101
|
Neuronal Dysfunction Associated with Cholesterol Deregulation. Int J Mol Sci 2018; 19:ijms19051523. [PMID: 29783748 PMCID: PMC5983599 DOI: 10.3390/ijms19051523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 01/20/2023] Open
Abstract
Cholesterol metabolism is crucial for cells and, in particular, its biosynthesis in the central nervous system occurs in situ, and its deregulation involves morphological changes that cause functional variations and trigger programmed cell death. The pathogenesis of rare diseases, such as Mevalonate Kinase Deficiency or Smith–Lemli–Opitz Syndrome, arises due to enzymatic defects in the cholesterol metabolic pathways, resulting in a shortage of downstream products. The most severe clinical manifestations of these diseases appear as neurological defects. Expanding the knowledge of this biological mechanism will be useful for identifying potential targets and preventing neuronal damage. Several studies have demonstrated that deregulation of the cholesterol pathway induces mitochondrial dysfunction as the result of respiratory chain damage. We set out to determine whether mitochondrial damage may be prevented by using protective mitochondria-targeted compounds, such as MitoQ, in a neuronal cell line treated with a statin to induce a biochemical block of the cholesterol pathway. Evidence from the literature suggests that mitochondria play a crucial role in the apoptotic mechanism secondary to blocking the cholesterol pathway. Our study shows that MitoQ, administered as a preventive agent, could counteract the cell damage induced by statins in the early stages, but its protective role fades over time.
Collapse
|
102
|
Liu J, Chen Z, Wang J, Li R, Li T, Chang M, Yan F, Wang Y. Encapsulation of Curcumin Nanoparticles with MMP9-Responsive and Thermos-Sensitive Hydrogel Improves Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16315-16326. [PMID: 29687718 DOI: 10.1021/acsami.8b03868] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Impaired wound healing in diabetics usually leads to life-threatening complications. To develop a system for fastening skin wound healing efficiently and safely in diabetics, thermos-sensitive hydrogel containing the nanodrug, loaded in the form of gelatin microspheres (GMs), was designed to deliver curcumin (Cur) as a therapeutic drug. Cur is a naturally existing polyphenolic compound with a broad range of biological functions useful for potential therapies. Because Cur molecule has weakness in both bioavailability and in vivo stability, delivery of Cur requires assistance from other molecules to act as carrier vehicles in a sustained manner for therapeutic use. At first, self-assembly of Cur nanoparticles (CNPs) was done to improve bioavailability. The CNPs were further enclosed into GMs for responding to the matrix metalloproteinases (MMPs) that usually overexpress at diabetic nonhealing wound sites. The GMs containing CNPs were loaded into the thermos-sensitive hydrogel and were finally proved for the capacity of specially induced drug release at the wound bed, which promoted the efficacy in healing the standardized skin wounds in streptozotocin-induced diabetic mice. Our results indicated that the successfully developed CNP delivery system had the capacity to significantly promote skin wound healing, which suggested that it could have the potential to become a wound dressing with the properties of antioxidants and promotions of cell migration.
Collapse
Affiliation(s)
- Juan Liu
- Tissue Engineering Lab , Institute of Health Service and Transfusion Medicine , Beijing 100850 , China
| | - Zhiqiang Chen
- Tissue Engineering Lab , Institute of Health Service and Transfusion Medicine , Beijing 100850 , China
| | - Jie Wang
- Tissue Engineering Lab , Institute of Health Service and Transfusion Medicine , Beijing 100850 , China
| | - Ruihong Li
- Tissue Engineering Lab , Institute of Health Service and Transfusion Medicine , Beijing 100850 , China
| | - Tingting Li
- Tissue Engineering Lab , Institute of Health Service and Transfusion Medicine , Beijing 100850 , China
| | - Mingyang Chang
- Tissue Engineering Lab , Institute of Health Service and Transfusion Medicine , Beijing 100850 , China
| | - Fang Yan
- Tissue Engineering Lab , Institute of Health Service and Transfusion Medicine , Beijing 100850 , China
| | - Yunfang Wang
- Tissue Engineering Lab , Institute of Health Service and Transfusion Medicine , Beijing 100850 , China
| |
Collapse
|
103
|
Watanabe K, Luo Y, Da T, Guedan S, Ruella M, Scholler J, Keith B, Young RM, Engels B, Sorsa S, Siurala M, Havunen R, Tähtinen S, Hemminki A, June CH. Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI Insight 2018; 3:99573. [PMID: 29618658 PMCID: PMC5928866 DOI: 10.1172/jci.insight.99573] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/06/2018] [Indexed: 12/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by its highly immunosuppressive tumor microenvironment (TME) that limits T cell infiltration and induces T cell hypofunction. Mesothelin-redirected chimeric antigen receptor T cell (meso-CAR T cell) therapy has shown some efficacy in clinical trials but antitumor efficacy remains modest. We hypothesized that combined meso-CAR T cells with an oncolytic adenovirus expressing TNF-α and IL-2 (Ad5/3-E2F-D24-TNFa-IRES-IL2, or OAd-TNFa-IL2) would improve efficacy. OAd-TNFa-IL2 enhanced the antitumor efficacy of meso-CAR T cells in human-PDA-xenograft immunodeficient mice and efficacy was associated with robustly increased tumor-infiltrating lymphocytes (TILs), enhanced and prolonged T cell function. Mice treated with parental OAd combined with meso-CAR T developed tumor metastasis to the lungs even if primary tumors were controlled. However, no mice treated with combined OAd-TNFa-IL2 and meso-CAR T died of tumor metastasis. We also evaluated this approach in a syngeneic mouse tumor model by combining adenovirus expressing murine TNF-α and IL-2 (Ad-mTNFa-mIL2) and mouse CAR T cells. This approach induced significant tumor regression in mice engrafted with highly aggressive and immunosuppressive PDA tumors. Ad-mTNFa-mIL2 increased both CAR T cell and host T cell infiltration to the tumor and altered host tumor immune status with M1 polarization of macrophages and increased dendritic cell maturation. These findings indicate that combining cytokine-armed oncolytic adenovirus to enhance the efficacy of CAR T cell therapy is a promising approach to overcome the immunosuppressive TME for the treatment of PDA.
Collapse
Affiliation(s)
- Keisuke Watanabe
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yanping Luo
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tong Da
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sonia Guedan
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Scholler
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brian Keith
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Regina M. Young
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Boris Engels
- Department of Immuno-Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Suvi Sorsa
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Mikko Siurala
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Siri Tähtinen
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
- Helsinki University Comprehensive Cancer Center, Helsinki, Finland
| | - Carl H. June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
104
|
Varjú I, Farkas VJ, Kőhidai L, Szabó L, Farkas ÁZ, Polgár L, Chinopoulos C, Kolev K. Functional cyclophilin D moderates platelet adhesion, but enhances the lytic resistance of fibrin. Sci Rep 2018; 8:5366. [PMID: 29599453 PMCID: PMC5876378 DOI: 10.1038/s41598-018-23725-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 03/20/2018] [Indexed: 01/11/2023] Open
Abstract
In the course of thrombosis, platelets are exposed to a variety of activating stimuli classified as 'strong' (e.g. thrombin and collagen) or 'mild' (e.g. ADP). In response, activated platelets adhere to injured vasculature, aggregate, and stabilise the three-dimensional fibrin scaffold of the expanding thrombus. Since 'strong' stimuli also induce opening of the mitochondrial permeability transition pore (MPTP) in platelets, the MPTP-enhancer Cyclophilin D (CypD) has been suggested as a critical pharmacological target to influence thrombosis. However, it is poorly understood what role CypD plays in the platelet response to 'mild' stimuli which act independently of MPTP. Furthermore, it is unknown how CypD influences platelet-driven clot stabilisation against enzymatic breakdown (fibrinolysis). Here we show that treatment of human platelets with Cyclosporine A (a cyclophilin-inhibitor) boosts ADP-induced adhesion and aggregation, while genetic ablation of CypD in murine platelets enhances adhesion but not aggregation. We also report that platelets lacking CypD preserve their integrity in a fibrin environment, and lose their ability to render clots resistant against fibrinolysis. Our results indicate that CypD has opposing haemostatic roles depending on the stimulus and stage of platelet activation, warranting a careful design of any antithrombotic strategy targeting CypD.
