101
|
Tripathi S, Bhawana. Epigenetic Orchestration of Neurodegenerative Disorders: A Possible Target for Curcumin as a Therapeutic. Neurochem Res 2024; 49:2319-2335. [PMID: 38856890 DOI: 10.1007/s11064-024-04167-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Epigenetic modulations play a major role in gene expression and thus are responsible for various physiological changes including age-associated neurological disorders. Neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD), Huntington's disease (HD), although symptomatically different, may share common underlying mechanisms. Most neurodegenerative diseases are associated with increased oxidative stress, aggregation of certain proteins, mitochondrial dysfunction, inactivation/dysregulation of protein degradation machinery, DNA damage and cell excitotoxicity. Epigenetic modulations has been reported to play a significant role in onset and progression of neurodegenerative diseases by regulating these processes. Previous studies have highlighted the marked antioxidant and neuroprotective abilities of polyphenols such as curcumin, by increased activity of detoxification systems like superoxide dismutase (SOD), catalase or glutathione peroxidase. The role of curcumin as an epigenetic modulator in neurological disorders and neuroinflammation apart from other chronic diseases have also been reported by a few groups. Nonetheless, the evidences for the role of curcumin mediated epigenetic modulation in its neuroprotective ability are still limited. This review summarizes the current knowledge of the role of mitochondrial dysfunction, epigenetic modulations and mitoepigenetics in age-associated neurological disorders such as PD, AD, HD, Amyotrophic Lateral Sclerosis (ALS), and Multiple Sclerosis (MS), and describes the neuroprotective effects of curcumin in the treatment and/or prevention of these neurodegenerative diseases by regulation of the epigenetic machinery.
Collapse
Affiliation(s)
- Shweta Tripathi
- Department of Paramedical Sciences, Faculty of Allied Health Sciences, SGT University, Gurugram, 122505, Haryana, India.
| | - Bhawana
- Department of Paramedical Sciences, Faculty of Allied Health Sciences, SGT University, Gurugram, 122505, Haryana, India
| |
Collapse
|
102
|
Zhu C, Liu J, Lin J, Xu J, Yu E. Investigating the effects of Ginkgo biloba leaf extract on cognitive function in Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14914. [PMID: 39238068 PMCID: PMC11377177 DOI: 10.1111/cns.14914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
AIMS Alzheimer's disease (AD) is a neurodegenerative disorder with limited treatment options. This study aimed to investigate the therapeutic effects of Ginkgo biloba leaf extract (GBE) on AD and explore its potential mechanisms of action. METHODS Key chemical components of GBE, including quercetin, luteolin, and kaempferol, were identified using network pharmacology methods. Bioinformatics analysis revealed their potential roles in AD through modulation of the PI3K/AKT/NF-κB signaling pathway. RESULTS Mouse experiments demonstrated that GBE improved cognitive function, enhanced neuronal morphology, and reduced serum inflammatory factors. Additionally, GBE modulated the expression of relevant proteins and mRNA. CONCLUSION GBE shows promise as a potential treatment for AD. Its beneficial effects on cognitive function, neuronal morphology, and inflammation may be attributed to its modulation of the PI3K/AKT/NF-κB signaling pathway. These findings provide experimental evidence for the application of Ginkgo biloba leaf in AD treatment and highlight its potential mechanisms of action.
Collapse
Affiliation(s)
- Cheng Zhu
- School of Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jie Liu
- The Second People's Hospital of Chuzhou Sleep Disorders Department, Chuzhou, China
| | - Jixin Lin
- Second Clinical Medicine Faculty, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaxi Xu
- General Psychiatric Department, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Enyan Yu
- Clinical Psychology Department, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
103
|
Munteanu C, Galaction AI, Turnea M, Blendea CD, Rotariu M, Poștaru M. Redox Homeostasis, Gut Microbiota, and Epigenetics in Neurodegenerative Diseases: A Systematic Review. Antioxidants (Basel) 2024; 13:1062. [PMID: 39334720 PMCID: PMC11429174 DOI: 10.3390/antiox13091062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Neurodegenerative diseases encompass a spectrum of disorders marked by the progressive degeneration of the structure and function of the nervous system. These conditions, including Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and Multiple sclerosis (MS), often lead to severe cognitive and motor deficits. A critical component of neurodegenerative disease pathologies is the imbalance between pro-oxidant and antioxidant mechanisms, culminating in oxidative stress. The brain's high oxygen consumption and lipid-rich environment make it particularly vulnerable to oxidative damage. Pro-oxidants such as reactive nitrogen species (RNS) and reactive oxygen species (ROS) are continuously generated during normal metabolism, counteracted by enzymatic and non-enzymatic antioxidant defenses. In neurodegenerative diseases, this balance is disrupted, leading to neuronal damage. This systematic review explores the roles of oxidative stress, gut microbiota, and epigenetic modifications in neurodegenerative diseases, aiming to elucidate the interplay between these factors and identify potential therapeutic strategies. We conducted a comprehensive search of articles published in 2024 across major databases, focusing on studies examining the relationships between redox homeostasis, gut microbiota, and epigenetic changes in neurodegeneration. A total of 161 studies were included, comprising clinical trials, observational studies, and experimental research. Our findings reveal that oxidative stress plays a central role in the pathogenesis of neurodegenerative diseases, with gut microbiota composition and epigenetic modifications significantly influencing redox balance. Specific bacterial taxa and epigenetic markers were identified as potential modulators of oxidative stress, suggesting novel avenues for therapeutic intervention. Moreover, recent evidence from human and animal studies supports the emerging concept of targeting redox homeostasis through microbiota and epigenetic therapies. Future research should focus on validating these targets in clinical settings and exploring the potential for personalized medicine strategies based on individual microbiota and epigenetic profiles.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700115 Iasi, Romania
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700115 Iasi, Romania
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700115 Iasi, Romania
| | - Corneliu Dan Blendea
- Department of Medical-Clinical Disciplines, General Surgery, Faculty of Medicine, "Titu Maiorescu" University of Bucharest, 0400511 Bucharest, Romania
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700115 Iasi, Romania
| | - Mădălina Poștaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700115 Iasi, Romania
| |
Collapse
|
104
|
Hroudová J, Fišar Z. Alzheimer's disease approaches - Focusing on pathology, biomarkers and clinical trial candidates. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111069. [PMID: 38917881 DOI: 10.1016/j.pnpbp.2024.111069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
The strategy for the development of new drugs for Alzheimer's disease (AD) recognizes that an effective therapy requires early therapeutic intervention and a multifactorial approach that considers the individual initiators of AD development. Current knowledge of AD includes the understanding of pathophysiology, risk factors, biomarkers, and the evolving patterns of biomarker abnormalities. This knowledge is essential in identifying potential molecular targets for new drug development. This review summarizes promising AD drug candidates, many of which are currently in phase 2 or 3 clinical trials. New agents are classified according to the Common Alzheimer's Disease Research Ontology (CADRO). The main targets of new drugs for AD are processes related to amyloid beta and tau neurotoxicity, neurotransmission, inflammation, metabolism and bioenergetics, synaptic plasticity, and oxidative stress. These interventions are aimed at preventing disease onset and slowing or eliminating disease progression. The efficacy of pharmacotherapy may be enhanced by combining these drugs with other treatments, antioxidants, and dietary supplements. Ongoing research into AD pathophysiology, risk factors, biomarkers, and the dynamics of biomarker abnormalities may contribute to the understanding of AD and offer hope for effective therapeutic strategies in the near future.
Collapse
Affiliation(s)
- Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic
| |
Collapse
|
105
|
Mosharaf MP, Alam K, Gow J, Mahumud RA, Mollah MNH. Common molecular and pathophysiological underpinnings of delirium and Alzheimer's disease: molecular signatures and therapeutic indications. BMC Geriatr 2024; 24:716. [PMID: 39210294 PMCID: PMC11363673 DOI: 10.1186/s12877-024-05289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Delirium and Alzheimer's disease (AD) are common causes of cognitive dysfunction among older adults. These neurodegenerative diseases share a common and complex relationship, and can occur individually or concurrently, increasing the chance of permanent mental dysfunction. However, the common molecular pathophysiology, key proteomic biomarkers, and functional pathways are largely unknown, whereby delirium is superimposed on AD and dementia. METHODS We employed an integrated bioinformatics and system biology analysis approach to decipher such common key proteomic signatures, pathophysiological links between delirium and AD by analyzing the gene expression data of AD-affected human brain samples and comparing them with delirium-associated proteins. The present study identified the common drug target hub-proteins examining the protein-protein interaction (PPI) and gene regulatory network analysis. The functional enrichment and pathway analysis was conducted to reveal the common pathophysiological relationship. Finally, the molecular docking and dynamic simulation was used to computationally identify and validate the potential drug target and repurposable drugs for delirium and AD. RESULTS We detected 99 shared differentially expressed genes (sDEGs) associated with AD and delirium. The sDEGs-set enrichment analysis detected the transmission across chemical synapses, neurodegeneration pathways, neuroinflammation and glutamatergic signaling pathway, oxidative stress, and BDNF signaling pathway as the most significant signaling pathways shared by delirium and AD. The disease-sDEGs interaction analysis highlighted the other disease risk factors with delirium and AD development and progression. Among the sDEGs of delirium and AD, the top 10 hub-proteins including ALB, APP, BDNF, CREB1, DLG4, GAD1, GAD2, GFAP, GRIN2B and GRIN2A were found by the PPI network analysis. Based on the maximum molecular docking binding affinities and molecular dynamic simulation (100 ns) results, the ALB and GAD2 were found as prominent drug target proteins when tacrine and donepezil were identified as potential drug candidates for delirium and AD. CONCLUSION The study outlined the common key biomolecules and biological pathways shared by delirium and AD. The computationally reported potential drug molecules need a deeper investigation including clinical trials to validate their effectiveness. The outcomes from this study will help to understand the typical pathophysiological relationship between delirium and AD and flag future therapeutic development research for delirium.
Collapse
Affiliation(s)
- Md Parvez Mosharaf
- School of Business, Faculty of Business, Education, Law and Arts, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Khorshed Alam
- School of Business, Faculty of Business, Education, Law and Arts, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
- Centre for Health Research, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Jeff Gow
- School of Business, Faculty of Business, Education, Law and Arts, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
- School of Accounting, Economics and Finance, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Rashidul Alam Mahumud
- School of Business, Faculty of Business, Education, Law and Arts, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
- Health Economics and Health Technology Assessment Unit, NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Md Nurul Haque Mollah
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
106
|
Shahpasand S, Khatami SH, Ehtiati S, Salmani F, Zarei T, Shahpasand K, Ghobeh M, Karima S. Investigation of the expression of Cis P-tau and Pin1 proteins following air pollution induction in the brain tissue of C57BL/6 mice. Biotechnol Appl Biochem 2024. [PMID: 39192599 DOI: 10.1002/bab.2660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial disease in which environmental factors play a role. Among environmental factors, air pollution is a vital issue in modern life. Despite extensive considerations, it remains uncertain how pollution mediates neurodegeneration in AD. Beta-amyloids and hyperphosphorylated tau proteins are the two main pathological markers that have been studied in AD so far. Tau protein is basically a phosphoprotein whose functions are controlled by phosphorylation. The function of tau protein is to be located on the surface of microtubules and stabilize them. Studies have shown that phosphorylated tau protein (p-tau) exists in cis and trans conformations at Thr231, among which cis is highly neurotoxic. The Pin1 enzyme performs the conversion of cis to trans or vice versa. In this study, an experimental mouse model was designed to investigate the formation of cis p-tau by inducing air pollution. In this way, mice were randomly exposed to pollution at 2-week, 1-month, and 2-month intervals. We investigated the formation of phosphorylated cis tau form during air pollution on mouse brains using Western blots and immunofluorescence. The fluorescent imaging results and Western blotting analysis of mouse brains revealed a significant accumulation of cis p-tau in pollution-treated mice models compared to the healthy control mice. According to Western blot results, air pollution induction caused a significant decrease in Pin1 protein. The results clearly show that the tauopathy observed during air pollution is mediated through the formation of cis tau. Our findings unravel tauopathy mysteries upon pollution and would help find a possible therapeutic target to fight the devastating disorder caused by modern life.
