitive impairment, early AD, cerebral small vessel disease (SVD), and other neurodegenerative disorders. In these neurological conditions, the BBB leaks, quantified by the unidirectional BBB GBCA tracer's constant Ktrans maps, are typically orders of magnitude lower than in brain tumors, after stroke and/or during relapsing episodes of multiple sclerosis. This puts extra challenges for the DCE-MRI technique by pushing calculations towards its lower limits of detectability. In addition, presently, there are no standardized multivendor protocols or evidence of repeatability and reproducibility. Nevertheless, subtle BBB leaks may critically contribute to the pathophysiology of cognitive impairment and dementia associated with AD or SVD, and therefore, efforts to improve sensitivity of detection, reliability, and reproducibility are warranted. A larger number of participants scanned by different MR scanners at different clinical sites are sometimes required to detect differences in BBB integrity between control and at-risk groups, which impose additional challenges. Here, we focus on these new challenges and propose some approaches to normalize and harmonize DCE data between different scanners. In brief, we recommend specific regions to be used for the tracer's vascular input function and DCE data processing and how to find and correct negative Ktrans values that are physiologically impossible. We hope this information will prove helpful to new investigators wishing to study subtle BBB damage in neurovascular and neurodegenerative conditions and in the aging human brain.
Collapse
Affiliation(s)
- Axel Montagne
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | - Samuel R Barnes
- Department of Radiology, Loma Linda University, Loma Linda, CA, USA.
| | - Daniel A Nation
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, USA
- Department of Psychological Science, University of California Irvine, Irvine, CA, USA
| | - Kassandra Kisler
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arthur W Toga
- Laboratory of Neuroimaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
107
|
McComish SF, MacMahon Copas AN, Caldwell MA. Human Brain-Based Models Provide a Powerful Tool for the Advancement of Parkinson’s Disease Research and Therapeutic Development. Front Neurosci 2022; 16:851058. [PMID: 35651633 PMCID: PMC9149087 DOI: 10.3389/fnins.2022.851058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease and affects approximately 2–3% of the population over the age of 65. PD is characterised by the loss of dopaminergic neurons from the substantia nigra, leading to debilitating motor symptoms including bradykinesia, tremor, rigidity, and postural instability. PD also results in a host of non-motor symptoms such as cognitive decline, sleep disturbances and depression. Although existing therapies can successfully manage some motor symptoms for several years, there is still no means to halt progression of this severely debilitating disorder. Animal models used to replicate aspects of PD have contributed greatly to our current understanding but do not fully replicate pathological mechanisms as they occur in patients. Because of this, there is now great interest in the use of human brain-based models to help further our understanding of disease processes. Human brain-based models include those derived from embryonic stem cells, patient-derived induced neurons, induced pluripotent stem cells and brain organoids, as well as post-mortem tissue. These models facilitate in vitro analysis of disease mechanisms and it is hoped they will help bridge the existing gap between bench and bedside. This review will discuss the various human brain-based models utilised in PD research today and highlight some of the key breakthroughs they have facilitated. Furthermore, the potential caveats associated with the use of human brain-based models will be detailed.
Collapse
Affiliation(s)
- Sarah F. McComish
- Department of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Adina N. MacMahon Copas
- Department of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Maeve A. Caldwell
- Department of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- *Correspondence: Maeve A. Caldwell,
| |
Collapse
|
108
|
Dion-Albert L, Bandeira Binder L, Daigle B, Hong-Minh A, Lebel M, Menard C. Sex differences in the blood-brain barrier: Implications for mental health. Front Neuroendocrinol 2022; 65:100989. [PMID: 35271863 DOI: 10.1016/j.yfrne.2022.100989] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/07/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022]
Abstract
Prevalence of mental disorders, including major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ) are increasing at alarming rates in our societies. Growing evidence points toward major sex differences in these conditions, and high rates of treatment resistance support the need to consider novel biological mechanisms outside of neuronal function to gain mechanistic insights that could lead to innovative therapies. Blood-brain barrier alterations have been reported in MDD, BD and SZ. Here, we provide an overview of sex-specific immune, endocrine, vascular and transcriptional-mediated changes that could affect neurovascular integrity and possibly contribute to the pathogenesis of mental disorders. We also identify pitfalls in current literature and highlight promising vascular biomarkers. Better understanding of how these adaptations can contribute to mental health status is essential not only in the context of MDD, BD and SZ but also cardiovascular diseases and stroke which are associated with higher prevalence of these conditions.
Collapse
Affiliation(s)
- Laurence Dion-Albert
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Luisa Bandeira Binder
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Beatrice Daigle
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Amandine Hong-Minh
- Smurfit Institute of Genetics, Trinity College Dublin, Lincoln Place Gate, Dublin 2, Ireland
| | - Manon Lebel
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Caroline Menard
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada.
