101
|
Yang L, Wu L, Liu Y, Chen H, Wei Y, Sun R, Shen S, Zhan B, Yang J, Deng G. Association Between Serum Ferritin Concentration and Risk of Adverse Maternal and Fetal Pregnancy Outcomes: A Retrospective Cohort Study. Diabetes Metab Syndr Obes 2022; 15:2867-2876. [PMID: 36160468 PMCID: PMC9507277 DOI: 10.2147/dmso.s380408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE This study evaluated the associations of serum ferritin (SF) concentration during pregnancy with the risk of adverse maternal and fetal pregnancy outcomes. METHODS We conducted a retrospective study of 2327 pregnant women from 2015 to 2020 in Guangdong, China. SF concentrations were measured at 16-18th and 28-32th week of gestation. Logistic regression models were applied to estimate the association between SF concentration and the risk of adverse pregnancy outcomes. RESULTS After multivariable adjustment, the odds ratio (OR) of the highest quartile of SF concentration at 16-18th week of gestation was 1.43 (95% confidence interval [CI]: 1.09, 1.89) for gestational diabetes mellitus (GDM) and 1.79 (95% CI: 1.15, 2.79) for small for gestational age (SGA) when compared with the lowest quartile. At 28-32th week of gestation compared with the lowest quartile, women with SF in the highest quartile had an increased risk of SGA (OR: 1.62; 95% CI: 1.01, 2.62). Moreover, the lowest quartile of SF concentration decreased risk of SGA by 90% (95% CI: 0.01, 0.80) when compared with the highest quartile among pregnancy women with GDM. CONCLUSION Elevated SF concentrations increased the risk of GDM and SGA during pregnancy. Maintaining an appropriately low level of maternal SF at 28-32th week of gestation in women with GDM could reduce the risk of SGA.
Collapse
Affiliation(s)
- Lanyao Yang
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, People’s Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Lanlan Wu
- Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen, People’s Republic of China
| | - Yao Liu
- Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen, People’s Republic of China
| | - Hengying Chen
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yuanhuan Wei
- Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen, People’s Republic of China
| | - Ruifang Sun
- Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen, People’s Republic of China
| | - Siwen Shen
- Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen, People’s Republic of China
| | - Bowen Zhan
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, People’s Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Jianjun Yang
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, People’s Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, People’s Republic of China
- Jianjun Yang, Department of Nutrition and Food Hygiene, School of Public Health and Management, Ningxia Medical University, No. 1160 Shengli Road, Yinchuan, Ningxia, 750004, People’s Republic of China, Email
| | - Guifang Deng
- Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen, People’s Republic of China
- Correspondence: Guifang Deng, Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, No. 89 Taoyuan Road, Shenzhen, Guangdong, 518052, People’s Republic of China, Email
| |
Collapse
|
102
|
Jayakumar D, S Narasimhan KK, Periandavan K. Triad role of hepcidin, ferroportin, and Nrf2 in cardiac iron metabolism: From health to disease. J Trace Elem Med Biol 2022; 69:126882. [PMID: 34710708 DOI: 10.1016/j.jtemb.2021.126882] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022]
Abstract
Iron is an essential trace element required for several vital physiological and developmental processes, including erythropoiesis, bone, and neuronal development. Iron metabolism and oxygen homeostasis are interlinked to perform a vital role in the functionality of the heart. The metabolic machinery of the heart utilizes almost 90 % of oxygen through the electron transport chain. To handle this tremendous level of oxygen, the iron metabolism in the heart is utmost crucial. Iron availability to the heart is therefore tightly regulated by (i) the hepcidin/ferroportin axis, which controls dietary iron absorption, storage, and recycling, and (ii) iron regulatory proteins 1 and 2 (IRP1/2) via hypoxia inducible factor 1 (HIF1) pathway. Despite iron being vital to the heart, recent investigations have demonstrated that iron imbalance is a common manifestation in conditions of heart failure (HF), since free iron readily transforms between Fe2+ and Fe3+via the Fenton reaction, leading to reactive oxygen species (ROS) production and oxidative damage. Therefore, to combat iron-mediated oxidative stress, targeting Nrf2/ARE antioxidant signaling is rational. The involvement of Nrf2 in regulating several genes engaged in heme synthesis, iron storage, and iron export is beginning to be uncovered. Consequently, it is possible that Nrf2/hepcidin/ferroportin might act as an epicenter connecting iron metabolism to redox alterations. However, the mechanism bridging the two remains obscure. In this review, we tried to summarize the contemporary insight of how cardiomyocytes regulate intracellular iron levels and discussed the mechanisms linking cardiac dysfunction with iron imbalance. Further, we emphasized the impact of Nrf2 on the interplay between systemic/cardiac iron control in the context of heart disease, particularly in myocardial ischemia and HF.
Collapse
Affiliation(s)
- Deepthy Jayakumar
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, 600113, Tamil Nadu, India
| | - Kishore Kumar S Narasimhan
- Department of Pharmacology and Neurosciences, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Kalaiselvi Periandavan
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, 600113, Tamil Nadu, India.
| |
Collapse
|
103
|
Iron Dysregulation and Frailty Syndrome. J Clin Med 2021; 10:jcm10235596. [PMID: 34884301 PMCID: PMC8658196 DOI: 10.3390/jcm10235596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Patients with diagnosed frailty syndrome (FS) represent a special group of patients with chronic disease. In the classic definition, frailty syndrome includes such parameters as reduced muscle strength, subjective feeling of fatigue, unintentional weight loss, slow gait, and low physical activity. Frailty syndrome leads to an increased incidence of adverse events, such as falls, hospitalizations, and the need to place patients in care and health institutions associated with the loss of independence; frailty syndrome is also associated with an increased incidence of death. In European countries, the frequency of frailty syndrome in the geriatric population is estimated to be 17% with a range from 5.8% to 27%, and its incidence increases with age. A much higher percentage of frailty syndrome patients is also observed among hospitalized patients. The incidence of frailty syndrome is influenced by many socio-economic factors, but also medical factors. Materials and Methods: A total of 120 patients, >65 years of age, participated in the study. During the study, anthropometric measurements, surveys, laboratory determinations of basic biochemical parameters, and iron status were investigated; 5 mL of peripheral blood in EDTA was also collected for further laboratory tests of hepcidin and soluable transferrin receptor (sTfR) using ELISA. Then, the statistical analysis was performed based on survey and clinical data. Results: Among the patients >65 years of age, the incidence of frailty syndrome was 27.5%. It was found that its occurrence was associated with socio-economic factors, malnutrition, multiple morbidities, reduced muscle strength and gait speed, and polypharmacotherapy. The relationship between reduced iron concentration and the occurrence of frailty syndrome was confirmed. Conclusions: According to the analysis, it was found that a decrease in iron concentration was associated with frailty syndrome.
Collapse
|
104
|
Zhao Y, Huang Z, Peng H. Molecular Mechanisms of Ferroptosis and Its Roles in Hematologic Malignancies. Front Oncol 2021; 11:743006. [PMID: 34778060 PMCID: PMC8582018 DOI: 10.3389/fonc.2021.743006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
Cell death is essential for the normal metabolism of human organisms. Ferroptosis is a unique regulated cell death (RCD) mode characterized by excess accumulation of iron-dependent lipid peroxide and reactive oxygen species (ROS) compared with other well-known programmed cell death modes. It has been currently recognized that ferroptosis plays a rather important role in the occurrence, development, and treatment of traumatic brain injury, stroke, acute kidney injury, liver damage, ischemia-reperfusion injury, tumor, etc. Of note, ferroptosis may be explained by the expression of various molecules and signaling components, among which iron, lipid, and amino acid metabolism are the key regulatory mechanisms of ferroptosis. Meanwhile, tumor cells of hematological malignancies, such as leukemia, lymphoma, and multiple myeloma (MM), are identified to be sensitive to ferroptosis. Targeting potential regulatory factors in the ferroptosis pathway may promote or inhibit the disease progression of these malignancies. In this review, a systematic summary was conducted on the key molecular mechanisms of ferroptosis and the current potential relationships of ferroptosis with leukemia, lymphoma, and MM. It is expected to provide novel potential therapeutic approaches and targets for hematological malignancies.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
- Institute of Hematology, Central South University, Changsha, China
| | - Zineng Huang
- Department of Hematology, The Second Xiangya Hospital, Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
- Institute of Hematology, Central South University, Changsha, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
- Institute of Hematology, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, China
| |
Collapse
|
105
|
Dietary iron intake and the risk of type 2 diabetes mellitus in middle-aged and older adults in urban China: a prospective cohort study. Br J Nutr 2021; 126:1091-1099. [PMID: 33308344 DOI: 10.1017/s0007114520005048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The association between dietary Fe intake and diabetes risk remains inconsistent. We aimed to explore the association between dietary Fe intake and type 2 diabetes mellitus (T2DM) risk in middle-aged and older adults in urban China. This study used data from the Guangzhou Nutrition and Health Study, an on-going community-based prospective cohort study. Participants were recruited from 2008 to 2013 in Guangzhou community. A total of 2696 participants aged 40-75 years without T2DM at baseline were included in data analyses, with a median of 5·6 (interquartile range 4·1-5·9) years of follow-up. T2DM was identified by self-reported diagnosis, fasting glucose ≥ 7·0 mmol/l or glycosylated Hb ≥ 6·5 %. Cox proportional hazard models were used to estimate hazard ratios (HR) and 95 % CI. We ascertained 205 incident T2DM cases during 13 476 person-years. The adjusted HR for T2DM risk in the fourth quartile of haem Fe intake was 1·92 (95 % CI 1·07, 3·46; Ptrend = 0·010), compared with the first quartile intake. These significant associations were found in haem Fe intake from total meat (HR 2·74; 95 % CI 1·22, 6·15; Ptrend = 0·011) and haem Fe intake from red meat (HR 1·86; 95 % CI 1·01, 3·44; Ptrend = 0·034), but not haem Fe intake from processed meat, poultry or fish/shellfish. The association between dietary intake of total Fe or non-haem Fe with T2DM risk had no significance. Our findings suggested that higher dietary intake of haem Fe (especially from red meat), but not total Fe or non-haem Fe, was associated with greater T2DM risk in middle-aged and older adults.
Collapse
|
106
|
Alshwaiyat NM, Ahmad A, Wan Hassan WMR, Al-Jamal HAN. Association between obesity and iron deficiency (Review). Exp Ther Med 2021; 22:1268. [PMID: 34594405 PMCID: PMC8456489 DOI: 10.3892/etm.2021.10703] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity is a risk factor for several comorbidities and complications, including iron deficiency anemia. Iron deficiency anemia is a serious global public health problem, with a worldwide prevalence. The high prevalence of obesity in combination with iron deficiency incidence observed in different age and sex categories suggests an association between obesity and iron status. Obesity may disrupt iron homeostasis, resulting in iron deficiency anemia. The association between obesity and iron deficiency may be due to increased hepcidin levels mediated by chronic inflammation. Hepcidin is a small peptide hormone that functions as a negative regulator of intestinal iron absorption. Significant body weight loss in overweight and obese individuals decreases chronic inflammation and serum hepcidin levels, resulting in improved iron status due to increased iron absorption. However, further randomized controlled trials are required to confirm this effect.