Collapse
Affiliation(s)
- Sheyda Shahpasand
- Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Ehtiati
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Salmani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayebe Zarei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kourosh Shahpasand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Maryam Ghobeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
107
|
Wojtecki L, Cont C, Stute N, Galli A, Schulte C, Trenado C. Electrical brain networks before and after transcranial pulsed shockwave stimulation in Alzheimer's patients. GeroScience 2024:10.1007/s11357-024-01305-x. [PMID: 39192004 DOI: 10.1007/s11357-024-01305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that dramatically affects cognitive abilities and represents the most common cause of dementia. Currently, pharmacological interventions represent the main treatment to deal with the symptoms of AD; however, alternative approaches are readily sought. Transcranial pulse stimulation (TPS) is an emerging non-invasive neuromodulation technique that uses short, repetitive shockwaves with the potential to provide a wide range of vascular, metabolic, and neurotrophic changes and that has recently been shown to improve cognitive abilities in AD. This exploratory study aims to gain insight into the neurophysiological effect of one session of TPS in AD as reflected in electroencephalographic measures, e.g., spectral power, coherence, Tsallis entropy (TE), and cross-frequency coupling (cfc). We document changes in power (frontal and occipital), coherence (frontal, occipital and temporal), and TE (temporal and frontal) as well as changes in cfc (parietal-frontal, parietal-temporal, frontal-temporal). Our results emphasize the role of electroencephalographic measures as prospective markers for the neurophysiological effect of TPS.
Collapse
Affiliation(s)
- Lars Wojtecki
- Departmemt of Neurology and Neurorehabilitation, Hospital Zum Heiligen Geist, Academic Teaching Hospital of the Heinrich-Heine-University Duesseldorf, Von-Broichhausen-Allee 1, 47906, Kempen, Germany.
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany.
| | - Celine Cont
- Departmemt of Neurology and Neurorehabilitation, Hospital Zum Heiligen Geist, Academic Teaching Hospital of the Heinrich-Heine-University Duesseldorf, Von-Broichhausen-Allee 1, 47906, Kempen, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Natalie Stute
- Departmemt of Neurology and Neurorehabilitation, Hospital Zum Heiligen Geist, Academic Teaching Hospital of the Heinrich-Heine-University Duesseldorf, Von-Broichhausen-Allee 1, 47906, Kempen, Germany
| | - Anastasia Galli
- Departmemt of Neurology and Neurorehabilitation, Hospital Zum Heiligen Geist, Academic Teaching Hospital of the Heinrich-Heine-University Duesseldorf, Von-Broichhausen-Allee 1, 47906, Kempen, Germany
| | - Christina Schulte
- Departmemt of Neurology and Neurorehabilitation, Hospital Zum Heiligen Geist, Academic Teaching Hospital of the Heinrich-Heine-University Duesseldorf, Von-Broichhausen-Allee 1, 47906, Kempen, Germany
| | - Carlos Trenado
- Departmemt of Neurology and Neurorehabilitation, Hospital Zum Heiligen Geist, Academic Teaching Hospital of the Heinrich-Heine-University Duesseldorf, Von-Broichhausen-Allee 1, 47906, Kempen, Germany.
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany.
- Max Planck Institute for Empirical Aesthetics, Frankfurt Am Main, Germany.
| |
Collapse
|
108
|
Liu Y, Yu X, Jiang W. The Role of Mitochondrial Pyruvate Carrier in Neurological Disorders. Mol Neurobiol 2024:10.1007/s12035-024-04435-7. [PMID: 39177735 DOI: 10.1007/s12035-024-04435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
The mitochondrial pyruvate carrier (MPC) is a specific protein complex located in the inner mitochondrial membrane. Comprising a heterodimer of two homodimeric membrane proteins, mitochondrial pyruvate carrier 1 and mitochondrial pyruvate carrier 2, MPC connects cytoplasmic metabolism to mitochondrial metabolism by transferring pyruvate from the cytoplasm to the mitochondria. The nervous system requires substantial energy to maintain its function, and the mitochondrial energy supply is closely linked to neurological function. Mitochondrial dysfunction can induce or exacerbate intracerebral pathologies. MPC influences mitochondrial function due to its specific role as a pyruvate transporter. However, recent studies on MPC and mitochondrial dysfunction in neurological disorders have yielded controversial results, and the underlying mechanisms remain unclear. In this brief review, we provide an overview of the structure and function of MPC. We further discuss the potential mechanisms and feasibility of targeting MPC in treating Parkinson's disease, Alzheimer's disease, and cerebral ischemia/hypoxia injury. This review aims to offer insights into MPC as a target for clinical treatment.
Collapse
Affiliation(s)
- Yue Liu
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiying Yu
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Jiang
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
109
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
110
|
Lim L. Modifying Alzheimer's disease pathophysiology with photobiomodulation: model, evidence, and future with EEG-guided intervention. Front Neurol 2024; 15:1407785. [PMID: 39246604 PMCID: PMC11377238 DOI: 10.3389/fneur.2024.1407785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
This manuscript outlines a model of Alzheimer's Disease (AD) pathophysiology in progressive layers, from its genesis to the development of biomarkers and then to symptom expression. Genetic predispositions are the major factor that leads to mitochondrial dysfunction and subsequent amyloid and tau protein accumulation, which have been identified as hallmarks of AD. Extending beyond these accumulations, we explore a broader spectrum of pathophysiological aspects, including the blood-brain barrier, blood flow, vascular health, gut-brain microbiodata, glymphatic flow, metabolic syndrome, energy deficit, oxidative stress, calcium overload, inflammation, neuronal and synaptic loss, brain matter atrophy, and reduced growth factors. Photobiomodulation (PBM), which delivers near-infrared light to selected brain regions using portable devices, is introduced as a therapeutic approach. PBM has the potential to address each of these pathophysiological aspects, with data provided by various studies. They provide mechanistic support for largely small published clinical studies that demonstrate improvements in memory and cognition. They inform of PBM's potential to treat AD pending validation by large randomized controlled studies. The presentation of brain network and waveform changes on electroencephalography (EEG) provide the opportunity to use these data as a guide for the application of various PBM parameters to improve outcomes. These parameters include wavelength, power density, treatment duration, LED positioning, and pulse frequency. Pulsing at specific frequencies has been found to influence the expression of waveforms and modifications of brain networks. The expression stems from the modulation of cellular and protein structures as revealed in recent studies. These findings provide an EEG-based guide for the use of artificial intelligence to personalize AD treatment through EEG data feedback.
Collapse
Affiliation(s)
- Lew Lim
- Vielight Inc., Toronto, ON, Canada
| |
Collapse
|
111
|
Cheng Z, Shang N, Wang X, Kang Y, Zhou J, Lan J, Hu J, Peng Y, Xu B. Discovery of 4-(Arylethynyl)piperidine Derivatives as Potent Nonsaccharide O-GlcNAcase Inhibitors for the Treatment of Alzheimer's Disease. J Med Chem 2024; 67:14292-14312. [PMID: 39109492 DOI: 10.1021/acs.jmedchem.4c01132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Inhibiting O-GlcNAcase and thereby up-regulation of the O-GlcNAc levels of tau was a potential approach for discovering AD treatments. Herein, a series of novel highly potent OGA inhibitors embracing a 4-(arylethynyl)piperidine moiety was achieved by capitalizing on the substrate recognition domain. Extensive structure-activity relationships resulted in compound 81 with significant enzymatic inhibition (IC50 = 4.93 ± 2.05 nM) and cellular potency (EC50 = 7.47 ± 3.96 nM in PC12 cells). It markedly increased the protein O-GlcNAcylation levels and reduced the phosphorylation on Ser199, Thr205, and Ser396 of tau in the OA-injured SH-SY5Y cell model, suggesting its potential role for AD treatment. In fact, an in vivo efficacy of ameliorating cognitive impairment was observed following treatment of APP/PS1 mice with compound 81 (100 mg/kg). Additionally, the appropriate plasma PK and beneficial BBB penetration properties were also observed. Compound 81 deserves to be further explored as an anti-AD agent.
Collapse
Affiliation(s)
- Zihan Cheng
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nianying Shang
- State Key laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoyu Wang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuying Kang
- State Key laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Zhou
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiaqi Lan
- State Key laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jinping Hu
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Peng
- State Key laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bailing Xu
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
112
|
Mohamed Yusoff AA, Mohd Khair SZN. Unraveling mitochondrial dysfunction: comprehensive perspectives on its impact on neurodegenerative diseases. Rev Neurosci 2024:revneuro-2024-0080. [PMID: 39174305 DOI: 10.1515/revneuro-2024-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
Neurodegenerative diseases represent a significant challenge to modern medicine, with their complex etiology and progressive nature posing hurdles to effective treatment strategies. Among the various contributing factors, mitochondrial dysfunction has emerged as a pivotal player in the pathogenesis of several neurodegenerative disorders. This review paper provides a comprehensive overview of how mitochondrial impairment contributes to the development of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, driven by bioenergetic defects, biogenesis impairment, alterations in mitochondrial dynamics (such as fusion or fission), disruptions in calcium buffering, lipid metabolism dysregulation and mitophagy dysfunction. It also covers current therapeutic interventions targeting mitochondrial dysfunction in these diseases.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
113
|
Mroziak M, Kozłowski G, Kołodziejczyk W, Pszczołowska M, Walczak K, Beszłej JA, Leszek J. Dendrimers-Novel Therapeutic Approaches for Alzheimer's Disease. Biomedicines 2024; 12:1899. [PMID: 39200363 PMCID: PMC11351976 DOI: 10.3390/biomedicines12081899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Dendrimers are covalently bonded globular nanostructures that may be used in the treatment of Alzheimer's disease (AD). Nowadays, AD therapies are focused on improving cognitive functioning and not causal treatment. However, this may change with the use of dendrimers, which are being investigated as a drug-delivery system or as a drug per se. With their ability to inhibit amyloid formation and their anti-tau properties, they are a promising therapeutic option for AD patients. Studies have shown that dendrimers may inhibit amyloid formation in at least two ways: by blocking fibril growth and by breaking already existing fibrils. Neurofibrillary tangles (NFTs) are abnormal filaments built by tau proteins that can be accumulated in the cell, which leads to the loss of cytoskeletal microtubules and tubulin-associated proteins. Cationic phosphorus dendrimers, with their anti-tau properties, can induce the aggregation of tau into amorphous structures. Drug delivery to mitochondria is difficult due to poor transport across biological barriers, such as the inner mitochondrial membrane, which is highly negatively polarized. Dendrimers may be potential nanocarriers and increase mitochondria targeting. Another considered use of dendrimers in AD treatment is as a drug-delivery system, for example, carbamazepine (CBZ) or tacrine. They can also be used to transport siRNA into neuronal tissue and to carry antioxidants and anti-inflammatory drugs to act protectively on the nervous system.
Collapse
Affiliation(s)
- Magdalena Mroziak
- Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Gracjan Kozłowski
- Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland
| | | | | | - Kamil Walczak
- Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Jan Aleksander Beszłej
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Jerzy Leszek
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, 50-367 Wrocław, Poland
| |
Collapse
|
114
|
Xiaojuan L, Hongmei L, Zhuxin W, Xiaoqin L, Lanbing D, Dan L, Yi Z. Exploration of the pharmacological components and therapeutic mechanisms in treatment of Alzheimer's disease with Polygonati Rhizoma and its processed product using combined analysis of metabolomics, network pharmacology, and gut microbiota. Heliyon 2024; 10:e35394. [PMID: 39170207 PMCID: PMC11336570 DOI: 10.1016/j.heliyon.2024.e35394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/20/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024] Open
Abstract
Polygonati Rhizoma (PR, Huangjing in Chinese) and its processed product (PRP), which are used in Traditional Chinese medicine (TCM) for cognitive enhancement and treatment of Alzheimer's disease (AD), have not been fully explored in terms of the different mechanisms underlying their anti-AD effects. Therefore, we used APP/PS1 mice as an AD model to assess the effects of PR and PRP on anxiety-like behaviors, cognitive function, memory performance, and pathological changes in the murine brain. UPLC-HRMS was applied to identify the components of PR and PRP that entered into the blood and brain. Network pharmacology was used to elucidate potential mechanisms underlying the improvement of AD. Differences in the intestinal flora composition between mice treated with PR and PRP were investigated using 16S rRNA sequencing, establishing a correlation between pharmacological components and distinct flora profiles. The results revealed that both PR and PRP interventions ameliorated cognitive deficits and attenuated Amyloid β (Aβ) plaque deposition in the brains of AD mice. Seven specific blood-entering components, namely glutamic acid, Phe-Phe, and uridine, etc., were associated with PR intervention, whereas ten specific blood-entering components including (2R,3S)-3-isopropylmalate, 3-methylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione, and 3-methoxytyrosine were related to PRP intervention. Uridine was identified as a common brain-penetrating component in both PR and PRP interventions. Network pharmacology analysis suggested that the NOD-like receptor signaling pathway, Calcium signaling pathway and Alzheimer's disease were specific pathways targeted in AD treatment using PR intervention. Moreover, the apoptosis pathway was specifically linked to AD treatment during PRP intervention. Furthermore, the administration of both PR and PRP enhanced the abundance and diversity of the intestinal flora in APP/PS1 mice. Western blotting confirmed that PR excels in regulates inflammation, whereas PRP balances autophagy and apoptosis to alleviate the progression of AD. This study offers valuable insights and establishes a robust foundation for further comprehensive exploration of the intrinsic correlation between TCM and AD.