Collapse
Affiliation(s)
- Imre Varjú
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, 02115, USA
- Department of Sociomedical Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | | | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, 1089, Hungary
| | - László Szabó
- Department of Functional and Structural Materials, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary
| | - Ádám Zoltán Farkas
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Lívia Polgár
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, 1089, Hungary
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
- MTA-SE Lendület Neurobiochemistry Research Group, Budapest, 1094, Hungary
| | - Krasimir Kolev
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary.
| |
Collapse
|
105
|
Qiu M, Xia W, Chen R, Wang S, Xu Y, Ma Z, Xu W, Zhang E, Wang J, Fang T, Hu J, Dong G, Yin R, Wang J, Xu L. The Circular RNA circPRKCI Promotes Tumor Growth in Lung Adenocarcinoma. Cancer Res 2018; 78:2839-2851. [PMID: 29588350 DOI: 10.1158/0008-5472.can-17-2808] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/13/2018] [Accepted: 03/23/2018] [Indexed: 11/16/2022]
Abstract
Somatic copy number variations (CNV) may drive cancer progression through both coding and noncoding transcripts. However, noncoding transcripts resulting from CNV are largely unknown, especially for circular RNAs. By integrating bioinformatics analyses of alerted circRNAs and focal CNV in lung adenocarcinoma, we identify a proto-oncogenic circular RNA (circPRKCI) from the 3q26.2 amplicon, one of the most frequent genomic aberrations in multiple cancers. circPRKCI was overexpressed in lung adenocarcinoma tissues, in part due to amplification of the 3q26.2 locus, and promoted proliferation and tumorigenesis of lung adenocarcinoma. circPRKCI functioned as a sponge for both miR-545 and miR-589 and abrogated their suppression of the protumorigenic transcription factor E2F7 Intratumor injection of cholesterol-conjugated siRNA specifically targeting circPRKCI inhibited tumor growth in a patient-derived lung adenocarcinoma xenograft model. In summary, circPRKCI is crucial for tumorigenesis and may serve as a potential therapeutic target in patients with lung adenocarcinoma.Significance: These findings reveal high expression of the circular RNA circPRKCI drives lung adenocarcinoma tumorigenesis. Cancer Res; 78(11); 2839-51. ©2018 AACR.
Collapse
Affiliation(s)
- Mantang Qiu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Wenjia Xia
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Rui Chen
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
- Department of Cardiothoracic Surgery, Taixing People's Hospital, The Affiliated Taixing Hospital of Yangzhou University, Taixing, China
| | - Siwei Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Youtao Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Zhifei Ma
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Weizhang Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Erbao Zhang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
- Department of Scientific Research, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Tian Fang
- Department of Comparative Medicine, Jingling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jingwen Hu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Gaochao Dong
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
- Department of Scientific Research, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China.
| | - Jun Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China.
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China.
| |
Collapse
|
106
|
Cerignoli F, Abassi YA, Lamarche BJ, Guenther G, Santa Ana D, Guimet D, Zhang W, Zhang J, Xi B. In vitro immunotherapy potency assays using real-time cell analysis. PLoS One 2018; 13:e0193498. [PMID: 29499048 PMCID: PMC5834184 DOI: 10.1371/journal.pone.0193498] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/12/2018] [Indexed: 12/22/2022] Open
Abstract
A growing understanding of the molecular interactions between immune effector cells and target tumor cells, coupled with refined gene therapy approaches, are giving rise to novel cancer immunotherapeutics with remarkable efficacy in the clinic against both solid and liquid tumors. While immunotherapy holds tremendous promise for treatment of certain cancers, significant challenges remain in the clinical translation to many other types of cancers and also in minimizing adverse effects. Therefore, there is an urgent need for functional potency assays, in vitro and in vivo, that could model the complex interaction of immune cells with tumor cells and can be used to rapidly test the efficacy of different immunotherapy approaches, whether it is small molecule, biologics, cell therapies or combinations thereof. Herein we report the development of an xCELLigence real-time cytolytic in vitro potency assay that uses cellular impedance to continuously monitor the viability of target tumor cells while they are being subjected to different types of treatments. Specialized microtiter plates containing integrated gold microelectrodes enable the number, size, and surface attachment strength of adherent target tumor cells to be selectively monitored within a heterogeneous mixture that includes effector cells, antibodies, small molecules, etc. Through surface-tethering approach, the killing of liquid cancers can also be monitored. Using NK92 effector cells as example, results from RTCA potency assay are very well correlated with end point data from image-based assays as well as flow cytometry. Several effector cells, i.e., PBMC, NK, CAR-T were tested and validated as well as biological molecules such as Bi-specific T cell Engagers (BiTEs) targeting the EpCAM protein expressed on tumor cells and blocking antibodies against the immune checkpoint inhibitor PD-1. Using the specifically designed xCELLigence immunotherapy software, quantitative parameters such as KT50 (the amount of time it takes to kill 50% of the target tumor cells) and % cytolysis are calculated and used for comparing the relative efficacy of different reagents. In summary, our results demonstrate the xCELLigence platform to be well suited for potency assays, providing quantitative assessment with high reproducibility and a greatly simplified work flow.
Collapse
Affiliation(s)
- Fabio Cerignoli
- ACEA Biosciences, San Diego, California, United States of America
| | - Yama A. Abassi
- ACEA Biosciences, San Diego, California, United States of America
| | | | - Garret Guenther
- ACEA Biosciences, San Diego, California, United States of America
| | - David Santa Ana
- ACEA Biosciences, San Diego, California, United States of America
| | - Diana Guimet
- ACEA Biosciences, San Diego, California, United States of America
| | - Wen Zhang
- ACEA Biosciences, San Diego, California, United States of America
| | - Jing Zhang
- ACEA Biosciences, San Diego, California, United States of America
| | - Biao Xi
- ACEA Biosciences, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
107
|
Charretier C, Saulnier A, Benair L, Armanet C, Bassard I, Daulon S, Bernigaud B, Rodrigues de Sousa E, Gonthier C, Zorn E, Vetter E, Saintpierre C, Riou P, Gaillac D. Robust real-time cell analysis method for determining viral infectious titers during development of a viral vaccine production process. J Virol Methods 2018; 252:57-64. [DOI: 10.1016/j.jviromet.2017.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/24/2017] [Accepted: 11/04/2017] [Indexed: 11/29/2022]
|
108
|
Lian D, Chonghua Z, Wen G, Hongwei Z, Xuetao B. Label-free and dynamic monitoring of cytotoxicity to the blood-brain barrier cells treated with nanometre copper oxide. IET Nanobiotechnol 2017; 11:948-956. [PMID: 29155394 PMCID: PMC8676015 DOI: 10.1049/iet-nbt.2016.0161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 04/13/2017] [Accepted: 07/01/2017] [Indexed: 06/29/2024] Open
Abstract
A cytotoxicity study was conducted with a primary culture of the nervous system cells, including brain microvascular endothelial cells (BMECs) and astrocytes, which are important components of the blood-brain barrier. The real-time cell analysis (RTCA) was used to determine the cytotoxicity of copper-oxide nanoparticles (CuO NPs). The IC50 values of CuO NPs in astrocytes and BMECs were determined by the RTCA at different exposure times and were used as base values for further research. DNA damage after exposure to CuO NPs for 3 and 24 h was assessed using comet assay at the IC50 obtained from RTCA. The onset time of cytotoxicity induced by CuO NPs was 2 and 2-4 h post-exposure in BMECs and astrocytes, respectively. Furthermore, the degree of cytotoxicity induced by exposure to CuO NPs for 24-48 h in the BMECs and astrocytes was similar. Treatment with CuO NPs at 1/2*IC50 and 1/5*IC50 for 3 h induced genotoxicity in both cells as assessed by a measurement of DNA damage, although no cytotoxicity was observed. However, significant DNA damage was observed at all concentrations of CuO NPs used in this study, when the treatment time was 24 h.