| |
Collapse
|
109
|
Paul G, Elabi OF. Microvascular Changes in Parkinson’s Disease- Focus on the Neurovascular Unit. Front Aging Neurosci 2022; 14:853372. [PMID: 35360216 PMCID: PMC8960855 DOI: 10.3389/fnagi.2022.853372] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 12/27/2022] Open
Abstract
Vascular alterations emerge as a common denominator for several neurodegenerative diseases. In Parkinson’s disease (PD), a number of observations have been made suggesting that the occurrence of vascular pathology is an important pathophysiological aspect of the disease. Specifically, pathological activation of pericytes, blood-brain barrier (BBB) disruption, pathological angiogenesis and vascular regression have been reported. This review summarizes the current evidence for the different vascular alterations in patients with PD and in animal models of PD. We suggest a possible sequence of vascular pathology in PD ranging from early pericyte activation and BBB leakage to an attempt for compensatory angiogenesis and finally vascular rarefication. We highlight different pathogenetic mechanisms that play a role in these vascular alterations including perivascular inflammation and concomitant metabolic disease. Awareness of the contribution of vascular events to the pathogenesis of PD may allow the identification of targets to modulate those mechanisms. In particular the BBB has for decades only been viewed as an obstacle for drug delivery, however, preservation of its integrity and/or modulation of the signaling at this interface between the blood and the brain may prove to be a new avenue to take in order to develop disease-modifying strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Gesine Paul
- Translational Neurology Group, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Neurology, Scania University Hospital, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- *Correspondence: Gesine Paul,
| | - Osama F. Elabi
- Translational Neurology Group, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
110
|
Zelek WM, Morgan BP. Targeting complement in neurodegeneration: challenges, risks, and strategies. Trends Pharmacol Sci 2022; 43:615-628. [DOI: 10.1016/j.tips.2022.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
|
111
|
Barisano G, Montagne A, Kisler K, Schneider JA, Wardlaw JM, Zlokovic BV. Blood-brain barrier link to human cognitive impairment and Alzheimer's Disease. NATURE CARDIOVASCULAR RESEARCH 2022; 1:108-115. [PMID: 35450117 PMCID: PMC9017393 DOI: 10.1038/s44161-021-00014-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/21/2021] [Indexed: 01/18/2023]
Abstract
Vascular dysfunction is frequently seen in disorders associated with cognitive impairment, dementia and Alzheimer's disease (AD). Recent advances in neuroimaging and fluid biomarkers suggest that vascular dysfunction is not an innocent bystander only accompanying neuronal dysfunction. Loss of cerebrovascular integrity, often referred to as breakdown in the blood-brain barrier (BBB), has recently shown to be an early biomarker of human cognitive dysfunction and possibly underlying mechanism of age-related cognitive decline. Damage to the BBB may initiate or further invoke a range of tissue injuries causing synaptic and neuronal dysfunction and cognitive impairment that may contribute to AD. Therefore, better understanding of how vascular dysfunction caused by BBB breakdown interacts with amyloid-β and tau AD biomarkers to confer cognitive impairment may lead to new ways of thinking about pathogenesis, and possibly treatment and prevention of early cognitive impairment, dementia and AD, for which we still do not have effective therapies.
Collapse
Affiliation(s)
- Giuseppe Barisano
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- These authors contributed equally: Giuseppe Barisano and Axel Montagne
| | - Axel Montagne
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- These authors contributed equally: Giuseppe Barisano and Axel Montagne
| | - Kassandra Kisler
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Julie A. Schneider
- Departments of Pathology and Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Berislav V. Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Alzheimer’s Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
112
|
Pan Y, Nicolazzo JA. Altered Blood-Brain Barrier and Blood-Spinal Cord Barrier Dynamics in Amyotrophic Lateral Sclerosis: Impact on Medication Efficacy and Safety. Br J Pharmacol 2022; 179:2577-2588. [PMID: 35048358 DOI: 10.1111/bph.15802] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 11/26/2022] Open
Abstract
The access of drugs into the central nervous system (CNS) is regulated by the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB). A large body of evidence supports perturbation of these barriers in neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Modifications to the BBB and BSCB are also reported in amyotrophic lateral sclerosis (ALS), albeit these modifications have received less attention relative to those in other neurodegenerative diseases. Such alterations to the BBB and BSCB have the potential to impact on CNS exposure of drugs in ALS, modulating the effectiveness of drugs intended to reach the brain and the toxicity of drugs that are not intended to reach the brain. Given the clinical importance of these phenomena, this review will summarise reported modifications to the BBB and BSCB in ALS, discuss their impact on CNS drug exposure and suggest further research directions so as to optimise medicine use in people with ALS.
Collapse
Affiliation(s)
- Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
113
|
El-Hakim Y, Bake S, Mani KK, Sohrabji F. Impact of intestinal disorders on central and peripheral nervous system diseases. Neurobiol Dis 2022; 165:105627. [PMID: 35032636 DOI: 10.1016/j.nbd.2022.105627] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/03/2022] [Accepted: 01/09/2022] [Indexed: 12/16/2022] Open
Abstract
Brain injuries and neurological diseases have a significant impact on the gut microbiome and the gut barrier. Reciprocally, gut disorders, such as Inflammatory Bowel Syndromes (IBS), can affect the development and pathology of neurodegenerative and neuropsychiatric diseases, although this aspect is less well studied and is the focus of this review. Inflammatory Bowel Syndrome (IBS) is a chronic and debilitating functional gastrointestinal disorder afflicting an estimated 9-23% of the world's population. A hallmark of this disease is leaky gut, a pathology in which the integrity of the gut blood barrier is compromised, causing gut contents such as immune cells and microbiota to enter the bloodstream leading to low-grade systemic inflammation. The increased levels of inflammation associated cytokines in circulation has the potential to affect all organs, including the brain. Although the brain is protected by the blood brain barrier, inflammation associated cytokines can damage the junctions in this barrier and allow brain infiltration of peripheral immune cells. Central inflammation in the brain is associated with various neurodegenerative disease such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and neuropsychiatric disorders, namely, depression, and anxiety. Neurodegenerative diseases are of particular concern due to the anticipated rise in the population of the elderly and consequently, the prevalence of these diseases. Additionally, depression and anxiety are the most common mental illnesses affecting roughly 18% of the American population. In this review, we will explore the mechanisms by which IBS can influence the risk and severity of neurological disease.
