101
|
Moraes Silva S, Tavallaie R, Sandiford L, Tilley RD, Gooding JJ. Gold coated magnetic nanoparticles: from preparation to surface modification for analytical and biomedical applications. Chem Commun (Camb) 2016; 52:7528-40. [PMID: 27182032 DOI: 10.1039/c6cc03225g] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gold coated magnetic nanoparticles (Au@MNPs) have become increasingly interesting to nanomaterial scientists due to their multifunctional properties and their potential in both analytical chemistry and nanomedicine. The past decade has seen significant progress in the synthesis and surface modification of Au@MNPs. This progress is based on advances in the preparation and characterization of iron/iron oxide nanocrystals with the required surface functional groups. In this critical review, we summarize recent developments in the methods of preparing Au@MNPs, surface functionalization and their application in analytical sensing and biomedicine. We highlight some of the remaining major challenges, as well as the lessons learnt when working with Au@MNPs.
Collapse
Affiliation(s)
- Saimon Moraes Silva
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | |
Collapse
|
102
|
Chakravarty R, Hong H, Cai W. Image-Guided Drug Delivery with Single-Photon Emission Computed Tomography: A Review of Literature. Curr Drug Targets 2016; 16:592-609. [PMID: 25182469 DOI: 10.2174/1389450115666140902125657] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/24/2014] [Accepted: 08/26/2014] [Indexed: 12/18/2022]
Abstract
Tremendous resources are being invested all over the world for prevention, diagnosis, and treatment of various types of cancer. Successful cancer management depends on accurate diagnosis of the disease along with precise therapeutic protocol. The conventional systemic drug delivery approaches generally cannot completely remove the competent cancer cells without surpassing the toxicity limits to normal tissues. Therefore, development of efficient drug delivery systems holds prime importance in medicine and healthcare. Also, molecular imaging can play an increasingly important and revolutionizing role in disease management. Synergistic use of molecular imaging and targeted drug delivery approaches provides unique opportunities in a relatively new area called 'image-guided drug delivery' (IGDD). Single-photon emission computed tomography (SPECT) is the most widely used nuclear imaging modality in clinical context and is increasingly being used to guide targeted therapeutics. The innovations in material science have fueled the development of efficient drug carriers based on, polymers, liposomes, micelles, dendrimers, microparticles, nanoparticles, etc. Efficient utilization of these drug carriers along with SPECT imaging technology have the potential to transform patient care by personalizing therapy to the individual patient, lessening the invasiveness of conventional treatment procedures and rapidly monitoring the therapeutic efficacy. SPECT-IGDD is not only effective for the treatment of cancer but might also find utility in the management of several other diseases. Herein, we provide a concise overview of the latest advances in SPECT-IGDD procedures and discuss the challenges and opportunities for advancement of the field.
Collapse
Affiliation(s)
- Rubel Chakravarty
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | | | | |
Collapse
|
103
|
Zhao Y, Liang M, Li X, Fan K, Xiao J, Li Y, Shi H, Wang F, Choi HS, Cheng D, Yan X. Bioengineered Magnetoferritin Nanoprobes for Single-Dose Nuclear-Magnetic Resonance Tumor Imaging. ACS NANO 2016; 10:4184-4191. [PMID: 26959856 DOI: 10.1021/acsnano.5b07408] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Despite all the advances in multimodal imaging, it remains a significant challenge to acquire both magnetic resonance and nuclear imaging in a single dose because of the enormous difference in sensitivity. Indeed, nuclear imaging is almost 10(6)-fold more sensitive than magnetic resonance imaging (MRI); thus, repeated injections are generally required to obtain sufficient MR signals after nuclear imaging. Here, we show that strategically engineered magnetoferritin nanoprobes can image tumors with high sensitivity and specificity using SPECT and MRI in living mice after a single intravenous injection. The magnetoferritin nanoprobes composed of (125)I radionuclide-conjugated human H-ferritin iron nanocages ((125)I-M-HFn) internalize robustly into cancer cells via a novel tumor-specific HFn-TfR1 pathway. In particular, the endocytic recycling characteristic of TfR1 transporters solves the nuclear signal blocking issue caused by the high dose nanoprobes injected for MRI, thus enabling simultaneous functional and morphological tumor imaging without reliance on multi-injections.
Collapse
Affiliation(s)
- Yanzhao Zhao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University/Shanghai Institute of Medical Imaging , Shanghai 200032, China
| | - Minmin Liang
- Key Laboratory of Protein and Peptide Pharmaceutical/Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology/Beijing Translational Engineering Center of Biomacromolecular Drugs, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | - Xiao Li
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University/Shanghai Institute of Medical Imaging , Shanghai 200032, China
| | - Kelong Fan
- Key Laboratory of Protein and Peptide Pharmaceutical/Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology/Beijing Translational Engineering Center of Biomacromolecular Drugs, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | - Jie Xiao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University/Shanghai Institute of Medical Imaging , Shanghai 200032, China
| | - Yanli Li
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University/Shanghai Institute of Medical Imaging , Shanghai 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University/Shanghai Institute of Medical Imaging , Shanghai 200032, China
| | - Fei Wang
- Key Laboratory of Protein and Peptide Pharmaceutical/Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology/Beijing Translational Engineering Center of Biomacromolecular Drugs, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | - Hak Soo Choi
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts 02215, United States
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University/Shanghai Institute of Medical Imaging , Shanghai 200032, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceutical/Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology/Beijing Translational Engineering Center of Biomacromolecular Drugs, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| |
Collapse
|
104
|
Stephen ZR, Dayringer CJ, Lim JJ, Revia RA, Halbert MV, Jeon M, Bakthavatsalam A, Ellenbogen RG, Zhang M. Approach to Rapid Synthesis and Functionalization of Iron Oxide Nanoparticles for High Gene Transfection. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6320-8. [PMID: 26894609 PMCID: PMC4829641 DOI: 10.1021/acsami.5b10883] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Surface functionalization of theranostic nanoparticles (NPs) typically relies on lengthy, aqueous postsynthesis labeling chemistries that have limited ability to fine-tune surface properties and can lead to NP heterogeneity. The need for a rapid, simple synthesis approach that can provide great control over the display of functional moieties on NP surfaces has led to increased use of highly selective bioorthoganol chemistries including metal-affinity coordination. Here we report a simple approach for rapid production of a superparamagnetic iron oxide NPs (SPIONs) with tunable functionality and high reproducibility under aqueous conditions. We utilize the high affinity complex formed between catechol and Fe((III)) as a means to dock well-defined catechol modified polymer modules on the surface of SPIONs during sonochemical coprecipitation synthesis. Polymer modules consisted of chitosan and poly(ethylene glycol) (PEG) copolymer (CP) modified with catechol (CCP), and CCP functionalized with cationic polyethylenimine (CCP-PEI) to facilitate binding and delivery of DNA for gene therapy. This rapid synthesis/functionalization approach provided excellent control over the extent of PEI labeling, improved SPION magnetic resonance imaging (MRI) contrast enhancement and produced an efficient transfection agent.
Collapse
Affiliation(s)
- Zachary R. Stephen
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
| | - Christopher J. Dayringer
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
| | - Josh J. Lim
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
| | - Richard A. Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
| | - Mackenzie V. Halbert
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
| | - Mike Jeon
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
| | | | - Richard G. Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195
- Department of Radiology, University of Washington, Seattle, Washington 98195
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195
- Miqin Zhang, Department of Materials Science & Engineering, University of Washington, , 302L Roberts Hall, Box 352120, Seattle, WA 98195, Fax: (206) 543-3100
| |
Collapse
|
105
|
Wang X, Zhang Z, Pan J, Zhang W. Effects of embolic agents with different particle sizes on interventional treatment of uterine fibroids. Pak J Med Sci 2016; 31:1490-5. [PMID: 26870122 PMCID: PMC4744307 DOI: 10.12669/pjms.316.7955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective: To compare the effects of embolic agents with different particle sizes on interventional treatment of uterine fibroids (UFs). Methods: One-hundred and thirty patients with UFs were divided into a treatment group and a control group (n=65) by random draw. All patients were treated by uterine artery embolization, with the treatment group using 200 μm polyvinyl alcohol (PVA) particles and the control group using 500 μm PVA particles. Results: The success rate of embolization was 100%. After intervention, the treatment group was significantly less prone to complications such as lower abdominal pain, fever, nausea, vomiting and bleeding than the control group (P<0.05). The follicle-stimulating hormone levels of both groups were similar before and after intervention, and there were also no significant inter-group differences. The uterine and UF volumes of both groups significantly decreased six months after intervention (P<0.05), and those of the treatment group were significantly lower (P<0.05). The two groups had similar physical function, role-physical, bodily pain and general health scores before intervention, but the treatment group scored significantly higher than the control group did six months after intervention (P<0.05). Conclusion: Interventional embolization can well treat UFs, without apparently affecting ovarian functions. Small-sized PVA particles can improve the quality of life by shrinking the uterus and UFs as well as by reducing the risks of complications.