Collapse
Affiliation(s)
- Duan Lian
- Institute for Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention, Beijing 100020, People's Republic of China
| | - Zhang Chonghua
- The Centers for Disease Control and Prevention Harbin, Heilongjiang Province 150000, People's Republic of China
| | - Gu Wen
- Institute for Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention, Beijing 100020, People's Republic of China
| | - Zhang Hongwei
- Institute for Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention, Beijing 100020, People's Republic of China
| | - Bai Xuetao
- Institute for Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention, Beijing 100020, People's Republic of China.
| |
Collapse
|
109
|
Bravo DD, Chernov-Rogan T, Chen J, Wang J. An impedance-based cell contraction assay using human primary smooth muscle cells and fibroblasts. J Pharmacol Toxicol Methods 2017; 89:47-53. [PMID: 29056519 DOI: 10.1016/j.vascn.2017.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/10/2017] [Accepted: 10/18/2017] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Many cell types (including muscle cells and fibroblasts) can contract at physiological conditions and their contractility may change during tissue injury and repair or other diseases such as allergy and asthma. The conventional gel contraction assay is commonly used to monitor the cellular contractility. It is a manual assay and the experiment usually takes hours even days to complete. As its readout is not always accurate and reliable, the gel contraction assay is often used to qualitatively (but not quantitatively) characterize cellular contractility under various conditions. METHOD To overcome the limits of the gel contraction assay, we developed an impedance-based contraction assay using the xCELLigence RTCA MP system. This technology utilizes special 96-well E-plates with gold microelectrode arrays printed in individual wells to monitor cellular adhesion by recording the electrical impedance in real time. The impedance change (percentage vs. control) can be used as the readout for cellular contraction. RESULTS We demonstrated that the impedance-based contraction assay can be performed within 2h. Using this new method, we quantitatively characterized the effects of several contractile stimulators and inhibitors on human primary bronchial smooth muscle cells and primary lung fibroblasts. DISCUSSION The impedance-based contraction assay can be applied to both basic research and drug discovery for characterizing cellular contraction quantitatively. Because it has high throughput capacity and high reproducibility, the impedance-based contraction assay is useful for high throughput functional screening in drug industry.
Collapse
Affiliation(s)
- Daniel D Bravo
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA 94080-4990, United States
| | - Tania Chernov-Rogan
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA 94080-4990, United States
| | - Jun Chen
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA 94080-4990, United States
| | - Jianyong Wang
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA 94080-4990, United States.
| |
Collapse
|
110
|
Chiu CH, Lei KF, Yeh WL, Chen P, Chan YS, Hsu KY, Chen ACY. Comparison between xCELLigence biosensor technology and conventional cell culture system for real-time monitoring human tenocytes proliferation and drugs cytotoxicity screening. J Orthop Surg Res 2017; 12:149. [PMID: 29037195 PMCID: PMC5644173 DOI: 10.1186/s13018-017-0652-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 09/30/2017] [Indexed: 11/25/2022] Open
Abstract
Background Local injections of anesthetics, NSAIDs, and corticosteroids for tendinopathies are empirically used. They are believed to have some cytotoxicity toward tenocytes. The maximal efficacy dosages of local injections should be determined. A commercial 2D microfluidic xCELLigence system had been developed to detect real-time cellular proliferation and their responses to different stimuli and had been used in several biomedical applications. The purpose of this study is to determine if human tenocytes can successfully proliferate inside xCELLigence system and the result has high correlation with conventional cell culture methods in the same condition. Methods First passage of human tenocytes was seeded in xCELLigence and conventional 24-well plates. Ketorolac tromethamine, bupivacaine, methylprednisolone, and betamethasone with different concentrations (100, 50, and 10% diluted of clinical usage) were exposed in both systems. Gene expression of type I collagen, type III collagen, tenascin-C, decorin, and scleraxis were compared between two systems. Results Human tenocytes could proliferate both in xCELLigence and conventional cell culture systems. Cytotoxicity of each drug revealed dose-dependency when exposed to tenocytes in both systems. Significance was found between groups. All the four drugs had comparable cytotoxicity in their 100% concentration. When 50% concentration was used, betamethasone had a relatively decreased cytotoxicity among them in xCELLigence but not in conventional culture. When 10% concentration was used, betamethasone had the least cytotoxicity. Strong and positive correlation was found between cell index of xCELLigence and result of WST-1 assay (Pearson’s correlation [r] = 0.914). Positive correlation of gene expression between tenocytes in xCELLigence and conventional culture was also observed. Type I collagen: [r] = 0.823; type III collagen: [r] = 0.899; tenascin-C: [r] = 0.917; decorin: [r] = 0.874; and scleraxis: [r] = 0.965. Conclusions Human tenocytes could proliferate inside xCELLigence system. These responses varied when tenocytes were exposed to different concentrations of ketorolac tromethamine, bupivacaine, methylprednisolone, and betamethasone. The result of cell proliferation and gene expression of tenocytes in both xCELLigence and conventional culture system is strongly correlated. Clinical relevance xCELLigence culture system may replace conventional cell culture, which made real-time tenocyte proliferation monitoring possible.
Collapse
Affiliation(s)
- Chih-Hao Chiu
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.,Ph.D. Program in Biomedical Engineering, College of Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Kin Fong Lei
- Graduate Institute of Medical Mechatronics, Chang Gung University, Taoyuan, Taiwan. .,Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan. .,Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Wen-Ling Yeh
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Poyu Chen
- Department of Occupational Therapy and Graduate Institute of Behavioral Science, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Sheng Chan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Kuo-Yao Hsu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Alvin Chao-Yu Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
111
|
Zhang HH, Chen JC, Sheibani L, Lechuga TJ, Chen DB. Pregnancy Augments VEGF-Stimulated In Vitro Angiogenesis and Vasodilator (NO and H2S) Production in Human Uterine Artery Endothelial Cells. J Clin Endocrinol Metab 2017; 102:2382-2393. [PMID: 28398541 PMCID: PMC5505189 DOI: 10.1210/jc.2017-00437] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/03/2017] [Indexed: 11/19/2022]
Abstract
CONTEXT Augmented uterine artery (UA) production of vasodilators, including nitric oxide (NO) and hydrogen sulfide (H2S), has been implicated in pregnancy-associated and agonist-stimulated rise in uterine blood flow that is rate-limiting to pregnancy health. OBJECTIVE Developing a human UA endothelial cell (hUAEC) culture model from main UAs of nonpregnant (NP) and pregnant (P) women for testing a hypothesis that pregnancy augments endothelial NO and H2S production and endothelial reactivity to vascular endothelial growth factor (VEGF). DESIGN Main UAs from NP and P women were used for developing hUAEC culture models. Comparisons were made between NP- and P-hUAECs in in vitro angiogenesis, activation of cell signaling, expression of endothelial NO synthase (eNOS) and H2S-producing enzymes cystathionine β-synthase (CBS) and cystathionine γ-lyase, and NO/H2S production upon VEGF stimulation. RESULTS NP- and P-hUAECs displayed a typical cobblestone-like shape in culture and acetylated low-density lipoprotein uptake, stained positively for endothelial and negatively for smooth muscle markers, maintained key signaling proteins during passage, and had statistically significant greater eNOS and CBS proteins in P- vs NP-hUAECs. Treatment with VEGF stimulated in vitro angiogenesis and eNOS protein and NO production only in P-hUEACs and more robust cell signaling in P- vs NP-hUAECs. VEGF stimulated CBS protein expression, accounting for VEGF-stimulated H2S production in hUAECs. CONCLUSION Comparisons between NP- and P-hUAECs reveal that pregnancy augments VEGF-stimulated in vitro angiogenesis and NO/H2S production in hUAECs, showing that the newly established hUAEC model provides a critical in vitro tool for understanding human uterine hemodynamics.