Collapse
Affiliation(s)
- Yumna El-Hakim
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan, TX, USA
| | - Shameena Bake
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan, TX, USA
| | - Kathiresh Kumar Mani
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan, TX, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan, TX, USA.
| |
Collapse
|
114
|
Bancroft EA, Srinivasan R. Emerging Roles for Aberrant Astrocytic Calcium Signals in Parkinson's Disease. Front Physiol 2022; 12:812212. [PMID: 35087422 PMCID: PMC8787054 DOI: 10.3389/fphys.2021.812212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022] Open
Abstract
Astrocytes display a plethora of spontaneous Ca2+ signals that modulate vital functions of the central nervous system (CNS). This suggests that astrocytic Ca2+ signals also contribute to pathological processes in the CNS. In this context, the molecular mechanisms by which aberrant astrocytic Ca2+ signals trigger dopaminergic neuron loss during Parkinson's disease (PD) are only beginning to emerge. Here, we provide an evidence-based perspective on potential mechanisms by which aberrant astrocytic Ca2+ signals can trigger dysfunction in three distinct compartments of the brain, viz., neurons, microglia, and the blood brain barrier, thereby leading to PD. We envision that the coming decades will unravel novel mechanisms by which aberrant astrocytic Ca2+ signals contribute to PD and other neurodegenerative processes in the CNS.
Collapse
Affiliation(s)
- Eric A. Bancroft
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, United States
| | - Rahul Srinivasan
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, United States
- Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, United States
| |
Collapse
|
115
|
Chan DKY, Braidy N, Chen RF, Xu YH, Bentley S, Lubomski M, Davis RL, Chen J, Sue CM, Mellick GD. Strong Predictive Algorithm of Pathogenesis-Based Biomarkers Improves Parkinson's Disease Diagnosis. Mol Neurobiol 2022; 59:1476-1485. [PMID: 34993845 DOI: 10.1007/s12035-021-02604-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/15/2021] [Indexed: 10/19/2022]
Abstract
Easily accessible and accurate biomarkers can aid Parkinson's disease diagnosis. We investigated whether combining plasma levels of α-synuclein, anti-α-synuclein, and/or their ratios to amyloid beta-40 correlated with clinical diagnosis. The inclusion of amyloid beta-40 (Aβ40) is novel. Plasma levels of biomarkers were quantified with ELISA. Using receiver operating characteristic (ROC) curve analysis, levels of α-synuclein, anti-α-synuclein, and their ratios with Aβ40 were analyzed in an initial training set of cases and controls. Promising biomarkers were then used to build a diagnostic algorithm. Verification of the results of biomarkers and the algorithm was performed in an independent set. The training set consisted of 50 cases (age 65.2±9.3, range 44-83, female:male=21:29) with 50 age- and gender-matched controls (67.1±10.0, range 45-96 years; female:male=21:29). ROC curve analysis yielded the following area under the curve results: anti-α-synuclein=0.835, α-synuclein=0.738, anti-α-synuclein/Aβ40=0.737, and α-synuclein/Aβ40=0.663. A 2-step diagnostic algorithm was built: either α-synuclein or anti-α-synuclein was ≥2 times the means of controls (step-1), resulting in 74% sensitivity; and adding α-synuclein/Aβ40 or anti-α-synuclein/Aβ40 (step-2) yielded better sensitivity (82%) while using step-2 alone yielded good specificity in controls (98%). The results were verified in an independent sample of 46 cases and 126 controls, with sensitivity reaching 91.3% and specificity 90.5%. The algorithm was equally sensitive in Parkinson's disease of ≤5-year duration with 92.6% correctly identified in the training set and 90% in the verification set. With two independent samples totaling 272 subjects, our study showed that combination of biomarkers of α-synuclein, anti-α-synuclein, and their ratios to Aβ40 showed promising sensitivity and specificity.
Collapse
Affiliation(s)
- Daniel Kam Yin Chan
- University of New South Wales, Kensington, Australia. .,Western Sydney University, Sydney, Australia. .,Bankstown-Lidcombe Hospital, Eldridge Rd, Bankstown, NSW, 2200, Australia.
| | - Nady Braidy
- University of New South Wales, Kensington, Australia
| | - Ren Fen Chen
- Central Sydney Immunology Laboratory, NSW Health Pathology at Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Ying Hua Xu
- University of New South Wales, Kensington, Australia.,Bankstown-Lidcombe Hospital, Eldridge Rd, Bankstown, NSW, 2200, Australia
| | | | - Michal Lubomski
- Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Ryan L Davis
- Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Jack Chen
- University of New South Wales, Kensington, Australia
| | - Carolyn M Sue
- Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | | |
Collapse
|
116
|
Zhu D, He B, Zhang M, Wan Y, Liu R, Wang L, Zhang Y, Li Y, Gao F. A Multimodal MR Imaging Study of the Effect of Hippocampal Damage on Affective and Cognitive Functions in a Rat Model of Chronic Exposure to a Plateau Environment. Neurochem Res 2022; 47:979-1000. [PMID: 34981302 PMCID: PMC8891211 DOI: 10.1007/s11064-021-03498-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 02/05/2023]
Abstract
Prolonged exposure to high altitudes above 2500 m above sea level (a.s.l.) can cause cognitive and behavioral dysfunctions. Herein, we sought to investigate the effects of chronic exposure to plateau hypoxia on the hippocampus in a rat model by using voxel-based morphometry, creatine chemical exchange saturation transfer (CrCEST) and dynamic contrast-enhanced MR imaging techniques. 58 healthy 4-week-old male rats were randomized into plateau hypoxia rats (H group) as the experimental group and plain rats (P group) as the control group. H group rats were transported from Chengdu (500 m a.s.l.), a city in a plateau located in southwestern China, to the Qinghai-Tibet Plateau (4250 m a.s.l.), Yushu, China, and then fed for 8 months there, while P group rats were fed in Chengdu (500 m a.s.l.), China. After 8 months of exposure to plateau hypoxia, open-field and elevated plus maze tests revealed that the anxiety-like behavior of the H group rats was more serious than that of the P group rats, and the Morris water maze test revealed impaired spatial memory function in the H group rats. Multimodal MR imaging analysis revealed a decreased volume of the regional gray matter, lower CrCEST contrast and higher transport coefficient Ktrans in the hippocampus compared with the P group rats. Further correlation analysis found associations of quantitative MRI parameters of the hippocampus with the behavioral performance of H group rats. In this study, we validated the viability of using noninvasive multimodal MR imaging techniques to evaluate the effects of chronic exposure to a plateau hypoxic environment on the hippocampus.