Collapse
Affiliation(s)
- Naseem Mohammad Alshwaiyat
- School of Nutrition and Dietetics, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Gong Badak Campus, Kuala Terengganu, Terengganu 21300, Malaysia
| | - Aryati Ahmad
- School of Nutrition and Dietetics, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Gong Badak Campus, Kuala Terengganu, Terengganu 21300, Malaysia.,Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Primary Care Building, Radcliffe Observatory Quarter, Oxford OX2 6GG, UK
| | - Wan Mohd Razin Wan Hassan
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Medical Campus, Kuala Terengganu, Terengganu 20400, Malaysia
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Gong Badak Campus, Kuala Terengganu, Terengganu 21300, Malaysia
| |
Collapse
|
107
|
In vitro effect of ferrous sulphate on bovine spermatozoa motility parameters, viability and Annexin V-labeled membrane changes. PLoS One 2021; 16:e0257766. [PMID: 34555113 PMCID: PMC8460022 DOI: 10.1371/journal.pone.0257766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to assess the dose- and time-dependent in vitro effects of ferrous sulphate (FeSO4.7H2O) on the motility parameters, viability, structural and functional activity of bovine spermatozoa. Spermatozoa motility parameters were determined after exposure to concentrations (3.90, 7.80, 15.60, 31.20, 62.50, 125, 250, 500 and 1000 μM) of FeSO4.7H2O using the SpermVisionTM CASA (Computer Assisted Semen Analyzer) system in different time periods. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay, and the Annexin V-Fluos was applied to detect the membrane integrity of spermatozoa. The initial spermatozoa motility showed increased average values at all experimental concentrations compared to the control group (culture medium without FeSO4.7H2O). After 2 h, FeSO4.7H2O stimulated the overall percentage of spermatozoa motility at the concentrations of ≤ 125 μM. However, experimental administration of 250 μM of FeSO4.7H2O significantly (P < 0.001) decreased the spermatozoa motility but had no negative effect on the cell viability (P < 0.05) (Time 2 h). The lowest viability was noted after the addition of ≥ 500 μM of FeSO4.7H2O (P < 0.001). The concentrations of ≤ 62.50 μM of FeSO4.7H2O markedly stimulated (P < 0.001) spermatozoa activity after 24 h of exposure, while at high concentrations of ≥ 500 μM of FeSO4.7H2O the overall percentage of spermatozoa motility was significantly inhibited (P < 0.001) and it elicited cytotoxic action. Fluorescence analysis confirmed that spermatozoa incubated with higher concentrations (≥ 500 μM) of FeSO4.7H2O displayed apoptotic changes, as detected in head membrane (acrosomal part) and mitochondrial portion of spermatozoa. Moreover, the highest concentration and the longest time of exposure (1000 μM of FeSO4.7H2O; Time 6 h) induced even necrotic alterations to spermatozoa. These results suggest that high concentrations of FeSO4.7H2O are able to induce toxic effects on the structure and function of spermatozoa, while low concentrations may have the positive effect on the fertilization potential of spermatozoa.
Collapse
|
108
|
The role of iron homeostasis in remodeling immune function and regulating inflammatory disease. Sci Bull (Beijing) 2021; 66:1806-1816. [PMID: 36654387 DOI: 10.1016/j.scib.2021.02.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/31/2020] [Accepted: 01/28/2021] [Indexed: 02/03/2023]
Abstract
The essential trace element iron regulates a wide range of biological processes in virtually all living organisms. Because both iron deficiency and iron overload can lead to various pathological conditions, iron homeostasis is tightly regulated, and understanding this complex process will help pave the way to developing new therapeutic strategies for inflammatory disease. In recent years, significant progress has been made with respect to elucidating the roles of iron and iron-related genes in the development and maintenance of the immune system. Here, we review the timing and mechanisms by which systemic and cellular iron metabolism are regulated during the inflammatory response and during infectious disease, processes in which both the host and the pathogen compete for iron. We also discuss the evidence and implications that immune cells such as macrophages, T cells, and B cells require sufficient amounts of iron for their proliferation and for mediating their effector functions, in which iron serves as a co-factor in toll-like receptor 4 (TLR4) signaling, mitochondrial respiration, posttranslational regulation, and epigenetic modification. In addition, we discuss the therapeutic implications of targeting ferroptosis, iron homeostasis and/or iron metabolism with respect to conferring protection against pathogen infection, controlling inflammation, and improving the efficacy of immunotherapy.
Collapse
|
109
|
Moyano P, Vicente-Zurdo D, Blázquez-Barbadillo C, Menéndez JC, González JF, Rosales-Conrado N, del Pino J. Neuroprotective Action of Multitarget 7-Aminophenanthridin-6( 5H)-one Derivatives against Metal-Induced Cell Death and Oxidative Stress in SN56 Cells. ACS Chem Neurosci 2021; 12:3358-3372. [PMID: 34460227 PMCID: PMC8478279 DOI: 10.1021/acschemneuro.1c00333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
![]()
Neurodegenerative
diseases have been associated with brain metal
accumulation, which produces oxidative stress (OS), matrix metalloproteinases
(MMPs) induction, and neuronal cell death. Several metals have been
reported to downregulate both the nuclear factor erythroid 2-related
factor 2 (Nrf2) pathway and the antioxidant enzymes regulated by it,
mediating OS induction and neurodegeneration. Among a recently discovered
family of multitarget 7-amino-phenanthridin-6-one derivatives (APH) the most promising compounds were tested against metal-induced
cell death and OS in SN56 cells. These compounds, designed to have
chelating activity, are known to inhibit some MMPs and to present
antioxidant and neuroprotective effects against hydrogen peroxide
treatment to SN56 neuronal cells. However, the mechanisms that mediate
this protective effect are not fully understood. The obtained results
show that compounds APH1, APH2, APH3, APH4, and APH5 were only able to chelate
iron and copper ions among all metals studied and that APH3, APH4, and APH5 were also able to chelate
mercury ion. However, none of them was able to chelate zinc, cadmium,
and aluminum, thus exhibiting selective chelating activity that can
be partly responsible for their neuroprotective action. Otherwise,
our results indicate that their antioxidant effect is mediated through
induction of the Nrf2 pathway that leads to overexpression of antioxidant
enzymes. Finally, these compounds exhibited neuroprotective effects,
reversing partially or completely the cytotoxic effects induced by
the metals studied depending on the compound used. APH4 was the most effective and safe compound.
Collapse
Affiliation(s)
- Paula Moyano
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - David Vicente-Zurdo
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Cristina Blázquez-Barbadillo
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - Juan F. González
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - Noelia Rosales-Conrado
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Javier del Pino
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
110
|
Feng P, Yang Q, Luo L, Sun Y, Lv W, Wan S, Guan Z, Xiao Z, Liu F, Li Z, Dong Z, Yang M. The kinase PDK1 regulates regulatory T cell survival via controlling redox homeostasis. Theranostics 2021; 11:9503-9518. [PMID: 34646383 PMCID: PMC8490516 DOI: 10.7150/thno.63992] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022] Open
Abstract
Rationale: Regulatory T cells (Treg cells) play an important role in maintaining peripheral tolerance by suppressing over-activation of effector T cells. The kinase PDK1 plays a pivotal role in conventional T cell development. However, whether PDK1 signaling affects the homeostasis and function of Treg cells remains elusive. Methods: In order to evaluate the role of PDK1 in Treg cells from a genetic perspective, mice carrying the floxed PDK1 allele were crossbred with Foxp3Cre mice to efficiently deleted PDK1 in Foxp3+ Treg cells. Flow cytometry was used to detect the immune cell homeostasis of WT and PDK1fl/flFoxp3Cre mice. RNA-seq was used to assess the differences in transcriptional expression profile of WT and PDK1-deficient Treg cells. The metabolic profiles of WT and PDK1-deficient Treg cells were tested using the Glycolysis Stress Test and Mito Stress Test Kits by the Seahorse XFe96 Analyser. Results: PDK1 was essential for the establishment and maintenance of Treg cell homeostasis and function. Disruption of PDK1 in Treg cells led to a spontaneous fatal systemic autoimmune disorder and multi-tissue inflammatory damage, accompanied by a reduction in the number and function of Treg cells. The deletion of PDK1 in Treg cells destroyed the iron ion balance through regulating MEK-ERK signaling and CD71 expression, resulting in excessive production of intracellular ROS, which did not depend on the down-regulation of mTORC1 signaling. Inhibition of excessive ROS, activated MEK-Erk signaling or overload Fe2+ could partially rescue the survival of PDK1-deficient Treg cells. Conclusion: Our results defined a key finding on the mechanism by which PDK1 regulates Treg cell survival via controlling redox homeostasis.
Collapse
Affiliation(s)
- Peiran Feng
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, 519000, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Quanli Yang
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, 519000, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Liang Luo
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, 519000, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yadong Sun
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, 519000, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wenkai Lv
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, 519000, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Shuo Wan
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, 519000, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zerong Guan
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, 519000, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhiqiang Xiao
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, 519000, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Feng Liu
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, 519000, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zehua Li
- School of Medicine and Institute for Immunology, Tsinghua University, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, 100084, China
| | - Zhongjun Dong
- School of Medicine and Institute for Immunology, Tsinghua University, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, 100084, China
| | - Meixiang Yang
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, 519000, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| |
Collapse
|
111
|
Jing X, Wang Q, Du T, Zhang W, Liu X, Liu Q, Li T, Wang G, Chen F, Cui X. Calcium chelator BAPTA‑AM protects against iron overload‑induced chondrocyte mitochondrial dysfunction and cartilage degeneration. Int J Mol Med 2021; 48:196. [PMID: 34468013 PMCID: PMC8416145 DOI: 10.3892/ijmm.2021.5029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is a common joint disease that is characterized by cartilage degradation. Iron deposition in the joints is common during the pathogenic progression of OA and recent studies have indicated that iron overload is an important contributor to OA progression. Calcium chelators have been reported to inhibit iron influx via modulating transferrin receptor protein 1 internalization, and they have been identified as a potential approach to the treatment of iron overload‑induced diseases. The aim of the present study was to investigate the effect of calcium chelators on the progression of iron overload‑induced OA. Primary chondrocytes were treated with various concentrations of ferric ammonium citrate (FAC) to mimic iron overload in vitro, followed by co‑treatment with the calcium chelator BAPTA acetoxymethyl ester (BAPTA‑AM). Subsequently, intracellular iron levels, cell viability, reactive oxygen species (ROS) levels, mitochondrial function and morphological changes, as well as MMP levels, were detected using commercial kits. It was demonstrated that FAC treatment significantly promoted chondrocyte apoptosis and the expression of MMPs, and these effects were reversed by co‑treatment with BAPTA‑AM. Moreover, BAPTA‑AM suppressed iron influx into chondrocytes and inhibited iron overload‑induced ROS production and mitochondrial dysfunction. These results indicated that calcium chelators may be of value in the treatment of iron metabolism‑related diseases and iron overload‑induced OA progression.
Collapse
Affiliation(s)
- Xingzhi Jing
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Qiang Wang
- Department of Human Resources, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Ting Du
- Yidu Cloud (Beijing) Technology Co., Ltd., Beijing 100191, P.R. China
| | - Weimin Zhang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xiaoyang Liu
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Qiang Liu
- Yidu Cloud (Beijing) Technology Co., Ltd., Beijing 100191, P.R. China
| | - Tao Li
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Guodong Wang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Feifei Chen
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xingang Cui
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
112
|
Hui Y, Tang T, Wang J, Zhao H, Yang HY, Xi J, Zhang B, Fang J, Gao K, Wu Y. Fusaricide is a Novel Iron Chelator that Induces Apoptosis through Activating Caspase-3. JOURNAL OF NATURAL PRODUCTS 2021; 84:2094-2103. [PMID: 34292737 DOI: 10.1021/acs.jnatprod.0c01322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonsmall cell lung cancer (NSCLC) has been a fatal and refractory disease worldwide. Novel therapeutic developments based on fundamental investigations of anticancer mechanisms underlie substantial foundations to win the fight against cancer diseases. In this study, we isolated a natural product fusaricide (FCD) from an endophytic fungus of Lycium barbarum, identified as Epicoccum sp. For the first time, we discovered that FCD potently inhibited proliferation in a variety of human NSCLC cell lines, with relatively less toxicity to normal cells. Our study exhibited that FCD induced apoptosis, caused DNA damage and cell cycle arrest in G0/G1 phase, and activated caspase-3 as well as other apoptosis-related factors in human NSCLC NCI-H460 cells. FCD was proven to be an iron chelator that actively decreased levels of cellular labile iron pool in NCI-H460 cells in our study. FeCl3 supplement reversed FCD-induced apoptosis. The upregulation of transferrin receptor 1 (TfR1) and downregulation of ferritin heavy chain (FTH) expression were observed after FCD treatment. In summary, our study highlighted the potential anticancer effects of FCD against human NSCLCs and demonstrated that the FCD-mediated apoptosis depended on binding to intracellular iron.