Collapse
Affiliation(s)
- Xigong Wang
- Xigong Wang, Department of Cancer Intervention, Qingdao Central Hospital, Qingdao 266042, China
| | - Zhengfu Zhang
- Zhengfu Zhang, Department of Radiology, Qingdao Central Hospital, Qingdao 266042, China
| | - Jirong Pan
- Jirong Pan, Department of B Ultrasonic Room, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Weizhong Zhang
- Weizhong Zhang, Department of Interventional Radiology, Qingdao Municipal Hospital, Qingdao 266071, China
| |
Collapse
|
106
|
Hajba L, Guttman A. The use of magnetic nanoparticles in cancer theranostics: Toward handheld diagnostic devices. Biotechnol Adv 2016; 34:354-361. [PMID: 26853617 DOI: 10.1016/j.biotechadv.2016.02.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 01/25/2016] [Accepted: 02/03/2016] [Indexed: 12/21/2022]
Abstract
Magnetic nanoparticles are frequently used in a wide range of biomedical applications. In the first part of this review the most commonly used preparation and surface coating approaches of MNPs are briefly summarized including multifunctional hybrid particles. The second part gives a detailed overview of the use of MNPs in "traditional" biomedical applications related to cancer theranostics, like magnetic resonance imaging, drug delivery, hyperthermia and also their applicability in the next generation of point of care devices based on micro nuclear magnetic resonance and surface enhanced Raman spectroscopic detection technology that all can be routinely applied in everyday clinical practice.
Collapse
Affiliation(s)
- Laszlo Hajba
- MTA-PE Translational Glycomics Research Group, University of Pannonia, Veszprem, Hungary
| | - Andras Guttman
- MTA-PE Translational Glycomics Research Group, University of Pannonia, Veszprem, Hungary; Horvath Csaba Laboratory of Bioseparation Sciences, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
107
|
Abstract
The integration of PET and MRI modalities into a single hybrid imaging system has been demonstrated to synergistically compensate for the limitations of each modality, with the potential to enhance diagnostic accuracy and improve development of therapeutics. To take advantage of the progress of the hybrid PET/MRI hardware, nanoparticle-based probes are being developed for multimodal applications. In this paper, recent advances in the development of nanoparticle-based, multimodal PET/MRI probes are reviewed. Common MRI contrast agents, PET tracers and chelators and surface functionality that comprised PET/MRI nanoprobes reported in the last 10 years are summarized, followed by a description of the physical properties of these probes and their imaging applications.
Collapse
Affiliation(s)
- Joel Garcia
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
108
|
Abstract
INTRODUCTION This review presents recent developments in the use of nonviral vectors and transfer technologies in cancer gene therapy. Tremendous progress has been made in developing cancer gene therapy in ways that could be applicable to treatments. Numerous efforts are focused on methods of attacking known and novel targets more efficiently and specifically. In parallel to progress in nonviral vector design and delivery technologies, important achievements have been accomplished for suicide, gene replacement, gene suppression and immunostimulatory therapies. New nonviral cancer gene therapies have been developed based on emerging RNAi (si/shRNA-, miRNA) or ODN. AREAS COVERED This review provides an overview of recent gene therapeutic strategies in which nonviral vectors have been used experimentally and in clinical trials. Furthermore, we present current developments in nonviral vector systems in association with important chemical and physical gene delivery technologies and their potential for the future. EXPERT OPINION Nonviral gene therapy has maintained its position as an approach for treating cancer. This is reflected by the fact that more than 17% of all gene therapy trials employ nonviral approaches. Thus, nonviral vectors have emerged as a clinical alternative to viral vectors for the appropriate expression and delivery of therapeutic genes.
Collapse
Affiliation(s)
- Jessica Pahle
- a Experimental and Clinical Research Center , Charité University Medicine Berlin and Max-Delbrück-Center for Moelcular Medicine , Berlin , Germany
| | - Wolfgang Walther
- a Experimental and Clinical Research Center , Charité University Medicine Berlin and Max-Delbrück-Center for Moelcular Medicine , Berlin , Germany
| |
Collapse
|
109
|
Bai J, Wang JTW, Rubio N, Protti A, Heidari H, Elgogary R, Southern P, Al-Jamal WT, Sosabowski J, Shah AM, Bals S, Pankhurst QA, Al-Jamal KT. Triple-Modal Imaging of Magnetically-Targeted Nanocapsules in Solid Tumours In Vivo. Theranostics 2016; 6:342-56. [PMID: 26909110 PMCID: PMC4737722 DOI: 10.7150/thno.11918] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/22/2015] [Indexed: 01/24/2023] Open
Abstract
Triple-modal imaging magnetic nanocapsules, encapsulating hydrophobic superparamagnetic iron oxide nanoparticles, are formulated and used to magnetically target solid tumours after intravenous administration in tumour-bearing mice. The engineered magnetic polymeric nanocapsules m-NCs are ~200 nm in size with negative Zeta potential and shown to be spherical in shape. The loading efficiency of superparamagnetic iron oxide nanoparticles in the m-NC was ~100%. Up to ~3- and ~2.2-fold increase in tumour uptake at 1 and 24 h was achieved, when a static magnetic field was applied to the tumour for 1 hour. m-NCs, with multiple imaging probes (e.g. indocyanine green, superparamagnetic iron oxide nanoparticles and indium-111), were capable of triple-modal imaging (fluorescence/magnetic resonance/nuclear imaging) in vivo. Using triple-modal imaging is to overcome the intrinsic limitations of single modality imaging and provides complementary information on the spatial distribution of the nanocarrier within the tumour. The significant findings of this study could open up new research perspectives in using novel magnetically-responsive nanomaterials in magnetic-drug targeting combined with multi-modal imaging.
Collapse
|
110
|
Shevtsov MA, Nikolaev BP, Ryzhov VA, Yakovleva LY, Marchenko YY, Parr MA, Rolich VI, Mikhrina AL, Dobrodumov AV, Pitkin E, Multhoff G. Ionizing radiation improves glioma-specific targeting of superparamagnetic iron oxide nanoparticles conjugated with cmHsp70.1 monoclonal antibodies (SPION-cmHsp70.1). NANOSCALE 2015; 7:20652-20664. [PMID: 26599206 DOI: 10.1039/c5nr06521f] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The stress-inducible 72 kDa heat shock protein Hsp70 is known to be expressed on the membrane of highly aggressive tumor cells including high-grade gliomas, but not on the corresponding normal cells. Membrane Hsp70 (mHsp70) is rapidly internalized into tumor cells and thus targeting of mHsp70 might provide a promising strategy for theranostics. Superparamagnetic iron oxide nanoparticles (SPIONs) are contrast negative agents that are used for the detection of tumors with MRI. Herein, we conjugated the Hsp70-specific antibody (cmHsp70.1) which is known to recognize mHsp70 to superparamagnetic iron nanoparticles to assess tumor-specific targeting before and after ionizing irradiation. In vitro experiments demonstrated the selectivity of SPION-cmHsp70.1 conjugates to free and mHsp70 in different tumor cell types (C6 glioblastoma, K562 leukemia, HeLa cervix carcinoma) in a dose-dependent manner. High-resolution MRI (11 T) on T(2)-weighted images showed the retention of the conjugates in the C6 glioma model. Accumulation of SPION-cmHsp70.1 nanoparticles in the glioma resulted in a nearly 2-fold drop of T*(2) values in comparison to non-conjugated SPIONs. Biodistribution analysis using NLR-M(2) measurements showed a 7-fold increase in the tumor-to-background (normal brain) uptake ratio of SPION-cmHsp70.1 conjugates in glioma-bearing rats in comparison to SPIONs. This accumulation within Hsp70-positive glioma was further enhanced after a single dose (10 Gy) of ionizing radiation. Elevated accumulation of the magnetic conjugates in the tumor due to radiosensitization proves the combination of radiotherapy and application of Hsp70-targeted agents in brain tumors.