Collapse
Affiliation(s)
- Liao Xiaojuan
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, China
| | - Liu Hongmei
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, China
| | - Wang Zhuxin
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, China
| | - Liu Xiaoqin
- College of Pharmacy, Shandong Modern University, Jinan, 250104, China
| | - Deng Lanbing
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, China
| | - Luo Dan
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, China
| | - Zhou Yi
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, China
| |
Collapse
|
115
|
Visansirikul S, Yanaso S, Boondam Y, Prasittisa K, Prutthiwanasan B, Chongruchiroj S, Sripha K. Discovery of novel coumarin triazolyl and phenoxyphenyl triazolyl derivatives targeting amyloid beta aggregation-mediated oxidative stress and neuroinflammation for enhanced neuroprotection. RSC Med Chem 2024; 15:2745-2765. [PMID: 39149102 PMCID: PMC11324061 DOI: 10.1039/d4md00270a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/20/2024] [Indexed: 08/17/2024] Open
Abstract
This study involved designing, synthesizing, and evaluating the protective potential of compounds on microglial cells (BV-2 cells) and neurons (SH-SY5Y cells) against cell death induced by Aβ1-42. It aimed to identify biologically specific activities associated with anti-Aβ aggregation and understand their role in oxidative stress initiation and modulation of proinflammatory cytokine expression. Actively designed compounds CE5, CA5, PE5, and PA5 showed protective effects on BV-2 and SH-SY5Y cells, with cell viability ranging from 60.78 ± 2.32% to 75.38 ± 2.75% for BV-2 cells and 87.21% ± 1.76% to 91.55% ± 1.78% for SH-SY5Y cells. The transformation from ester in CE5 to amide in CA5 resulted in significant antioxidant properties. Molecular docking studies revealed strong binding of CE5 to critical Aβ aggregation regions, disrupting both intra- and intermolecular formations. TEM assessment supported CE5's anti-Aβ aggregation efficacy. Structural variations in PE5 and PA5 had diverse effects on IL-1β and IL-6, suggesting further specificity studies for Alzheimer's disease. Log P values suggested potential blood-brain barrier permeation for CE5 and CA5, indicating suitability for CNS drug development. In silico ADMET and toxicological screening revealed that CE5, PA5, and PE5 have favorable safety profiles, while CA5 shows a propensity for hepatotoxicity. According to this prediction, coumarin triazolyl derivatives are likely to exhibit mutagenicity. Nevertheless, CE5 and CA5 emerge as promising lead compounds for Alzheimer's therapeutic intervention, with further insights expected from subsequent in vivo studies.
Collapse
Affiliation(s)
- Satsawat Visansirikul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
- Unit of Compounds Library for Drug Discovery Mahidol University Bangkok 10400 Thailand
| | - Suthira Yanaso
- Faculty of Pharmaceutical Sciences, Huachiew Chalermprakiet University Samut Prakan 10540 Thailand
| | - Yingrak Boondam
- Department of Physiology, Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
- Centre of Biopharmaceutical Science for Healthy Ageing, Mahidol University Bangkok 10400 Thailand
| | - Kanjanawadee Prasittisa
- Division of Science, Faculty of Education, Nakhon Phanom University Nakhon Phanom 48000 Thailand
| | - Brompoj Prutthiwanasan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
- Unit of Compounds Library for Drug Discovery Mahidol University Bangkok 10400 Thailand
| | - Sumet Chongruchiroj
- Department of Microbiology, Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
- Molecular Simulations in Drug Discovery, Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
| | - Kittisak Sripha
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
- Unit of Compounds Library for Drug Discovery Mahidol University Bangkok 10400 Thailand
| |
Collapse
|
116
|
Lima VDS, Ferreira YG, de Oliveira JC, Raia VDA, Rodrigues Emerick LBB, Albiero LR, Sinhorin VDG, Emerick GL. Alzheimer's Disease Mortality Rate: Correlation with Socio-Economic and Environmental Factors. TOXICS 2024; 12:586. [PMID: 39195688 PMCID: PMC11359452 DOI: 10.3390/toxics12080586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
The progressive increase in the number of deaths caused by Alzheimer's disease (AD) in Brazil and around the world between 2010 and 2020 raises questions in scientific society. At the same time, there is also an increase in life expectancy at birth (LEB). Thus, the aim of this study was, for the first time, to compare the increase in AD mortality rate (ADMR) in Brazilian regions over the years 2010 to 2020 with the increase in LEB, and investigate the possible correlation between these demographic transition phenomena and pesticide sales and exposure during this period. Data were extracted from the Brazilian Institute of Geography and Statistics (IBGE), from the Department of Informatics and Technology of the Brazilian Ministry of Health (DATASUS) and from the Brazilian Institute of the Environment and Renewable Natural Resources (IBAMA). There was a significant increase in life expectancy at birth and in ADMR over the years between 2010 and 2020 in all Brazilian regions, with the female population in the South region being the most affected. In conclusion, there is a strong positive correlation between the increase in ADMR and LEB; ADMR and Human Development Index (HDI) and ADMR and pesticide sales and exposure in Brazil over the years studied.
Collapse
Affiliation(s)
- Valfran da Silva Lima
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso—ICS/CUS/UFMT, Campus Sinop, Avenida Alexandre Ferronato, 1200, Cidade Jardim, Sinop 78550-728, MT, Brazil; (V.d.S.L.); (Y.G.F.); (J.C.d.O.); (V.d.A.R.); (L.B.B.R.E.); (L.R.A.)
- Programa de Pós-Graduação em Ciências em Saúde, Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso—ICS/CUS/UFMT, Sinop 78550-728, MT, Brazil
| | - Yasmin Gabriele Ferreira
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso—ICS/CUS/UFMT, Campus Sinop, Avenida Alexandre Ferronato, 1200, Cidade Jardim, Sinop 78550-728, MT, Brazil; (V.d.S.L.); (Y.G.F.); (J.C.d.O.); (V.d.A.R.); (L.B.B.R.E.); (L.R.A.)
| | - Júlio Cezar de Oliveira
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso—ICS/CUS/UFMT, Campus Sinop, Avenida Alexandre Ferronato, 1200, Cidade Jardim, Sinop 78550-728, MT, Brazil; (V.d.S.L.); (Y.G.F.); (J.C.d.O.); (V.d.A.R.); (L.B.B.R.E.); (L.R.A.)
- Programa de Pós-Graduação em Ciências em Saúde, Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso—ICS/CUS/UFMT, Sinop 78550-728, MT, Brazil
| | - Vanessa de Almeida Raia
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso—ICS/CUS/UFMT, Campus Sinop, Avenida Alexandre Ferronato, 1200, Cidade Jardim, Sinop 78550-728, MT, Brazil; (V.d.S.L.); (Y.G.F.); (J.C.d.O.); (V.d.A.R.); (L.B.B.R.E.); (L.R.A.)
| | - Ludmila Barbosa Bandeira Rodrigues Emerick
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso—ICS/CUS/UFMT, Campus Sinop, Avenida Alexandre Ferronato, 1200, Cidade Jardim, Sinop 78550-728, MT, Brazil; (V.d.S.L.); (Y.G.F.); (J.C.d.O.); (V.d.A.R.); (L.B.B.R.E.); (L.R.A.)
- Programa de Pós-Graduação em Ciências em Saúde, Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso—ICS/CUS/UFMT, Sinop 78550-728, MT, Brazil
| | - Lucinéia Reuse Albiero
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso—ICS/CUS/UFMT, Campus Sinop, Avenida Alexandre Ferronato, 1200, Cidade Jardim, Sinop 78550-728, MT, Brazil; (V.d.S.L.); (Y.G.F.); (J.C.d.O.); (V.d.A.R.); (L.B.B.R.E.); (L.R.A.)
| | | | - Guilherme Luz Emerick
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso—ICS/CUS/UFMT, Campus Sinop, Avenida Alexandre Ferronato, 1200, Cidade Jardim, Sinop 78550-728, MT, Brazil; (V.d.S.L.); (Y.G.F.); (J.C.d.O.); (V.d.A.R.); (L.B.B.R.E.); (L.R.A.)
- Programa de Pós-Graduação em Ciências em Saúde, Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso—ICS/CUS/UFMT, Sinop 78550-728, MT, Brazil
| |
Collapse
|
117
|
Abu-Amara H, Zhao W, Li Z, Leung YY, Schellenberg GD, Wang LS, Moorjani P, Dey AB, Dey S, Zhou X, Gross AL, Lee J, Kardia SLR, Smith JA. Region-based analysis with functional annotation identifies genes associated with cognitive function in South Asians from India. RESEARCH SQUARE 2024:rs.3.rs-4712660. [PMID: 39149469 PMCID: PMC11326367 DOI: 10.21203/rs.3.rs-4712660/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The prevalence of dementia among South Asians across India is approximately 7.4% in those 60 years and older, yet little is known about genetic risk factors for dementia in this population. Most known risk loci for Alzheimer's disease (AD) have been identified from studies conducted in European Ancestry (EA) but are unknown in South Asians. Using whole-genome sequence data from 2680 participants from the Diagnostic Assessment of Dementia for the Longitudinal Aging Study of India (LASI-DAD), we performed a gene-based analysis of 84 genes previously associated with AD in EA. We investigated associations with the Hindi Mental State Examination (HMSE) score and factor scores for general cognitive function and five cognitive domains. For each gene, we examined missense/loss-of-function (LoF) variants and brain-specific promoter/enhancer variants, separately, both with and without incorporating additional annotation weights (e.g., deleteriousness, conservation scores) using the variant-Set Test for Association using Annotation infoRmation (STAAR). In the missense/LoF analysis without annotation weights and controlling for age, sex, state/territory, and genetic ancestry, three genes had an association with at least one measure of cognitive function (FDR q<0.1). APOE was associated with four measures of cognitive function, PICALM was associated with HMSE score, and TSPOAP1 was associated with executive function. The most strongly associated variants in each gene were rs429358 (APOE ε4), rs779406084 (PICALM), and rs9913145 (TSPOAP1). rs779406084 is a rare missense mutation that is more prevalent in LASI-DAD than in EA (minor allele frequency=0.075% vs. 0.0015%); the other two are common variants. No genes in the brain-specific promoter/enhancer analysis met criteria for significance. Results with and without annotation weights were similar. Missense/LoF variants in some genes previously associated with AD in EA are associated with measures of cognitive function in South Asians from India. Analyzing genome sequence data allows identification of potential novel causal variants enriched in South Asians.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - A B Dey
- All India Institute of Medical Sciences
| | | | | | - Alden L Gross
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University
| | | | | | | |
Collapse
|
118
|
Fang Y, Peck MR, Quinn K, Chapman JE, Medina D, McFadden SA, Bartke A, Hascup ER, Hascup KN. Senolytic intervention improves cognition, metabolism, and adiposity in female APP NL-F/NL-F mice. GeroScience 2024:10.1007/s11357-024-01308-8. [PMID: 39120687 DOI: 10.1007/s11357-024-01308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Senescent cells accumulate throughout the body and brain contributing to unhealthy aging and Alzheimer's disease (AD). The APPNL-F/NL-F amyloidogenic AD mouse model exhibits increased markers of senescent cells and the senescence-associated secretory phenotype (SASP) in visceral white adipose tissue and the hippocampus before plaque accumulation and cognitive decline. We hypothesized that senolytic intervention would alleviate cellular senescence thereby improving spatial memory in APPNL-F/NL-F mice. Thus, 4-month-old male and female APPNL-F/NL-F mice were treated monthly with vehicle, 5 mg/kg dasatinib + 50 mg/kg quercetin, or 100 mg/kg fisetin. Blood glucose levels, energy metabolism, spatial memory, amyloid burden, and senescent cell markers were assayed. Dasatinib + quercetin treatment in female APPNL-F/NL-F mice increased oxygen consumption and energy expenditure resulting in decreased body mass. White adipose tissue mass was decreased along with senescence markers, SASP, blood glucose, and plasma insulin and triglycerides. Hippocampal senescence markers and SASP were reduced along with soluble and insoluble amyloid-β (Aβ)42 and senescence-associated-β-gal activity leading to improved spatial memory. Fisetin had negligible effects on these measures in female APPNL-F/NL-F mice while neither senolytic intervention altered these parameters in the male mice. Considering women have a greater risk of dementia, identifying senotherapeutics appropriate for sex and disease stage is necessary for personalized medicine.
Collapse
Affiliation(s)
- Yimin Fang
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Mackenzie R Peck
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Kathleen Quinn
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Jenelle E Chapman
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - David Medina
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Samuel A McFadden
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Erin R Hascup
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Kevin N Hascup
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA.
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA.