Collapse
Affiliation(s)
- Hong-hai Zhang
- Department of Obstetrics & Gynecology, University of California, Irvine, California 92697
| | - Jennifer C. Chen
- Department of Obstetrics & Gynecology, University of California, Irvine, California 92697
| | - Lili Sheibani
- Department of Obstetrics & Gynecology, University of California, Irvine, California 92697
| | - Thomas J. Lechuga
- Department of Obstetrics & Gynecology, University of California, Irvine, California 92697
| | - Dong-bao Chen
- Department of Obstetrics & Gynecology, University of California, Irvine, California 92697
| |
Collapse
|
112
|
Zhang Q, Zheng X, Sun Q, Shi R, Wang J, Zhu B, Xu L, Zhang G, Ren B. ZNF692 promotes proliferation and cell mobility in lung adenocarcinoma. Biochem Biophys Res Commun 2017; 490:1189-1196. [PMID: 28669730 DOI: 10.1016/j.bbrc.2017.06.180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/28/2017] [Indexed: 12/25/2022]
Abstract
By analyzing The Cancer Genome Atlas (TCGA) datasets, we discovered that the zinc finger protein 692 (ZNF692) were over-expressed in Lung adenocarcinoma (LUAD) tissues compared to adjacent non-tumor tissues (P < 0.0001). In this study, we investigated the function of ZNF692 in the progression of LUAD. We found that ZNF692 knockdown inhibited LUAD cells proliferation, migration, and invasion both in vitro and in vivo. And LUAD cell apoptosis was induced following the down-regulation of ZNF692. Our results show that ZNF692 is over-expressed in LUAD tissues compared to adjacent normal tissues, and hyper-expression of ZNF692 in LUAD is an independent risk factor for worse overall survival in LUAD patients (HR: 8.800, 95%CI: 1.082-71.560, P = 0.042) by Tissue Microarray stain assay (TMA). GO analysis indicated that most genes were enriched in metabolic process which were associated highly with ZNF692 levels. Collectively, our results suggested that ZNF692 may serve as a potential oncogene and biomarker in LUAD by influencing cell metabolism.
Collapse
Affiliation(s)
- Quanli Zhang
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, PR China; Department of Thoracic Surgery, Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province, Baiziting 42, Xuanwu District, Nanjing, 210009, PR China.
| | - Xiufen Zheng
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, PR China; Department of Thoracic Surgery, Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province, Baiziting 42, Xuanwu District, Nanjing, 210009, PR China.
| | - Qi Sun
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, PR China.
| | - Run Shi
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, PR China; Department of Thoracic Surgery, Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province, Baiziting 42, Xuanwu District, Nanjing, 210009, PR China.
| | - Jie Wang
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, PR China; Department of Thoracic Surgery, Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province, Baiziting 42, Xuanwu District, Nanjing, 210009, PR China.
| | - Biqing Zhu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, PR China; Department of Thoracic Surgery, Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province, Baiziting 42, Xuanwu District, Nanjing, 210009, PR China.
| | - Lin Xu
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, PR China; Department of Thoracic Surgery, Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province, Baiziting 42, Xuanwu District, Nanjing, 210009, PR China.
| | - Guangqin Zhang
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Binhui Ren
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, PR China; Department of Thoracic Surgery, Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province, Baiziting 42, Xuanwu District, Nanjing, 210009, PR China.
| |
Collapse
|
113
|
Xu D, Wang X, Jiang C, Ruan Y, Xia S, Wang X. The androgen receptor plays different roles in macrophage-induced proliferation in prostate stromal cells between transitional and peripheral zones of benign prostatic hypertrophy. EXCLI JOURNAL 2017; 16:939-948. [PMID: 28694768 PMCID: PMC5500834 DOI: 10.17179/excli2017-335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/23/2017] [Indexed: 12/23/2022]
Abstract
Macrophages play a critical role in the process of excessive stromal proliferation of benign prostatic hyperplasia (BPH). In our previous study, we used a BPH mouse model to elucidate a potential mechanism whereby macrophage infiltration promotes stromal cell proliferation in the prostate via the androgen receptor (AR)/inflammatory cytokine CCL3-dependent pathway. In our present study, we used the co-culture system of human macrophages and various prostatic zone stromal cells to further demonstrate that infiltrating macrophages promote prostatic stromal cell proliferation through stromal AR-dependent pathways, and we show that the stroma of TZ and PZ respond to macrophages differently because of differences in stromal AR signaling; this could possibly be one of the key pathways for stromal expansion during BPH development and progression. We hypothesize that AR and different downstream inflammatory mediators between TZ and PZ could serve as potential targets for the future design of therapeutic agents for BPH and our results provide significant insights into the search for targeted therapeutic approaches to battle BPH.
Collapse
Affiliation(s)
- Dongliang Xu
- Department of Urology, Shanghai General Hospital, Address: No. 100 Haining Road, Hongkou district, Post code: 200080, Shanghai, China; Telephone: +86 13916482122 (Wang); Telephone: +86 15301655577 (Xia)
| | - Xingjie Wang
- Department of Urology, Shanghai General Hospital, Address: No. 100 Haining Road, Hongkou district, Post code: 200080, Shanghai, China; Telephone: +86 13916482122 (Wang); Telephone: +86 15301655577 (Xia)
| | - Chenyi Jiang
- Department of Urology, Shanghai General Hospital, Address: No. 100 Haining Road, Hongkou district, Post code: 200080, Shanghai, China; Telephone: +86 13916482122 (Wang); Telephone: +86 15301655577 (Xia)
| | - Yuan Ruan
- Department of Urology, Shanghai General Hospital, Address: No. 100 Haining Road, Hongkou district, Post code: 200080, Shanghai, China; Telephone: +86 13916482122 (Wang); Telephone: +86 15301655577 (Xia)
| | - Shujie Xia
- Department of Urology, Shanghai General Hospital, Address: No. 100 Haining Road, Hongkou district, Post code: 200080, Shanghai, China; Telephone: +86 13916482122 (Wang); Telephone: +86 15301655577 (Xia)
| | - Xiaohai Wang
- Department of Urology, Shanghai General Hospital, Address: No. 100 Haining Road, Hongkou district, Post code: 200080, Shanghai, China; Telephone: +86 13916482122 (Wang); Telephone: +86 15301655577 (Xia)
| |
Collapse
|
114
|
Gul S. Epigenetic assays for chemical biology and drug discovery. Clin Epigenetics 2017; 9:41. [PMID: 28439316 PMCID: PMC5399855 DOI: 10.1186/s13148-017-0342-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 04/12/2017] [Indexed: 12/27/2022] Open
Abstract
The implication of epigenetic abnormalities in many diseases and the approval of a number of compounds that modulate specific epigenetic targets in a therapeutically relevant manner in cancer specifically confirms that some of these targets are druggable by small molecules. Furthermore, a number of compounds are currently in clinical trials for other diseases including cardiovascular, neurological and metabolic disorders. Despite these advances, the approved treatments for cancer only extend progression-free survival for a relatively short time and being associated with significant side effects. The current clinical trials involving the next generation of epigenetic drugs may address the disadvantages of the currently approved epigenetic drugs. The identification of chemical starting points of many drugs often makes use of screening in vitro assays against libraries of synthetic or natural products. These assays can be biochemical (using purified protein) or cell-based (using for example, genetically modified, cancer cell lines or primary cells) and performed in microtiter plates, thus enabling a large number of samples to be tested. A considerable number of such assays are available to monitor epigenetic target activity, and this review provides an overview of drug discovery and chemical biology and describes assays that monitor activities of histone deacetylase, lysine-specific demethylase, histone methyltransferase, histone acetyltransferase and bromodomain. It is of critical importance that an appropriate assay is developed and comprehensively validated for a given drug target prior to screening in order to improve the probability of the compound progressing in the drug discovery value chain.