Collapse
Affiliation(s)
- Yaling Hui
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Ting Tang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Jing Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Huanhuan Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Hong-Ying Yang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Junmin Xi
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Yueting Wu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
113
|
Lima IS, Pêgo AC, Barros JT, Prada AR, Gozzelino R. Cell Death-Osis of Dopaminergic Neurons and the Role of Iron in Parkinson's Disease. Antioxid Redox Signal 2021; 35:453-473. [PMID: 33233941 DOI: 10.1089/ars.2020.8229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: There is still no cure for neurodegenerative diseases, such as Parkinson's disease (PD). Current treatments are based on the attempt to reduce dopaminergic neuronal loss, and multidisciplinary approaches have been used to provide only a temporary symptoms' relief. In addition to the difficulties of drugs developed against PD to access the brain, the specificity of those inhibitory compounds could be a concern. This because neurons might degenerate by activating distinct signaling pathways, which are often initiated by the same stimulus. Recent Advances: Apoptosis, necroptosis, and ferroptosis were shown to significantly contribute to PD progression and, so far, are the main death programs described as capable to alter brain homeostasis. Their activation is characterized by different biochemical and morphological features, some of which might even share the same molecular players. Critical Issues: If there is a pathological need to engage, in PD, multiple death programs, sequentially or simultaneously, is not clear yet. Possibly the activation of apoptosis, necroptosis, and/or ferroptosis correlates to different PD stages and symptom severities. This would imply that the efficacy of therapeutic approaches against neuronal death might depend on the death program they target and the relevance of this death pathway on a specific PD phase. Future Directions: In this review, we describe the molecular mechanisms underlying the activation of apoptosis, necroptosis, and ferroptosis in PD. Understanding the interrelationship between different death pathways' activation in PD is of utmost importance for the development of therapeutic approaches against disease progression. Antioxid. Redox Signal. 35, 453-473.
Collapse
Affiliation(s)
- Illyane Sofia Lima
- Inflammation and Neurodegeneration Laboratory, Centro de Estudos de Doenças Crónicas (CEDOC)/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Catarina Pêgo
- Inflammation and Neurodegeneration Laboratory, Centro de Estudos de Doenças Crónicas (CEDOC)/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - João Tomas Barros
- Inflammation and Neurodegeneration Laboratory, Centro de Estudos de Doenças Crónicas (CEDOC)/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Rita Prada
- Inflammation and Neurodegeneration Laboratory, Centro de Estudos de Doenças Crónicas (CEDOC)/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Raffaella Gozzelino
- Inflammation and Neurodegeneration Laboratory, Centro de Estudos de Doenças Crónicas (CEDOC)/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Universidade Técnica do Atlântico (UTA), São Vicente, Cabo Verde
| |
Collapse
|
114
|
Sinha S, Pereira-Reis J, Guerra A, Rivella S, Duarte D. The Role of Iron in Benign and Malignant Hematopoiesis. Antioxid Redox Signal 2021; 35:415-432. [PMID: 33231101 PMCID: PMC8328043 DOI: 10.1089/ars.2020.8155] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/26/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022]
Abstract
Significance: Iron is an essential element required for sustaining a normal healthy life. However, an excess amount of iron in the bloodstream and tissue generates toxic hydroxyl radicals through Fenton reactions. Henceforth, a balance in iron concentration is extremely important to maintain cellular homeostasis in both normal hematopoiesis and erythropoiesis. Iron deficiency or iron overload can impact hematopoiesis and is associated with many hematological diseases. Recent Advances: The mechanisms of action of key iron regulators such as erythroferrone and the discovery of new drugs, such as ACE-536/luspatercept, are of potential interest to treat hematological disorders, such as β-thalassemia. New therapies targeting inflammation-induced ineffective erythropoiesis are also in progress. Furthermore, emerging evidences support differential interactions between iron and its cellular antioxidant responses of hematopoietic and neighboring stromal cells. Both iron and its systemic regulator, such as hepcidin, play a significant role in regulating erythropoiesis. Critical Issues: Significant pre-clinical studies are on the way and new drugs targeting iron metabolism have been recently approved or are undergoing clinical trials to treat pathological conditions with impaired erythropoiesis such as myelodysplastic syndromes or β-thalassemia. Future Directions: Future studies should explore how iron regulates hematopoiesis in both benign and malignant conditions. Antioxid. Redox Signal. 35, 415-432.
Collapse
Affiliation(s)
- Sayantani Sinha
- Division of Hematology, Department of Pediatrics, The Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | - Joana Pereira-Reis
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Amaliris Guerra
- Division of Hematology, Department of Pediatrics, The Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | - Stefano Rivella
- Division of Hematology, Department of Pediatrics, The Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Cell and Molecular Biology Affinity Group (CAMB), University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
- Penn Center for Musculoskeletal Disorders, The Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | - Delfim Duarte
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Department of Onco-Hematology, Instituto Português de Oncologia (IPO), Porto, Portugal
- Unit of Biochemistry, Department of Biomedicine, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), Porto, Portugal
| |
Collapse
|
115
|
Artym J, Zimecki M, Kruzel ML. Lactoferrin for Prevention and Treatment of Anemia and Inflammation in Pregnant Women: A Comprehensive Review. Biomedicines 2021; 9:898. [PMID: 34440102 PMCID: PMC8389615 DOI: 10.3390/biomedicines9080898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 01/14/2023] Open
Abstract
Pregnancy is a physiological state that demands higher level of nutrients, including vitamins and minerals, for the growth and maintenance of the fetus. Iron deficiency is a part of most common diet deficiencies in pregnancy and has high clinical significance leading to the development of syderopenic anemia and its consequences for mother and child, such as higher risk of perinatal death, susceptibility to infection, intra-uteral growth inhibition, prematurity and low birth weight. Hence, iron supplementation is recommended for pregnant women; however dietary intake of iron from most commercially available formulas is often insufficient due to iron-poor bioavailability, or have undesired side-effects in the gastrointestinal tract, resulting in a discouraging and distrustful attitude to such treatment. The results of numerous studies indicate that diet supplementation with lactoferrin (LTF), an iron-binding protein, may be advantageous in prophylaxis and treatment of iron deficiency anemia. LTF, administered orally, normalizes iron homeostasis, not only by facilitating iron absorption, but also by inhibiting inflammatory processes responsible for anemia of chronic diseases, characterized by a functional iron deficit for physiological processes. LTF also protects against infections and inflammatory complications, caused by diagnostic surgical interventions in pregnant women. Beneficial, multidirectional actions of LTF during pregnancy encompass, in addition, inhibition of oxidative stress, normalization of intestine and genital tract microbiota and carbohydrate-lipid metabolism, protection of intestine barrier function, promotion of wound healing, as well as hypotensive, analgesic and antistress actions. Bovine lactoferrin (BLTF) is readily available on the nutritional market and generally recognized as safe (GRAS) for use in human diet.
Collapse
Affiliation(s)
- Jolanta Artym
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12 Str., 53-112 Wrocław, Poland;
| | - Michał Zimecki
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12 Str., 53-112 Wrocław, Poland;
| | - Marian L. Kruzel
- Department of Integrative Biology and Pharmacology, McGovern Medical School at Houston, University of Texas, 25 7505 Fannin Str., Third Floor 313, Houston, TX 77054, USA;
| |
Collapse
|
116
|
Fan X, Monnier VM. Protein posttranslational modification (PTM) by glycation: Role in lens aging and age-related cataractogenesis. Exp Eye Res 2021; 210:108705. [PMID: 34297945 DOI: 10.1016/j.exer.2021.108705] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/09/2021] [Accepted: 07/17/2021] [Indexed: 01/11/2023]
Abstract
Crystallins, the most prevalent lens proteins, have no turnover throughout the entire human lifespan. These long-lived proteins are susceptible to post-synthetic modifications, including oxidation and glycation, which are believed to be some of the primary mechanisms for age-related cataractogenesis. Thanks to high glutathione (GSH) and ascorbic acid (ASA) levels as well as low oxygen content, the human lens is able to maintain its transparency for several decades. Aging accumulates substantial changes in the human lens, including a decreased glutathione concentration, increased reactive oxygen species (ROS) formation, impaired antioxidative defense capacity, and increased redox-active metal ions, which induce glucose and ascorbic acid degradation and protein glycation. The glycated lens crystallins are either prone to UVA mediated free radical production or they attract metal ion binding, which can trigger additional protein oxidation and modification. This vicious cycle is expected to be exacerbated with older age or diabetic conditions. ASA serves as an antioxidant in the human lens under reducing conditions to protect the human lens from damage, but ASA converts to the pro-oxidative role and causes lens protein damage by ascorbylation in high oxidation or enriched redox-active metal ion conditions. This review is dedicated in honor of Dr. Frank Giblin, a great friend and superb scientist, whose pioneering and relentless work over the past 45 years has provided critical insight into lens redox regulation and glutathione homeostasis during aging and cataractogenesis.
Collapse
Affiliation(s)
- Xingjun Fan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.
| | - Vincent M Monnier
- Department of Pathology, United States; Biochemistry, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
117
|
Castro-Riquelme CL, Ochoa-Terán A, Roldán-Villegas IY, Trujillo-Navarrete B, Miranda-Soto V, Pérez-Sicairos S, Pina-Luis G, Reynoso-Soto EA, Labastida-Galván V, Ordoñez M. Versatile optical response of pyridylalkyl naphthalenediimides in the interaction with metal ions. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
118
|
Carrilho P. Intravenous iron in heart failure and chronic kidney disease. Nefrologia 2021; 41:403-411. [PMID: 36165109 DOI: 10.1016/j.nefroe.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/25/2020] [Indexed: 06/16/2023] Open
Abstract
Intravenous iron therapy is increasingly being used worldwide to treat anemia in chronic kidney disease and more recently iron deficiency in heart failure. Promising results were obtained in randomized clinical trials in the latter, showing symptomatic and functional capacity improvement with intravenous iron therapy. Meanwhile, confirmation of clinical benefit in hard-endpoints such as mortality and hospitalization is expected in large clinical trials that are already taking place. In chronic kidney disease, concern about iron overload is being substituted by claims of direct cardiovascular benefit of iron supplementation, as suggested by preliminary studies in heart failure. We discuss the pitfalls of present studies and gaps in knowledge, stressing the known differences between iron metabolism in heart and renal failure. Systemic and cellular iron handling and the role of hepcidin are reviewed, as well as the role of iron in atherosclerosis, especially in view of its relevance to patients undergoing dialysis. We summarize the evidence available concerning iron overload, availability and toxicity in CKD, that should be taken into account before embracing aggressive intravenous iron supplementation.
Collapse
|
119
|
Madeddu C, Neri M, Sanna E, Oppi S, Macciò A. Experimental Drugs for Chemotherapy- and Cancer-Related Anemia. J Exp Pharmacol 2021; 13:593-611. [PMID: 34194245 PMCID: PMC8238072 DOI: 10.2147/jep.s262349] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/21/2021] [Indexed: 01/03/2023] Open
Abstract
Anemia in cancer patients is a relevant condition complicating the course of the neoplastic disease. Overall, we distinguish the anemia which arises under chemotherapy as pure adverse event of the toxic effects of the drugs used, and the anemia induced by the tumour-associated inflammation, oxidative stress, and systemic metabolic changes, which can be worsened by the concomitant anticancer treatments. This more properly cancer-related anemia depends on several overlapping mechanism, including impaired erythropoiesis and functional iron deficiency, which make its treatment more difficult. Standard therapies approved and recommended for cancer anemia, as erythropoiesis-stimulating agents and intravenous iron administration, are limited to the treatment of chemotherapy-induced anemia, preferably in patients with advanced disease, in view of the still unclear effect of erythropoiesis-stimulating agents on tumour progression and survival. Outside the use of chemotherapy, there are no recommendations for the treatment of cancer-related anemia. For a more complete approach, it is fundamentally a careful evaluation of the type of anemia and iron homeostasis, markers of inflammation and changes in energy metabolism. In this way, anemia management in cancer patient would permit a tailored approach that could give major benefits. Experimental drugs targeting hepcidin and activin II receptor pathways are raising great expectations, and future clinical trials will confirm their role as remedies for cancer-related anemia. Recent evidence on the effect of integrated managements, including nutritional support, antioxidants and anti-inflammatory substances, for the treatment of cancer anemia are emerging. In this review article, we show standard, innovative, and experimental treatment used as remedy for anemia in cancer patients.