Collapse
Affiliation(s)
- Maxim A Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky ave., 4, St. Petersburg, 194064, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Granitzer P, Rumpf K, Gonzalez-Rodriguez R, Coffer JL, Reissner M. The effect of nanocrystalline silicon host on magnetic properties of encapsulated iron oxide nanoparticles. NANOSCALE 2015; 7:20220-6. [PMID: 26575478 DOI: 10.1039/c5nr05232g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The purpose of this work is a detailed comparison of the fundamental magnetic properties of nanocomposite systems consisting of Fe3O4 nanoparticle-loaded porous silicon as well as silicon nanotubes. Such composite structures are of potential merit in the area of magnetically guided drug delivery. For magnetic systems to be utilized in biomedical applications, there are certain magnetic properties that must be fulfilled. Therefore magnetic properties of embedded Fe3O4-nanoparticles in these nanostructured silicon host matrices, porous silicon and silicon nanotubes, are investigated. Temperature-dependent magnetic investigations have been carried out for four types of iron oxide particle sizes (4, 5, 8 and 10 nm). The silicon host, in interplay with the iron oxide nanoparticle size, plays a sensitive role. It is shown that Fe3O4 loaded porous silicon and SiNTs differ significantly in their magnetic behavior, especially the transition between superparamagnetic behavior and blocked state, due to host morphology-dependent magnetic interactions. Importantly, it is found that all investigated samples meet the magnetic precondition of possible biomedical applications of exhibiting a negligible magnetic remanence at room temperature.
Collapse
Affiliation(s)
- P Granitzer
- Institute of Physics, Karl-Franzens-University Graz, 8010 Graz, Austria.
| | | | | | | | | |
Collapse
|
112
|
Zhang C, Yan Y, Zou Q, Chen J, Li C. Superparamagnetic iron oxide nanoparticles for MR imaging of pancreatic cancer: Potential for early diagnosis through targeted strategies. Asia Pac J Clin Oncol 2015; 12:13-21. [PMID: 26663873 DOI: 10.1111/ajco.12437] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/27/2015] [Indexed: 12/13/2022]
Affiliation(s)
| | - Yuzhong Yan
- Clinical Laboratory, Shanghai Pudong Hospital; Fudan University Pudong Medical Center; Pudong, Shanghai China
- Department of Transfusion Medicine, Huashan Hospital; Fudan University; Shanghai China
| | - Qi Zou
- Departments of Hepatobiliary Surgery and
| | - Jie Chen
- Departments of Hepatobiliary Surgery and
| | | |
Collapse
|
113
|
Carrouée A, Allard-Vannier E, Même S, Szeremeta F, Beloeil JC, Chourpa I. Sensitive Trimodal Magnetic Resonance Imaging-Surface-Enhanced Resonance Raman Scattering-Fluorescence Detection of Cancer Cells with Stable Magneto-Plasmonic Nanoprobes. Anal Chem 2015; 87:11233-41. [DOI: 10.1021/acs.analchem.5b02419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ambre Carrouée
- Université
François Rabelais, EA6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37 200 Tours, France
- CNRS-UPR
4301
- Centre de Biophysique Moléculaire
- Equipe Complexes métalliques et IRM pour les applications
biomédicales, rue Charles Sadron, 45 071 Orléans, France
| | - Emilie Allard-Vannier
- Université
François Rabelais, EA6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37 200 Tours, France
| | - Sandra Même
- CNRS-UPR
4301
- Centre de Biophysique Moléculaire
- Equipe Complexes métalliques et IRM pour les applications
biomédicales, rue Charles Sadron, 45 071 Orléans, France
| | - Frederic Szeremeta
- CNRS-UPR
4301
- Centre de Biophysique Moléculaire
- Equipe Complexes métalliques et IRM pour les applications
biomédicales, rue Charles Sadron, 45 071 Orléans, France
| | - Jean-Claude Beloeil
- CNRS-UPR
4301
- Centre de Biophysique Moléculaire
- Equipe Complexes métalliques et IRM pour les applications
biomédicales, rue Charles Sadron, 45 071 Orléans, France
| | - Igor Chourpa
- Université
François Rabelais, EA6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37 200 Tours, France
| |
Collapse
|
114
|
Mhlanga N, Sinha Ray S, Lemmer Y, Wesley-Smith J. Polylactide-based Magnetic Spheres as Efficient Carriers for Anticancer Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2015; 7:22692-701. [PMID: 26390359 DOI: 10.1021/acsami.5b07567] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To improve traditional cancer therapies, we synthesized polylactide (PLA) spheres coencapsulating magnetic nanoparticles (MNPs, Fe3O4) and an anticancer drug (doxorubicin, DOX). The synthesis process involves the preparation of Fe3O4 NPs by a coprecipitation method and then PLA/DOX/Fe3O4 spheres using the solvent evaporation (oil-in-water) technique. The Fe3O4 NPs were coated with oleic acid to improve their hydrophobicity and biocompatibility for medical applications. The structure, morphology and properties of the MNPs and PLA/DOX/Fe3O4 spheres were studied using various techniques, such as FTIR, SEM, TEM, TGA, VSM, UV-vis spectroscopy, and zeta potential measurements. The in vitro DOX release from the spheres was prolonged, sustained, and pH-dependent and fit a zero-order kinetics model and an anomalous mechanism. Interestingly, the spheres did not show a DOX burst effect, ensuring the minimal exposure of the healthy cells and an increased drug payload at the tumor site. The pronounced biocompatibility of the PLA/DOX/Fe3O4 spheres with HeLa cells was proven by a WST assay. In summary, the synthesized PLA/DOX/Fe3O4 spheres have the potential for magnetic targeting of tumor cells to transform conventional methods.
Collapse
Affiliation(s)
- Nikiwe Mhlanga
- DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research , Pretoria 0001, South Africa
- Department of Applied Chemistry, University of Johannesburg, Doornfontein , Johannesburg 2028, South Africa
| | - Suprakas Sinha Ray
- DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research , Pretoria 0001, South Africa
- Department of Applied Chemistry, University of Johannesburg, Doornfontein , Johannesburg 2028, South Africa
| | - Yolandy Lemmer
- Materials Science and Manufacturing, Council for Scientific and Industrial Research , Pretoria 0001, South Africa
| | - James Wesley-Smith
- DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research , Pretoria 0001, South Africa
| |
Collapse
|
115
|
Miura Y, Tsuji AB, Sugyo A, Sudo H, Aoki I, Inubushi M, Yashiro M, Hirakawa K, Cabral H, Nishiyama N, Saga T, Kataoka K. Polymeric Micelle Platform for Multimodal Tomographic Imaging to Detect Scirrhous Gastric Cancer. ACS Biomater Sci Eng 2015; 1:1067-1076. [PMID: 33429548 DOI: 10.1021/acsbiomaterials.5b00142] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Scirrhous gastric cancer (SGC) is a recalcitrant tumor, which is among the most lethal cancers. A critical issue for the improvement of SGC prognosis is the lack of an effective imaging method for accurate detection and diagnosis. Because combined nuclear medicine imaging with magnetic resonance imaging (MRI) has the ability to detect cancer with high sensitivity, and quantitation and spatial resolution, it has potential to overcome the issues with SGC detection. Herein, we designed and synthesized a new block copolymer poly(ethylene glycol)-b-poly(γ-benzyl l-glutamate) linked with a chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA-PEG-b-PBLG) to provide a platform for multimodal tomographic imaging. We then successfully prepared DOTA-functionalized polymeric micelles (DOTA/m) measuring 30 nm in diameter, which is an appropriate size to penetrate deeply into tumors with thick fibrosis, including SGC. 111In-labeled DOTA/m highly accumulated in Colon-26 tumors (mouse colon cancer with hyperpermeability), but also in OCUM-2 M LN tumors (SGC with hypopermeability), clearly depicting both tumors by single photon emission computed tomography (SPECT). Gd-labeled DOTA/m clearly visualized OCUM-2 M LN tumors by MRI with high spatial resolution. Moreover, 111In/Gd-labeled micelles, as well as the mixture of 111In- and Gd-labeled DOTA/m demonstrated the capability of this system for selective multimodal SPECT/MR imaging of SCG. Our findings support 111In/Gd-DOTA-labeled micelles as a clinical translationable modality for multimodal tomographic imaging capable of detecting SGC.