Collapse
Affiliation(s)
- Sheraz Gul
- Fraunhofer Institute for Molecular Biology and Applied Ecology - ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| |
Collapse
|
115
|
Gupta P, Gramatke A, Einspanier R, Schütte C, von Kleist M, Sharbati J. In silico cytotoxicity assessment on cultured rat intestinal cells deduced from cellular impedance measurements. Toxicol In Vitro 2017; 41:179-188. [PMID: 28263893 DOI: 10.1016/j.tiv.2017.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/16/2017] [Accepted: 02/27/2017] [Indexed: 11/16/2022]
Abstract
Early and reliable identification of chemical toxicity is of utmost importance. At the same time, reduction of animal testing is paramount. Therefore, methods that improve the interpretability and usability of in vitro assays are essential. xCELLigence's real-time cell analyzer (RTCA) provides a novel, fast and cost effective in vitro method to probe compound toxicity. We developed a simple mathematical framework for the qualitative and quantitative assessment of toxicity for RTCA measurements. Compound toxicity, in terms of its 50% inhibitory concentration IC50 on cell growth, and parameters related to cell turnover were estimated on cultured IEC-6 cells exposed to 10 chemicals at varying concentrations. Our method estimated IC50 values of 113.05, 7.16, 28.69 and 725.15 μM for the apparently toxic compounds 2-acetylamino-fluorene, aflatoxin B1, benzo-[a]-pyrene and chloramphenicol in the tested cell line, in agreement with literature knowledge. IC50 values of all apparent in vivo non-toxic compounds were estimated to be non-toxic by our method. Corresponding estimates from RTCA's in-built model gave false positive (toxicity) predictions in 5/10 cases. Taken together, our proposed method reduces false positive predictions and reliably identifies chemical toxicity based on impedance measurements. The source code for the developed method including instructions is available at https://git.zib.de/bzfgupta/toxfit/tree/master.
Collapse
Affiliation(s)
- P Gupta
- Department of Mathematics and Informatics, Freie Universität Berlin, Arnimallee 6, Berlin 14195, Germany; Department of Mathematics for Life and Materials Sciences, Zuse Institute Berlin, Takustrasse 7, Berlin 14195, Germany.
| | - A Gramatke
- Department of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, Building 12, Berlin 14163, Germany.
| | - R Einspanier
- Department of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, Building 12, Berlin 14163, Germany.
| | - C Schütte
- Department of Mathematics and Informatics, Freie Universität Berlin, Arnimallee 6, Berlin 14195, Germany; Department of Mathematics for Life and Materials Sciences, Zuse Institute Berlin, Takustrasse 7, Berlin 14195, Germany.
| | - M von Kleist
- Department of Mathematics and Informatics, Freie Universität Berlin, Arnimallee 6, Berlin 14195, Germany.
| | - J Sharbati
- Department of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, Building 12, Berlin 14163, Germany.
| |
Collapse
|
116
|
Gupta RK, Swain S, Kankanamge D, Priyanka PD, Singh R, Mitra K, Karunarathne A, Giri L. Comparison of Calcium Dynamics and Specific Features for G Protein-Coupled Receptor-Targeting Drugs Using Live Cell Imaging and Automated Analysis. SLAS DISCOVERY 2017; 22:848-858. [PMID: 28267930 DOI: 10.1177/2472555217693378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
G protein-coupled receptors (GPCRs) are targets for designing a large fraction of the drugs in the pharmaceutical industry. For GPCR-targeting drug screening using cell-based assays, measurement of cytosolic calcium has been widely used to obtain dose-response profiles. However, it remains challenging to obtain drug-specific features due to cell-to-cell heterogeneity in drug-cell responses obtained from live cell imaging. Here, we present a framework combining live cell imaging of a cell population and a feature extraction method for classification of responses of drugs targeting GPCRs CXCR4 and α2AR. We measured the calcium dynamics using confocal microscopy and compared the responses for SDF-1α and norepinephrine. The results clearly show that the clustering patterns of responses for the two GPCRs are significantly different. Additionally, we show that different drugs targeting the same GPCR induce different calcium response signatures. We also implemented principal component analysis and k means for feature extraction and used nondominated (ND) sorting for ranking a group of drugs at various doses. The presented approach can be used to model a cell population as a mixture of subpopulations. It also offers specific advantages, such as higher spatial resolution, classification of responses, and ranking of drugs, potentially providing a platform for high-content drug screening.
Collapse
Affiliation(s)
- Rishikesh Kumar Gupta
- 1 Department of Chemical Engineering, Indian Institute of Technology-Hyderabad, Hyderabad, Telangana, India
| | - Sarpras Swain
- 1 Department of Chemical Engineering, Indian Institute of Technology-Hyderabad, Hyderabad, Telangana, India
| | - Dinesh Kankanamge
- 2 Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH, USA
| | - Pantula Devi Priyanka
- 1 Department of Chemical Engineering, Indian Institute of Technology-Hyderabad, Hyderabad, Telangana, India
| | - Ranjana Singh
- 1 Department of Chemical Engineering, Indian Institute of Technology-Hyderabad, Hyderabad, Telangana, India
| | - Kishalay Mitra
- 1 Department of Chemical Engineering, Indian Institute of Technology-Hyderabad, Hyderabad, Telangana, India
| | - Ajith Karunarathne
- 2 Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH, USA
| | - Lopamudra Giri
- 1 Department of Chemical Engineering, Indian Institute of Technology-Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
117
|
Lundstrom K. Cell-impedance-based label-free technology for the identification of new drugs. Expert Opin Drug Discov 2017; 12:335-343. [PMID: 28276704 DOI: 10.1080/17460441.2017.1297419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Drug discovery has progressed from relatively simple binding or activity screening assays to high-throughput screening of sophisticated compound libraries with emphasis on miniaturization and automation. The development of functional assays has enhanced the success rate in discovering novel drug molecules. Many technologies, originally based on radioactive labeling, have sequentially been replaced by methods based on fluorescence labeling. Recently, the focus has switched to label-free technologies in cell-based screening assays. Areas covered: Label-free, cell-impedance-based methods comprise of different technologies including surface plasmon resonance, mass spectrometry and biosensors applied for screening of anticancer drugs, G protein-coupled receptors, receptor tyrosine kinase and virus inhibitors, drug and nanoparticle cytotoxicity. Many of the developed methods have been used for high-throughput screening in cell lines. Cell viability and morphological damage prediction have been monitored in three-dimensional spheroid human HT-29 carcinoma cells and whole Schistosomula larvae. Expert opinion: Progress in label-free, cell-impedance-based technologies has facilitated drug screening and may enhance the discovery of potential novel drug molecules through, and improve target molecule identification in, alternative signal pathways. The variety of technologies to measure cellular responses through label-free cell-impedance based approaches all support future drug development and should provide excellent assets for finding better medicines.