Collapse
Affiliation(s)
- Clelia Madeddu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Manuela Neri
- Department of Gynecologic Oncology, A. Businco Hospital, ARNAS G. Brotzu, Cagliari, Italy
| | - Elisabetta Sanna
- Department of Gynecologic Oncology, A. Businco Hospital, ARNAS G. Brotzu, Cagliari, Italy
| | - Sara Oppi
- Hematology and Transplant Center, A. Businco Hospital, ARNAS G. Brotzu, Cagliari, Italy
| | - Antonio Macciò
- Department of Gynecologic Oncology, A. Businco Hospital, ARNAS G. Brotzu, Cagliari, Italy
| |
Collapse
|
120
|
Pogorelova TN, Gunko VO, Nikashina AA, Mikhelson AA, Botasheva TL, Kaushanskaya LV. Violation of the balance of free metals and metal-containing proteins in amniotic fluid in placental insufficiency. Klin Lab Diagn 2021; 66:266-270. [PMID: 34047511 DOI: 10.51620/0869-2084-2021-66-5-266-270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The content of metal ions and proteins containing or binding these metals in amniotic fluid during different periods of physiological pregnancy and placental insufficiency (PI) was studied. The content of zinc, copper, magnesium, iron, zinc-α-2-glycoprotein, ferritin, ceruloplasmin and the activity of Ca2+, Mg2+-ATPase were estimated using spectrophotometric methods, immunoturbometric and enzyme immunoassay methods. It was found that in PI in both trimesters there is a decrease in the content of zinc, copper, iron and an increase in the level of copper. The indices of ceruloplasmin, ferritin, Ca2+, Mg2+-ATPase in PI are lower, and zinc-α-2-glycoprotein is higher than in similar periods of physiological gestation. A close correlation of different directions has been established between the level of metals and the corresponding proteins. The revealed violations obviously play a certain pathogenetic role in the development of PI, and the indicators of the ratio between metals can serve as markers for predicting the state of newborns.
Collapse
|
121
|
Kontoghiorghes GJ, Kolnagou A, Demetriou T, Neocleous M, Kontoghiorghe CN. New Era in the Treatment of Iron Deficiency Anaemia Using Trimaltol Iron and Other Lipophilic Iron Chelator Complexes: Historical Perspectives of Discovery and Future Applications. Int J Mol Sci 2021; 22:ijms22115546. [PMID: 34074010 PMCID: PMC8197347 DOI: 10.3390/ijms22115546] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
The trimaltol iron complex (International Non-proprietary Name: ferric maltol) was originally designed, synthesised, and screened in vitro and in vivo in 1980–1981 by Kontoghiorghes G.J. following his discovery of the novel alpha-ketohydroxyheteroaromatic (KHP) class of iron chelators (1978–1981), which were intended for clinical use, including the treatment of iron deficiency anaemia (IDA). Iron deficiency anaemia is a global health problem affecting about one-third of the world’s population. Many (and different) ferrous and ferric iron complex formulations are widely available and sold worldwide over the counter for the treatment of IDA. Almost all such complexes suffer from instability in the acidic environment of the stomach and competition from other dietary molecules or drugs. Natural and synthetic lipophilic KHP chelators, including maltol, have been shown in in vitro and in vivo studies to form stable iron complexes, to transfer iron across cell membranes, and to increase iron absorption in animals. Trimaltol iron, sold as Feraccru or Accrufer, was recently approved for clinical use in IDA patients in many countries, including the USA and in EU countries, and was shown to be effective and safe, with a better therapeutic index in comparison to other iron formulations. Similar properties of increased iron absorption were also shown by lipophilic iron complexes of 8-hydroxyquinoline, tropolone, 2-hydroxy-4-methoxypyridine-1-oxide, and related analogues. The interactions of the KHP iron complexes with natural chelators, drugs, metal ions, proteins, and other molecules appear to affect the pharmacological and metabolic effects of both iron and the KHP chelators. A new era in the treatment of IDA and other possible clinical applications, such as theranostic and anticancer formulations and metal radiotracers in diagnostic medicine, are envisaged from the introduction of maltol, KHP, and similar lipophilic chelators.
Collapse
|
122
|
Jing X, Du T, Li T, Yang X, Wang G, Liu X, Jiang Z, Cui X. The detrimental effect of iron on OA chondrocytes: Importance of pro-inflammatory cytokines induced iron influx and oxidative stress. J Cell Mol Med 2021; 25:5671-5680. [PMID: 33942503 PMCID: PMC8184674 DOI: 10.1111/jcmm.16581] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 04/02/2021] [Accepted: 04/15/2021] [Indexed: 01/14/2023] Open
Abstract
Iron overload is common in elderly people which is implicated in the disease progression of osteoarthritis (OA), however, how iron homeostasis is regulated during the onset and progression of OA and how it contributes to the pathological transition of articular chondrocytes remain unknown. In the present study, we developed an in vitro approach to investigate the roles of iron homeostasis and iron overload mediated oxidative stress in chondrocytes under an inflammatory environment. We found that pro‐inflammatory cytokines could disrupt chondrocytes iron homeostasis via upregulating iron influx transporter TfR1 and downregulating iron efflux transporter FPN, thus leading to chondrocytes iron overload. Iron overload would promote the expression of chondrocytes catabolic markers, MMP3 and MMP13 expression. In addition, we found that oxidative stress and mitochondrial dysfunction played important roles in iron overload‐induced cartilage degeneration, reducing iron concentration using iron chelator or antioxidant drugs could inhibit iron overload‐induced OA‐related catabolic markers and mitochondrial dysfunction. Our results suggest that pro‐inflammatory cytokines could disrupt chondrocytes iron homeostasis and promote iron influx, iron overload‐induced oxidative stress and mitochondrial dysfunction play important roles in iron overload‐induced cartilage degeneration.
Collapse
Affiliation(s)
- Xingzhi Jing
- Department of spine surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Ting Du
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, China
| | - Tao Li
- Department of spine surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoxia Yang
- Department of spine surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Guodong Wang
- Department of spine surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoyang Liu
- Department of spine surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Zhensong Jiang
- Department of spine surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Xingang Cui
- Department of spine surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
123
|
Wei Z, Hao C, Huangfu J, Srinivasagan R, Zhang X, Fan X. Aging lens epithelium is susceptible to ferroptosis. Free Radic Biol Med 2021; 167:94-108. [PMID: 33722625 PMCID: PMC8096685 DOI: 10.1016/j.freeradbiomed.2021.02.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 02/07/2021] [Indexed: 12/11/2022]
Abstract
Age-related cataracts (ARC) are the primary cause of blindness worldwide, and oxidative stress is considered the central pathogenesis of age-related cataractogenesis. Interestingly, ample evidence suggests that there is no remarkable apoptosis present in aged and cataractous human lenses despite the profound disruption of redox homeostasis, raising an essential question regarding the existence of other cell death mechanisms. Here we sought to explore the lens epithelial cell's (LEC) susceptibility to ferroptosis after documentation has concluded that aged and cataractous human lenses manifest with increased reactive oxygen species (ROS) formation, elevated lipid peroxidation, and accumulative intracellular redox-active iron, constituting the three hallmarks of ferroptosis during aging and cataractogenesis. Here we show that very low concentrations of system Xc- inhibitor Erastin (0.5 μM) and glutathione peroxidase 4 (GPX4) inhibitor RSL3 (0.1 μM) can drastically induce human LEC (FHL124) ferroptosis in vitro and mouse lens epithelium ferroptosis ex vivo. Depletion of intracellular glutathione (GSH) in human LECs and mouse lens epithelium significantly sensitizes ferroptosis, particularly under RSL3 challenge. Intriguingly, both human LECs and the mouse lens epithelium demonstrate an age-related sensitization of ferroptosis. Transcriptome analysis indicates that clusters of genes are up-or down-regulated in aged LECs, impacting cellular redox and iron homeostases, such as downregulation of both cystine/glutamate antiporter subunits SLC7A11 and SLC3A2 and iron exporter ferroportin (SLC40A1). Here, for the first time, we are suggesting that LECs are highly susceptible to ferroptosis. Moreover, aged and cataractous human lenses may possess more pro-ferroptotic criteria than any other organ in the human body.
Collapse
Affiliation(s)
- Zongbo Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Caili Hao
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Jingru Huangfu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia; Department of Ophthalmology, Chongqing Medical University, Chongqing, China
| | - Ramkumar Srinivasagan
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
| | - Xiang Zhang
- Genomics, Epigenomics and Sequencing Core, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Xingjun Fan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia.
| |
Collapse
|
124
|
Feng Y, Prokosch V, Liu H. Current Perspective of Hydrogen Sulfide as a Novel Gaseous Modulator of Oxidative Stress in Glaucoma. Antioxidants (Basel) 2021; 10:antiox10050671. [PMID: 33925849 PMCID: PMC8146617 DOI: 10.3390/antiox10050671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022] Open
Abstract
Glaucoma is a group of diseases characterized by the progressive loss of retinal ganglion cells and their axons. Elevated intraocular pressure (IOP) is the main clinical manifestation of glaucoma. Despite being in the focus of the studies for decades, the characteristic and the exact pathology of neurodegeneration in glaucoma remains unclear. Oxidative stress is believed to be one of the main risk factors in neurodegeneration, especially its damage to the retinal ganglion cells. Hydrogen sulfide (H2S), the recently recognized gas signaling molecule, plays a pivotal role in the nervous system, vascular system, and immune system. It has also shown properties in regulating oxidative stress through different pathways in vivo. In this review, we summarize the distribution and the properties of H2S within the eye with an emphasis on its role in modulating oxidative stress in glaucoma.
Collapse
Affiliation(s)
| | | | - Hanhan Liu
- Correspondence: ; Tel.: +49-(0)-221-478-96996
| |
Collapse
|
125
|
Hydrogen Sulfide: Novel Endogenous and Exogenous Modulator of Oxidative Stress in Retinal Degeneration Diseases. Molecules 2021; 26:molecules26092411. [PMID: 33919146 PMCID: PMC8122398 DOI: 10.3390/molecules26092411] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/29/2022] Open
Abstract
Oxidative stress (OS) damage can cause significant injury to cells, which is related to the occurrence and development of many diseases. This pathological process is considered to be the first step to trigger the death of outer retinal neurons, which is related to the pathology of retinal degenerative diseases. Hydrogen sulfide (H2S) has recently received widespread attention as a physiological signal molecule and gas neuromodulator and plays an important role in regulating OS in eyes. In this article, we reviewed the OS responses and regulatory mechanisms of H2S and its donors as endogenous and exogenous regulators in retinal degenerative diseases. Understanding the relevant mechanisms will help to identify the therapeutic potential of H2S in retinal degenerative diseases.
Collapse
|
126
|
Ha EK, Kim JH, Lee E, Sung M, Jee HM, Baek HS, Shin YH, Lee NH, Han MY. Abnormal iron status is independently associated with reduced oscillometric lung function in schoolchildren. CLINICAL RESPIRATORY JOURNAL 2021; 15:870-877. [PMID: 33848060 DOI: 10.1111/crj.13375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Associations between anemia and allergic diseases have been reported, but the relationship of iron deficiency with airway dysfunction in children remains unclear. We aimed to investigate the relationship between abnormal iron parameters and lung function in schoolchildren. METHODS Four hundred and forty-five children (10-12 years-old) from 11 elementary schools in were enrolled. The relationships of different iron parameters (hemoglobin, serum iron, transferrin saturation, and serum ferritin) with lung function evaluated by impulse oscillometry (airways resistance at 5 Hz [Rrs5], 10 Hz [Rrs10], and the difference of Rrs5 and Rrs20 Hz [Rrs5-20]), and with exhaled nitric oxide (FeNO) were evaluated after adjustment for confounders including height, sex, and body mass index z-score, and for additional covariates that could affect airway function. RESULTS Total airway dysfunction represented by Rrs5 was reduced in participants with low serum iron level (aβ: -0.13, 95% CI: -0.23 to -0.03, p = 0.040) after adjustment for key confounders, but did not correlate with other iron profiles. Reduced oscillometric lung function recorded as Rrs5-20 was related with low serum iron and high serum ferritin, but the results were inconsistent after multiple comparisons. Associations were not observed with serum hemoglobin. CONCLUSIONS Decreased serum iron level was related with airway dysfunction represented as oscillomteric Rrs5. Our results suggest a relationship of reduced lung function with abnormal iron status in children.