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA.
| |
Collapse
|
119
|
Abdul Manap AS, Almadodi R, Sultana S, Sebastian MG, Kavani KS, Lyenouq VE, Shankar A. Alzheimer's disease: a review on the current trends of the effective diagnosis and therapeutics. Front Aging Neurosci 2024; 16:1429211. [PMID: 39185459 PMCID: PMC11341404 DOI: 10.3389/fnagi.2024.1429211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
The most prevalent cause of dementia is Alzheimer's disease. Cognitive decline and accelerating memory loss characterize it. Alzheimer's disease advances sequentially, starting with preclinical stages, followed by mild cognitive and/or behavioral impairment, and ultimately leading to Alzheimer's disease dementia. In recent years, healthcare providers have been advised to make an earlier diagnosis of Alzheimer's, prior to individuals developing Alzheimer's disease dementia. Regrettably, the identification of early-stage Alzheimer's disease in clinical settings can be arduous due to the tendency of patients and healthcare providers to disregard symptoms as typical signs of aging. Therefore, accurate and prompt diagnosis of Alzheimer's disease is essential in order to facilitate the development of disease-modifying and secondary preventive therapies prior to the onset of symptoms. There has been a notable shift in the goal of the diagnosis process, transitioning from merely confirming the presence of symptomatic AD to recognizing the illness in its early, asymptomatic phases. Understanding the evolution of disease-modifying therapies and putting effective diagnostic and therapeutic management into practice requires an understanding of this concept. The outcomes of this study will enhance in-depth knowledge of the current status of Alzheimer's disease's diagnosis and treatment, justifying the necessity for the quest for potential novel biomarkers that can contribute to determining the stage of the disease, particularly in its earliest stages. Interestingly, latest clinical trial status on pharmacological agents, the nonpharmacological treatments such as behavior modification, exercise, and cognitive training as well as alternative approach on phytochemicals as neuroprotective agents have been covered in detailed.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Reema Almadodi
- Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Selangor, Malaysia
| | - Shirin Sultana
- Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Selangor, Malaysia
| | | | | | - Vanessa Elle Lyenouq
- Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Selangor, Malaysia
| | - Aravind Shankar
- Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Selangor, Malaysia
| |
Collapse
|
120
|
Piekarz J, Picheta N, Burdan O, Kurek M, Chrościńska-Krawczyk M. Phytotherapy in Alzheimer's Disease-A Narrative Review. Biomedicines 2024; 12:1812. [PMID: 39200276 PMCID: PMC11351709 DOI: 10.3390/biomedicines12081812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Alzheimer's disease (AD) affects 50-70% of patients with dementia, making it the leading cause of dementia. The condition is classified as a neurodegenerative, progressive and incurable disease. The disease is affecting more and more people around the world. AD has a multifactorial nature, spreading from beta-amyloid deposition to inflammation in patients' brains. Patients experience cognitive impairment and functional decline. Although it is a disease that occurs mainly in the elderly, it is increasingly being diagnosed in young people between the ages of 30 and 40. It not only affects the patient themself but also reduces the quality of life of their closest caregivers. According to the WHO, the treatment of AD consumes USD 1.3 trillion globally, but it is only symptomatic, as there are no drugs to prevent the onset of AD or treat the cause of its onset. Due to the numerous side effects of therapy and the lack of proactive drugs that act on the pathomechanism of AD, alternative therapies are being sought. One possible option that has many studies confirming its effect is phytotherapy. Many herbs have pharmacological properties, such as antioxidant, anti-inflammatory, or neuroprotective effects, making them the future of cognitive disorders and AD treatment. This review focuses on some of the most promising herbs that have potentially potent properties and effects in AD therapy. These include Curcuma longa, Panax ginseng, Berberis and Crocus sativus. These herbs may perhaps be key in the future to make functioning and life easier for patients struggling with AD.
Collapse
Affiliation(s)
- Julia Piekarz
- Students’ Scientific Association, Department of Paediatric Neurology, Medical University, 20-059 Lublin, Poland; (N.P.); (O.B.); (M.K.)
| | - Natalia Picheta
- Students’ Scientific Association, Department of Paediatric Neurology, Medical University, 20-059 Lublin, Poland; (N.P.); (O.B.); (M.K.)
| | - Oliwia Burdan
- Students’ Scientific Association, Department of Paediatric Neurology, Medical University, 20-059 Lublin, Poland; (N.P.); (O.B.); (M.K.)
| | - Marcelina Kurek
- Students’ Scientific Association, Department of Paediatric Neurology, Medical University, 20-059 Lublin, Poland; (N.P.); (O.B.); (M.K.)
| | | |
Collapse
|
121
|
Yoon JH, Lee H, Kwon D, Lee D, Lee S, Cho E, Kim J, Kim D. Integrative approach of omics and imaging data to discover new insights for understanding brain diseases. Brain Commun 2024; 6:fcae265. [PMID: 39165479 PMCID: PMC11334939 DOI: 10.1093/braincomms/fcae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/03/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Treatments that can completely resolve brain diseases have yet to be discovered. Omics is a novel technology that allows researchers to understand the molecular pathways underlying brain diseases. Multiple omics, including genomics, transcriptomics and proteomics, and brain imaging technologies, such as MRI, PET and EEG, have contributed to brain disease-related therapeutic target detection. However, new treatment discovery remains challenging. We focused on establishing brain multi-molecular maps using an integrative approach of omics and imaging to provide insights into brain disease diagnosis and treatment. This approach requires precise data collection using omics and imaging technologies, data processing and normalization. Incorporating a brain molecular map with the advanced technologies through artificial intelligence will help establish a system for brain disease diagnosis and treatment through regulation at the molecular level.
Collapse
Affiliation(s)
- Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Hagyeong Lee
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Dayoung Kwon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Dongha Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Seulah Lee
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Eunji Cho
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Jaehoon Kim
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Dayea Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| |
Collapse
|
122
|
Anitha K, Singh MK, Kohat K, Sri Varshini T, Chenchula S, Padmavathi R, Amerneni LS, Vishnu Vardhan K, Mythili Bai K, Chavan MR, Bhatt S. Recent Insights into the Neurobiology of Alzheimer's Disease and Advanced Treatment Strategies. Mol Neurobiol 2024:10.1007/s12035-024-04384-1. [PMID: 39102108 DOI: 10.1007/s12035-024-04384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
In recent years, significant advancements have been made in understanding Alzheimer's disease from both neurobiological and clinical perspectives. Exploring the complex systems underlying AD has unveiled insights that could potentially revolutionize therapeutic approaches. Recent investigations have highlighted intricate interactions among genetic, molecular, and environmental factors in AD. Optimism arises from neurobiological advancements and diverse treatment options, potentially slowing or halting disease progression. Amyloid-beta plaques and tau protein tangles crucially influence AD onset and progression. Emerging treatments involve diverse strategies, such as approaches targeting multiple pathways involved in AD pathogenesis, such as inflammation, oxidative stress, and synaptic dysfunction pathways. Clinical trials using humanized monoclonal antibodies, focusing on immunotherapies eliminating amyloid-beta, have shown promise. Nonpharmacological interventions such as light therapy, electrical stimulation, cognitive training, physical activity, and dietary changes have drawn attention for their potential to slow cognitive aging and enhance brain health. Precision medicine, which involves tailoring therapies to individual genetic and molecular profiles, has gained traction. Ongoing research and interdisciplinary collaboration are expected to yield more effective treatments.
Collapse
Affiliation(s)
- Anitha K
- School of Pharmacy and Technology Management (SPTM), SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed to University, Shirpur, 425405, India
| | | | - Komal Kohat
- All India Institute of Medical Sciences, Madhya Pradesh, Bhopal, 462020, India
| | - Sri Varshini T
- All India Institute of Medical Sciences, Raipur, 462020, India
| | - Santenna Chenchula
- Department of Pharmacology, All India Institute of Medical Sciences, Bhopal, 462020, India.
| | - Padmavathi R
- SVS Medical College, Hyderabad, Telangana, India
| | | | - Vishnu Vardhan K
- All India Institute of Medical Sciences, Madhya Pradesh, Bhopal, 462020, India
| | | | - Madhav Rao Chavan
- All India Institute of Medical Sciences, Mangalagiri, Andhra Pradesh, India
| | - Shvetank Bhatt
- School of Health Sciences and Technology, MIT World Peace University, Dr. Vishwanath Karad, Pune, 411038, Maharashtra, India
| |
Collapse
|
123
|
Matin M, Joshi T, Wang D, Tzvetkov NT, Matin FB, Wierzbicka A, Jóźwik A, Horbańczuk JO, Atanasov AG. Effects of Ginger ( Zingiber officinale) on the Hallmarks of Aging. Biomolecules 2024; 14:940. [PMID: 39199328 PMCID: PMC11352747 DOI: 10.3390/biom14080940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Ginger (Zingiber officinale Roscoe) is broadly used as a traditional remedy and food ingredient, and numerous preclinical and clinical studies have demonstrated health benefits in a range of age-related disorders. Moreover, longevity-promoting effects have been demonstrated in several (preclinical) research models. With this work, we aimed to comprehensively review the reported effects of ginger and its bioactive constituents on the twelve established hallmarks of aging, with the ultimate goal of gaining a deeper understanding of the potential for future interventions in the area of longevity-extension and counteracting of aging-related diseases. The reviewed literature supports the favorable effects of ginger and some of its constituents on all twelve hallmarks of aging, with a particularly high number of animal research studies indicating counteraction of nutrient-sensing dysregulations, mitochondrial dysfunction, chronic inflammation, and dysbiosis. On this background, validation in human clinical trials is still insufficient or is entirely missing, with the exception of some studies indicating positive effects on deregulated nutrient-sensing, chronic inflammation, and dysbiosis. Thus, the existing body of literature clearly supports the potential of ginger to be further studied in clinical trials as a supplement for the promotion of both lifespan and health span.
Collapse
Affiliation(s)
- Maima Matin
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University, Nainital 263002, India;
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada;
| | - Nikolay T. Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Farhan Bin Matin
- Department of Pharmacy, East West University, Aftabnagar, Dhaka 1212, Bangladesh;
| | - Agnieszka Wierzbicka
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Artur Jóźwik
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| |
Collapse
|
124
|
Jayawickreme DK, Ekwosi C, Anand A, Andres-Mach M, Wlaź P, Socała K. Luteolin for neurodegenerative diseases: a review. Pharmacol Rep 2024; 76:644-664. [PMID: 38904713 PMCID: PMC11294387 DOI: 10.1007/s43440-024-00610-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and multiple sclerosis affect millions of people around the world. In addition to age, which is a key factor contributing to the development of all neurodegenerative diseases, genetic and environmental components are also important risk factors. Current methods of treating neurodegenerative diseases are mostly symptomatic and do not eliminate the cause of the disease. Many studies focus on searching for natural substances with neuroprotective properties that could be used as an adjuvant therapy in the inhibition of the neurodegeneration process. These compounds include flavonoids, such as luteolin, showing significant anti-inflammatory, antioxidant, and neuroprotective activity. Increasing evidence suggests that luteolin may confer protection against neurodegeneration. In this review, we summarize the scientific reports from preclinical in vitro and in vivo studies regarding the beneficial effects of luteolin in neurodegenerative diseases. Luteolin was studied most extensively in various models of Alzheimer's disease but there are also several reports showing its neuroprotective effects in models of Parkinson's disease. Though very limited, studies on possible protective effects of luteolin against Huntington's disease and multiple sclerosis are also discussed here. Overall, although preclinical studies show the potential benefits of luteolin in neurodegenerative disorders, clinical evidence on its therapeutic efficacy is still deficient.
Collapse
Affiliation(s)
| | - Cletus Ekwosi
- Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, Lublin, 20-033, PL, Poland
| | - Apurva Anand
- Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, Lublin, 20-033, PL, Poland
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-950, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin, 20-033, PL, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin, 20-033, PL, Poland.
| |
Collapse
|
125
|
Bansal R, Singh R, Dutta TS, Dar ZA, Bajpai A. Indanone: a promising scaffold for new drug discovery against neurodegenerative disorders. Drug Discov Today 2024; 29:104063. [PMID: 38901670 DOI: 10.1016/j.drudis.2024.104063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/03/2024] [Accepted: 06/08/2024] [Indexed: 06/22/2024]
Abstract
Indanone is a versatile scaffold that has a number of pharmacological properties. The successful development and ensuing approval of indanone-derived donepezil as a drug of choice for Alzheimer's disease attracted significant scientific interest in this moiety. Indanones could act as small molecule chemical probes as they have strong affinity towards several critical enzymes associated with the pathophysiology of various neurological disorders. Inhibition of these enzymes elevates the levels of neuroprotective brain chemicals such as norepinephrine, serotonin and dopamine. Further, indanone derivatives are capable of modulating the activities of both monoamine oxidases (MAO-A and -B) and acetylcholinesterase (AChE), and thus could be useful in various neurodegenerative diseases. This review article presents a panoramic view of the research carried out on the indanone nucleus in the development of potential neuroprotective agents.