Collapse
|
118
|
Physico-Chemical, In Vitro, and In Vivo Evaluation of a 3D Unidirectional Porous Hydroxyapatite Scaffold for Bone Regeneration. MATERIALS 2017; 10:ma10010033. [PMID: 28772390 PMCID: PMC5344564 DOI: 10.3390/ma10010033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/25/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022]
Abstract
The unidirectional porous hydroxyapatite HAp (UDPHAp) is a scaffold with continuous communicated pore structure in the axial direction. We evaluated and compared the ability of the UDPHAp as a three-dimensional (3D) bone tissue engineering scaffold to the interconnected calcium porous HAp ceramic (IP-CHA). To achieve this, we evaluated in vitro the compressive strength, controlled rhBMP-2 release behavior, adherent cell morphology, cell adhesion manner, and cell attachment of UDPHAp. As a further in vivo experiment, UDPHAp and IP-CHA with rhBMP-2 were transplanted into mouse calvarial defects to evaluate their bone-forming ability. The Results demonstrated that the maximum compressive strengths of the UDPHAp was 7.89 ± 1.23 MPa and higher than that of IP-CHA (1.92 ± 0.53 MPa) (p = 0.0039). However, the breaking energies were similar (8.99 ± 2.72 vs. 13.95 ± 5.69 mJ, p = 0.055). The UDPHAp released rhBMP-2 more gradually in vivo. Cells on the UDPHAp adhered tightly to the surface, which had grown deeply into the scaffolds. A significant increase in cell number on the UDPHAp was observed compared to the IP-CHA on day 8 (102,479 ± 34,391 vs. 32,372 ± 29,061 estimated cells per scaffold, p = 0.0495). In a mouse calvarial defect model, the percentages of new bone area (mature bone + trabecular bone) in the 2x field were 2.514% ± 1.224% for the IP-CHA group and 7.045% ± 2.055% for the UDPHAp group, and the percentage was significantly higher in the UDPHAp group (p = 0.0209). While maintaining the same strength as the IP-CHA, the UDPHAp with 84% porosity showed a high cell number, high cell invasiveness, and excellent bone formation. We believe the UDPHAp is an excellent material that can be applied to bone regenerative medicine.
Collapse
|
119
|
Selli C, Erac Y, Tosun M. Effects of cell seeding density on real-time monitoring of anti-proliferative effects of transient gene silencing. ACTA ACUST UNITED AC 2016; 23:20. [PMID: 27981039 PMCID: PMC5133759 DOI: 10.1186/s40709-016-0057-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 11/25/2016] [Indexed: 01/15/2023]
Abstract
Background Real-time cellular analysis systems enable impedance-based label-free and dynamic monitoring of various cellular events such as proliferation. In this study, we describe the effects of initial cell seeding density on the anti-proliferative effects of transient gene silencing monitored via real-time cellular analysis. We monitored the real-time changes in proliferation of Huh7 hepatocellular carcinoma and A7r5 vascular smooth muscle cells with different initial seeding densities following transient receptor potential canonical 1 (TRPC1) silencing using xCELLigence system. Huh7 and A7r5 cells were seeded on E-plate 96 at 10,000, 5000, 1250 and 5000, 2500 cells well−1, respectively, following silencing vector transfection. The inhibitory effects of transient silencing on cell proliferation monitored every 30 min for 72 h. Results TRPC1 silencing did not inhibit the proliferation rates of Huh7 cells at 10,000 cells well−1 seeding density. However, a significant anti-proliferative effect was observed at 1250 cells well−1 density at each time point throughout 72 h. Furthermore, significant inhibitory effects on A7r5 proliferation were observed at both 5000 and 2500 cells well−1 for 72 h. Conclusions Data suggest that the effects of transient silencing on cell proliferation differ depending on the initial cell seeding density. While high seeding densities mask the significant changes in proliferation, the inhibitory effects of silencing become apparent at lower seeding densities as the entry into log phase is delayed. Using the optimal initial seeding density is crucial when studying the effects of transient gene silencing. In addition, the results suggest that TRPC1 may contribute to proliferation and phenotypic switching of vascular smooth muscle cells.
Collapse
Affiliation(s)
- Cigdem Selli
- Applied Bioinformatics of Cancer, Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR UK ; Department of Pharmacology, Faculty of Pharmacy, Ege University, 35040 Izmir, Turkey
| | - Yasemin Erac
- Department of Pharmacology, Faculty of Pharmacy, Ege University, 35040 Izmir, Turkey
| | - Metiner Tosun
- Department of Pharmacology, Faculty of Pharmacy, Ege University, 35040 Izmir, Turkey ; Faculty of Medicine, Izmir University of Economics, 35330 Izmir, Turkey
| |
Collapse
|
120
|
Cvetković DM, Živanović MN, Milutinović MG, Djukić TR, Radović MD, Cvetković AM, Filipović ND, Zdravković ND. Real-time monitoring of cytotoxic effects of electroporation on breast and colon cancer cell lines. Bioelectrochemistry 2016; 113:S1567-5394(16)30149-9. [PMID: 28029459 DOI: 10.1016/j.bioelechem.2016.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/11/2016] [Accepted: 10/19/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE To study the effects of electroporation on different cell lines. MATERIAL The effects of electroporation on human breast cancer (MDA-MB-231), human colon cancer (SW-480 and HCT-116), human fibroblast cell line (MRC-5), primary human aortic smooth muscle cells (hAoSMC) and human umbilical vein endothelial cells (HUVEC) were studied. Real-time technology was used for cell viability monitoring. Acridine orange/ethidium bromide assay was applied for cell death type determination. A numerical model of electroporation has been proposed. RESULTS Electroporation induced inhibition of cell viability on dose (voltage) dependent way. The electroporation treatment 375-437.5Vcm-1 caused irreversible electroporation of cancer cells and reversible electroporation of healthy cells. The application of lower voltage rating (250Vcm-1) led to apoptosis as the predominant type of cell death, whereas the use of higher voltage (500Vcm-1) mainly caused necrosis. CONCLUSION Electroporation represents a promising method in cancer treatment. Different cancer cell lines had different response to the identical electroporation treatment. Electroporation 375-437.5Vcm-1 selectively caused permanent damage of cancer cells (SW-480), while healthy cells (MRC-5, hAoSM and HUVEC) recovered after 72h. The type of cell death is dependent of electroporation conditions. The proposed numerical model is useful for the analysis of phenomena related to electroporation treatment.
Collapse
Affiliation(s)
- Danijela M Cvetković
- University of Kragujevac, Faculty of Science, Institute of Biology and Ecology, Kragujevac, Serbia.
| | - Marko N Živanović
- University of Kragujevac, Faculty of Science, Institute of Biology and Ecology, Kragujevac, Serbia.
| | - Milena G Milutinović
- University of Kragujevac, Faculty of Science, Institute of Biology and Ecology, Kragujevac, Serbia.
| | - Tijana R Djukić
- University of Kragujevac, Faculty of Engineering, Kragujevac, Serbia; BioIRC Bioengineering R&D Center, Kragujevac, Serbia.
| | - Miloš D Radović
- University of Kragujevac, Faculty of Engineering, Kragujevac, Serbia; BioIRC Bioengineering R&D Center, Kragujevac, Serbia.
| | | | - Nenad D Filipović
- University of Kragujevac, Faculty of Engineering, Kragujevac, Serbia; University of Harvard, Boston, USA; BioIRC Bioengineering R&D Center, Kragujevac, Serbia.
| | | |
Collapse
|
121
|
Mendonça MCP, Soares ES, de Jesus MB, Ceragioli HJ, Batista ÂG, Nyúl-Tóth Á, Molnár J, Wilhelm I, Maróstica MR, Krizbai I, da Cruz-Höfling MA. PEGylation of Reduced Graphene Oxide Induces Toxicity in Cells of the Blood-Brain Barrier: An in Vitro and in Vivo Study. Mol Pharm 2016; 13:3913-3924. [PMID: 27712077 DOI: 10.1021/acs.molpharmaceut.6b00696] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polyethylene glycol (PEG) coating has been frequently used to improve the pharmacokinetic behavior of nanoparticles. Studies that contribute to better unravel the effects of PEGylation on the toxicity of nanoparticle formulation are therefore highly relevant. In the present study, reduced graphene oxide (rGO) was functionalized with PEG, and its effects on key components of the blood-brain barrier, such as astrocytes and endothelial cells, were analyzed in culture and in an in vivo rat model. The in vitro studies demonstrated concentration-dependent toxicity. The highest concentration (100 μg/mL) of non-PEGylated rGO had a lower toxic influence on cell viability in primary cultures of astrocytes and rat brain endothelial cells, while PEGylated rGO induced deleterious effects and cell death. We assessed hippocampal BBB integrity in vivo by evaluating astrocyte activation and the expression of the endothelial tight and adherens junctions proteins. From 1 h to 7 days post-rGO-PEG systemic injection, a notable and progressive down-regulation of protein markers of astrocytes (GFAP, connexin-43), the endothelial tight (occludin), and adherens (β-catenin) junctions and basal lamina (laminin) were observed. The formation of intracellular reactive oxygen species demonstrated by increases in the enzymatic antioxidant system in the PEGylated rGO samples was indicative of oxidative stress-mediated damage. Under the experimental conditions and design of the present study the PEGylation of rGO did not improve interaction with components of the blood-brain barrier. In contrast, the attachment of PEG to rGO induced deleterious effects in comparison with the effects caused by non-PEGylated rGO.