Collapse
Affiliation(s)
- Yutaka Miura
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Atsushi B Tsuji
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Aya Sugyo
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hitomi Sudo
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ichio Aoki
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masayuki Inubushi
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University, Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University, Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Nobuhiro Nishiyama
- Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Tsuneo Saga
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kazunori Kataoka
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
116
|
Santhosh PB, Drašler B, Drobne D, Kreft ME, Kralj S, Makovec D, Ulrih NP. Effect of superparamagnetic iron oxide nanoparticles on fluidity and phase transition of phosphatidylcholine liposomal membranes. Int J Nanomedicine 2015; 10:6089-103. [PMID: 26491286 PMCID: PMC4598216 DOI: 10.2147/ijn.s89679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) with multifunctional properties have shown great promise in theranostics. The aim of our work was to compare the effects of SPIONs on the fluidity and phase transition of the liposomal membranes prepared with zwitterionic phosphatidylcholine lipids. In order to study if the surface modification of SPIONs has any influence on these membrane properties, we have used four types of differently functionalized SPIONs, such as: plain SPIONs (primary size was shown to bê11 nm), silica-coated SPIONs, SPIONs coated with silica and functionalized with positively charged amino groups or negatively charged carboxyl groups (the primary size of all the surface-modified SPIONs was ~20 nm). Small unilamellar vesicles prepared with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine lipids and multilamellar vesicles prepared with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine lipids were encapsulated or incubated with the plain and surface-modified SPIONs to determine the fluidity and phase transition temperature of the bilayer lipids, respectively. Fluorescent anisotropy and differential scanning calorimetric measurements of the liposomes that were either encapsulated or incubated with the suspension of SPIONs did not show a significant difference in the lipid ordering and fluidity; though the encapsulated SPIONs showed a slightly increased effect on the fluidity of the model membranes in comparison with the incubated SPIONs. This indicates the low potential of the SPIONs to interact with the nontargeted cell membranes, which is a desirable factor for in vivo applications.
Collapse
Affiliation(s)
- Poornima Budime Santhosh
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - Barbara Drašler
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, Slovenia
| | - Darko Makovec
- Department for Materials Synthesis, Jožef Stefan Institute, Slovenia
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Slovenia ; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Ljubljana, Slovenia
| |
Collapse
|
117
|
Integration of imaging into clinical practice to assess the delivery and performance of macromolecular and nanotechnology-based oncology therapies. J Control Release 2015; 219:295-312. [PMID: 26403800 DOI: 10.1016/j.jconrel.2015.09.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/19/2015] [Accepted: 09/19/2015] [Indexed: 01/02/2023]
Abstract
Functional and molecular imaging has become increasingly used to evaluate interpatient and intrapatient tumor heterogeneity. Imaging allows for assessment of microenvironment parameters including tumor hypoxia, perfusion and proliferation, as well as tumor metabolism and the intratumoral distribution of specific molecular markers. Imaging information may be used to stratify patients for targeted therapies, and to define patient populations that may benefit from alternative therapeutic approaches. It also provides a method for non-invasive monitoring of treatment response at earlier time-points than traditional cues, such as tumor shrinkage. Further, companion diagnostic imaging techniques are becoming progressively more important for development and clinical implementation of targeted therapies. Imaging-based companion diagnostics are likely to be essential for the validation and FDA approval of targeted nanotherapies and macromolecular medicines. This review describes recent clinical advances in the use of functional and molecular imaging to evaluate the tumor microenvironment. Additionally, this article focuses on image-based assessment of distribution and anti-tumor effect of nano- and macromolecular systems.
Collapse
|
118
|
Sharma H, Mishra PK, Talegaonkar S, Vaidya B. Metal nanoparticles: a theranostic nanotool against cancer. Drug Discov Today 2015; 20:1143-51. [DOI: 10.1016/j.drudis.2015.05.009] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/05/2015] [Accepted: 05/15/2015] [Indexed: 01/22/2023]
|
119
|
Bergs JWJ, Wacker MG, Hehlgans S, Piiper A, Multhoff G, Rödel C, Rödel F. The role of recent nanotechnology in enhancing the efficacy of radiation therapy. Biochim Biophys Acta Rev Cancer 2015; 1856:130-43. [PMID: 26142869 DOI: 10.1016/j.bbcan.2015.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/29/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
Abstract
Radiation therapy is one of the most commonly used non-surgical interventions in tumor treatment and is often combined with other modalities to enhance its efficacy. Despite recent advances in radiation oncology, treatment responses, however, vary considerably between individual patients. A variety of approaches have been developed to enhance radiation response or to counteract resistance to ionizing radiation. Among them, a relatively novel class of radiation sensitizers comprises nanoparticles (NPs) which are highly efficient and selective systems in the nanometer range. NPs can either encapsulate radiation sensitizing agents, thereby protecting them from degradation, or sensitize cancer cells to ionizing radiation via their physicochemical properties, e.g. high Z number. Moreover, they can be chemically modified for active molecular targeting and the imaging of tumors. In this review we will focus on recent developments in nanotechnology, different classes and modifications of NPs and their radiation sensitizing properties.
Collapse
Affiliation(s)
- Judith W J Bergs
- Department of Radiotherapy and Oncology, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK) partner site: Frankfurt, Germany
| | - Matthias G Wacker
- Fraunhofer-Institute for Molecular Biology and Applied Ecology, Department of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Albrecht Piiper
- Department of Medicine I, Goethe-University, Frankfurt am Main, Germany
| | - Gabriele Multhoff
- German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK) partner site: Frankfurt, Germany; Department of Radiation Oncology, Technische Universität München, Ismaninger Str. 22, D-81675 Munich, Germany; Clinical Cooperation Group (CCG) "Innate Immunity in Tumor Biology", Helmholtz Zentrum München, German Research Center for Environmental Health Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Claus Rödel
- Department of Radiotherapy and Oncology, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK) partner site: Frankfurt, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| |
Collapse
|
120
|
Friedrich RP, Janko C, Poettler M, Tripal P, Zaloga J, Cicha I, Dürr S, Nowak J, Odenbach S, Slabu I, Liebl M, Trahms L, Stapf M, Hilger I, Lyer S, Alexiou C. Flow cytometry for intracellular SPION quantification: specificity and sensitivity in comparison with spectroscopic methods. Int J Nanomedicine 2015; 10:4185-201. [PMID: 26170658 PMCID: PMC4492632 DOI: 10.2147/ijn.s82714] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Due to their special physicochemical properties, iron nanoparticles offer new promising possibilities for biomedical applications. For bench to bedside translation of super-paramagnetic iron oxide nanoparticles (SPIONs), safety issues have to be comprehensively clarified. To understand concentration-dependent nanoparticle-mediated toxicity, the exact quantification of intracellular SPIONs by reliable methods is of great importance. In the present study, we compared three different SPION quantification methods (ultraviolet spectrophotometry, magnetic particle spectroscopy, atomic adsorption spectroscopy) and discussed the shortcomings and advantages of each method. Moreover, we used those results to evaluate the possibility to use flow cytometric technique to determine the cellular SPION content. For this purpose, we correlated the side scatter data received from flow cytometry with the actual cellular SPION amount. We showed that flow cytometry provides a rapid and reliable method to assess the cellular SPION content. Our data also demonstrate that internalization of iron oxide nanoparticles in human umbilical vein endothelial cells is strongly dependent to the SPION type and results in a dose-dependent increase of toxicity. Thus, treatment with lauric acid-coated SPIONs (SEON(LA)) resulted in a significant increase in the intensity of side scatter and toxicity, whereas SEON(LA) with an additional protein corona formed by bovine serum albumin (SEON(LA-BSA)) and commercially available Rienso(®) particles showed only a minimal increase in both side scatter intensity and cellular toxicity. The increase in side scatter was in accordance with the measurements for SPION content by the atomic adsorption spectroscopy reference method. In summary, our data show that flow cytometry analysis can be used for estimation of uptake of SPIONs by mammalian cells and provides a fast tool for scientists to evaluate the safety of nanoparticle products.