Collapse
Affiliation(s)
- Ranju Bansal
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India.
| | - Ranjit Singh
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Tuhin Shubra Dutta
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Zahid Ahmad Dar
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Ankit Bajpai
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| |
Collapse
|
126
|
Ji X, Liang L. Enhancing Outcomes in Alzheimer's Disease: Exploring the Effects of a Diversified Rehabilitation Program Combined with Donepezil on Apathy, Cognitive Function, and Family Caregiver Burden. ACTAS ESPANOLAS DE PSIQUIATRIA 2024; 52:420-427. [PMID: 39129694 PMCID: PMC11319742 DOI: 10.62641/aep.v52i4.1643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
BACKGROUND AND OBJECTIVE Alzheimer's disease is a progressive neurodegenerative disorder characterized by cognitive decline, behavioral changes, and functional impairments. Apathy, a common symptom in Alzheimer's disease, refers to a lack of motivation, interest, and emotional responsiveness. It can significantly impact patients' quality of life and increase caregiver burden. This study aimed to determine the effects of a diversified rehabilitation program combined with donepezil on apathy, cognitive function, and family caregiver burden of Alzheimer's disease patients. METHODS A total of 105 Alzheimer's disease patients treated at our hospital between January 2020 and January 2023 were selected and analyzed retrospectively. They were assigned to the control group (n = 50) or the observation group (n = 55). The two groups did not differ in terms of general data such as age and sex. All patients were treated with donepezil orally. The control group was given routine nursing, whereas the observation group was given a diversified rehabilitation program intervention, including cognitive training and emotional support. The Hasegawa's dementia scale, mini-mental state examination, and Montreal cognitive assessment scale were adopted to evaluate the cognitive function of the two groups before and after treatment. A caregiver burden scale, the Zarit Burden Interview (ZBI) and the Apathy Evaluation Scale Informant version (AES-I) were used to evaluate the caregiver burden and apathy of the two groups. RESULTS A significantly higher overall response rate to treatment was found in the observation group (94.55%) than in the control group (80.00%) (p = 0.024). After treatment, scores on the Hasegawa's dementia scale, mini-mental state examination, and Montreal cognitive assessment scale of the two groups increased to varying degrees, with greater increases in the observation group than in the control group (p < 0.05). The ZBI and AES-I scores of the two groups decreased to different degrees after treatment, with greater decreases in the observation group than in the control group (p < 0.05). CONCLUSION A diversified rehabilitation program combined with donepezil can substantially alleviate the apathy of Alzheimer's disease patients, improve their cognitive function, and reduce the burden on their families.
Collapse
Affiliation(s)
- Xiaoxia Ji
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, 570311 Haikou, Hainan, China
| | - Lihua Liang
- Department of Geriatrics, The Second Affiliated Hospital of Hainan Medical University, 570311 Haikou, Hainan, China
| |
Collapse
|
127
|
Gadhave DG, Sugandhi VV, Jha SK, Nangare SN, Gupta G, Singh SK, Dua K, Cho H, Hansbro PM, Paudel KR. Neurodegenerative disorders: Mechanisms of degeneration and therapeutic approaches with their clinical relevance. Ageing Res Rev 2024; 99:102357. [PMID: 38830548 DOI: 10.1016/j.arr.2024.102357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Neurodegenerative disorders (NDs) are expected to pose a significant challenge for both medicine and public health in the upcoming years due to global demographic changes. NDs are mainly represented by degeneration/loss of neurons, which is primarily accountable for severe mental illness. This neuronal degeneration leads to many neuropsychiatric problems and permanent disability in an individual. Moreover, the tight junction of the brain, blood-brain barrier (BBB)has a protective feature, functioning as a biological barrier that can prevent medicines, toxins, and foreign substances from entering the brain. However, delivering any medicinal agent to the brain in NDs (i.e., Multiple sclerosis, Alzheimer's, Parkinson's, etc.) is enormously challenging. There are many approved therapies to address NDs, but most of them only help treat the associated manifestations. The available therapies have failed to control the progression of NDs due to certain factors, i.e., BBB and drug-associated undesirable effects. NDs have extremely complex pathology, with many pathogenic mechanisms involved in the initiation and progression; thereby, a limited survival rate has been observed in ND patients. Hence, understanding the exact mechanism behind NDs is crucial to developing alternative approaches for improving ND patients' survival rates. Thus, the present review sheds light on different cellular mechanisms involved in NDs and novel therapeutic approaches with their clinical relevance, which will assist researchers in developing alternate strategies to address the limitations of conventional ND therapies. The current work offers the scope into the near future to improve the therapeutic approach of NDs.
Collapse
Affiliation(s)
- Dnyandev G Gadhave
- Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune, Maharashtra 413130, India; College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Vrashabh V Sugandhi
- Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune, Maharashtra 413130, India; College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Sopan N Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun
| | - Hyunah Cho
- College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney 2007, Australia.
| | - Keshav Raj Paudel
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun; Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney 2007, Australia.
| |
Collapse
|
128
|
Zhu C, Xu J, Lin J, Liu J, Yu E. Double-strand-break repair protein rad21 homolog/Synaptotagmin-7 alleviates Alzheimer's disease in mice by promoting M2 polarization of microglia. Brain Res Bull 2024; 214:110994. [PMID: 38830486 DOI: 10.1016/j.brainresbull.2024.110994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/26/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Synaptotagmin-7 (SYT7) has been proposed as an innovative therapeutic strategy for treating cognitive impairment, while its contribution to Alzheimer's disease (AD) alleviation remains unclear. In this study, we investigated the role and potential mechanisms of SYT7 in AD. APP/PS1 mice were induced as an AD mouse model, and RNA-sequencing was conducted to analyze the transcriptomic differences between the brain tissues of AD mice and controls. SYT7, which was the most significantly differentially expressed gene in the RNA-sequencing, was found to be reduced in AD-like mice, and overexpression of SYT7 alleviated cognitive dysfunction and attenuated neuroinflammation and neuronal loss in the hippocampal tissues of mice with AD. Transcription factor double-strand-break repair protein rad21 homolog (RAD21) bound to the promoter of SYT7 to activate SYT7 transcription. SYT7 and RAD21 were expressed in microglia. SYT7 and RAD21 both promoted M2 polarization of microglia, while silencing of SYT7 repressed the M2 polarization of microglia in the presence of RAD21 overexpression. Overall, our results indicate that RAD21 mediated transcriptional activation of SYT7 to promote M2 polarization of microglia, thereby alleviating AD-like symptoms in mice, which might provide prospective cues for developing therapeutic strategies to improve cognitive impairment and AD course.
Collapse
Affiliation(s)
- Cheng Zhu
- School of Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China.
| | - Jiaxi Xu
- Department of General Psychiatric, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 311122, PR China
| | - Jixin Lin
- Second Clinical Medicine Faculty, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Jiahong Liu
- School of Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Enyan Yu
- Department of Clinical Psychology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310005, PR China.
| |
Collapse
|
129
|
Straistă M, Slevin M. C-Reactive Protein, the Gliovascular Unit, and Alzheimer's Disease. Cureus 2024; 16:e67969. [PMID: 39347146 PMCID: PMC11427405 DOI: 10.7759/cureus.67969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Alzheimer's disease (AD) pathogenesis is conditioned by the presence of amyloid beta (Aβ) and neuroinflammation. The gliovascular unit (GVU) illustrates the relationship between the vascular components of the brain and glial cells, particularly astrocytes, which are seen as critical elements mainly affected in this disease. In AD patients, the impairment of the GVU is seen as blood-brain barrier breakdown, decreased clearance of Aβ, and chronic inflammatory status. C-reactive protein (CRP) and its monomeric form (mCRP) are associated with endothelial dysfunction and amyloid plaque instability, contributing to neuroinflammation and neurodegeneration. The interconnections between the GVU and the dissociated form of CRP were demonstrated by mCRP implication in vascular permeability that supports inflammation and extravasation of pro-inflammatory cytokines into the brain parenchyma. Astrocytic activation and endfeet function alterations can exacerbate the progression of AD by elevating pro-inflammatory agents and vascular amyloid accumulations. This review aims to emphasize the synergistic link between the GVU and monomers of CRP in the perpetuation of the inflammatory status, exacerbating neurodegeneration and neuroinflammation. Understanding their implication in AD can bring insights into novel therapeutic strategies to reduce AD progression.
Collapse
Affiliation(s)
- Mihaela Straistă
- General Medicine, The George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, ROU
| | - Mark Slevin
- Center for Advanced Medical and Pharmaceutical Research, The George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, ROU
| |
Collapse
|
130
|
Mohammadi Y, Emadi R, Maddahi A, Shirdel S, Morowvat MH. Identifying potential Alzheimer's disease therapeutics through GSK-3β inhibition: A molecular docking and dynamics approach. Comput Biol Chem 2024; 111:108095. [PMID: 38805865 DOI: 10.1016/j.compbiolchem.2024.108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024]
Abstract
Emerging as a promising drug target for Alzheimer's disease (AD) therapy, glycogen synthase kinase 3β (GSK-3β) has garnered attention. This study sought to rigorously scrutinize a compendium of natural compounds retrieved from the ZINC database through pharmacodynamic experiments, employing a 1 H-indazole-3-carboxamide (INDZ) scaffold, to identify compounds capable of inhibiting the GSK-3β protein. Utilizing a multi-step approach, the study involved pharmacophore analysis, followed by molecular docking to select five promising ligands for further investigation. Subsequently, ESMACS simulations were employed to assess the stability of the ligand-protein interactions. Evaluation of the binding modes and free energy of the ligands revealed that five compounds (2a-6a) exhibited crucial interactions with the active site residues. Furthermore, various methodologies, including hydrogen bond and clustering analyses, were utilized to ascertain their inhibitory potential and elucidate the factors contributing to ligand binding in the protein's active site. The findings from MMPBSA/GBSA analysis indicated that these five selected small molecules closely approached the IC50 value of the reference ligand (OH8), yielding energy values of -34.85, -32.58, -31.71, and -30.39 kcal/mol, respectively. Additionally, an assessment of the interactions using hydrogen bond and dynamic analyses delineated the effective binding of the ligands with the binding pockets in the protein. Through computational analysis, we obtained valuable insights into the molecular mechanisms of GSK-3β, aiding in the development of more potent inhibitors.
Collapse
Affiliation(s)
- Yasaman Mohammadi
- Faculty of Dentistry, Islamic Azad University, Shiraz Branch, Shiraz, Iran
| | - Reza Emadi
- Department of Biochemistry, Institute of Biochemistry & Biophsysics (IBB), University of Tehran, Tehran, Iran
| | - Arman Maddahi
- Department of Microbiology, Islamic Azad University, Shiraz Branch, Shiraz, Iran
| | - Shiva Shirdel
- Department of Psychology, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
131
|
Schwartz MR. "On Looking Away": Vortex, a film by Gaspar Noé. J Am Geriatr Soc 2024; 72:2615-2617. [PMID: 36722127 DOI: 10.1111/jgs.18253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 02/02/2023]
Affiliation(s)
- Maxwell R Schwartz
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
132
|
Behl T, Kaur I, Sehgal A, Khandige PS, Imran M, Gulati M, Khalid Anwer M, Elossaily GM, Ali N, Wal P, Gasmi A. The link between Alzheimer's disease and stroke: A detrimental synergism. Ageing Res Rev 2024; 99:102388. [PMID: 38914265 DOI: 10.1016/j.arr.2024.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 06/26/2024]
Abstract
Being age-related disorders, both Alzheimer's disease (AD) and stroke share multiple risk factors, such as hypertension, smoking, diabetes, and apolipoprotein E (APOE) Ɛ4 genotype, and coexist in patients. Accumulation of amyloid-β plaques and neurofibrillary tangled impair cognitive potential, leading to AD. Blocked blood flow in the neuronal tissues, causes neurodegeneration and cell death in stroke. AD is commonly characterized by cerebral amyloid angiopathy, which significantly elevates the risk of hemorrhagic stroke. Patients with AD and stroke have been both reported to exhibit greater cognitive impairment, followed by multiple pathophysiological mechanisms shared between the two. The manuscript aims to elucidate the relationship between AD and stroke, as well as the common pathways and risk factors while understanding the preventive therapies that might limit the negative impacts of this correlation, with diagnostic modalities and current AD treatments. The authors provide a comprehensive review of the link and aid the healthcare professionals to identify suitable targets and risk factors, that may retard cognitive decline and neurodegeneration in patients. However, more intricate research is required in this regard and an interdisciplinary approach that would target both the vascular and neurodegenerative factors would improve the quality of life in AD patients.