Collapse
Affiliation(s)
- Monique Culturato Padilha Mendonça
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas , Campinas, SP 13083-881, Brazil.,Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas , Campinas, SP 13083-863, Brazil
| | - Edilene Siqueira Soares
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas , Campinas, SP 13083-863, Brazil
| | - Marcelo Bispo de Jesus
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas , Campinas, SP 13083-863, Brazil
| | - Helder José Ceragioli
- Department of Semiconductors, Instruments and Photonics, Faculty of Electrical and Computer Engineering, State University of Campinas , Campinas, SP 13083-852, Brazil
| | - Ângela Giovana Batista
- Department of Food and Nutrition, School of Food Engineerig, State University of Campinas , Campinas, SP 13083-862, Brazil
| | - Ádám Nyúl-Tóth
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences , Szeged 1051, Hungary
| | - Judit Molnár
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences , Szeged 1051, Hungary
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences , Szeged 1051, Hungary
| | - Mário Roberto Maróstica
- Department of Food and Nutrition, School of Food Engineerig, State University of Campinas , Campinas, SP 13083-862, Brazil
| | - István Krizbai
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences , Szeged 1051, Hungary.,Vasile Goldis Western University , Arad, Romania
| | - Maria Alice da Cruz-Höfling
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas , Campinas, SP 13083-881, Brazil.,Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas , Campinas, SP 13083-863, Brazil
| |
Collapse
|
122
|
Menyhárt O, Harami-Papp H, Sukumar S, Schäfer R, Magnani L, de Barrios O, Győrffy B. Guidelines for the selection of functional assays to evaluate the hallmarks of cancer. Biochim Biophys Acta Rev Cancer 2016; 1866:300-319. [PMID: 27742530 DOI: 10.1016/j.bbcan.2016.10.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/06/2016] [Accepted: 10/08/2016] [Indexed: 01/05/2023]
Abstract
The hallmarks of cancer capture the most essential phenotypic characteristics of malignant transformation and progression. Although numerous factors involved in this multi-step process are still unknown to date, an ever-increasing number of mutated/altered candidate genes are being identified within large-scale cancer genomic projects. Therefore, investigators need to be aware of available and appropriate techniques capable of determining characteristic features of each hallmark. We review the methods tailored to experimental cancer researchers to evaluate cell proliferation, programmed cell death, replicative immortality, induction of angiogenesis, invasion and metastasis, genome instability, and reprogramming of energy metabolism. Selecting the ideal method is based on the investigator's goals, available equipment and also on financial constraints. Multiplexing strategies enable a more in-depth data collection from a single experiment - obtaining several results from a single procedure reduces variability and saves time and relative cost, leading to more robust conclusions compared to a single end point measurement. Each hallmark possesses characteristics that can be analyzed by immunoblot, RT-PCR, immunocytochemistry, immunoprecipitation, RNA microarray or RNA-seq. In general, flow cytometry, fluorescence microscopy, and multiwell readers are extremely versatile tools and, with proper sample preparation, allow the detection of a vast number of hallmark features. Finally, we also provide a list of hallmark-specific genes to be measured in transcriptome-level studies. Although our list is not exhaustive, we provide a snapshot of the most widely used methods, with an emphasis on methods enabling the simultaneous evaluation of multiple hallmark features.
Collapse
Affiliation(s)
- Otília Menyhárt
- MTA TTK Lendület Cancer Biomarker Research Group, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | | | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Reinhold Schäfer
- German Cancer Consortium (DKTK), DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg and Charité Comprehensive Cancer Center, Invalidenstr. 80, D-10115 Berlin, Germany
| | - Luca Magnani
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Oriol de Barrios
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, Barcelona, Spain
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary.
| |
Collapse
|
123
|
Reuse of E-plate cell sensor arrays in the xCELLigence Real-Time Cell Analyzer. Biotechniques 2016; 61:117-22. [PMID: 27625205 DOI: 10.2144/000114450] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/16/2016] [Indexed: 11/23/2022] Open
Abstract
The xCELLigence Real-Time Cell Analyzer (RTCA) is a non-invasive, impedence-based biosensor system that can measure cell viability, migration, growth, spreading, and proliferation. Changes in cell morphology and behavior are continuously monitored in real time using microelectronics located in the wells of RTCA E-plates. According to the manufacturer's recommendation, E-plates are single-use and disposable. Here, we show that E-plates can be regenerated and reused several times without significantly effecting experimental results.
Collapse
|
124
|
Safety pharmacology studies using EFP and impedance. J Pharmacol Toxicol Methods 2016; 81:223-32. [PMID: 27084108 DOI: 10.1016/j.vascn.2016.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 12/17/2022]
Abstract
INTRODUCTION While extracellular field potential (EFP) recordings using multi-electrode arrays (MEAs) are a well-established technique for monitoring changes in cardiac and neuronal function, impedance is a relatively unexploited technology. The combination of EFP, impedance and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has important implications for safety pharmacology as functional information about contraction and field potentials can be gleaned from human cardiomyocytes in a beating monolayer. The main objectives of this study were to demonstrate, using a range of different compounds, that drug effects on contraction and electrophysiology can be detected using a beating monolayer of hiPSC-CMs on the CardioExcyte 96. METHODS hiPSC-CMs were grown as a monolayer on NSP-96 plates for the CardioExcyte 96 (Nanion Technologies) and recordings were made in combined EFP and impedance mode at physiological temperature. The effect of the hERG blockers, E4031 and dofetilide, hERG trafficking inhibitor, pentamidine, β-adrenergic receptor agonist, isoproterenol, and calcium channel blocker, nifedipine, was tested on the EFP and impedance signals. RESULTS Combined impedance and EFP measurements were made from hiPSC-CMs using the CardioExcyte 96 (Nanion Technologies). E4031 and dofetilide, known to cause arrhythmia and Torsades de Pointes (TdP) in humans, decreased beat rate in impedance and EFP modes. Early afterdepolarization (EAD)-like events, an in vitro marker of TdP, could also be detected using this system. Isoproterenol and nifedipine caused an increase in beat rate. A long-term study (over 30h) of pentamidine, a hERG trafficking inhibitor, showed a concentration and time-dependent effect of pentamidine. DISCUSSION In the light of the new Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative to improve guidelines and standardize assays and protocols, the use of EFP and impedance measurements from hiPSCs may become critical in determining the proarrhythmic risk of potential drug candidates. The combination of EFP offering information about cardiac electrophysiology, and impedance, providing information about contractility from the same area of a synchronously beating monolayer of human cardiomyocytes in a 96-well plate format has important implications for future cardiac safety testing.