Collapse
Affiliation(s)
- Ralf P Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine, University hospital Erlangen, Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine, University hospital Erlangen, Erlangen, Germany
| | - Marina Poettler
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine, University hospital Erlangen, Erlangen, Germany
| | - Philipp Tripal
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine, University hospital Erlangen, Erlangen, Germany
| | - Jan Zaloga
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine, University hospital Erlangen, Erlangen, Germany
| | - Iwona Cicha
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine, University hospital Erlangen, Erlangen, Germany
| | - Stephan Dürr
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine, University hospital Erlangen, Erlangen, Germany ; Department of Otorhinolaryngology, Head and Neck Surgery, Section of Phoniatrics and Pediatric Audiology, University hospital Erlangen, Erlangen, Germany
| | - Johannes Nowak
- Technische Universität Dresden, Chair of Magnetofluiddynamics, Measuring and Automation Technology, Dresden, Germany
| | - Stefan Odenbach
- Technische Universität Dresden, Chair of Magnetofluiddynamics, Measuring and Automation Technology, Dresden, Germany
| | - Ioana Slabu
- Physikalisch-Technische Bundesanstalt Berlin, Berlin, Germany
| | - Maik Liebl
- Physikalisch-Technische Bundesanstalt Berlin, Berlin, Germany
| | - Lutz Trahms
- Physikalisch-Technische Bundesanstalt Berlin, Berlin, Germany
| | - Marcus Stapf
- Department of Radiology, Division of Diagnostic and Interventional Radiology, Experimental Radiology, University hospital Jena, Jena, Germany
| | - Ingrid Hilger
- Department of Radiology, Division of Diagnostic and Interventional Radiology, Experimental Radiology, University hospital Jena, Jena, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine, University hospital Erlangen, Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine, University hospital Erlangen, Erlangen, Germany
| |
Collapse
|
121
|
Hyaluronic acid conjugated superparamagnetic iron oxide nanoparticle for cancer diagnosis and hyperthermia therapy. Carbohydr Polym 2015; 131:439-46. [PMID: 26256205 DOI: 10.1016/j.carbpol.2015.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/12/2015] [Accepted: 06/04/2015] [Indexed: 01/21/2023]
Abstract
Recently, superparamagnetic iron oxide nanoparticles (SPIONs) have been prepared for magnetic resonance (MR) imaging and hyperthermia therapy. Here, we have developed hyaluronic acid (HA) coated SPIONs primarily for use in a hyperthermia application with an MR diagnostic feature with hydrodynamic size measurement of 176nm for HA-PEG10-SPIONs and 149nm for HA-SPIONs. HA-coated SPIONs (HA-SPIONs) were prepared to target CD44-expressed cancer where the carrier was conjugated to PEG for analyzing longer circulation in blood as well as for biocompatibility (HA-PEG10 SPIONs). Characterization was conducted with TEM (shape), DLS (size), ELS (surface charge), TGA (content of polymer) and MRI (T2-relaxation time). The heating ability of both the HA-SPIONs and HA-PEG10-SPIONs was studied by AMF and SAR calculation. Cellular level tests were conducted using SCC7 and NIH3T3 cell lines to confirm cell viability and cell specific uptake. HA-SPIONs and HA-PEG10-SPIONs were injected to xenograft mice bearing the SCC7 cell line for MRI cancer diagnosis. We found that HA-SPION-injected mice tumors showed nearly 40% MR T2 contrast compared to the 20% MR T2 contrast of the HA-PEG10-SPION group over a 3h time period. Finally, in vitro hyperthermia studies were conducted in the SCC7 cell line that showed less than 40% cell viability for both HA-SPIONs and HA-PEG10-SPIONs in AMF treated cells. In conclusion, HA-SPIONs were targeted specifically to the CD44, and the hyperthermia effect of HA-SPIONs and HA-PEG10-SPIONs was found to be significant for future studies.
Collapse
|
122
|
Tang T, Tu C, Chow SY, Leung KH, Du S, Louie AY. Quantitative assessment of binding affinities for nanoparticles targeted to vulnerable plaque. Bioconjug Chem 2015; 26:1086-94. [PMID: 25970303 DOI: 10.1021/acs.bioconjchem.5b00144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent successes in targeted immune and cell-based therapies have driven new directions for pharmaceutical research. With the rise of these new therapies there is an unfilled need for companion diagnostics to assess patients' potential for therapeutic response. Targeted nanomaterials have been widely investigated to fill this niche; however, in contrast to small molecule or peptide-based targeted agents, binding affinities are not reported for nanomaterials, and to date there has been no standard, quantitative measure for the interaction of targeted nanoparticle agents with their targets. Without a standard measure, accurate comparisons between systems and optimization of targeting behavior are challenging. Here, we demonstrate a method for quantitative assessment of the binding affinity for targeted nanoparticles to cell surface receptors in living systems and apply it to optimize the development of a novel targeted nanoprobe for imaging vulnerable atherosclerotic plaques. In this work, we developed sulfated dextran-coated iron oxide nanoparticles with specific targeting to macrophages, a cell type whose density strongly correlates with plaque vulnerability. Detailed quantitative, in vitro characterizations of (111)In(3+) radiolabeled probes show high-affinity binding to the macrophage scavenger receptor A (SR-A). Cell uptake studies illustrate that higher surface sulfation levels result in much higher uptake efficiency by macrophages. We use a modified Scatchard analysis to quantitatively describe nanoparticle binding to targeted receptors. This characterization represents a potential new standard metric for targeted nanomaterials.
Collapse
Affiliation(s)
- Tang Tang
- Departments of †Chemistry, ‡Biomedical Engineering, and §Chemical Engineering, University of California, Davis, California 95616, United States
| | - Chuqiao Tu
- Departments of †Chemistry, ‡Biomedical Engineering, and §Chemical Engineering, University of California, Davis, California 95616, United States
| | - Sarah Y Chow
- Departments of †Chemistry, ‡Biomedical Engineering, and §Chemical Engineering, University of California, Davis, California 95616, United States
| | - Kevin H Leung
- Departments of †Chemistry, ‡Biomedical Engineering, and §Chemical Engineering, University of California, Davis, California 95616, United States
| | - Siyi Du
- Departments of †Chemistry, ‡Biomedical Engineering, and §Chemical Engineering, University of California, Davis, California 95616, United States
| | - Angelique Y Louie
- Departments of †Chemistry, ‡Biomedical Engineering, and §Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
123
|
Polysaccharide-Coated Magnetic Nanoparticles for Imaging and Gene Therapy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:959175. [PMID: 26078971 PMCID: PMC4452369 DOI: 10.1155/2015/959175] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/20/2014] [Indexed: 02/08/2023]
Abstract
Today, nanotechnology plays a vital role in biomedical applications, especially for the diagnosis and treatment of various diseases. Among the many different types of fabricated nanoparticles, magnetic metal oxide nanoparticles stand out as unique and useful tools for biomedical applications, because of their imaging characteristics and therapeutic properties such as drug and gene carriers. Polymer-coated magnetic particles are currently of particular interest to investigators in the fields of nanobiomedicine and fundamental biomaterials. Theranostic magnetic nanoparticles that are encapsulated or coated with polymers not only exhibit imaging properties in response to stimuli, but also can efficiently deliver various drugs and therapeutic genes. Even though a large number of polymer-coated magnetic nanoparticles have been fabricated over the last decade, most of these have only been used for imaging purposes. The focus of this review is on polysaccharide-coated magnetic nanoparticles used for imaging and gene delivery.
Collapse
|
124
|
Barošová H, Dvořáčková J, Motyka O, Kutláková KM, Peikertová P, Rak J, Bielniková H, Kukutschová J. Metal-based particles in human amniotic fluids of fetuses with normal karyotype and congenital malformation--a pilot study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:7582-7589. [PMID: 25561252 DOI: 10.1007/s11356-014-3987-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/12/2014] [Indexed: 06/04/2023]
Abstract
This study explores the inorganic composition of amniotic fluid in healthy human fetuses and fetuses with congenital malformation with a special attention to presence of metal-based solid particles. Amniotic fluid originates from maternal blood and provides fetus mechanical protection and nutrients. In spite of this crucial role, the environmental impact on the composition of amniotic fluid remains poorly studied. The samples of human amniotic fluids were obtained by amniocentesis, including both healthy pregnancies and those with congenital malformations. The samples were analysed using several techniques, including Raman microspectroscopy, scanning electron microscopy with energy-dispersed spectrometry (SEM-EDS), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. Several metal-based particles containing barium, titanium, iron, and other elements were detected by SEM-EDS and Raman microspectroscopy. XRD analysis detected only sodium chloride as the main component of all amniotic fluid samples. Infrared spectroscopy detected protein-like organic components. Majority of particles were in form of agglomerates up to tens of micrometres in size, consisting of mainly submicron particles. By statistical analysis (multiple correspondence analysis), it was observed that groups of healthy and diagnosed fetuses form two separate groups and therefore, qualitative differences in chemical composition may have distinct biological impact. Overall, our results suggest that metal-based nanosized pollutants penetrate into the amniotic fluid and may affect human fetuses.