Collapse
Affiliation(s)
- Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India.
| | - Ishnoor Kaur
- University of Glasgow, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Prasanna Shama Khandige
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmacology, Mangaluru, Karnataka, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Gehan M Elossaily
- Department of Baisc Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Pranay Wal
- PSIT Kanpur, Department of Pharmacy, Uttar Pradesh, India
| | - Amin Gasmi
- Societe Francophone de Nutritherapie et de Nutrigenetique Appliquee, Villeurbanne, France; International Institute of Nutrition and Micronutrition Sciences, Saint Etienne, France
| |
Collapse
|
133
|
Safarbalou A, Abbasi A. Oral administration of liposome-encapsulated thymol could alleviate the inflammatory parameters in serum and hippocampus in a rat model of Alzheimer's disease. Exp Gerontol 2024; 193:112473. [PMID: 38801839 DOI: 10.1016/j.exger.2024.112473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Neuroinflammation is closely related to Alzheimer's Disease (AD) pathology, hence supplements with anti-inflammatory property could help attenuate the progression of AD. This study was conducted to evaluate the potential anti-inflammatory effects of liposome encapsulated thymol (LET), administered orally, in prevention of Alzheimer in a rat model by anti-inflammatory mechanisms. METHODS The rats were grouped into six groups (n = 10 animals per group), including Control healthy (Con), Alzheimer's disease (AD) model, AD model treated with free thymol in 40 and 80 mg/kg body weight (TH40 and TH80), AD model treated with LET in 40 and 80 mg/kg of body weight (LET40 and LET80). The behavioral response of step through latency (Passive Avoidance Test), concentrations of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2) and brain-derived neurotrophic factor (BDNF) were assessed in serum and hippocampus. RESULTS The results showed that significant increase in concentrations of IL-1β (P = 0.001), IL-6 (P = 0.001), TNF-α (P = 0.001) and COX-2 (P = 0.001) in AD group compared with healthy control rats. AD induction significantly reduced step through latency and revealed deficits in passive avoidance performance. The results also showed the treatment with free thymol especially in higher concentrations and also LTE could decrease serum concentrations of IL-1β (P < 0.05), IL-6 (P < 0.05), TNF-α (P < 0.05), and COX-2 (P < 0.05) and increase BDNF (P < 0.05) compared with control Alzheimer rats in hippocampus and serum. There were also significant correlations between serum and hippocampus concentrations of IL-1β (r2 = 0.369, P = 0.001), IL-6 (r2 = 0.386, P = 0.001), TNF-α (r2 = 0.412, P = 0.001), and COX-2 (r2 = 0.357, P = 0.001). It means a closed and positive relation between serum and hippocampus concentrations of IL-1β, IL-6, TNF-α, and COX-2. CONCLUSIONS LET demonstrates its ability to attenuate neuroinflammatory reaction in AD model through suppression of IL-1β, IL-6, and TNF-α and COX-2 indicators. Hence, it can ameliorate AD pathogenesis by declining inflammatory reaction.
Collapse
Affiliation(s)
- Asal Safarbalou
- Department of Biomedical Research, Institute for Intelligent Research, Tbilisi, Georgia
| | - Adeel Abbasi
- Department of Biomedical Research, Institute for Intelligent Research, Tbilisi, Georgia.
| |
Collapse
|
134
|
Dalal S, Ramirez-Gomez J, Sharma B, Devara D, Kumar S. MicroRNAs and synapse turnover in Alzheimer's disease. Ageing Res Rev 2024; 99:102377. [PMID: 38871301 DOI: 10.1016/j.arr.2024.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-beta plaques and neurofibrillary tangles in the brain, leading to synaptic dysfunction and cognitive decline. Healthy synapses are the crucial for normal brain function, memory restoration and other neurophysiological function. Synapse loss and synaptic dysfunction are two primary events that occur during AD initiation. Synapse lifecycle and/or synapse turnover is divided into five key stages and several sub-stages such as synapse formation, synapse assembly, synapse maturation, synapse transmission and synapse termination. In normal state, the synapse turnover is regulated by various biological and molecular factors for a healthy neurotransmission. In AD, the different stages of synapse turnover are affected by AD-related toxic proteins. MicroRNAs (miRNAs) have emerged as critical regulators of gene expression and have been implicated in various neurological diseases, including AD. Deregulation of miRNAs modulate the synaptic proteins and affect the synapse turnover at different stages. In this review, we discussed the key milestones of synapse turnover and how they are affected in AD. Further, we discussed the involvement of miRNAs in synaptic turnover, focusing specifically on their role in AD pathogenesis. We also emphasized the regulatory mechanisms by which miRNAs modulate the synaptic turnover stages in AD. Current studies will help to understand the synaptic life-cycle and role of miRNAs in each stage that is deregulated in AD, further allowing for a better understanding of the pathogenesis of devastating disease.
Collapse
Affiliation(s)
- Sarthak Dalal
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Jaime Ramirez-Gomez
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Bhupender Sharma
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Davin Devara
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Subodh Kumar
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA; L. Frederick Francis Graduate School of Biomedicael Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
135
|
Halder D, Das S, Joseph A. An insight into structure-activity relationship of naturally derived biological macromolecules for the treatment of Alzheimer's disease: a review. J Biomol Struct Dyn 2024; 42:6455-6471. [PMID: 37378526 DOI: 10.1080/07391102.2023.2230279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
Alzheimer's disease (AD) is a neurological disorder that affects millions of people worldwide. There are currently no cures for AD, although various drugs are used to manage the symptoms and reduce the disease's progression. AChE inhibitors such as rivastigmine, donepezil, galantamine, and the NMDA glutamate receptor antagonist memantine are currently FDA-approved drugs used in the treatment of AD. Recently, naturally derived biological macromolecules have shown promising results in the treatment of AD. Several biological macromolecules derived from natural sources are in various stages of preclinical and clinical trials. During the literature search, it was observed that there is a lack of a comprehensive review that particularly focuses on the role of naturally derived biological macromolecules (protein, carbohydrates, lipids, and nucleic acids) in the treatment of AD and the structure-activity relationship (SAR) approach for understanding the medicinal chemistry perspective. This review focuses on the SAR and probable mechanisms of action of biological macromolecules derived from natural sources for the treatment of AD, including peptides, proteins, enzymes, and polysaccharides. The paper further addresses the therapeutic possibilities of monoclonal antibodies, enzymes, and vaccines for the treatment of AD. Overall, the review provides insight into the SAR of naturally derived biological macromolecules in the treatment of AD. The ongoing research in this field holds great promise for the future development of AD treatment and provides hope for individuals affected by this devastating disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debojyoti Halder
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
136
|
Sharallah OA, Poddar NK, Alwadan OA. Delineation of the role of G6PD in Alzheimer's disease and potential enhancement through microfluidic and nanoparticle approaches. Ageing Res Rev 2024; 99:102394. [PMID: 38950868 DOI: 10.1016/j.arr.2024.102394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative pathologic entity characterized by the abnormal presence of tau and macromolecular Aβ deposition that leads to the degeneration or death of neurons. In addition to that, glucose-6-phosphate dehydrogenase (G6PD) has a multifaceted role in the process of AD development, where it can be used as both a marker and a target. G6PD activity is dysregulated due to its contribution to oxidative stress, neuroinflammation, and neuronal death. In this context, the current review presents a vivid depiction of recent findings on the relationship between AD progression and changes in the expression or activity of G6PD. The efficacy of the proposed G6PD-based therapeutics has been demonstrated in multiple studies using AD mouse models as representative animal model systems for cognitive decline and neurodegeneration associated with this disease. Innovative therapeutic insights are made for the boosting of G6PD activity via novel innovative nanotechnology and microfluidics tools in drug administration technology. Such approaches provide innovative methods of surpassing the blood-brain barrier, targeting step-by-step specific neural pathways, and overcoming biochemical disturbances that accompany AD. Using different nanoparticles loaded with G6DP to target specific organs, e.g., G6DP-loaded liposomes, enhances BBB penetration and brain distribution of G6DP. Many nanoparticles, which are used for different purposes, are briefly discussed in the paper. Such methods to mimic BBB on organs on-chip offer precise disease modeling and drug testing using microfluidic chips, requiring lower sample amounts and producing faster findings compared to conventional techniques. There are other contributions to microfluid in AD that are discussed briefly. However, there are some limitations accompanying microfluidics that need to be worked on to be used for AD. This study aims to bridge the gap in understanding AD with the synergistic use of promising technologies; microfluid and nanotechnology for future advancements.
Collapse
Affiliation(s)
- Omnya A Sharallah
- PharmD Program, Egypt-Japan University of Science and Technology (EJUST), New Borg El Arab, Alexandria 21934, Egypt
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India.
| | - Omnia A Alwadan
- PharmD Program, Egypt-Japan University of Science and Technology (EJUST), New Borg El Arab, Alexandria 21934, Egypt
| |
Collapse
|
137
|
Vázquez-Durán DL, Ortega A, Rodríguez A. Amino Acid Transporters Proteins Involved in the Glutamate-Glutamine Cycle and Their Alterations in Murine Models of Alzheimer's Disease. Mol Neurobiol 2024; 61:6077-6088. [PMID: 38273046 DOI: 10.1007/s12035-024-03966-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
The brain's ability to integrate external stimuli and generate responses is highly complex. While these mechanisms are not completely understood, current evidence suggests that alterations in cellular metabolism and microenvironment are involved in some dysfunctions as complex as Alzheimer's disease. This pathology courses with defects in the establishment of chemical synapses, which is dependent on the production and supply of neurotransmitters like glutamate and its recycling through the glutamate-glutamine cycle. Alterations in the expression and function of the amino acid transporters proteins involved in this cycle have recently been reported in different stages of Alzheimer's disease. Most of these data come from patients in advanced stages of the disease or post-mortem, due to the ethical and technical limitations of human studies. Therefore, genetically modified mouse models have been an excellent tool to analyze metabolic and even behavioral parameters that are very similar to those that develop in Alzheimer's disease, even at presymptomatic stages. Hence, this paper analyzes the role of glutamate metabolism and its intercellular trafficking in excitatory synapses from different approaches using transgenic mouse models; such an analysis will contribute to our present understanding of AD.
Collapse
Affiliation(s)
| | - Arturo Ortega
- Departamento de Toxicología, Cinvestav- IPN, Mexico City, México
| | - Angelina Rodríguez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro, México.
| |
Collapse
|
138
|
Zhang XT, Ji CL, Fu YJ, Yang Y, Xu GY. Screening of active components of Ganoderma lucidum and decipher its molecular mechanism to improve learning and memory disorders. Biosci Rep 2024; 44:BSR20232068. [PMID: 38904095 PMCID: PMC11292473 DOI: 10.1042/bsr20232068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/18/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024] Open
Abstract
Learning and memory impairment (LMI), a common degenerative central nervous system disease. Recently, more and more studies have shown that Ganoderma lucidum (GL) can improve the symptoms of LMI. The active ingredients in GL and their corresponding targets were screened through TCMSP (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform) and BATMAN-TCM (Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine) databases, and the potential LMI targets were searched for through GeneCard (GeneCards Human Gene Database) and DrugBank. Then, we construct a 'main active ingredient-target' network and a protein-protein interaction (PPI) network diagram.The GO (Gene Ontology) functional enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway annotation analysis were performed on the common targets through DAVID (Database for Annotation Visualization and Integrated Discovery) to clarify the potential molecular mechanism of action of active ingredients in GL. The tumor necrosis factor (TNF) protein was verified by Western blot; Twenty one active ingredients in GL and 142 corresponding targets were screened out, including 59 targets shared with LMI. The 448 biological processes shown by the GO functional annotation results and 55 signal pathways shown by KEGG enrichment analysis were related to the improvement of LMI by GL, among which the correlation of Alzheimer's disease pathway is the highest, and TNF was the most important protein; TNF can improve LMI. GL can improve LMI mainly by 10 active ingredients in it, and they may play a role by regulating Alzheimer's disease pathway and TNF protein.
Collapse
Affiliation(s)
- Xiao-tian Zhang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin 130000, People’s Republic of China
| | - Chun-lei Ji
- Specialty in Pharmaceutical Analysis, College of Pharmacy, Beihua University, Jilin, Jilin 132013, People’s Republic of China
| | - Yu-juan Fu
- Specialty in Pharmaceutical Analysis, College of Pharmacy, Beihua University, Jilin, Jilin 132013, People’s Republic of China
| | - Yue Yang
- Specialty in Pharmaceutical Analysis, College of Pharmacy, Beihua University, Jilin, Jilin 132013, People’s Republic of China
| | - Guang-yu Xu
- Specialty in Pharmaceutical Analysis, College of Pharmacy, Beihua University, Jilin, Jilin 132013, People’s Republic of China
| |
Collapse
|
139
|
Denier-Fields DN, Gangnon RE, Rivera-Rivera LA, Betthauser TJ, Bendlin BB, Johnson SC, Engelman CD. Evaluating Life Simple Seven's influence on brain health outcomes: The intersection of lifestyle and dementia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.29.24311179. [PMID: 39211877 PMCID: PMC11361218 DOI: 10.1101/2024.07.29.24311179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Lifestyle factors have been studied for dementia risk, but few have comprehensively assessed both Alzheimer's disease (AD) and cerebrovascular disease (CBVD) pathologies. Our research aims to determine the relationships between lifestyle and various dementia pathologies, challenging conventional research paradigms. METHODS Analyzing 1231 Wisconsin Registry for Alzheimer's Prevention (WRAP) study participants, we focused on Life Simple Seven (LS7) score calculations from questionnaire data and clinical vitals. We assessed brain health indicators including CBVD, AD, and cognition. RESULTS Higher LS7 scores were associated with better CBVD outcomes, including lower percent white matter hyperintensities and higher cerebral blood flow, and higher Preclinical Alzheimer's Composite 3 and Delayed Recall scores. No significant associations were observed between LS7 scores and AD markers of amyloid and tau accumulation. DISCUSSION This study provides evidence that the beneficial effects of LS7 on cognition are primarily mediated through cerebrovascular pathways rather than direct influences on AD pathology.