Collapse
Affiliation(s)
- Dongyong Zhu
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Bo He
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Mengdi Zhang
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Yixuan Wan
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Ruibin Liu
- Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310030, China
| | - Lei Wang
- Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Zhang
- Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310030, China
| | - Yunqing Li
- Department of Anatomy and KK Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Fabao Gao
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China. .,Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
117
|
Wang X, Jiang D, Li T, Zhang X, Wang R, Gao S, Yang F, Wang Y, Tian Q, Xie C, Liang J. Association between microbiological risk factors and neurodegenerative disorders: An umbrella review of systematic reviews and meta-analyses. Front Psychiatry 2022; 13:991085. [PMID: 36213914 PMCID: PMC9537612 DOI: 10.3389/fpsyt.2022.991085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/30/2022] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED The role of microbiological factors in the development of neurodegenerative diseases is attracting increasing attention, while the relationship remains debated. This study aimed to comprehensively summarize and evaluate the associations between microbiological factors and the risk of neurodegenerative disorders with an umbrella review. PubMed, Embase, and the Cochrane library were used to search for papers from the earliest to March 2021 for identifying meta-analyses and systematic reviews that examined associations between microbiological factors and neurodegenerative diseases. AMSTAR2 tool was employed to evaluate the methodical quality of systematic reviews and meta-analyses. The effect size and 95% confidence interval (95% CI) were recalculated with a random effect model after the overlap was recognized by the corrected covered area (CCA) method. The heterogeneity of each meta-analysis was measured by the I 2 statistic and 95% prediction interval (95% PI). Additionally, publication bias and the quality of evidence were evaluated for all 37 unique associations. Only 4 associations had above the medium level of evidence, and the rest associations presented a low level of evidence. Among them, helicobacter pylori (HP), infection, and bacteria are associated with Parkinson's disease (PD), and the other one verifies that periodontal disease is a risk factor for all types of dementia. Following the evidence of our study, eradication of HP and aggressive treatment of periodontitis are beneficial for the prevention of PD and dementia, respectively. This umbrella review provides comprehensive quality-grade evidence on the relationship between microbial factors and neurodegenerative disease. Regardless of much evidence linking microbial factors to neurodegenerative diseases, these associations are not necessarily causal, and the evidence level is generally low. Thus, more effective studies are required. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO/#searchadvanced, PROSPERO, identifier: CRD42021239512.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tianxiong Li
- Surgery Centre of Diabetes Mellitus, Peking University Ninth School of Clinical Medicine (Beijing Shijitan Hospital, Capital Medical University), Beijing, China
| | - Xiao Zhang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Ran Wang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Song Gao
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Fengyi Yang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Yan Wang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Qi Tian
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Chunrong Xie
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
- Chunrong Xie
| | - Jinghong Liang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jinghong Liang
| |
Collapse
|
118
|
Ganguly U, Singh S, Chakrabarti S, Saini AK, Saini RV. Immunotherapeutic interventions in Parkinson's disease: Focus on α-Synuclein. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 129:381-433. [PMID: 35305723 DOI: 10.1016/bs.apcsb.2021.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized classically by motor manifestations. However, nonmotor symptoms appear early in the course of the disease progression, making both diagnosis and treatment difficult. The pathology of PD is complicated by the accumulation and aggregation of misfolded proteins in intracellular cytoplasmic inclusions called Lewy bodies (LBs). The main toxic component of LBs is the protein α-Synuclein which plays a pivotal role in PD pathogenesis. α-Synuclein can propagate from cell-to-cell exhibiting prion-like properties and spread PD pathology throughout the central nervous system. Immunotherapeutic interventions in PD, both active and passive immunization, have targeted α-Synuclein in both experimental models and clinical trials. In addition, targeting the hyperactive inflammation in PD also holds promise in designing potential immunotherapeutics. The inflammatory and proteotoxic pathways are interlinked and contribute immensely to the disease pathology. In this chapter, we critically review the targets of immunotherapeutic interventions in PD, focusing on the pathogenetic mechanisms of PD, particularly neuroinflammation and α-Synuclein misfolding, aggregation, and propagation. We thoroughly summarized the various immunotherapeutic strategies designed to treat PD-in vitro, in vivo, and clinical trials. The development of these targeted immunotherapies could open a new avenue in the treatment of patients with PD.
Collapse
Affiliation(s)
- Upasana Ganguly
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, India
| | - Sukhpal Singh
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, India
| | - Sasanka Chakrabarti
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, India
| | - Adesh K Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Reena V Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, India.
| |
Collapse
|
119
|
Sian-Hülsmann J. Wilful pathogens provoke a gut feeling in Parkinson’s disease. J Neural Transm (Vienna) 2021; 129:557-562. [PMID: 34923593 PMCID: PMC8684782 DOI: 10.1007/s00702-021-02448-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
Parkinson’s disease is the second most common neurological disorder marked by characteristic poverty and dysfunction in movement. There are many mechanisms and factors which have been postulated to be associated with the neurodegenerative pathway(s) resulting in distinctive loss of neurons in the substantia nigra. Subsequently, the neuropathology is more widespread and exhibited in other areas of the brain, and enteric nervous system. Aggregates of misfolded α-synuclein or Lewy bodies are the hallmark of the illness and appear to be central in the whole cascade of cell destruction. There are many processes implicated in neuronal destruction including: oxidative stress, excitotoxicity, mitochondrial dysfunction, an imbalance in protein homeostasis and neuroinflammation. Interesting, inflammation induced by pathogens (including, bacteria and viruses) has been associated in the pathogenesis of the disease. Bacteria such as Helicobacter pylori and Helicobacter suis appear to colonise the gut, and elicit systemic immune responses, which is them transmitted via the gut-axis to the brain, where cytotoxic cytokines induce neuroinflammation and cell death. This conforms to the bottom–top hypothesis proposed by Braak. The gut is also implicated in two other theories postulated in the development and progression of the disorder, namely, the top–down and the threshold. There is a possibility that these theories may be inter-linked and operate together to certain degree. Ultimately specific trigger factors or conditions may govern the occurrences of these processes in genetically predisposed individuals. Nevertheless, the importance of pathogen-related gut infections cannot be overlooked, since it can result in dysbiosis of gut microbes, which may orchestrate α-synuclein pathology and eventually cell destruction.