Collapse
Affiliation(s)
- H Barošová
- Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. listopadu 15, 708 33, Ostrava, Czech Republic,
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Dähring H, Grandke J, Teichgräber U, Hilger I. Improved Hyperthermia Treatment of Tumors Under Consideration of Magnetic Nanoparticle Distribution Using Micro-CT Imaging. Mol Imaging Biol 2015; 17:763-9. [DOI: 10.1007/s11307-015-0848-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
126
|
Ndong C, Toraya-Brown S, Kekalo K, Baker I, Gerngross TU, Fiering SN, Griswold KE. Antibody-mediated targeting of iron oxide nanoparticles to the folate receptor alpha increases tumor cell association in vitro and in vivo. Int J Nanomedicine 2015; 10:2595-617. [PMID: 25878495 PMCID: PMC4388088 DOI: 10.2147/ijn.s79367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Active molecular targeting has become an important aspect of nanoparticle development for oncology indications. Here, we describe molecular targeting of iron oxide nanoparticles (IONPs) to the folate receptor alpha (FOLRα) using an engineered antibody fragment (Ffab). Compared to control nanoparticles targeting the non-relevant botulinum toxin, the Ffab-IONP constructs selectively accumulated on FOLRα-overexpressing cancer cells in vitro, where they exhibited the capacity to internalize into intracellular vesicles. Similarly, Ffab-IONPs homed to FOLRα-positive tumors upon intraperitoneal administration in an orthotopic murine xenograft model of ovarian cancer, whereas negative control particles showed no detectable tumor accumulation. Interestingly, Ffab-IONPs built with custom 120 nm nanoparticles exhibited lower in vitro targeting efficiency when compared to those built with commercially sourced 180 nm nanoparticles. In vivo, however, the two Ffab-IONP platforms achieved equivalent tumor homing, although the smaller 120 nm IONPs were more prone to liver sequestration. Overall, the results show that Ffab-mediated targeting of IONPs yields specific, high-level accumulation within cancer cells, and this fact suggests that Ffab-IONPs could have future utility in ovarian cancer diagnostics and therapy.
Collapse
Affiliation(s)
| | - Seiko Toraya-Brown
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | - Ian Baker
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA
| | - Tillman U Gerngross
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA ; Department of Biological Sciences, Dartmouth, Hanover, NH, USA ; Department of Chemistry, Dartmouth, Hanover, NH, USA
| | - Steven N Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA ; Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA ; Norris Cotton Cancer Center, Lebanon, NH, USA
| | - Karl E Griswold
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA ; Department of Biological Sciences, Dartmouth, Hanover, NH, USA ; Norris Cotton Cancer Center, Lebanon, NH, USA
| |
Collapse
|
127
|
Xu M, Yin B, Li C, Yao P. Fe3O4 and paclitaxel loaded emulsion with charge-conversional surface for tumor MRI and therapy. RSC Adv 2015. [DOI: 10.1039/c5ra05655a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A multifunctional emulsion can completely eliminate a tumor after intratumoral injection of the emulsion and near-infrared laser irradiation.
Collapse
Affiliation(s)
- Min Xu
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Baoru Yin
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Chunyang Li
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Ping Yao
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| |
Collapse
|
128
|
Gene therapy and imaging in preclinical and clinical oncology: recent developments in therapy and theranostics. Ther Deliv 2014; 5:1275-96. [DOI: 10.4155/tde.14.87] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the case of disseminated cancer, current treatment options reach their limit. Gene theranostics emerge as an innovative route in the treatment and diagnosis of cancer and might pave the way towards development of an efficacious treatment of currently incurable cancer. Various gene vectors have been developed to realize tumor-specific nucleic acid delivery and are considered crucial for the successful application of cancer gene therapy. By adding reporter genes and imaging agents, these systems gain an additional diagnostic function, thereby advancing the theranostic paradigm into cancer gene therapy. Numerous preclinical studies have demonstrated the feasibility of combined tumor gene therapy and diagnostic imaging, and clinical trials in human and veterinary oncology have been executed with partly encouraging results.
Collapse
|
129
|
Zhang J, Chen L, Tse WH, Bi R, Chen L. Inorganic Nanoparticles: Engineering for Biomedical Applications. IEEE NANOTECHNOLOGY MAGAZINE 2014. [DOI: 10.1109/mnano.2014.2355277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
130
|
Goglio G, Kaur G, Pinho SLC, Penin N, Blandino A, Geraldes CFGC, Garcia A, Delville MH. Glycine-Nitrate Process for the Elaboration of Eu3+-Doped Gd2O3Bimodal Nanoparticles for Biomedical Applications. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
131
|
Lindemann A, Lüdtke-Buzug K, Fräderich BM, Gräfe K, Pries R, Wollenberg B. Biological impact of superparamagnetic iron oxide nanoparticles for magnetic particle imaging of head and neck cancer cells. Int J Nanomedicine 2014; 9:5025-40. [PMID: 25378928 PMCID: PMC4218924 DOI: 10.2147/ijn.s63873] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background As a tomographic imaging technology, magnetic particle imaging (MPI) allows high spatial resolution and sensitivity, and the possibility to create real-time images by determining the spatial distribution of magnetic particles. To ensure a prospective biosafe application of UL-D (University of Luebeck-Dextran coated superparamagnetic nanoparticles), we evaluated the biocompatibility of superparamagnetic iron oxide nanoparticles (SPIONs), their impact on biological properties, and their cellular uptake using head and neck squamous cancer cells (HNSCCs). Methods SPIONs that met specific MPI requirements were synthesized as tracers. Labeling and uptake efficiency were analyzed by hematoxylin and eosin staining and magnetic particle spectrometry. Flow cytometry, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays, and real-time cell analyzer assays were used to investigate apoptosis, proliferation, and the cytokine response of SPION-labeled cells. The production of reactive oxygen species (ROS) was determined using a fluorescent dye. Experimental results were compared to the contrast agent Resovist®, a standard agent used in MPI. Results UL-D nanoparticles and Resovist particles were taken up in vitro by HNSCCs via unspecific phagocytosis followed by cytosolic accumulation. To evaluate toxicity, flow cytometry analysis was performed; results showed that dose- and time-dependent administration of Resovist induced apoptosis whereas cell viability of UL-D-labeled cells was not altered. We observed decreased cell proliferation in response to increased SPION concentrations. An intracellular production of ROS could not be detected, suggesting that the particles did not cause oxidative stress. Tumor necrosis factor alpha (TNF-α) and interleukins IL-6, IL-8, and IL-1β were measured to distinguish inflammatory responses. Only the primary tumor cell line labeled with >0.5 mM Resovist showed a significant increase in IL-1β secretion. Conclusion Our data suggest that UL-D SPIONs are a promising tracer material for use in innovative tumor cell analysis in MPI.
Collapse
Affiliation(s)
- Antje Lindemann
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | | | - Bianca M Fräderich
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Ksenija Gräfe
- Institute of Medical Engineering, University of Luebeck, Luebeck, Germany
| | - Ralph Pries
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Barbara Wollenberg
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| |
Collapse
|
132
|
Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 2014; 13:813-27. [PMID: 25287120 DOI: 10.1038/nrd4333] [Citation(s) in RCA: 1009] [Impact Index Per Article: 100.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases.
Collapse
|
133
|
Abstract
The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases.
Collapse
|
134
|
Wang H, Kumar R, Nagesha D, Duclos RI, Sridhar S, Gatley SJ. Integrity of (111)In-radiolabeled superparamagnetic iron oxide nanoparticles in the mouse. Nucl Med Biol 2014; 42:65-70. [PMID: 25277378 DOI: 10.1016/j.nucmedbio.2014.08.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/29/2014] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Iron-oxide nanoparticles can act as contrast agents in magnetic resonance imaging (MRI), while radiolabeling the same platform with nuclear medicine isotopes allows imaging with positron emission tomography (PET) or single-photon emission computed tomography (SPECT), modalities that offer better quantification. For successful translation of these multifunctional imaging platforms to clinical use, it is imperative to evaluate the degree to which the association between radioactive label and iron oxide core remains intact in vivo. METHODS We prepared iron oxide nanoparticles stabilized by oleic acid and phospholipids which were further radiolabeled with (59)Fe, (14)C-oleic acid, and (111)In. RESULTS Mouse biodistributions showed (111)In preferentially localized in reticuloendothelial organs, liver, spleen and bone. However, there were greater levels of (59)Fe than (111)In in liver and spleen, but lower levels of (14)C. CONCLUSIONS While there is some degree of dissociation between the (111)In labeled component of the nanoparticle and the iron oxide core, there is extensive dissociation of the oleic acid component.