Collapse
Affiliation(s)
- Eun Kyo Ha
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Ju Hee Kim
- Department of Pediatrics, Hallym University Kandong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Eun Lee
- Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Myongsoon Sung
- Department of Pediatrics, Soon Chun Hyang University Gumi Hospital, Soon Chun Hyang University College of Medicine, Gumi, Republic of Korea
| | - Hye Mi Jee
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Hey Sung Baek
- Department of Pediatrics, Hallym University Kandong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Youn Ho Shin
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Republic of Korea
| | - Na Hee Lee
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Man Yong Han
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
127
|
|
128
|
Chhabra R, Rockfield S, Guergues J, Nadeau OW, Hill R, Stevens SM, Nanjundan M. Global miRNA/proteomic analyses identify miRNAs at 14q32 and 3p21, which contribute to features of chronic iron-exposed fallopian tube epithelial cells. Sci Rep 2021; 11:6270. [PMID: 33737539 PMCID: PMC7973504 DOI: 10.1038/s41598-021-85342-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Malignant transformation of fallopian tube secretory epithelial cells (FTSECs) is a key contributing event to the development of high-grade serous ovarian carcinoma (HGSOC). Our recent findings implicate oncogenic transformative events in chronic iron-exposed FTSECs, including increased expression of oncogenic mediators, increased telomerase transcripts, and increased growth/migratory potential. Herein, we extend these studies by implementing an integrated transcriptomic and mass spectrometry-based proteomics approach to identify global miRNA and protein alterations, for which we also investigate a subset of these targets to iron-induced functional alterations. Proteomic analysis identified > 4500 proteins, of which 243 targets were differentially expressed. Sixty-five differentially expressed miRNAs were identified, of which 35 were associated with the “top” proteomic molecules (> fourfold change) identified by Ingenuity Pathway Analysis. Twenty of these 35 miRNAs are at the 14q32 locus (encoding a cluster of 54 miRNAs) with potential to be regulated by DNA methylation and histone deacetylation. At 14q32, miR-432-5p and miR-127-3p were ~ 100-fold downregulated whereas miR-138-5p was 16-fold downregulated at 3p21 in chronic iron-exposed FTSECs. Combinatorial treatment with methyltransferase and deacetylation inhibitors reversed expression of these miRNAs, suggesting chronic iron exposure alters miRNA expression via epigenetic alterations. In addition, PAX8, an important target in HGSOC and a potential miRNA target (from IPA) was epigenetically deregulated in iron-exposed FTSECs. However, both PAX8 and ALDH1A2 (another IPA-predicted target) were experimentally identified to be independently regulated by these miRNAs although TERT RNA was partially regulated by miR-138-5p. Interestingly, overexpression of miR-432-5p diminished cell numbers induced by long-term iron exposure in FTSECs. Collectively, our global profiling approaches uncovered patterns of miRNA and proteomic alterations that may be regulated by genome-wide epigenetic alterations and contribute to functional alterations induced by chronic iron exposure in FTSECs. This study may provide a platform to identify future biomarkers for early ovarian cancer detection and new targets for therapy.
Collapse
Affiliation(s)
- Ravneet Chhabra
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Stephanie Rockfield
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jennifer Guergues
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Owen W Nadeau
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Robert Hill
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Stanley M Stevens
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
129
|
Tian H, Xiong Y, Zhang Y, Leng Y, Tao J, Li L, Qiu Z, Xia Z. Activation of NRF2/FPN1 pathway attenuates myocardial ischemia-reperfusion injury in diabetic rats by regulating iron homeostasis and ferroptosis. Cell Stress Chaperones 2021; 27:149-164. [PMID: 35124772 PMCID: PMC8943074 DOI: 10.1007/s12192-022-01257-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 12/30/2022] Open
Abstract
In patients with ischemic heart disease, myocardial ischemia-reperfusion injury (IRI) can aggravate their condition even worse, and diabetes increases their risk of myocardial IRI. Pathological pathways of common diseases and surgical operations like diabetes, obesity, coronary artery angioplasty, and heart transplantation entail disorders of iron metabolism. Ferroportin1 (FPN1) is the only mammalian protein associated with iron release and thus plays a vital role in iron homeostasis, while nuclear factor E2-related factor 2 (NRF2) controls the transcription of FPN1. Since the NRF2/FPN1 pathway may play a favorable role in the therapy of diabetic myocardial IRI, this work investigated the possible mechanism. In this study, we investigated the effects of ferroptosis in STZ-induced diabetic rats following myocardial IRI in vivo, and its alteration in glucose and hypoxia/reoxygenation-induced cardiomyocytes injury in vitro. Rats and H9c2 cardiomyocytes were randomly divided into 6 groups and treated with sulforaphane and erastin besides the establishment of diabetic myocardial IRI and hyperglycemic hypoxia-reoxygenation models. Cardiac functional and structural damage were detected by Evans blue/TTC double staining, echocardiography, HE staining, and serological indices. CCK-8 assay and ROS production were used to measure cardiomyocyte viability and oxidative stress level. Additionally, the changes in cell supernatant levels of Fe2+, SOD, MDA, and mRNA and protein expression of ferroptosis marker proteins confirmed the beneficial effects of the NRF2/FPN1 pathway on diabetic myocardial IRI related to iron metabolism and ferroptosis. Overall, these findings suggest that iron homeostasis-related ferroptosis plays an important role in aggravating myocardial IRI in diabetic rats, and NRF2/FPN1 pathway-mediated iron homeostasis and ferroptosis might be a promising therapeutic target against myocardial IRI in diabetes.
Collapse
Affiliation(s)
- Hao Tian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China
| | - Yonghong Xiong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China
| | - Yi Zhang
- Department of Anesthesiology and Perioperative Medicine, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China
| | - Jie Tao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China
| | - Lu Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China
| | - Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China.
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China.
| |
Collapse
|
130
|
Ficiarà E, Boschi S, Ansari S, D'Agata F, Abollino O, Caroppo P, Di Fede G, Indaco A, Rainero I, Guiot C. Machine Learning Profiling of Alzheimer's Disease Patients Based on Current Cerebrospinal Fluid Markers and Iron Content in Biofluids. Front Aging Neurosci 2021; 13:607858. [PMID: 33692679 PMCID: PMC7937894 DOI: 10.3389/fnagi.2021.607858] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by a complex etiology that makes therapeutic strategies still not effective. A true understanding of key pathological mechanisms and new biomarkers are needed, to identify alternative disease-modifying therapies counteracting the disease progression. Iron is an essential element for brain metabolism and its imbalance is implicated in neurodegeneration, due to its potential neurotoxic effect. However, the role of iron in different stages of dementia is not clearly established. This study aimed to investigate the potential impact of iron both in cerebrospinal fluid (CSF) and in serum to improve early diagnosis and the related therapeutic possibility. In addition to standard clinical method to detect iron in serum, a precise quantification of total iron in CSF was performed using graphite-furnace atomic absorption spectrometry in patients affected by AD, mild cognitive impairment, frontotemporal dementia, and non-demented neurological controls. The application of machine learning techniques, such as clustering analysis and multiclassification algorithms, showed a new potential stratification of patients exploiting iron-related data. The results support the involvement of iron dysregulation and its potential interaction with biomarkers (Tau protein and Amyloid-beta) in the pathophysiology and progression of dementia.
Collapse
Affiliation(s)
- Eleonora Ficiarà
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Silvia Boschi
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Torino, Italy.,Department NEUROFARBA, University of Firenze, Firenze, Italy
| | - Shoeb Ansari
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Federico D'Agata
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Ornella Abollino
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Paola Caroppo
- Unit of Neurology 5 and Neuropathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Di Fede
- Unit of Neurology 5 and Neuropathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonio Indaco
- Unit of Neurology 5 and Neuropathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Innocenzo Rainero
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Caterina Guiot
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Torino, Italy
| |
Collapse
|
131
|
Zhang J, Zhao H, Yao G, Qiao P, Li L, Wu S. Therapeutic potential of iron chelators on osteoporosis and their cellular mechanisms. Biomed Pharmacother 2021; 137:111380. [PMID: 33601146 DOI: 10.1016/j.biopha.2021.111380] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022] Open
Abstract
Iron is an essential trace element in the metabolism of almost all living organisms. Iron overload can disrupt bone homeostasis by significant inhibition of osteogenic differentiation and stimulation of osteoclastogenesis, consequently leading to osteoporosis. Iron accumulation is also involved in the osteoporosis induced by multiple factors, such as estrogen deficiency, ionizing radiation, and mechanical unloading. Iron chelators are first developed for treating iron overloaded disorders. However, growing evidence suggests that iron chelators can be potentially used for the treatment of bone loss. In this review, we focus on the therapeutic effects of iron chelators on bone loss. Iron chelators have therapeutic effects not only on iron overload induced osteoporosis, but also on osteoporosis induced by estrogen deficiency, ionizing radiation, and mechanical unloading, and in Alzheimer's disease-associated osteoporotic deficits. Iron chelators differently affect the cellular behaviors of bone cells. For osteoblast lineage cells (bone mesenchymal stem cells and osteoblasts), iron chelation stimulates osteogenic differentiation. Conversely, iron chelation significantly inhibits osteoclast differentiation. These different responses may be associated with the different needs of iron during differentiation. Fibroblast growth factor 23, angiogenesis, and antioxidant capability are also involved in the osteoprotective effects of iron chelators.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| | - Hai Zhao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Gang Yao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Penghai Qiao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Longfei Li
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shuguang Wu
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
132
|
Agoro R, Park MY, Le Henaff C, Jankauskas S, Gaias A, Chen G, Mohammadi M, Sitara D. C-FGF23 peptide alleviates hypoferremia during acute inflammation. Haematologica 2021; 106:391-403. [PMID: 32193252 PMCID: PMC7849576 DOI: 10.3324/haematol.2019.237040] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/13/2020] [Indexed: 12/22/2022] Open
Abstract
Hypoferremia results as an acute phase response to infection and inflammation aiming to reduce iron availability to pathogens. Activation of toll-like receptors (TLR), the key sensors of the innate immune system, induces hypoferremia mainly through the rise of the iron hormone hepcidin. Conversely, stimulation of erythropoiesis suppresses hepcidin expression via induction of the erythropoietin-responsive hormone erythroferrone. Iron deficiency stimulates transcription of the osteocyte- secreted protein FGF23. Here we hypothesized that induction of FGF23 in response to TLR4 activation is a potent contributor to hypoferremia and, thus, impairment of its activity may alleviate hypoferremia induced by lipopolysaccharide (LPS), a TLR 4 agonist. We used the C-terminal tail of FGF23 to impair endogenous full-length FGF23 signaling in wildtype mice, and investigated its impact on hypoferremia. Our data show that FGF23 is induced as early as pro-inflammatory cytokines in response to LPS, followed by upregulation of hepcidin and downregulation of erythropoietin (Epo) expression in addition to decreased serum iron and transferrin saturation. Further, LPS-induced hepatic and circulating hepcidin were significantly reduced by FGF23 signaling disruption. Accordingly, iron sequestration in liver and spleen caused by TLR4 activation was completely abrogated by FGF23 signaling inhibition, resulting in alleviation of serum iron and transferrin saturation deficit. Taken together, our studies highlight for the first time that inhibition of FGF23 signaling alleviates LPS-induced acute hypoferremia.