Collapse
Affiliation(s)
- Jeswinder Sian-Hülsmann
- Department of Medical Physiology, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya.
| |
Collapse
|
120
|
Roshani M, Kiaie N, Aghdam RM. Biomaterials and stem cells as drug/gene-delivery vehicles for Parkinson's treatment: an update. Regen Med 2021; 16:1057-1072. [PMID: 34865515 DOI: 10.2217/rme-2021-0050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
By introducing biomaterials and stem cells into Parkinson's disease (PD), therapeutic approaches have led to promising results due to facilitating brain targeting and blood-brain barrier permeation of the drugs and genes. Here, after reviewing the most recent drug- and gene-delivery vehicles including liposomes, exosomes, natural/synthetic polymeric particles/fibers, metallic/ceramic nanoparticles and microbubbles, used for Parkinson's disease treatment, the effect of stem cells as a reservoir of neurotrophic factors and exosomes is provided.
Collapse
Affiliation(s)
- Milad Roshani
- School of Metallurgy & Materials Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran.,Department of Biomedical Engineering, Shahab Danesh University, Qom, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rouhollah Mehdinavaz Aghdam
- School of Metallurgy & Materials Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| |
Collapse
|
121
|
Kociszewska D, Chan J, Thorne PR, Vlajkovic SM. The Link between Gut Dysbiosis Caused by a High-Fat Diet and Hearing Loss. Int J Mol Sci 2021; 22:13177. [PMID: 34947974 PMCID: PMC8708400 DOI: 10.3390/ijms222413177] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
This review aims to provide a conceptual and theoretical overview of the association between gut dysbiosis and hearing loss. Hearing loss is a global health issue; the World Health Organisation (WHO) estimates that 2.5 billion people will be living with some degree of hearing loss by 2050. The aetiology of sensorineural hearing loss (SNHL) is complex and multifactorial, arising from congenital and acquired causes. Recent evidence suggests that impaired gut health may also be a risk factor for SNHL. Inflammatory bowel disease (IBD), type 2 diabetes, diet-induced obesity (DIO), and high-fat diet (HFD) all show links to hearing loss. Previous studies have shown that a HFD can result in microangiopathy, impaired insulin signalling, and oxidative stress in the inner ear. A HFD can also induce pathological shifts in gut microbiota and affect intestinal barrier (IB) integrity, leading to a leaky gut. A leaky gut can result in chronic systemic inflammation, which may affect extraintestinal organs. Here, we postulate that changes in gut microbiota resulting from a chronic HFD and DIO may cause a systemic inflammatory response that can compromise the permeability of the blood-labyrinth barrier (BLB) in the inner ear, thus inducing cochlear inflammation and hearing deficits.
Collapse
Affiliation(s)
| | | | | | - Srdjan M. Vlajkovic
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland 1142, New Zealand; (D.K.); (J.C.); (P.R.T.)
| |
Collapse
|
122
|
Nguyen B, Bix G, Yao Y. Basal lamina changes in neurodegenerative disorders. Mol Neurodegener 2021; 16:81. [PMID: 34876200 PMCID: PMC8650282 DOI: 10.1186/s13024-021-00502-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neurodegenerative disorders are a group of age-associated diseases characterized by progressive degeneration of the structure and function of the CNS. Two key pathological features of these disorders are blood-brain barrier (BBB) breakdown and protein aggregation. MAIN BODY The BBB is composed of various cell types and a non-cellular component---the basal lamina (BL). Although how different cells affect the BBB is well studied, the roles of the BL in BBB maintenance and function remain largely unknown. In addition, located in the perivascular space, the BL is also speculated to regulate protein clearance via the meningeal lymphatic/glymphatic system. Recent studies from our laboratory and others have shown that the BL actively regulates BBB integrity and meningeal lymphatic/glymphatic function in both physiological and pathological conditions, suggesting that it may play an important role in the pathogenesis and/or progression of neurodegenerative disorders. In this review, we focus on changes of the BL and its major components during aging and in neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). First, we introduce the vascular and lymphatic systems in the CNS. Next, we discuss the BL and its major components under homeostatic conditions, and summarize their changes during aging and in AD, PD, and ALS in both rodents and humans. The functional significance of these alterations and potential therapeutic targets are also reviewed. Finally, key challenges in the field and future directions are discussed. CONCLUSIONS Understanding BL changes and the functional significance of these changes in neurodegenerative disorders will fill the gap of knowledge in the field. Our goal is to provide a clear and concise review of the complex relationship between the BL and neurodegenerative disorders to stimulate new hypotheses and further research in this field.
Collapse
Affiliation(s)
- Benjamin Nguyen
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Gregory Bix
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA.