Collapse
Affiliation(s)
- Haotian Wang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115; Nanomedicine Science and Technology Center, Northeastern University, Boston, MA 02115
| | - Rajiv Kumar
- Nanomedicine Science and Technology Center, Northeastern University, Boston, MA 02115
| | - Dattatri Nagesha
- Nanomedicine Science and Technology Center, Northeastern University, Boston, MA 02115
| | - Richard I Duclos
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115
| | - Srinivas Sridhar
- Nanomedicine Science and Technology Center, Northeastern University, Boston, MA 02115
| | - Samuel J Gatley
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115.
| |
Collapse
|
135
|
Hue JJ, Lee HJ, Jon S, Nam SY, Yun YW, Kim JS, Lee BJ. Distribution and accumulation of Cy5.5-labeled thermally cross-linked superparamagnetic iron oxide nanoparticles in the tissues of ICR mice. J Vet Sci 2014; 14:473-9. [PMID: 24366671 PMCID: PMC3885742 DOI: 10.4142/jvs.2013.14.4.473] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/28/2013] [Indexed: 01/17/2023] Open
Abstract
Free Cy5.5 dye and Cy5.5-labeled thermally cross-linked superparamagnetic iron oxide nanoparticles (TCL-SPION) have been routinely used for in vivo optical imaging. However, there is little information about the distribution and accumulation of free Cy5.5 dye and Cy5.5-labeled TCL-SPION in the tissues of mice. Free Cy5.5 dye (0.1 mg/kg body weight) and Cy5.5-labeled TCL-SPION (15 mg/kg body weight) were intravenously injected into the tail vein of ICR mice. The biodistribution and accumulation of the TCL-SPION and Cy5.5 were observed by ex vivo optical imaging and fluorescence signal generation at various time points over 28 days. Cy5.5 dye fluorescence in various organs was rapidly eliminated from 0.5 to 24 h post-injection. Fluorescence intensity of Cy5.5 dye in the liver, lung, kidney, and stomach was fairly strong at the early time points within 1 day post-injection. Cy5.5-labeled TCL-SPION had the highest fluorescence density in the lung at 0.5 h post-injection and decreased rapidly over time. Fluorescence density in liver and spleen was maintained over 28 days. These results suggest that TCL-SPION can be useful as a carrier of therapeutic reagents to treat diseases by persisting for long periods of time in the body.
Collapse
Affiliation(s)
- Jin Joo Hue
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Korea
| | | | | | | | | | | | | |
Collapse
|
136
|
Lin PC, Lin S, Wang PC, Sridhar R. Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 2014; 32:711-26. [PMID: 24252561 PMCID: PMC4024087 DOI: 10.1016/j.biotechadv.2013.11.006] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 11/05/2013] [Accepted: 11/12/2013] [Indexed: 12/12/2022]
Abstract
Advances in nanotechnology have opened up a new era of diagnosis, prevention and treatment of diseases and traumatic injuries. Nanomaterials, including those with potential for clinical applications, possess novel physicochemical properties that have an impact on their physiological interactions, from the molecular level to the systemic level. There is a lack of standardized methodologies or regulatory protocols for detection or characterization of nanomaterials. This review summarizes the techniques that are commonly used to study the size, shape, surface properties, composition, purity and stability of nanomaterials, along with their advantages and disadvantages. At present there are no FDA guidelines that have been developed specifically for nanomaterial based formulations for diagnostic or therapeutic use. There is an urgent need for standardized protocols and procedures for the characterization of nanoparticles, especially those that are intended for use as theranostics.
Collapse
MESH Headings
- Chemistry, Physical/methods
- Circular Dichroism
- Contrast Media/chemistry
- Humans
- Light
- Magnetic Resonance Spectroscopy
- Mass Spectrometry
- Microscopy, Atomic Force
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Microscopy, Scanning Tunneling
- Molecular Imaging/methods
- Nanomedicine/methods
- Nanoparticles/chemistry
- Nanostructures/chemistry
- Nanotechnology/methods
- Nanotechnology/trends
- Scattering, Radiation
- Spectrometry, Fluorescence
- Spectrophotometry, Infrared
- Spectrum Analysis, Raman
- Surface Properties
- Technology, Pharmaceutical/methods
Collapse
Affiliation(s)
- Ping-Chang Lin
- Laboratory of Molecular Imaging, Department of Radiology, Howard University, Washington, DC 20060, USA
| | - Stephen Lin
- Laboratory of Molecular Imaging, Department of Radiology, Howard University, Washington, DC 20060, USA
| | - Paul C Wang
- Laboratory of Molecular Imaging, Department of Radiology, Howard University, Washington, DC 20060, USA
| | - Rajagopalan Sridhar
- Department of Radiation Oncology, Howard University, Washington, DC 20060, USA.
| |
Collapse
|
137
|
Dizaj SM, Jafari S, Khosroushahi AY. A sight on the current nanoparticle-based gene delivery vectors. NANOSCALE RESEARCH LETTERS 2014; 9:252. [PMID: 24936161 PMCID: PMC4046008 DOI: 10.1186/1556-276x-9-252] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/25/2014] [Indexed: 05/17/2023]
Abstract
Nowadays, gene delivery for therapeutic objects is considered one of the most promising strategies to cure both the genetic and acquired diseases of human. The design of efficient gene delivery vectors possessing the high transfection efficiencies and low cytotoxicity is considered the major challenge for delivering a target gene to specific tissues or cells. On this base, the investigations on non-viral gene vectors with the ability to overcome physiological barriers are increasing. Among the non-viral vectors, nanoparticles showed remarkable properties regarding gene delivery such as the ability to target the specific tissue or cells, protect target gene against nuclease degradation, improve DNA stability, and increase the transformation efficiency or safety. This review attempts to represent a current nanoparticle based on its lipid, polymer, hybrid, and inorganic properties. Among them, hybrids, as efficient vectors, are utilized in gene delivery in terms of materials (synthetic or natural), design, and in vitro/in vivo transformation efficiency.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Jafari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Daneshgah Street, P.O.Box 51664, 14766 Tabriz, Iran
| |
Collapse
|
138
|
Bellusci M, La Barbera A, Padella F, Mancuso M, Pasquo A, Grollino MG, Leter G, Nardi E, Cremisini C, Giardullo P, Pacchierotti F. Biodistribution and acute toxicity of a nanofluid containing manganese iron oxide nanoparticles produced by a mechanochemical process. Int J Nanomedicine 2014; 9:1919-29. [PMID: 24790434 PMCID: PMC4000180 DOI: 10.2147/ijn.s56394] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Superparamagnetic iron oxide nanoparticles are candidate contrast agents for magnetic resonance imaging and targeted drug delivery. Biodistribution and toxicity assessment are critical for the development of nanoparticle-based drugs, because of nanoparticle-enhanced biological reactivity. Here, we investigated the uptake, in vivo biodistribution, and in vitro and in vivo potential toxicity of manganese ferrite (MnFe2O4) nanoparticles, synthesized by an original high-yield, low-cost mechanochemical process. Cultures of murine Balb/3T3 fibroblasts were exposed for 24, 48, or 72 hours to increasing ferrofluid concentrations. Nanoparticle cellular uptake was assessed by flow-cytometry scatter-light measurements and microscopy imaging after Prussian blue staining; cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony-forming assays. After a single intravenous injection, in vivo nanoparticle biodistribution and clearance were evaluated in mice by Mn spectrophotometric determination and Prussian blue staining in the liver, kidneys, spleen, and brain at different posttreatment times up to 21 days. The same organs were analyzed for any possible histopathological change. The in vitro study demonstrated dose-dependent nanoparticle uptake and statistically significant cytotoxic effects from a concentration of 50 μg/mL for the MTT assay and 20 μg/mL for the colony-forming assay. Significant increases in Mn concentrations were detected in all analyzed organs, peaking at 6 hours after injection and then gradually declining. Clearance appeared complete at 7 days in the kidneys, spleen, and brain, whereas in the liver Mn levels remained statistically higher than in vehicle-treated mice up to 3 weeks postinjection. No evidence of irreversible histopathological damage to any of the tested organs was observed. A comparison of the lowest in vitro toxic concentration with the intravenously injected dose and the administered dose of other ferrofluid drugs currently in clinical practice suggests that there might be sufficient safety margins for further development of our formulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Giorgio Leter
- Technical Unit for Radiation Biology and Human Health, Rome, Italy
| | - Elisa Nardi
- Technical Unit for Environmental Characterization, Prevention and Recovery, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome, Italy
| | - Carlo Cremisini
- Technical Unit for Environmental Characterization, Prevention and Recovery, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome, Italy
| | - Paola Giardullo
- Department of Radiation Physics, Marconi University, Rome, Italy
| | | |
Collapse
|
139
|
Janjic JM, Shao P, Zhang S, Yang X, Patel SK, Bai M. Perfluorocarbon nanoemulsions with fluorescent, colloidal and magnetic properties. Biomaterials 2014; 35:4958-68. [PMID: 24674463 DOI: 10.1016/j.biomaterials.2014.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
Abstract
Bimodal imaging agents that combine magnetic resonance imaging (MRI) and nearinfrared (NIR) imaging formulated as nanoemulsions became increasingly popular for imaging inflammation in vivo. Quality of in vivo imaging using nanoemulsions is directly dependent on their integrity and stability. Here we report the design of nanoemulsions for bimodal imaging, where both photostability and colloidal stability are equally addressed. A highly chemically and photo stable quaterrylenediimide dye was introduced into perfluoro-15-crown-5 ether (PCE) nanoemulsions. The nanoemulsions were prepared with PCE and Miglyol 812N mixed at 1:1 v/v ratio as internal phase stabilized by non-ionic surfactants. Data shows exceptional colloidal stability demonstrated as unchanged droplet size (~130 nm) and polydispersity (<0.15) after 182 days follow up at both 4 and 25 °C. Nanoemulsions also sustained the exposure to mechanical and temperature stress, and prolonged exposure to light without changes in droplet size, (19)F signal or fluorescence signal. No toxicity was observed in vitro in model inflammatory cells upon 24 h exposure while confocal microscopy showed that nanoemulsions droplets accumulated in the cytoplasm. Overall, our data demonstrates that design of bimodal imaging agents requires consideration of stability of each imaging component and that of the nanosystem as a whole to achieve excellent imaging performance.