Collapse
|
140
|
Hswen Y, Xiong J, Hurley M, Nguyen TT. Experiences of Alzheimer's disease and related dementia family caregivers on Reddit communities: A topic modeling and sentiment analysis. ARTIFICIAL INTELLIGENCE IN HEALTH 2024; 1:127-135. [PMID: 39246419 PMCID: PMC11378727 DOI: 10.36922/aih.3075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Alzheimer's disease and related dementias (ADRD) are a spectrum of disorders characterized by cognitive decline, which pose significant challenges for both affected individuals and their caregivers. Previous literature has focused on patient family surveys which do not always capture the breadth of authentic experiences of the caregiver. Online social media platforms provide a space for individuals to share their experiences and obtain advice toward caring for those with ADRD. This study leverages Reddit, a platform frequented by caregivers seeking advice for caring for a family member with advice for ADRD. To identify the topics of discussion or advice that most caregivers seek and sought after, we employed structured topic modeling techniques such as BERTopic to analyze the content of these posts and use an intertopic distance map to discern the variation in themes across different Reddit categories. In addition, we analyze the sentiment of the Reddit postings using Valence Aware Dictionary and Sentiment Reasoner to deduce the degree of negative, positive, and neutral sentiment of the discussion posts. Our findings reveal that the topics that caregivers most frequently discuss and seek advice for were related to caregiver stories, community support, and concerns ADRD. Specifically, we aimed to reproduce an organic Reddit search of caregiving of abuse on family member, financial struggles, symptoms of hallucinations, and repetition in ADRD family members. These results underscore the importance of online communities for gaining a comprehensive understanding of the multifaceted experiences and challenges faced by ADRD caregivers.
Collapse
Affiliation(s)
- Yulin Hswen
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Jiangmei Xiong
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | | | - Thu T Nguyen
- Department of Epidemiology and Biostatistics, College Park, University of Maryland School of Public Health, District of Columbia, United States of America
| |
Collapse
|
141
|
Londhe SG, Walhekar V, Shenoy M, Kini SG, Scotti MT, Scotti L, Kumar D. Computational and ADMET Predictions of Novel Compounds as Dual Inhibitors of BuChE and GSK-3β to Combat Alzheimer's Disease. Pharmaceutics 2024; 16:991. [PMID: 39204336 PMCID: PMC11357659 DOI: 10.3390/pharmaceutics16080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/24/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Alzheimer's disease is a serious and widespread neurodegenerative illness in the modern healthcare scenario. GSK-3β and BuChE are prominent enzymatic targets associated with Alzheimer's disease. Co-targeting GSK3β and BChE in Alzheimer's disease helps to modify disease progression and enhance cognitive function by addressing both tau pathology and cholinergic deficits. However, the treatment arsenal for Alzheimer's disease is extremely inadequate, with present medications displaying dismal success in treating this never-ending ailment. To create novel dual inhibitors, we have used molecular docking and dynamics analysis. Our focus was on analogs formed from the fusion of tacrine and amantadine ureido, specifically tailored to target GSK-3β and BuChE. METHODS In the following study, molecular docking was executed by employing AutoDock Vina and molecular dynamics and ADMET predictions were performed using the Desmond and Qikprop modules of Schrödinger. RESULTS Our findings unveiled that compounds DKS1 and DKS4 exhibited extraordinary molecular interactions within the active domains of GSK-3β and BuChE, respectively. These compounds engaged in highly favorable interactions with critical amino acids, including Lys85, Val135, Asp133, and Asp200, and His438, Ser198, and Thr120, yielding encouraging docking energies of -9.6 and -12.3 kcal/mol. Additionally, through extensive molecular dynamics simulations spanning a 100 ns trajectory, we established the robust stability of ligands DKS1 and DKS4 within the active pockets of GSK-3β and AChE. Particularly noteworthy was DKS5, which exhibited an outstanding human oral absorption rate of 79.792%, transcending the absorption rates observed for other molecules in our study. CONCLUSION In summary, our in silico findings have illuminated the potential of our meticulously designed molecules as groundbreaking agents in the fight against Alzheimer's disease, capable of simultaneously inhibiting both GSK-3β and BuChE.
Collapse
Affiliation(s)
- Saurabh G. Londhe
- Department of Pharmaceutical Chemistry, BVDU’s Poona College of Pharmacy, Pune 411038, India (V.W.)
| | - Vinayak Walhekar
- Department of Pharmaceutical Chemistry, BVDU’s Poona College of Pharmacy, Pune 411038, India (V.W.)
| | - Mangala Shenoy
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Suvarna G. Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Marcus T. Scotti
- Health Sci. Center, Federal University of Paraíba, João Pessoa 50670-910, PB, Brazil; (M.T.S.); (L.S.)
| | - Luciana Scotti
- Health Sci. Center, Federal University of Paraíba, João Pessoa 50670-910, PB, Brazil; (M.T.S.); (L.S.)
- Teaching and Research Management—University Hospital, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, BVDU’s Poona College of Pharmacy, Pune 411038, India (V.W.)
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
- UC Davis Comprehensive Cancer Centre, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
142
|
McDade E, Liu H, Bui Q, Hassenstab J, Gordon B, Benzinger T, Shen Y, Timsina J, Wang L, Sung YJ, Karch C, Renton A, Daniels A, Morris J, Xiong C, Ibanez L, Perrin R, Llibre-Guerra JJ, Day G, Supnet-Bell C, Xu X, Berman S, Chhatwal J, Ikeuchi T, Kasuga K, Niimi Y, Huey E, Schofield P, Brooks W, Ryan N, Jucker M, Laske C, Levin J, Vöglein J, Roh JH, Lopera F, Bateman R, Cruchaga C. Ubiquitin-Proteasome System in the Different Stages of Dominantly Inherited Alzheimer's Disease. RESEARCH SQUARE 2024:rs.3.rs-4202125. [PMID: 39108475 PMCID: PMC11302696 DOI: 10.21203/rs.3.rs-4202125/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This study explored the role of the ubiquitin-proteasome system (UPS) in dominantly inherited Alzheimer's disease (DIAD) by examining changes in cerebrospinal fluid (CSF) levels of UPS proteins along with disease progression, AD imaging biomarkers (PiB PET, tau PET), neurodegeneration imaging measures (MRI, FDG PET), and Clinical Dementia Rating® (CDR®). Using the SOMAscan assay, we detected subtle increases in specific ubiquitin enzymes associated with proteostasis in mutation carriers (MCs) up to two decades before the estimated symptom onset. This was followed by more pronounced elevations of UPS-activating enzymes, including E2 and E3 proteins, and ubiquitin-related modifiers. Our findings also demonstrated consistent correlations between UPS proteins and CSF biomarkers such as Aβ42/40 ratio, total tau, various phosphorylated tau species to total tau ratios (ptau181/T181, ptauT205/T205, ptauS202/S202, ptauT217/T217), and MTBR-tau243, alongside Neurofilament light chain (NfL) and the CDR®. Notably, a positive association was observed with imaging markers (PiB PET, tau PET) and a negative correlation with markers of neurodegeneration (FDG PET, MRI), highlighting a significant link between UPS dysregulation and neurodegenerative processes. The correlations suggest that the increase in multiple UPS proteins with rising tau levels and tau-tangle associated markers, indicating a potential role for the UPS in relation to misfolded tau/neurofibrillary tangles (NFTs) and symptom onset. These findings indicate that elevated CSF UPS proteins in DIAD MCs could serve as early indicators of disease progression and suggest a link between UPS dysregulation and amyloid plaque, tau tangles formation, implicating the UPS as a potential therapeutic target in AD pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Alan Renton
- Nash Family Department of Neuroscience and Ronald Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA: Departments of Neurology and Genetics and Ge
| | | | | | | | | | | | | | | | | | | | | | - Jasmeer Chhatwal
- Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School
| | | | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University
| | | | | | | | | | | | | | | | | | | | | | | | - Randall Bateman
- Department of Neurology, Washington University School of Medicine
| | | |
Collapse
|
143
|
Hou Y, Liu F, Lin N, Gao S. Systematic review and meta-analysis of repetitive transcranial magnetic stimulation (rTMS) for activities of daily living in Alzheimer's disease. Neurol Sci 2024:10.1007/s10072-024-07709-z. [PMID: 39044102 DOI: 10.1007/s10072-024-07709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVE This systematic review of randomised controlled trials (RCTs) was conducted to assess the effect of repetitive transcranial magnetic stimulation (rTMS) on activities of daily living (ADLs) in Alzheimer's disease (AD) patients. DATA SOURCES Ten databases were retrieved for pertinent Chinese and English literatures published up until January 2024. REVIEW METHODS All RCTs of rTMS for ADLs in AD were included in this meta-analysis. Two researchers independently selected the literatures, retrieved the data of included literatures, accessed risk-of-bias of literatures with the Cochrane Collaboration's quality criteria and then cross-checked. Meta-analysis was carried out with Cochrane's Review Manager (RevMan, version 5.4). The PRISMA guidelines were followed in this systematic review. RESULTS The 37 literatures involving 2461 patients with AD were included in this study. Compared with the control groups received the interventions such as routine pharmacotherapy, cognitive training, ect., with/without sham-rTMS, the experiment groups received the interventions of the control groups and rTMS. The findings were as follows: ADL scale [mean difference (MD) = -3.92, 95%CI (-4.93, -2.91), P < 0.00001]; Barthel Index (BI) [MD = 9.75, 95% CI (6.66, 12.85), P < 0.00001]; Modified Barthel Index (MBI) [MD = 5.43, 95% CI (3.13, 7.73), P < 0.00001]. The differences were statistically significant for all indicators. In 29 studies, rTMS stimulation sites were located in the dorsolateral prefrontal cortex (DLPFC). CONCLUSION The rTMS could improve the ADLs in AD patients, and the DLPFC was a frequently used stimulation site of the rTMS for AD treatment.
Collapse
Affiliation(s)
- Yufei Hou
- College of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Fang Liu
- College of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China.
| | - Nan Lin
- College of Acupuncture and Massage, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Shan Gao
- College of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| |
Collapse
|
144
|
Sheikh M, Ammar M. Efficacy of 5 and 10 mg donepezil in improving cognitive function in patients with dementia: a systematic review and meta-analysis. Front Neurosci 2024; 18:1398952. [PMID: 39104606 PMCID: PMC11298496 DOI: 10.3389/fnins.2024.1398952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024] Open
Abstract
Objective The purpose of this study was to compare donepezil at 5 mg and 10 mg/day against a placebo to systematically evaluate its effectiveness in improving cognitive function among patients suffering from dementia at any stage. Method For this systematic review and meta-analysis, we looked up Medline, Scopus, Embase, Web of Science, and The Cochrane Library for articles on the efficacy of donepezil in dementia published in the past 20 years and summarized the placebo and intervention data. Initially, a total of 2,272 articles were extracted using our search query and after the inclusion and exclusion criteria set for extraction of data, 18 studies were included in this review using PRISMA flowchart. The ADAS-cog and MMSE assessment scales were used for measuring the outcomes using IBM SPSS 29.0 for the meta-analysis. Result The meta-analysis comprised a total of 18 RCTs (randomized controlled trials) that were randomized to receive either donepezil 5 mg/day (n = 1,556), 10 mg/day (n = 2050) or placebo (n = 2,342). Meta-analysis concerning efficacy showed that donepezil at 10 mg/day significantly improved the MMSE score (g: 2.27, 95%CI: 1.25-3.29) but could not substantially reduce the ADAS-cog. At 5 mg/day donepezil, an overall slight improvement in MMSE score (Hedges' g: 2.09, 95%CI: 0.88-3.30) was observed. Conclusion Both donepezil 5 mg/day and 10 mg/day doses demonstrated improved cognitive functions for patients with dementia, however results indicated that the 10 mg/day dose was more efficacious.