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, MDC 8, Tampa, Florida, 33612, USA.
| |
Collapse
|
123
|
Reduced Immunosenescence of Peripheral Blood T Cells in Parkinson's Disease with CMV Infection Background. Int J Mol Sci 2021; 22:ijms222313119. [PMID: 34884936 PMCID: PMC8658620 DOI: 10.3390/ijms222313119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 01/11/2023] Open
Abstract
Immunosenescence is a process of remodeling the immune system under the influence of chronic inflammation during aging. Parkinson’s disease (PD) is a common age-associated neurodegenerative disorder and is frequently accompanied by neuroinflammation. On the other hand, cytomegalovirus (CMV), one of the most spread infections in humans, may induce chronic inflammation which contributes to immunosenescence, differentiation and the inflation of T cells and NK cells. Currently, there is no clear understanding of immunosenescence severity in PD patients infected with CMV. In this study, we analyzed differentiation stages and immunosenescence characteristics of T cells and NK cells in 31 patients with mild and moderate PD severity, 33 age-matched and 30 young healthy donors. The PD patients were 100% CMV-seropositive compared to 76% age-matched and 73% young CMV-infected healthy donors. The proportion of effector memory T cells re-expressing CD45RA, CD57+CD56− T cells and CD57+CD56+ T cells was significantly reduced in PD patients compared with CMV-seropositive age-matched healthy individuals. The CD57+CD56− T cell proportion in PD patients was similar to that of CMV-seropositive young healthy donors. Thus, PD is characterized by reduced peripheral blood T cell immunosenescence, even against the background of CMV infection.
Collapse
|
124
|
Ding Y, Shusta EV, Palecek SP. Integrating in vitro disease models of the neurovascular unit into discovery and development of neurotherapeutics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20:100341. [PMID: 34693102 PMCID: PMC8530278 DOI: 10.1016/j.cobme.2021.100341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The blood-brain barrier (BBB) regulates the transport of small molecules, proteins, and cells between the bloodstream and the central nervous system (CNS). Brain microvascular endothelial cells work with other resident brain cell types, including pericytes, astrocytes, neurons, and microglia, to form the neurovascular unit (NVU) and maintain BBB integrity. The restrictive barrier influences the pathogenesis of many CNS diseases, and impedes the delivery of neurotherapeutics into the CNS. In vitro NVU models enable the discovery of complex cell-cell interactions involved in human BBB pathophysiology in diseases including Alzheimer's Disease (AD), Parkinson's Disease (PD) and viral infections of the brain. In vitro NVU models have also been deployed to study the delivery of neurotherapeutics across the BBB, including small molecule drugs, monoclonal antibodies, gene therapy vectors and immune cells. The high scalability, accessibility, and phenotype fidelity of in vitro NVU models can facilitate the discovery and development of effective neurotherapeutics.
Collapse
Affiliation(s)
- Yunfeng Ding
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
125
|
Cai P, Zheng Y, Sun Y, Zhang C, Zhang Q, Liu Q. New Blood-Brain Barrier Models Using Primary Parkinson's Disease Rat Brain Endothelial Cells and Astrocytes for the Development of Central Nervous System Drug Delivery Systems. ACS Chem Neurosci 2021; 12:3829-3837. [PMID: 34623131 DOI: 10.1021/acschemneuro.1c00118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor system defects due to the loss of dopaminergic neurons. A significant contributor to the current limited therapeutic treatments for PD is the poor penetration of potential drugs through the blood-brain barrier (BBB). The BBB is a highly specialized neurovascular system that separates components of the circulating blood from neurons. There is a great need to develop in vitro BBB models that retain fundamental characteristics and reliably predict the permeability of drug candidates. BBB breakdown may initiate and/or contribute to neuronal dysfunction and loss in diseases such as PD. However, there is no in vitro BBB model that mimics the pathological state of PD. To construct in vitro BBB models for drug delivery systems in the developing central nervous system (CNS), we isolated high purity endothelial cells from both normal and PD rat brain microvessels. The primary rat endothelial cell cultures maintained the properties of their in vivo counterparts. We developed and characterized in vitro rat endothelial cell and C6 glial cell coculture BBB models. We further examined the morphological and functional integrity of the barriers. The in vitro coculture BBB models we established displayed the typical cytoarchitecture and cellular markers by immunofluorescence staining and electron microscopy, high transendothelial electrical resistance (>300 Ω cm2), and a low permeability value (<3 × 10-6 cm/s). Our new models can be used to study BBB dysfunctions in relation to the pathogenesis and progression of PD, as well as a screening tool to test candidate drugs for PD treatment.