Collapse
Affiliation(s)
- Rafiou Agoro
- Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, USA
| | - Min Young Park
- Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, USA
| | - Carole Le Henaff
- Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, USA
| | | | - Alina Gaias
- Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, USA
| | - Gaozhi Chen
- Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, China
| | - Moosa Mohammadi
- Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, USA
| | - Despina Sitara
- NYU College of Dentistry and NYU School of Medicine, New York, USA
| |
Collapse
|
133
|
Jing X, Lin J, Du T, Jiang Z, Li T, Wang G, Liu X, Cui X, Sun K. Iron Overload Is Associated With Accelerated Progression of Osteoarthritis: The Role of DMT1 Mediated Iron Homeostasis. Front Cell Dev Biol 2021; 8:594509. [PMID: 33469535 PMCID: PMC7813682 DOI: 10.3389/fcell.2020.594509] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Objective: Iron overload is common in elderly people which is associated with an increased prevalence of osteoarthritis (OA), but the exact role of iron in the development of OA has not been established. The aim of the present study is to elucidate the connection between iron overload and OA using an iron overloaded mice model, as well as to explore the role of iron homeostasis, iron transporters dependent iron influx in OA pathogenesis. Methods: The iron overloaded mice model was established and OA was surgically induced. OA progression was assessed at 8 weeks after surgery. Next, primary chondrocytes were treated with pro-inflammatory cytokines and iron regulators mediated iron homeostasis were evaluated. Involvement of iron transporters was analyzed using chondrocytes mimicking an osteoarthritis-related phenotype in vitro. Results: Iron overloaded mice exhibited greater cartilage destruction and elevated ADAMTS5 as well as MMP13 expression along with increased iron accumulation and dysregulated iron regulators. Pro-inflammatory cytokines could disturb cellular iron homeostasis via upregulating iron import proteins, TFR1 and DMT1, downregulating iron efflux protein FPN, thus result in cellular iron overload. Among iron transporters, DMT1 was found to play pivotal roles in iron overload induced OA progress. Inhibition of DMT1 suppressed IL-1β induced inflammatory response and ECM degradation via blockade of MAPK and PI3K/AKT/NF-κB pathways. Conclusions: Our results suggest that iron takes parts in the development of OA and cutting iron influx via inhibiting DMT1 activity could be an attractive new target for OA treatment.
Collapse
Affiliation(s)
- Xingzhi Jing
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiamin Lin
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Du
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, China
| | - Zhensong Jiang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tao Li
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guodong Wang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoyang Liu
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xingang Cui
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Spine Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
134
|
Knazicka Z, Fialkova V, Duranova H, Bilcikova J, Kovacikova E, Miskeje M, Valkova V, Forgacs Z, Roychoudhury S, Massanyi P, Lukac N. Human Adrenocortical Carcinoma (NCI-H295R) Cell Line as an In Vitro Cell Culture Model for Assessing the Impact of Iron on Steroidogenesis. Folia Biol (Praha) 2021; 67:76-81. [PMID: 34624940 DOI: 10.14712/fb2021067020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The aim of this in vitro study was to examine the dose-dependent effects of iron as a potential endocrine disruptor in relation to the release of sexual steroid hormones by a human adrenocortical carcinoma (NCI-H295R) cell line. The cells were exposed to different concentrations (3.90, 62.50, 250, 500, 1000 μM) of FeSO4.7H2O and compared with the control group (culture medium without FeSO4.7H2O). Cell viability was measured by the metabolic activity assay. Quantification of sexual steroid production was performed by enzyme-linked immunosorbent assay. Following 48 h culture of the cells in the presence of FeSO4.7H2O, significantly (P < 0.001) increased production of progesterone was observed at the lowest concentration (3.90 μM) of FeSO4.7H2O, whereas the lowest release of progesterone by NCIH295R cells was noted after addition of 1000 μM of FeSO4.7H2O, which did not elicit cytotoxic action (P > 0.05). Testosterone production was substantially increased at the concentrations ≤ 62.50 μM of FeSO4.7H2O. Lower levels of testosterone were recorded in the groups with higher concentrations (≥ 250 μM) of FeSO4.7H2O (P > 0.05). The presented data suggest that iron has no endocrine disruptive effect on the release of sexual steroid hormones, but its toxicity may be reflected at other points of the steroidogenesis pathway.
Collapse
Affiliation(s)
- Z Knazicka
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovak Republic
| | - V Fialkova
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovak Republic
| | - H Duranova
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovak Republic
| | - J Bilcikova
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovak Republic
- Department of Genetics and Plant Breeding, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovak Republic
| | - E Kovacikova
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovak Republic
| | - M Miskeje
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovak Republic
| | - V Valkova
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Z Forgacs
- Independent Researcher, Budapest, Hungary
| | - S Roychoudhury
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - P Massanyi
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovak Republic
| | - N Lukac
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovak Republic
| |
Collapse
|
135
|
Yang F, Wu Z, Dai D, Zhang L, Zhang X, Zhang X, Xu Y. The iron chelator deferoxamine decreases myeloma cell survival. J Int Med Res 2021; 49:300060520987396. [PMID: 33478296 PMCID: PMC7841871 DOI: 10.1177/0300060520987396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/18/2020] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE This study evaluated serum ferritin (SF) levels and investigated their relationships with various clinical markers in patients with multiple myeloma (MM). Furthermore, the effects and molecular mechanism of deferoxamine (DFO) in myeloma cells were studied. METHODS Clinical data from 84 patients with MM were collected to evaluate SF content and its relationship with several important clinical parameters. MM1S and MM1R myeloma cells were chosen to investigate the effects of iron and DFO on cell survival and apoptosis. RESULTS Increased SF levels were detected in newly diagnosed patients, especially those with stage III disease or the κ isotype. SF content was positively correlated with β2-microglobulin, interleukin-6, and lactate dehydrogenase expression. Furthermore, patients with progressive or relapsed disease had higher SF levels. Importantly, iron chelation with DFO efficiently inhibited myeloma cell survival and accelerated apoptosis by regulating apoptosis-related genes. CONCLUSIONS The importance of SF for MM was highlighted. Additionally, it is suggested that DFO may be a good therapeutic option for MM.
Collapse
Affiliation(s)
- Feifei Yang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhaoxian Wu
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dan Dai
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lei Zhang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiuqun Zhang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xuezhong Zhang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yanli Xu
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
136
|
Inai Y, Izawa T, Mori M, Atarashi M, Tsuchiya S, Kuwamura M, Yamate J. Analyses of hemorrhagic diathesis in high-iron diet-fed rats. J Toxicol Pathol 2021; 34:33-41. [PMID: 33627943 PMCID: PMC7890162 DOI: 10.1293/tox.2020-0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/29/2020] [Indexed: 11/19/2022] Open
Abstract
Iron overload has been well recognized to cause oxidant-mediated cellular/tissue injury; however, little is known about the effects of iron overload on the blood coagulation system. We encountered an unexpected bleeding tendency in rats fed a high-iron diet in a set of studies using iron-modified diets. In this study, we investigated the mechanism of hemorrhagic diathesis induced by dietary iron overload in rats. Six-week-old F344/DuCrlCrlj male rats were fed a standard (containing 0.02% iron) or a high-iron diet (containing 1% iron) for 6 weeks and were then sampled for hematological, blood biochemical, coagulation, and pathological examinations. Serum and liver iron levels increased in rats fed the high-iron diet (Fe group) and serum transferrin was almost saturated with iron. However, serum transaminase levels did not increase. Moreover, plasma prothrombin time and activated partial thromboplastin time were significantly prolonged, regardless of the presence of hemorrhage. The activity of clotting factors II and VII (vitamin K-dependent coagulation factors) decreased significantly, whereas that of factor VIII was unaltered. Blood platelet levels were not influenced by dietary iron overload, suggesting that the bleeding tendency in iron-overloaded rats is caused by secondary hemostasis impairment. In addition, hemorrhage was observed in multiple organs in rats fed diets containing more than 0.8% iron. Our results suggest that iron overload can increase the susceptibility of coagulation abnormalities caused by latent vitamin K insufficiency.
Collapse
Affiliation(s)
- Yohei Inai
- Laboratory of Veterinary Pathology, Osaka Prefecture
University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Prefecture
University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Mutsuki Mori
- Laboratory of Veterinary Pathology, Osaka Prefecture
University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Machi Atarashi
- Laboratory of Veterinary Pathology, Osaka Prefecture
University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Seiichirou Tsuchiya
- Sysmex Corporation, 4-4-4 Takatsukadai, Nishiku, Kobe, Hyogo
651-2271, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Prefecture
University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Osaka Prefecture
University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
137
|
Deng H, Liu S, Pan D, Jia Y, Ma ZG. Myricetin reduces cytotoxicity by suppressing hepcidin expression in MES23.5 cells. Neural Regen Res 2021; 16:1105-1110. [PMID: 33269757 PMCID: PMC8224113 DOI: 10.4103/1673-5374.300461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multiple studies implicate iron accumulation in the substantia nigra in the degeneration of dopaminergic neurons in Parkinson’s disease. Indeed, slowing of iron accumulation in cells has been identified as the key point for delaying and treating Parkinson’s disease. Myricetin reportedly plays an important role in anti-oxidation, anti-apoptosis, anti-inflammation, and iron chelation. However, the mechanism underlying its neuroprotection remains unclear. In the present study, MES23.5 cells were treated with 1 × 10–6 M myricetin for 1 hour, followed by co-treatment with 400 nM rotenone for 24 hours to establish an in vitro cell model of Parkinson’s disease. Our results revealed that myricetin alleviated rotenone-induced decreases in cell viability, suppressed the production of intracellular reactive oxygen species, and restored mitochondrial transmembrane potential. In addition, myricetin significantly suppressed rotenone-induced hepcidin gene transcription and partly relieved rotenone-induced inhibition of ferroportin 1 mRNA and protein levels. Furthermore, myricetin inhibited rotenone-induced phosphorylation of STAT3 and SMAD1 in MES23.5 cells. These findings suggest that myricetin protected rotenone-treated MES23.5 cells by potently inhibiting hepcidin expression to prevent iron accumulation, and this effect was mediated by alteration of STAT3 and SMAD1 signaling pathways.
Collapse
Affiliation(s)
- Han Deng
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Shang Liu
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Dong Pan
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yi Jia
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Ze-Gang Ma
- Department of Physiology, School of Basic Medicine; Institute of Brain Science and Disorders, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
138
|
Yao X, Sun K, Yu S, Luo J, Guo J, Lin J, Wang G, Guo Z, Ye Y, Guo F. Chondrocyte ferroptosis contribute to the progression of osteoarthritis. J Orthop Translat 2020; 27:33-43. [PMID: 33376672 PMCID: PMC7750492 DOI: 10.1016/j.jot.2020.09.006] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/26/2020] [Accepted: 09/16/2020] [Indexed: 01/15/2023] Open
Abstract
Background Osteoarthritis (OA) is a complex process comprised of mechanical load, inflammation, and metabolic factors. It is still unknown that if chondrocytes undergo ferroptosis during OA and if ferroptosis contribute to the progression of OA. Materials and methods In our study, we use Interleukin-1 Beta (IL-1β) to simulate inflammation and ferric ammonium citrate (FAC) to simulate the iron overload in vitro. Also, we used the surgery-induced destabilized medial meniscus (DMM) mouse model to induce OA in vivo. We verify ferroptosis by its definition that defined by the Nomenclature Committee on Cell Death with both in vitro and in vivo model. Results We observed that both IL-1β and FAC induced reactive oxygen species (ROS), and lipid ROS accumulation and ferroptosis related protein expression changes in chondrocytes. Ferrostatin-1, a ferroptosis specific inhibitor, attenuated the cytotoxicity, ROS and lipid-ROS accumulation and ferroptosis related protein expression changes induced by IL-1β and FAC and facilitated the activation of Nrf2 antioxidant system. Moreover, erastin, the most classic inducer of ferroptosis, promoted matrix metalloproteinase 13 (MMP13) expression while inhibited type II collagen (collagen II) expression in chondrocytes. At last, we proved that intraarticular injection of ferrostatin-1 rescued the collagen II expression and attenuated the cartilage degradation and OA progression in mice OA model. Conclusions In summary, our study firstly proved that chondrocytes underwent ferroptosis under inflammation and iron overload condition. Induction of ferroptosis caused increased MMP13 expression and decreased collagen II expression in chondrocytes. Furthermore, inhibition of ferroptosis, by intraarticular injection of ferrostatin-1, in our case, seems to be a novel and promising option for the prevention of OA. The translational potential of this article The translation potential of this article is that we first indicated that chondrocyte ferroptosis contribute to the progression of osteoarthritis which provides a novel strategy in the prevention of OA.