Collapse
Affiliation(s)
- Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Pin Shao
- Molecular Imaging Laboratory, Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Shaojuan Zhang
- Molecular Imaging Laboratory, Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Diagnostic Radiology, The First Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xun Yang
- Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Sravan K Patel
- Graduate School of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Mingfeng Bai
- Molecular Imaging Laboratory, Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA.
| |
Collapse
|
140
|
Madru R, Svenmarker P, Ingvar C, Ståhlberg F, Engels SA, Knutsson L, Strand SE. Development of a Hybrid Nanoprobe for Triple-Modality MR/SPECT/Optical Fluorescence Imaging. Diagnostics (Basel) 2014; 4:13-26. [PMID: 26852675 PMCID: PMC4665510 DOI: 10.3390/diagnostics4010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 12/02/2022] Open
Abstract
Hybrid clinical imaging is an emerging technology, which improves disease diagnosis by combining already existing technologies. With the combination of high-resolution morphological imaging, i.e., MRI/CT, and high-sensitive molecular detection offered by SPECT/PET/Optical, physicians can detect disease progression at an early stage and design patient-specific treatments. To fully exploit the possibilities of hybrid imaging a hybrid probe compatible with each imaging technology is required. Here, we present a hybrid nanoprobe for triple modality MR/SPECT/Fluorescence imaging. Our imaging agent is comprised of superparamagnetic iron oxide nanoparticles (SPIONs), labeled with 99mTc and an Alexa fluorophore (AF), together forming 99mTc-AF-SPIONs. The agent was stable in human serum, and, after subcutaneous injection in the hind paw of Wistar rats, showed to be highly specific by accumulating in the sentinel lymph node. All three modalities clearly visualized the imaging agent. Our results show that a single imaging agent can be used for hybrid imaging. The use of a single hybrid contrast agent permits simultaneous hybrid imaging and, more conventionally, allow for single modality imaging at different time points. For example, a hybrid contrast agent enables pre-operative planning, intra-operative guidance, and post-operative evaluation with the same contrast agent.
Collapse
Affiliation(s)
- Renata Madru
- Department of Medical Radiation Physics, Lund University, Barngatan 2, 221 85 Lund, Sweden.
| | - Pontus Svenmarker
- Department of Physics, Lund University, Professorsgatan 1, 223 63 Lund, Sweden.
| | - Christian Ingvar
- Department of Surgery, Skane University Hospital, Entrégatan 7, 221 85 Lund, Sweden.
| | - Freddy Ståhlberg
- Department of Medical Radiation Physics, Lund University, Barngatan 2, 221 85 Lund, Sweden.
- Lund University Bioimaging Center (LBIC), Kliniggatan 32, 222 42 Lund, Sweden.
- Department of Radiology, Skane University Hospital, Entrégatan 7, 221 85 Lund, Sweden.
| | | | - Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Barngatan 2, 221 85 Lund, Sweden.
| | - Sven-Erik Strand
- Department of Medical Radiation Physics, Lund University, Barngatan 2, 221 85 Lund, Sweden.
- Lund University Bioimaging Center (LBIC), Kliniggatan 32, 222 42 Lund, Sweden.
| |
Collapse
|
141
|
Srikar R, Upendran A, Kannan R. Polymeric nanoparticles for molecular imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:245-67. [PMID: 24616442 DOI: 10.1002/wnan.1259] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 01/31/2023]
Abstract
Conventional imaging technologies (X-ray computed tomography, magnetic resonance, and optical) depend on contrast agents to visualize a target site or organ of interest. The imaging agents currently used in clinics for diagnosis suffer from disadvantages including poor target specificity and in vivo instability. Consequently, delivery of low concentrations of contrast agents to region of interest affects image quality. Therefore, it is important to selectively deliver high payload of contrast agent to obtain clinically useful images. Nanoparticles offer multifunctional capabilities to transport high concentrations of imaging probes selectively to diseased site inside the body. Polymeric nanoparticles, incorporated with contrast agents, have shown significant benefits in molecular imaging applications. These materials possess the ability to encapsulate different contrast agents within a single matrix enabling multimodal imaging possibilities. The materials can be surface conjugated to target-specific biomolecules for controlling the navigation under in vivo conditions. The versatility of this class of nanomaterials makes them an attractive platform for developing highly sensitive molecular imaging agents. The research community's progress in the area of synthesis of polymeric nanomaterials and their in vivo imaging applications has been noteworthy, but it is still in the pioneer stage of development. The challenges ahead should focus on the design and fabrication of these materials including burst release of contrasts agents, solubility, and stability issues of polymeric nanomaterials.
Collapse
Affiliation(s)
- R Srikar
- Department of Radiology, University of Missouri, Columbia, MO, USA
| | | | | |
Collapse
|
142
|
Kharisov BI, Dias HVR, Kharissova OV, Vázquez A, Peña Y, Gómez I. Solubilization, dispersion and stabilization of magnetic nanoparticles in water and non-aqueous solvents: recent trends. RSC Adv 2014. [DOI: 10.1039/c4ra06902a] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Solubilization and stabilization techniques for magnetic nanoparticles in water and in non-aqueous solvents are reviewed.
Collapse
Affiliation(s)
| | - H. V. Rasika Dias
- Department of Chemistry and Biochemistry
- The University of Texas at Arlington
- Arlington, Texas 76019, USA
| | | | | | - Yolanda Peña
- Universidad Autónoma de Nuevo León
- Monterrey, Mexico
| | - Idalia Gómez
- Universidad Autónoma de Nuevo León
- Monterrey, Mexico
| |
Collapse
|
143
|
Wu J, Liu Y, Li W, Wang C, Li Y, Tian Y, Sun J, Wang S, Wang X, Tang Y, Zhu H, Teng Z, Lu G. Magnetically guided survivin-siRNA delivery and simultaneous dual-modal imaging visualization based on Fe3O4@mTiO2nanospheres for breast cancer. J Mater Chem B 2014; 2:7756-7764. [PMID: 32261912 DOI: 10.1039/c4tb01264j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fe3O4@mTiO2/FMN-PEI as a siRNA delivery system can transfect survivin-siRNA to induce apoptosis, along with magnetic targeting, MRI and optical imaging.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Nuclear Medicine
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Ying Liu
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Wei Li
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433, P. R. China
| | - Chunyan Wang
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Yanjun Li
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Ying Tian
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Jing Sun
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Shouju Wang
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Xin Wang
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Yuxia Tang
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Hong Zhu
- Department of Nuclear Medicine
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Zhaogang Teng
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Guangming Lu
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| |
Collapse
|
144
|
Issa B, Obaidat IM, Albiss BA, Haik Y. Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 2013; 14:21266-305. [PMID: 24232575 PMCID: PMC3856004 DOI: 10.3390/ijms141121266] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 11/16/2022] Open
Abstract
Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10–100 μm), viruses, genes, down to proteins (3–50 nm). The optimization of the nanoparticles’ size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents.
Collapse
Affiliation(s)
- Bashar Issa
- Department of Physics, College of Science, United Arab Emirates University, Al Ain, 15551, UAE; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +971-3-713-6316; Fax: +971-3-713-6944
| | - Ihab M. Obaidat
- Department of Physics, College of Science, United Arab Emirates University, Al Ain, 15551, UAE; E-Mail:
| | - Borhan A. Albiss
- Superconductivity & Magnetic Measurements Laboratory, Physics Department, Jordan University of Science and Technology, Irbid 22110, Jordan; E-Mail:
| | - Yousef Haik
- Department of Mechanical Engineering, College of Engineering, United Arab Emirates University, Al Ain, 15551, UAE; E-Mail:
- Centre of Research Excellence in Nanobioscience 203, Eberhart Building University of North Carolina, Greensboro, NC 27412, USA
| |
Collapse
|