Collapse
Affiliation(s)
- Pei Cai
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| | - Yi Zheng
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| | - Yilin Sun
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Cuiping Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Qi Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Qian Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
- Key Laboratory of Central Nervous System Injury Research, Beijing Institute for Brain Disorders Brain Tumor Center, China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing 10050, China
| |
Collapse
|
126
|
Ouellette J, Lacoste B. From Neurodevelopmental to Neurodegenerative Disorders: The Vascular Continuum. Front Aging Neurosci 2021; 13:749026. [PMID: 34744690 PMCID: PMC8570842 DOI: 10.3389/fnagi.2021.749026] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Structural and functional integrity of the cerebral vasculature ensures proper brain development and function, as well as healthy aging. The inability of the brain to store energy makes it exceptionally dependent on an adequate supply of oxygen and nutrients from the blood stream for matching colossal demands of neural and glial cells. Key vascular features including a dense vasculature, a tightly controlled environment, and the regulation of cerebral blood flow (CBF) all take part in brain health throughout life. As such, healthy brain development and aging are both ensured by the anatomical and functional interaction between the vascular and nervous systems that are established during brain development and maintained throughout the lifespan. During critical periods of brain development, vascular networks remodel until they can actively respond to increases in neural activity through neurovascular coupling, which makes the brain particularly vulnerable to neurovascular alterations. The brain vasculature has been strongly associated with the onset and/or progression of conditions associated with aging, and more recently with neurodevelopmental disorders. Our understanding of cerebrovascular contributions to neurological disorders is rapidly evolving, and increasing evidence shows that deficits in angiogenesis, CBF and the blood-brain barrier (BBB) are causally linked to cognitive impairment. Moreover, it is of utmost curiosity that although neurodevelopmental and neurodegenerative disorders express different clinical features at different stages of life, they share similar vascular abnormalities. In this review, we present an overview of vascular dysfunctions associated with neurodevelopmental (autism spectrum disorders, schizophrenia, Down Syndrome) and neurodegenerative (multiple sclerosis, Huntington's, Parkinson's, and Alzheimer's diseases) disorders, with a focus on impairments in angiogenesis, CBF and the BBB. Finally, we discuss the impact of early vascular impairments on the expression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Julie Ouellette
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
127
|
Sharma A, Muresanu DF, Patnaik R, Menon PK, Tian ZR, Sahib S, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Skaper SD, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma HS. Histamine H3 and H4 receptors modulate Parkinson's disease induced brain pathology. Neuroprotective effects of nanowired BF-2649 and clobenpropit with anti-histamine-antibody therapy. PROGRESS IN BRAIN RESEARCH 2021; 266:1-73. [PMID: 34689857 DOI: 10.1016/bs.pbr.2021.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Military personnel deployed in combat operations are highly prone to develop Parkinson's disease (PD) in later lives. PD largely involves dopaminergic pathways with hallmarks of increased alpha synuclein (ASNC), and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) precipitating brain pathology. However, increased histaminergic nerve fibers in substantia nigra pars Compacta (SNpc), striatum (STr) and caudate putamen (CP) associated with upregulation of Histamine H3 receptors and downregulation of H4 receptors in human cases of PD is observed in postmortem cases. These findings indicate that modulation of histamine H3 and H4 receptors and/or histaminergic transmission may induce neuroprotection in PD induced brain pathology. In this review effects of a potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist, in association with monoclonal anti-histamine antibodies (AHmAb) in PD brain pathology is discussed based on our own observations. Our investigation shows that chronic administration of conventional or TiO2 nanowired BF 2649 (1mg/kg, i.p.) or CLBPT (1mg/kg, i.p.) once daily for 1 week together with nanowired delivery of HAmAb (25μL) significantly thwarted ASNC and p-tau levels in the SNpC and STr and reduced PD induced brain pathology. These observations are the first to show the involvement of histamine receptors in PD and opens new avenues for the development of novel drug strategies in clinical strategies for PD, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Stephen D Skaper
- Anesthesiology & Intensive Care, Department of Pharmacology, University of Padua, Padova, Italy
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
128
|
Takata F, Nakagawa S, Matsumoto J, Dohgu S. Blood-Brain Barrier Dysfunction Amplifies the Development of Neuroinflammation: Understanding of Cellular Events in Brain Microvascular Endothelial Cells for Prevention and Treatment of BBB Dysfunction. Front Cell Neurosci 2021; 15:661838. [PMID: 34588955 PMCID: PMC8475767 DOI: 10.3389/fncel.2021.661838] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is involved in the onset or progression of various neurodegenerative diseases. Initiation of neuroinflammation is triggered by endogenous substances (damage-associated molecular patterns) and/or exogenous pathogens. Activation of glial cells (microglia and astrocytes) is widely recognized as a hallmark of neuroinflammation and triggers the release of proinflammatory cytokines, leading to neurotoxicity and neuronal dysfunction. Another feature associated with neuroinflammatory diseases is impairment of the blood-brain barrier (BBB). The BBB, which is composed of brain endothelial cells connected by tight junctions, maintains brain homeostasis and protects neurons. Impairment of this barrier allows trafficking of immune cells or plasma proteins into the brain parenchyma and subsequent inflammatory processes in the brain. Besides neurons, activated glial cells also affect BBB integrity. Therefore, BBB dysfunction can amplify neuroinflammation and act as a key process in the development of neuroinflammation. BBB integrity is determined by the integration of multiple signaling pathways within brain endothelial cells through intercellular communication between brain endothelial cells and brain perivascular cells (pericytes, astrocytes, microglia, and oligodendrocytes). For prevention of BBB disruption, both cellular components, such as signaling molecules in brain endothelial cells, and non-cellular components, such as inflammatory mediators released by perivascular cells, should be considered. Thus, understanding of intracellular signaling pathways that disrupt the BBB can provide novel treatments for neurological diseases associated with neuroinflammation. In this review, we discuss current knowledge regarding the underlying mechanisms involved in BBB impairment by inflammatory mediators released by perivascular cells.
Collapse
Affiliation(s)
- Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinsuke Nakagawa
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Junichi Matsumoto
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
129
|
Alkeridy WA, Alanazy MH, Alamri N, Alqahtani A, Alhazzani A, Muayqil T. The Common Neurological Presentations and Clinical Outcomes of Coronavirus Disease 2019 in Saudi Arabia. Front Neurol 2021; 12:737328. [PMID: 34566878 PMCID: PMC8455892 DOI: 10.3389/fneur.2021.737328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Neurological manifestations have increasingly become recognized in COVID-19. People from different ethnic backgrounds are experiencing different outcomes related to SARS-CoV-2 infection. Several cohort studies reported the common neurological manifestations and complications associated with COVID-19 disease around the world however, the prevalence of neurological complications associated with SARS-CoV-2 infection in the Arab countries and Saudi Arabia is still unknown. Objective: To study the prevalence, risk factors, and characteristics of the neurological complications associated with COVID-19 and their relationship with clinical outcomes. Methods: We conducted a prospective, single-center, observational, cohort study of consecutive hospitalized adults COVID-19 patients with and without neurological manifestation admitted between March 2020 until the end of December 2020. Data was collected prospectively using electronic medical records; Cases and controls were observed until they either get discharged from the hospital or died. The primary outcomes were death, survival, and survival with sequalae. Results: Among 497 patients with COVID-19, 118 patients (23.7%) had neurological complications, 94 patients (18.9%) had encephalopathy, and 16 patients (3.2%) had cerebrovascular accidents (CVA). Patients with COVID-19-related neurological complications were older and more likely to have a pre-existing neurological disease. The most common neurological syndrome associated with COVID-19 were encephalopathy (18.9%) and headache (13.7%). Pre-existing neurological disease and an elevated neutrophil count were the strongest predictors of developing any neurological complications. Death form COVID-19 was associated with age (OR 1.06, 95% CI 1.02–1.10, P = 0.001), invasive ventilation (OR 37.12, 95% CI 13.36–103.14), COVID-19-related-neurological complications (OR 3.24, 95% CI 1.28–8.21, P = 0.01), and elevated CRP level (OR 1.01, 95% CI 1.00–1.01, P = 0.01). Conclusions: COVID-19 is associated with a wide range of neurological manifestations in people living in Saudi Arabia, with older individuals and those with underlying neurological disorders being most at risk. The presence of neurological complications was associated with increased mortality and poor outcomes.