Collapse
Affiliation(s)
- Xudong Yao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Shengnan Yu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Jiahui Luo
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Jiachao Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Jiamin Lin
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Genchun Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yaping Ye
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| |
Collapse
|
139
|
Zhang C, Huang Y, Talukder M, Ge J, Lv MW, Bi SS, Li JL. Selenium sources differ in their potential to alleviate the cadmium-induced testicular dysfunction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115610. [PMID: 33254640 DOI: 10.1016/j.envpol.2020.115610] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd), a major environmental contaminant, is closely associated with male reproductive health. Selenium (Se) has been recognized as an effective chemo-protectant against Cd toxicity, but the underlying mechanisms remain unclear. The objective of present study was to illustrate the toxic effect of Cd on testis, and then compare the antagonistic effect among different Se sources on growth performance, testicular damage, ion homeostasis, antioxidative potential, and the expression of selenotranscriptome and biosynthetic related factors in Cd-treated chicken. Male chickens were fed with (Ⅰ) Control group: basal diet; (Ⅱ) Cd group: basal diet with 140 mg/kg CdCl2; (Ⅲ) YSe + Cd group: basal diet with 140 mg/kg CdCl2 and 3 mg/kg Yeast-Se; (Ⅳ) NSe + Cd group: basal diet with 140 mg/kg CdCl2 and 1 mg/kg Nano-Se; (Ⅴ) SSe + Cd group: basal diet with 140 mg/kg CdCl2 and 3 mg/kg Na2SeO3. It was observed that different Se treatments dramatically alleviated Cd-induced testicular developmental disorder, ion homeostasis disorder, hormone secretion disorder and oxidative stress. Simultaneously, Se mitigated Cd-induced testicular toxicity by regulating selenoprotein biosynthetic related factors to promote selenoprotein transcription. Finally, this study indicated that dietary supplementation of Yeast-Se produced an acceptable Se form to protect testis from Cd exposure.
Collapse
Affiliation(s)
- Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China
| | - Yan Huang
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR72701, USA
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
140
|
Oleic acid magnetic iron oxide nanoparticles improve iron uptake by the modification of NADH-HCF (III) oxidoreductase without affecting cellular viability. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
141
|
Zhou J, Dong Z, Wan D, Wang Q, Haung J, Huang P, Li Y, Ding X, Li J, Yang H, Yin Y. Effects of iron on intestinal development and epithelial maturation of suckling piglets. J Anim Sci 2020; 98:5881353. [PMID: 32756964 DOI: 10.1093/jas/skaa213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
The purpose of the present study was to discover the effects of iron on the intestinal development and epithelial maturation of suckling piglets. Twenty-seven newborn male piglets from 9 sows (3 piglets per sow), with similar body weight, were selected. The 3 piglets from the same sow were randomly divided into 1 of the 3 groups. The piglets were orally administrated with 2 mL of normal saline (CON group) or with 25 mg of iron by ferrous sulfate (OAFe group; dissolved in normal saline) on the 2nd, 7th, 12th, and 17th day, respectively, or intramuscularly injected with 100 mg of iron by iron dextran (IMFe group) on the 2nd day. The slaughter was performed on the 21st day and intestinal samples were collected. Compared with the CON group, iron supplementation significantly increased the length (P < 0.001), weight (P < 0.001), relative weight (P < 0.001), and the length:weight ratio (P < 0.001) of the small intestine in both OAFe and IMFe groups. The villus height (P < 0.001), crypt depth (CD) (P < 0.001), villus width (P = 0.002), and surface area (P < 0.001) in the jejunum of IMFe and OAFe piglets were also greater than those in CON piglets. The mRNA expression of trehalase (Treh; P = 0.002) and sucrase isomaltase (Sis; P = 0.043), markers of epithelial maturation, increased in OAFe and IMFe piglets, respectively. Moreover, enterocyte vacuolization, observed in fetal-type enterocyte, was reduced in OAFe and IMFe piglets, compared with CON piglets. However, no significant difference in the expression of the target genes of wnt/β-catenin signaling pathway was observed. The results indicated that both oral administration and intramuscular injection with iron promoted intestinal development and epithelial maturation in suckling piglets and that the effects of iron may be independent of wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Jing Zhou
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zhenglin Dong
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Qiye Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jing Haung
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Pengfei Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yali Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xueqin Ding
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jianzhong Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
142
|
Abstract
Intravenous iron therapy is increasingly being used worldwide to treat anemia in chronic kidney disease and more recently iron deficiency in heart failure. Promising results were obtained in randomized clinical trials in the latter, showing symptomatic and functional capacity improvement with intravenous iron therapy. Meanwhile, confirmation of clinical benefit in hard-endpoints such as mortality and hospitalization is expected in large clinical trials that are already taking place. In chronic kidney disease, concern about iron overload is being substituted by claims of direct cardiovascular benefit of iron supplementation, as suggested by preliminary studies in heart failure. We discuss the pitfalls of present studies and gaps in knowledge, stressing the known differences between iron metabolism in heart and renal failure. Systemic and cellular iron handling and the role of hepcidin are reviewed, as well as the role of iron in atherosclerosis, especially in view of its relevance to patients undergoing dialysis. We summarize the evidence available concerning iron overload, availability and toxicity in CKD, that should be taken into account before embracing aggressive intravenous iron supplementation.
Collapse
|
143
|
Fernández-Mendívil C, Luengo E, Trigo-Alonso P, García-Magro N, Negredo P, López MG. Protective role of microglial HO-1 blockade in aging: Implication of iron metabolism. Redox Biol 2020; 38:101789. [PMID: 33212416 PMCID: PMC7680814 DOI: 10.1016/j.redox.2020.101789] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/06/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an inducible enzyme known for its anti-inflammatory, antioxidant and neuroprotective effects. However, increased expression of HO-1 during aging and age-related neurodegenerative diseases have been associated to neurotoxic ferric iron deposits. Being microglia responsible for the brain's innate immune response, the aim of this study was to understand the role of microglial HO-1 under inflammatory conditions in aged mice. For this purpose, aged wild type (WT) and LysMCreHmox1△△ (HMOX1M-KO) mice that lack HO-1 in microglial cells, were used. Aged WT mice showed higher basal expression levels of microglial HO-1 in the brain than adult mice. This increase was even higher when exposed to an inflammatory stimulus (LPS via i.p.) and was accompanied by alterations in different iron-related metabolism proteins, resulting in an increase of iron deposits, oxidative stress, ferroptosis and cognitive decline. Furthermore, microglia exhibited a primed phenotype and increased levels of inflammatory markers such as iNOS, p65, IL-1β, TNF-α, Caspase-1 and NLRP3. Interestingly, all these alterations were prevented in aged HMOX1M-KO and WT mice treated with the HO-1 inhibitor ZnPPIX. In order to determine the effects of microglial HO-1-dependent iron overload, aged WT mice were treated with the iron chelator deferoxamine (DFX). DFX caused major improvements in iron, inflammatory and behavioral alterations found in aged mice exposed to LPS. In conclusion, this study highlights how microglial HO-1 overexpression contributes to neurotoxic iron accumulation providing deleterious effects in aged mice exposed to an inflammatory insult. Microglial HO-1 increases with aging and under an acute inflammatory stimulus. LPS-dependent microglial HO-1 upregulation during aging leads to iron overload. Microglial HO-1-dependent iron accumulation leads to ferroptosis. HO-1-dependent iron alterations lead to neuroinflammation. HO-1 inhibitors/iron chelators reduce iron accumulation and neuroinflammation.
Collapse
Affiliation(s)
- Cristina Fernández-Mendívil
- Instituto Teófilo Hernando for Drug Discovery. Department of Pharmacology. School of Medicine. Universidad Autónoma Madrid. Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de La Princesa, Madrid, Spain
| | - Enrique Luengo
- Instituto Teófilo Hernando for Drug Discovery. Department of Pharmacology. School of Medicine. Universidad Autónoma Madrid. Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de La Princesa, Madrid, Spain
| | - Paula Trigo-Alonso
- Instituto Teófilo Hernando for Drug Discovery. Department of Pharmacology. School of Medicine. Universidad Autónoma Madrid. Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de La Princesa, Madrid, Spain
| | - Nuria García-Magro
- Department of Anatomy, Histology and Neuroscience. School of Medicine. Universidad Autónoma de Madrid. Madrid, Spain
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience. School of Medicine. Universidad Autónoma de Madrid. Madrid, Spain
| | - Manuela G López
- Instituto Teófilo Hernando for Drug Discovery. Department of Pharmacology. School of Medicine. Universidad Autónoma Madrid. Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de La Princesa, Madrid, Spain.
| |
Collapse
|
144
|
Dell’Acqua S, Massardi E, Monzani E, Di Natale G, Rizzarelli E, Casella L. Interaction between Hemin and Prion Peptides: Binding, Oxidative Reactivity and Aggregation. Int J Mol Sci 2020; 21:ijms21207553. [PMID: 33066163 PMCID: PMC7589926 DOI: 10.3390/ijms21207553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 11/16/2022] Open
Abstract
We investigate the interaction of hemin with four fragments of prion protein (PrP) containing from one to four histidines (PrP106-114, PrP95-114, PrP84-114, PrP76-114) for its potential relevance to prion diseases and possibly traumatic brain injury. The binding properties of hemin-PrP complexes have been evaluated by UV-visible spectrophotometric titration. PrP peptides form a 1:1 adduct with hemin with affinity that increases with the number of histidines and length of the peptide; the following log K1 binding constants have been calculated: 6.48 for PrP76-114, 6.1 for PrP84-114, 4.80 for PrP95-114, whereas for PrP106-114, the interaction is too weak to allow a reliable binding constant calculation. These constants are similar to that of amyloid-β (Aβ) for hemin, and similarly to hemin-Aβ, PrP peptides tend to form a six-coordinated low-spin complex. However, the concomitant aggregation of PrP induced by hemin prevents calculation of the K2 binding constant. The turbidimetry analysis of [hemin-PrP76-114] shows that, once aggregated, this complex is scarcely soluble and undergoes precipitation. Finally, a detailed study of the peroxidase-like activity of [hemin-(PrP)] shows a moderate increase of the reactivity with respect to free hemin, but considering the activity over long time, as for neurodegenerative pathologies, it might contribute to neuronal oxidative stress.
Collapse
Affiliation(s)
- Simone Dell’Acqua
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy; (E.M.); (E.M.)
- Correspondence: (S.D.); (L.C.)
| | - Elisa Massardi
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy; (E.M.); (E.M.)
| | - Enrico Monzani
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy; (E.M.); (E.M.)
| | - Giuseppe Di Natale
- Istituto di Cristallografia, s.s. Catania, Consiglio Nazionale delle Ricerche, via Paolo Gaifami 18, 95126 Catania, Italy; (G.D.N.); (E.R.)
| | - Enrico Rizzarelli
- Istituto di Cristallografia, s.s. Catania, Consiglio Nazionale delle Ricerche, via Paolo Gaifami 18, 95126 Catania, Italy; (G.D.N.); (E.R.)
| | - Luigi Casella
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy; (E.M.); (E.M.)