Collapse
|
125
|
Cytotoxicity and mitogenicity assays with real-time and label-free monitoring of human granulosa cells with an impedance-based signal processing technology intergrating micro-electronics and cell biology. Reprod Toxicol 2016; 60:82-91. [DOI: 10.1016/j.reprotox.2015.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/09/2015] [Accepted: 12/24/2015] [Indexed: 11/23/2022]
|
126
|
Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors. Sci Rep 2016; 6:19814. [PMID: 26813587 PMCID: PMC4728386 DOI: 10.1038/srep19814] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/30/2015] [Indexed: 01/07/2023] Open
Abstract
Herein we show that S1P rapidly and acutely reduces the focal adhesion strength and barrier tightness of brain endothelial cells. xCELLigence biosensor technology was used to measure focal adhesion, which was reduced by S1P acutely and this response was mediated through both S1P1 and S1P2 receptors. S1P increased secretion of several pro-inflammatory mediators from brain endothelial cells. However, the magnitude of this response was small in comparison to that mediated by TNFα or IL-1β. Furthermore, S1P did not significantly increase cell-surface expression of any key cell adhesion molecules involved in leukocyte recruitment, included ICAM-1 and VCAM-1. Finally, we reveal that S1P acutely and dynamically regulates microvascular endothelial barrier tightness in a manner consistent with regulated rapid opening followed by closing and strengthening of the barrier. We hypothesise that the role of the S1P receptors in this process is not to cause barrier dysfunction, but is related to controlled opening of the endothelial junctions. This was revealed using real-time measurement of barrier integrity using ECIS ZΘ TEER technology and endothelial viability using xCELLigence technology. Finally, we show that these responses do not occur simply though the pharmacology of a single S1P receptor but involves coordinated action of S1P1 and S1P2 receptors.
Collapse
|
127
|
Abstract
Chemokine receptors are involved in various pathologies such as inflammatory diseases, cancer, and HIV infection. Small molecule and antibody-based antagonists have been developed to inhibit chemokine-induced receptor activity. Currently two small molecule inhibitors targeting CXCR4 and CCR5 are on the market for stem cell mobilization and the treatment of HIV infection, respectively. Antibody fragments (e.g., nanobodies) targeting chemokine receptors are primarily orthosteric ligands, competing for the chemokine binding site. This is opposed by most small molecules, which act as allosteric modulators and bind to the receptor at a topographically distinct site as compared to chemokines. Allosteric modulators can be distinguished from orthosteric ligands by unique features, such as a saturable effect and probe dependency. For successful drug development, it is essential to determine pharmacological parameters (i.e., affinity, potency, and efficacy) and the mode of action of potential drugs during early stages of research in order to predict the biological effect of chemokine receptor targeting drugs in the clinic. This chapter explains how the pharmacological profile of chemokine receptor targeting ligands can be determined and quantified using binding and functional experiments.
Collapse
|
128
|
Chen AT, Zou S. Evaluation of drug-mediated arrhythmic changes in spontaneous beating cardiomyocytes by AFM. Analyst 2016; 141:6303-6313. [DOI: 10.1039/c6an01577h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An AFM-based approach to investigate compound-induced ion channel effects in cardiomyocytes for pre-screening drug development.
Collapse
Affiliation(s)
- A. T. Chen
- Measurement Science and Standards
- National Research Council Canada
- Ottawa
- Canada
- Department of Biochemistry and Biomedical Science
| | - S. Zou
- Measurement Science and Standards
- National Research Council Canada
- Ottawa
- Canada
- Department of Chemistry
| |
Collapse
|
129
|
Stempin S, Engel A, Winkler N, Buhrke T, Lampen A. Morphological and molecular characterization of the human breast epithelial cell line M13SV1 and its tumorigenic derivatives M13SV1-R2-2 and M13SV1-R2-N1. Cancer Cell Int 2015; 15:110. [PMID: 26612978 PMCID: PMC4660649 DOI: 10.1186/s12935-015-0262-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/20/2015] [Indexed: 01/06/2023] Open
Abstract
Background The estrogen receptor-positive M13SV1 breast epithelial cell line was proposed to be a suitable in vitro model for breast cancer research since two derivatives with graduated tumorigenicity—M13SV1-R2-2 and M13SV1-R2-N1—are available for this cell line. In the present study, these three cell lines were comparatively examined for their morphological and their biochemical properties on the molecular level. Methods A transcriptomic approach (gene array analysis) was chosen to unravel differences in gene expression among the three cell lines. Network analysis was conducted to identify deregulated signaling pathways. Cellular viability was determined by impedance measurements as well as by neutral red uptake assay. Apoptosis was determined by using a caspase assay. For morphological characterization, cells were grown in three-dimensional cell culture, and cellular differentiation and spheroid formation was followed by immunofluorescence staining by using confocal laser scanning microscopy. Results The gene array results indicated that there were only marginal differences in gene expression among the three cell lines. Network analysis predicted the R2-N1 derivative (1) to display enhanced apoptosis and (2) to have a higher migration capability compared to its parent cell line M13SV1. Enhanced apoptosis was confirmed by elevated caspase activity, and increased migration was observed in 3D culture when cells migrated out of the globular spheroids. In 3D cell culture, all three cell lines similarly formed spheroids within three days, but there was no acini formation until day 21 which is indicated by a growth arrest around day 15, cellular polarization, and the formation of hollow lumen inside the spheroids. These characteristics, however, are crucial to study, e.g., the differentiation process of breast epithelial cells in vitro. Conclusion Due to the molecular and morphological features, the M13SV1 cell line and its tumorigenic derivatives seem to be less suitable as in vitro models than other cell lines such as the MCF-10A cell line which displays proper acini formation in 3D culture. Electronic supplementary material The online version of this article (doi:10.1186/s12935-015-0262-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandra Stempin
- Department of Food Safety, Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Anika Engel
- Department of Food Safety, Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Nora Winkler
- Department of Food Safety, Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Thorsten Buhrke
- Department of Food Safety, Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Alfonso Lampen
- Department of Food Safety, Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
130
|
Marlina S, Shu MH, AbuBakar S, Zandi K. Development of a Real-Time Cell Analysing (RTCA) method as a fast and accurate screen for the selection of chikungunya virus replication inhibitors. Parasit Vectors 2015; 8:579. [PMID: 26553263 PMCID: PMC4640372 DOI: 10.1186/s13071-015-1104-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/20/2015] [Indexed: 01/11/2023] Open
Abstract
Background The xCELLigence real-time cell analysis (RTCA) system is an established electronic cell sensor array. This system uses microelectronic biosensor technology that is verified for real-time, label-free, dynamic and non-offensive monitoring of cellular features, including detection of viral cytopathic effect (CPE). Screening viral replication inhibitors based on presence of CPE has been applied for different viruses, including chikungunya virus (CHIKV). However, most CPE-based methods, including MTT and MTS assays, do not provide information on the initiation of CPE nor the changes in reaction rate of the virus propagation over time. Therefore, in this study we developed an RTCA method as an accurate and time-based screen for antiviral compounds against CHIKV. Methods CHIKV-infected Vero cells were used as an in vitro model to establish the suitability of the RTCA system as a quantitative analysis method based on the induction of CPE. We also performed an MTS assay as a CPE-based conventional method. Experimental assays were carried out to evaluate the optimal seeding density of the Vero cells, cytotoxicity of the tested compounds, titration of CHIKV and the antiviral activity of ribavirin, which has been reported as an effective compound against CHIKV in vitro replication. Results The optimal time point for viral inoculation was 18 h after seeding the cells. We determined that the maximum non-toxic dose (MNTD) of ribavirin was 200 μg/ml for Vero cells. Regarding the dynamic monitoring of Vero cell properties during antiviral assay, approximately 34 h post-infection, the normalised Cell Index (CI) values of CHIKV-infected Vero cells started to decrease, while the vehicle controls did not show any significant changes. We also successfully showed the dose dependent manner of ribavirin as an approved in vitro inhibitor for CHIKV through our RTCA experiment. Conclusion RTCA technology could become the prevailing tool in antiviral research due to its accurate output and the opportunity to carry out quality control and technical optimisation.
Collapse
Affiliation(s)
- Suria Marlina
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Meng-Hooi Shu
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Keivan Zandi
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|