Collapse
Affiliation(s)
- Walid A Alkeridy
- Department of Medicine, King Saud University, Riyadh, Saudi Arabia.,Department of Medicine, Geriatric Division, University of British Columbia, Vancouver, BC, Canada
| | | | - Nada Alamri
- Department of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Adel Alhazzani
- Department of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Taim Muayqil
- Department of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
130
|
Wang H, Li HY, Guo X, Zhou Y. Posture Instability Is Associated with Dopamine Drop of Nigrostriatal System and Hypometabolism of Cerebral Cortex in Parkinson Disease. Curr Neurovasc Res 2021; 18:244-253. [PMID: 34082681 DOI: 10.2174/1567202618666210603124814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Posture instability (PI) is known to be a severe complication in Parkinson's disease (PD), and its mechanism remains poorly understood. Our study aims to explore the changes of brain network in PI of PD, and further investigate the role of peripheral inflammation on activities of different brain regions in PD with PI. METHODS 167 individuals were recruited, including 36 PD cases with PI and 131 ones without PI. We carefully assessed the status of motor and cognitive function, measured serum inflammatory factors, and detected the dopaminergic pathways and the metabolism of different brain regions by positron emission tomography (PET). Data analysis was conducted by variance, univariate analysis, chi-square analysis, logistic regression, and partial correlation. RESULT No difference was found for age or onset age between the two groups (P>0.05). Female patients were susceptible to posture impairment and had a 2.14-fold risk for PI compared with male patients in PD (P<0.05). Patients with PI had more severe impairment of motor and cognitive function for a longer duration than those without PI (P<0.05). The mean uptake ratios of presynaptic vesicular monoamine transporter (VMAT2), which were detected in the caudate nucleus and putamen, were lower in PI group than those without PI (P<0.05). There were lower activities of the midbrain, caudate nucleus, and anterior medial temporal cortex in PI group than those in the non-PI group (P<0.05). Although serum concentrations of immunoglobulins (IgG, IgM, and IgA) and complements (C3, C4) were higher in PI group than those in the non-PI group, only serum IgM concentration had a significant difference between the two groups (P<0.05). We further explored significant inverse correlations of IgG, IgM, IgA, and C4 with activities of some cerebral cortex in PI of PD (P<0.05). CONCLUSION Female patients were susceptible to posture instability and had a 2.14-fold risk for PI of PD. Patients with PI had more severe impairments of motor and cognitive function for a longer duration than those without PI. PI was associated with dopamine drop of the nigrostriatal system and lower activities of the limbic cortex in PD. Peripheral inflammation may be involved in degeneration of the cerebral cortex in PD combined with PI.
Collapse
Affiliation(s)
- Hongyan Wang
- The Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 10053, China
| | - Hong-Yu Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiuhai Guo
- The Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 10053, China
| | - Yongtao Zhou
- The Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 10053, China
| |
Collapse
|
131
|
MacMahon Copas AN, McComish SF, Fletcher JM, Caldwell MA. The Pathogenesis of Parkinson's Disease: A Complex Interplay Between Astrocytes, Microglia, and T Lymphocytes? Front Neurol 2021; 12:666737. [PMID: 34122308 PMCID: PMC8189423 DOI: 10.3389/fneur.2021.666737] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease, is characterised by the motor symptoms of bradykinesia, rigidity and resting tremor and non-motor symptoms of sleep disturbances, constipation, and depression. Pathological hallmarks include neuroinflammation, degeneration of dopaminergic neurons in the substantia nigra pars compacta, and accumulation of misfolded α-synuclein proteins as intra-cytoplasmic Lewy bodies and neurites. Microglia and astrocytes are essential to maintaining homeostasis within the central nervous system (CNS), including providing protection through the process of gliosis. However, dysregulation of glial cells results in disruption of homeostasis leading to a chronic pro-inflammatory, deleterious environment, implicated in numerous CNS diseases. Recent evidence has demonstrated a role for peripheral immune cells, in particular T lymphocytes in the pathogenesis of PD. These cells infiltrate the CNS, and accumulate in the substantia nigra, where they secrete pro-inflammatory cytokines, stimulate surrounding immune cells, and induce dopaminergic neuronal cell death. Indeed, a greater understanding of the integrated network of communication that exists between glial cells and peripheral immune cells may increase our understanding of disease pathogenesis and hence provide novel therapeutic approaches.
Collapse
Affiliation(s)
- Adina N MacMahon Copas
- Department of Physiology, School of Medicine, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sarah F McComish
- Department of Physiology, School of Medicine, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Jean M Fletcher
- Department of Physiology, School of Medicine, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland.,School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Maeve A Caldwell
- Department of Physiology, School of Medicine, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|