- Correspondence: (S.D.); (L.C.)
| |
Collapse
|
145
|
Jiang X, Zhou T, Bai R, Xie Y. Hydroxypyridinone-Based Iron Chelators with Broad-Ranging Biological Activities. J Med Chem 2020; 63:14470-14501. [PMID: 33023291 DOI: 10.1021/acs.jmedchem.0c01480] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Iron plays an essential role in all living cells because of its unique chemical properties. It is also the most abundant trace element in mammals. However, when iron is present in excess or inappropriately located, it becomes toxic. Excess iron can become involved in free radical formation, resulting in oxidative stress and cellular damage. Iron chelators are used to treat serious pathological disorders associated with systemic iron overload. Hydroxypyridinones stand out for their outstanding chelation properties, including high selectivity for Fe3+ in the biological environment, ease of derivatization, and good biocompatibility. Herein, we overview the potential for multifunctional hydroxypyridinone-based chelators to be used as therapeutic agents against a wide range of diseases associated either with systemic or local elevated iron levels.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China
| | - Renren Bai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Yuanyuan Xie
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P.R. China.,College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| |
Collapse
|
146
|
Liu X, Zhao J, Zhang L, Lu J, Lv X, Liu C, Gao X. Effects of Different Doses of Excessive Iron in Diets on Oxidative Stress in Immune Organs of Sheep. Biol Trace Elem Res 2020; 197:475-486. [PMID: 31912417 DOI: 10.1007/s12011-019-02006-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this work is to investigate the relationship between iron and oxidative stress in the immune organs of excessive iron-fed sheep. Sixteen German Mutton Merino rams were randomly divided into 4 groups, which were fed the basal diets supplemented with 50 (CON), 500 (L-iron), 1000 (M-iron), and 1500 (H-iron) mg Fe/kg as ferrous sulfate monohydrate (FeSO4·H2O), respectively. The actual iron content in the diet was determined to be 457.68 (CON), 816.42 (L-iron), 1256.78 (M-iron), and 1725.63 (H-iron) mg/kg, respectively. The consequences of oxidative damage were tested in 4 groups. The results showed that the contents of malondialdehyde (MDA), nitric oxide (NO), hydrogen peroxide (H2O2), and the activity of nitric oxide synthase (iNOS) were increased in excessive iron-fed sheep. Moreover, the present results revealed that excess iron was associated with a significant decrease in the activities of antioxidant capacity, such as glutathione peroxidase (GPx) activity and total antioxidant capacity (T-AOC) levels. The iNOS mRNA expression declined in excessive iron-fed sheep, indicating that down-regulation is likely to occur at the transcription level, which is consistent with the studies of iron blockades iNOS transcription. Surprisingly, the activity of glutathione peroxidase 1 (GPx1) continued to decline, but the expression levels of GPX1 mRNA and protein increased first and then decreased. This suggests that at the transcriptional and translation levels, the body compensatively increases the amount of GPx1 to maintain the balance of the oxidation-antioxidant system to resist peroxidation. Hematoxylin-eosin (HE) staining revealed histopathological changes in immune organs, such as lymphocyte infiltration and cell death, indicating that excessive iron-induced oxidative damage indirectly affects the body's immune function. These findings confirm the role of iron in regulating the homeostasis of the oxidation-antioxidant system.
Collapse
Affiliation(s)
- XueJie Liu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, 150030, China
| | - JingHua Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, 150030, China
| | - LiangYu Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, 150030, China
| | - Jing Lu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, 150030, China
| | - XiaoPing Lv
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, 150030, China
| | - ChaoNan Liu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, 150030, China
| | - XueLi Gao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, 150030, China.
| |
Collapse
|
147
|
Ozdemir B. Correlation of C-Reactive Protein and Serum Iron Levels with Syntax Score. ARCHIVES OF RAZI INSTITUTE 2020; 75:413-418. [PMID: 33025782 PMCID: PMC8418810 DOI: 10.22092/ari.2020.128122.1404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/12/2020] [Indexed: 09/30/2022]
Abstract
Cardiovascular disease is one of the most common causes of morbidity and mortality in the world. Atherosclerosis is an inflammatory process, and serum C-reactive protein (CRP) is an acute-phase protein rising in response to inflammation. Serum iron (Fe) is one of the essential metals for the human body. Inflammation and infection are characterized by changes in Fe metabolism. Since atherosclerosis is an inflammatory process, changes in CRP and serum Fe levels are expected. However, the distribution of the disease in the coronary arteries is important for mortality and morbidity. The distribution of the disease can be determined by the syntax score. This study included 407 patients with a mean age of 56.4±10.7 years. The majority of the patients were male (51.4%). In this study, 53 and 354 patients had critical and no critical lesions, respectively. According to the baseline coronary angiograms, the syntax score was calculated in all patients. The laboratory variables, including hemoglobin levels, blood glucose, creatinine, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, Fe, and CRP were also evaluated in this study. Regarding the laboratory parameters of all groups, the mean CRP levels, Fe levels, and syntax score were estimated at 0.75±1.8 mg/dl, 80.4±27.5 mg/dl, and 1.5±4.8, respectively. Furthermore, a high syntax score correlated with Fe and CRP levels. Based on the findings of the present study, elevated serum Fe and CRP concentrations were associated with increased syntax score and atherosclerosis severity.
Collapse
Affiliation(s)
- B Ozdemir
- Department of Cardiology Faculty of Medicine, Nigde Omer Halisdemir University, Campus, 51240, Nigde, Turkey
- Department of Cardiology Faculty of Medicine, Nigde Omer Halisdemir University, Campus, 51240, Nigde, Turkey
| |
Collapse
|
148
|
Ścibior A, Hus I, Mańko J, Jawniak D. Evaluation of the level of selected iron-related proteins/receptors in the liver of rats during separate/combined vanadium and magnesium administration. J Trace Elem Med Biol 2020; 61:126550. [PMID: 32464446 DOI: 10.1016/j.jtemb.2020.126550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/17/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND The current knowledge about the effects of vanadium (V) on iron (Fe)-related proteins and Fe homeostasis (which is regulated at the systemic, organelle, and cellular levels) is still insufficient. OBJECTIVE This fact and our earlier results prompted us to conduct studies with the aim to explain the mechanism of anemia accompanied by a rise in hepatic and splenic Fe deposition in rats receiving sodium metavanadate (SMV) separately and in combination with magnesium sulfate (MS). RESULTS We demonstrated for the first time that SMV (0.125 mg V/mL) administered to rats individually and in conjunction with MS (0.06 mg Mg/mL) for 12 weeks did not cause significant differences in the hepatic hepcidin (Hepc) and hemojuvelin (HJV) concentrations, compared to the control. In comparison with the control, there were no significant changes in the concentration of transferrin receptor 1 (TfR1) in the liver of rats treated with SMV and MS alone (in both cases only a downward trend of 14% and 15% was observed). However, a significant reduction in the hepatic TfR1 level was found in rats receiving SMV and MS simultaneously. In turn, the concentration of transferrin receptor 2 (TfR2) showed an increasing trend in the liver of rats treated with SMV and/or MS. CONCLUSIONS The experimental data suggest that the pathomechanism of the SMV-induced anemia is not associated with the effect of V on the concentration of Hepc in the liver, as confirmed by the unaltered hepatic HJV and TfR1 levels. Therefore, further studies are needed in order to check whether anemia that developed in the rats at the SMV administration (a) results from the inhibitory effect of V on erythropoietin (EPO) production, (b) is related to the effect of V on the induction of matriptase-2 (TMPRSS6) expression, or (c) is associated with the influence of this metal on haem synthesis.
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Poland.
| | - Iwona Hus
- Institute of Hematology and Transfusion Medicine, Warsaw, Poland.
| | - Joanna Mańko
- Clinic of Haematooncology and Bone Marrow Transplantation, Medical University, Lublin, Poland.
| | - Dariusz Jawniak
- Clinic of Haematooncology and Bone Marrow Transplantation, Medical University, Lublin, Poland.
| |
Collapse
|
149
|
Yang J, Pan X, Xu Y, Li Y, Xu N, Huang Z, Ye J, Gao D, Guo M. Agrobacterium tumefaciens ferritins play an important role in full virulence through regulating iron homeostasis and oxidative stress survival. MOLECULAR PLANT PATHOLOGY 2020; 21:1167-1178. [PMID: 32678502 PMCID: PMC7411545 DOI: 10.1111/mpp.12969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 05/23/2023]
Abstract
Ferritins are a large family of iron storage proteins, which are used by bacteria and other organisms to avoid iron toxicity and as a safe iron source in the cytosol. Agrobacterium tumefaciens, a phytopathogen, has two ferritin-encoding genes: atu2771 and atu2477. Atu2771 is annotated as a Bfr-encoding gene (Bacterioferritin, Bfr) and atu2477 as a Dps-encoding gene (DNA binding protein from starved cells, Dps). Three deletion mutants (Δbfr, Δdps, and bfr-dps double-deletion mutant ΔbdF) of these two ferritin-encoding genes were constructed to investigate the effects of ferritin deficiency on the iron homeostasis, oxidative stress resistance, and pathogenicity of A. tumefaciens. Deficiency of two ferritins affects the growth of A. tumefaciens under iron starvation and excess. When supplied with moderate iron, the growth of A. tumefaciens is not affected by the deficiency of ferritin. Deficiency of ferritin significantly reduces iron accumulation in the cells of A. tumefaciens, but the effect of Bfr deficiency on iron accumulation is severer than Dps deficiency and the double mutant ΔbdF has the least intracellular iron content. All three ferritin-deficient mutants showed a decreased tolerance to 3 mM H2 O2 in comparison with the wild type. The tumour induced by each of three ferritin-deficient mutants is less than that of the wild type. Complementation reversed the effects of ferritin deficiency on the growth, iron homeostasis, oxidative stress resistance, and tumorigenicity of A. tumefaciens. Therefore, ferritin plays an important role in the pathogenesis of A. tumefaciens through regulating iron homeostasis and oxidative stress survival.
Collapse
Affiliation(s)
- Jing Yang
- College of Bioscience and BiotechnologyYangzhou UniversityJiangsu ProvinceYangzhou CityChina
| | - Xiaoyue Pan
- College of Bioscience and BiotechnologyYangzhou UniversityJiangsu ProvinceYangzhou CityChina
| | - Yujuan Xu
- College of Bioscience and BiotechnologyYangzhou UniversityJiangsu ProvinceYangzhou CityChina
| | - Yuan Li
- College of Bioscience and BiotechnologyYangzhou UniversityJiangsu ProvinceYangzhou CityChina
| | - Nan Xu
- College of Bioscience and BiotechnologyYangzhou UniversityJiangsu ProvinceYangzhou CityChina
| | - Zhiwei Huang
- College of Bioscience and BiotechnologyYangzhou UniversityJiangsu ProvinceYangzhou CityChina
| | - Jingyang Ye
- College of Bioscience and BiotechnologyYangzhou UniversityJiangsu ProvinceYangzhou CityChina
| | - Dawei Gao
- College of Bioscience and BiotechnologyYangzhou UniversityJiangsu ProvinceYangzhou CityChina
| | - Minliang Guo
- College of Bioscience and BiotechnologyYangzhou UniversityJiangsu ProvinceYangzhou CityChina
| |
Collapse
|
150
|
Liu H, Perumal N, Manicam C, Mercieca K, Prokosch V. Proteomics Reveals the Potential Protective Mechanism of Hydrogen Sulfide on Retinal Ganglion Cells in an Ischemia/Reperfusion Injury Animal Model. Pharmaceuticals (Basel) 2020; 13:ph13090213. [PMID: 32867129 PMCID: PMC7557839 DOI: 10.3390/ph13090213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Glaucoma is the leading cause of irreversible blindness and is characterized by progressive retinal ganglion cell (RGC) degeneration. Hydrogen sulfide (H2S) is a potent neurotransmitter and has been proven to protect RGCs against glaucomatous injury in vitro and in vivo. This study is to provide an overall insight of H2S’s role in glaucoma pathophysiology. Ischemia-reperfusion injury (I/R) was induced in Sprague-Dawley rats (n = 12) by elevating intraocular pressure to 55 mmHg for 60 min. Six of the animals received intravitreal injection of H2S precursor prior to the procedure and the retina was harvested 24 h later. Contralateral eyes were assigned as control. RGCs were quantified and compared within the groups. Retinal proteins were analyzed via label-free mass spectrometry based quantitative proteomics approach. The pathways of the differentially expressed proteins were identified by ingenuity pathway analysis (IPA). H2S significantly improved RGC survival against I/R in vivo (p < 0.001). In total 1115 proteins were identified, 18 key proteins were significantly differentially expressed due to I/R and restored by H2S. Another 11 proteins were differentially expressed following H2S. IPA revealed a significant H2S-mediated activation of pathways related to mitochondrial function, iron homeostasis and vasodilation. This study provides first evidence of the complex role that H2S plays in protecting RGC against I/R.
Collapse
Affiliation(s)
- Hanhan Liu
- Experimental and Translational Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (H.L.); (N.P.); (C.M.)
| | - Natarajan Perumal
- Experimental and Translational Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (H.L.); (N.P.); (C.M.)
| | - Caroline Manicam
- Experimental and Translational Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (H.L.); (N.P.); (C.M.)
| | - Karl Mercieca
- Royal Eye Hospital, School of Medicine, University of Manchester, Manchester M13 9WH, UK;
| | - Verena Prokosch
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Correspondence: ; Tel.: +49-1703862250
| |
Collapse
|