Collapse
Affiliation(s)
- Mehak Sheikh
- Faculty of Pharmaceutical Sciences (FOP), University of Central Punjab, Lahore, Pakistan
| | - Mohammad Ammar
- Qatar University Young Scientists Center (QUYSC), Qatar University, Doha, Qatar
| |
Collapse
|
145
|
Aishwarya R, Abdullah CS, Remex NS, Bhuiyan MAN, Lu XH, Dhanesha N, Stokes KY, Orr AW, Kevil CG, Bhuiyan MS. Diastolic dysfunction in Alzheimer's disease model mice is associated with Aβ-amyloid aggregate formation and mitochondrial dysfunction. Sci Rep 2024; 14:16715. [PMID: 39030247 PMCID: PMC11271646 DOI: 10.1038/s41598-024-67638-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disease caused by the deposition of Aβ aggregates or neurofibrillary tangles. AD patients are primarily diagnosed with the concurrent development of several cardiovascular dysfunctions. While few studies have indicated the presence of intramyocardial Aβ aggregates, none of the studies have performed detailed analyses for pathomechanism of cardiac dysfunction in AD patients. This manuscript used aged APPSWE/PS1 Tg and littermate age-matched wildtype (Wt) mice to characterize cardiac dysfunction and analyze associated pathophysiology. Detailed assessment of cardiac functional parameters demonstrated the development of diastolic dysfunction in APPSWE/PS1 Tg hearts compared to Wt hearts. Muscle function evaluation showed functional impairment (decreased exercise tolerance and muscle strength) in APPSWE/PS1 Tg mice. Biochemical and histochemical analysis revealed Aβ aggregate accumulation in APPSWE/PS1 Tg mice myocardium. APPSWE/PS1 Tg mice hearts also demonstrated histopathological remodeling (increased collagen deposition and myocyte cross-sectional area). Additionally, APPSWE/PS1 Tg hearts showed altered mitochondrial dynamics, reduced antioxidant protein levels, and impaired mitochondrial proteostasis compared to Wt mice. APPSWE/PS1 Tg hearts also developed mitochondrial dysfunction with decreased OXPHOS and PDH protein complex expressions, altered ETC complex dynamics, decreased complex activities, and reduced mitochondrial respiration. Our results indicated that Aβ aggregates in APPSWE/PS1 Tg hearts are associated with defects in mitochondrial respiration and complex activities, which may collectively lead to cardiac diastolic dysfunction and myocardial pathological remodeling.
Collapse
Affiliation(s)
- Richa Aishwarya
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Mohammad Alfrad Nobel Bhuiyan
- Department of Medicine, Division of Clinical Informatics, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Xiao-Hong Lu
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Karen Y Stokes
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA.
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA.
| |
Collapse
|
146
|
Singh A, Singh D, Tiwari N, Mittal P, Siddiqui MH, Mittal N. Exploring the therapeutic potential of rosemary compounds against Alzheimer's disease through GC-MS and molecular docking analysis. In Silico Pharmacol 2024; 12:63. [PMID: 39035101 PMCID: PMC11254900 DOI: 10.1007/s40203-024-00238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder that is the leading cause of dementia in elderly individuals. Currently, there is no permanent treatment option available for this disorder, and the existing drug regimens are associated with limited effectiveness and side effects. To evaluate the neuroprotective effect of rosemary compounds, an extensive study was started with gas chromatography-mass spectrometry (GC-MS) analysis. GC-MS was performed to study the composition of rosemary essential oil and a total of 120 volatile compounds were identified. The 36 compounds from GC-MS data of rosemary essential oil having > 1% concentration in the oil were selected along with 3 already reported well-known non-volatile compounds of rosemary. se39 bioactive natural compounds of rosemary were docked against ACE, BACE1, GSK3, and TACE proteins, which are involved in AD progression. The top 3 compounds against each target protein were selected based on their binding energies and a total of 6 compounds were found as best candidates to target the AD; α Amyrin, Rosmanol, Androsta-1,4-dien-3-one,16,17-dihydroxy-(16.beta.,17.beta), Benzenesulfonamide,4-methyl-N-(5-nitro-2-pyridinyl), Methyl abietate, and Rosmarinic acid were the best compounds. The binding energy of α-Amyrin, Rosmanol, and Androsta-1,4-dien-3-one,16,17-dihydroxy-(16.beta.,17.beta) to ACE target is -10 kcal/mol, -9.3 kcal/mol, and - 9.3 kcal/mol, respectively. The best binding affinity was shown by complexes formed between GSK3-α-Amyrin (-9.1 kcal/mol), BACE1- α-Amyrin (-9.9 kcal/mol), and TACE- Benzenesulfonamide,4-methyl-N-(5-nitro-2-pyridinyl) (-9.1 kcal/mol). The comparative analysis between known inhibitors/ drugs of target proteins and the rosemary compound that shows the highest binding affinity against each protein also revealed the higher potential of rosemary natural compounds in terms of binding energy. The drug-likeliness properties like Lipinski's rule of five and the ADME/T analysis of top-selected compounds were screened through PkCSM and Deep-PK tools. The findings from this study suggested that rosemary compounds have the potential as a therapeutic lead for treating AD. This kind of experimental confirmation can lead to novel drug candidates against the pharmacological targets of AD. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00238-9.
Collapse
Affiliation(s)
- Anjali Singh
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Dewa Road, Barabanki, Uttar Pradesh 225003 India
| | - Dhananjay Singh
- Department of Biosciences, Integral University, Kursi Road, Lucknow, Uttar Pradesh 226026 India
| | - Neeraj Tiwari
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Dewa Road, Barabanki, Uttar Pradesh 225003 India
| | - Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401 India
| | - Mohammed Haris Siddiqui
- Department of Bioengineering, Integral University, Kursi Road, Lucknow, Uttar Pradesh 226026 India
| | - Nishu Mittal
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Dewa Road, Barabanki, Uttar Pradesh 225003 India
| |
Collapse
|
147
|
Chi M, Liu J, Li L, Zhang Y, Xie M. CeO 2 In Situ Growth on Red Blood Cell Membranes: CQD Coating and Multipathway Alzheimer's Disease Therapy under NIR. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35898-35911. [PMID: 38954799 DOI: 10.1021/acsami.4c02088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Alzheimer's disease (AD) has a complex etiology and diverse pathological processes. The therapeutic effect of single-target drugs is limited, so simultaneous intervention of multiple targets is gradually becoming a new research trend. Critical stages in AD progression involve amyloid-β (Aβ) self-aggregation, metal-ion-triggered fibril formation, and elevated reactive oxygen species (ROS). Herein, red blood cell membranes (RBC) are used as templates for the in situ growth of cerium oxide (CeO2) nanocrystals. Then, carbon quantum dots (CQDs) are encapsulated to form nanocomposites (CQD-Ce-RBC). This strategy is combined with photothermal therapy (PTT) for AD therapy. The application of RBC enhances the materials' biocompatibility and improves immune evasion. RBC-grown CeO2, the first application in the field of AD, demonstrates outstanding antioxidant properties. CQD acts as a chelating agent for copper ions, which prevents the aggregation of Aβ. In addition, the thermal effect induced by near-infrared laser-induced CQD can break down Aβ fibers and improve the permeability of the blood-brain barrier. In vivo experiments on APP/PS1 mice demonstrate that CQD-Ce-RBC combined with PTT effectively clears cerebral amyloid deposits and significantly enhances learning and cognitive abilities, thereby retarding disease progression. This innovative multipathway approach under light-induced conditions holds promise for AD treatment.
Collapse
Affiliation(s)
- Mingyuan Chi
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jichun Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Lianxin Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yuewen Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Meng Xie
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
148
|
Mosalam EM, Elberri AI, Abdallah MS, Abdel-Bar HM, Zidan AAA, Batakoushy HA, Abo Mansour HE. Mechanistic Insights of Neuroprotective Efficacy of Verapamil-Loaded Carbon Quantum Dots against LPS-Induced Neurotoxicity in Rats. Int J Mol Sci 2024; 25:7790. [PMID: 39063042 PMCID: PMC11277230 DOI: 10.3390/ijms25147790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that badly impacts patients and their caregivers. AD is characterized by deposition of amyloid beta (Aβ) and phosphorylated tau protein (pTau) in the brain with underlying neuroinflammation. We aimed to develop a neuroprotective paradigm by loading verapamil (VRH) into hyaluronic acid-modified carbon quantum dots (CQDs) and comparing its effectiveness with the free form in an AD-like model in rats induced by lipopolysaccharide (LPS). The experimental rats were divided into seven groups: control, LPS, CQDs, early free VRH (FVRH), late FVRH, early verapamil carbon quantum dots (VCQDs), and late VCQDs. Characterizations of VCQDs, the behavioral performance of the rats, histopathological and immunohistochemical changes, some AD hallmarks, oxidative stress biomarkers, neuro-affecting genes, and DNA fragmentation were determined. VRH was successfully loaded into CQDs, which was confirmed by the measured parameters. VRH showed enhancement in cognitive functions, disruption to the architecture of the brain, decreased Aβ and pTau, increased antioxidant capacity, modifiable expression of genes, and a decline in DNA fragmentation. The loaded therapy was superior to the free drug. Moreover, the early intervention was better than the late, confirming the implication of the detected molecular targets in the development of AD. VRH showed multifaceted mechanisms in combating LPS-induced neurotoxicity through its anti-inflammatory and antioxidant properties, thereby mitigating the hallmarks of AD. Additionally, the synthesized nanosystem approach exhibited superior neuroprotection owing to the advantages offered by CQDs. However, finding new actionable biomarkers and molecular targets is of decisive importance to improve the outcomes for patients with AD.
Collapse
Affiliation(s)
- Esraa M. Mosalam
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Shebin El-Kom 32511, Menoufia, Egypt;
| | - Aya Ibrahim Elberri
- Genetic Engineering and Molecular Biology Division, Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Menoufia, Egypt;
| | - Mahmoud S. Abdallah
- Clinical Pharmacy Department, Faculty of Pharmacy, University of Sadat City (USC), Sadat City 32897, Monufia, Egypt
- Department of Pharm D, Faculty of Pharmacy, Jadara University, Irbid 21110, Jordan
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City (USC), Sadat City 32897, Monufia, Egypt;
| | - Abdel-Aziz A. Zidan
- Zoology Department, Faculty of Science, Damanhur University, Damanhur 22511, Beheira, Egypt;
| | - Hany A. Batakoushy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Menoufia University, Shebin El-Kom 32511, Menoufia, Egypt;
| | - Hend E. Abo Mansour
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Shebin El-Kom 32511, Menoufia, Egypt;
| |
Collapse
|
149
|
Akyuz E, Arulsamy A, Aslan FS, Sarisözen B, Guney B, Hekimoglu A, Yilmaz BN, Retinasamy T, Shaikh MF. An Expanded Narrative Review of Neurotransmitters on Alzheimer's Disease: The Role of Therapeutic Interventions on Neurotransmission. Mol Neurobiol 2024:10.1007/s12035-024-04333-y. [PMID: 39012443 DOI: 10.1007/s12035-024-04333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. The accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles are the key players responsible for the pathogenesis of the disease. The accumulation of Aβ plaques and tau affect the balance in chemical neurotransmitters in the brain. Thus, the current review examined the role of neurotransmitters in the pathogenesis of Alzheimer's disease and discusses the alterations in the neurochemical activity and cross talk with their receptors and transporters. In the presence of Aβ plaques and neurofibrillary tangles, changes may occur in the expression of neuronal receptors which in turn triggers excessive release of glutamate into the synaptic cleft contributing to cell death and neuronal damage. The GABAergic system may also be affected by AD pathology in a similar way. In addition, decreased receptors in the cholinergic system and dysfunction in the dopamine neurotransmission of AD pathology may also contribute to the damage to cognitive function. Moreover, the presence of deficiencies in noradrenergic neurons within the locus coeruleus in AD suggests that noradrenergic stimulation could be useful in addressing its pathophysiology. The regulation of melatonin, known for its effectiveness in enhancing cognitive function and preventing Aβ accumulation, along with the involvement of the serotonergic system and histaminergic system in cognition and memory, becomes remarkable for promoting neurotransmission in AD. Additionally, nitric oxide and adenosine-based therapeutic approaches play a protective role in AD by preventing neuroinflammation. Overall, neurotransmitter-based therapeutic strategies emerge as pivotal for addressing neurotransmitter homeostasis and neurotransmission in the context of AD. This review discussed the potential for neurotransmitter-based drugs to be effective in slowing and correcting the neurodegenerative processes in AD by targeting the neurochemical imbalance in the brain. Therefore, neurotransmitter-based drugs could serve as a future therapeutic strategy to tackle AD.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Turkey
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| | | | - Bugra Sarisözen
- School of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Beyzanur Guney
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | | | - Beyza Nur Yilmaz
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, New South Wales, 2800, Australia.
| |
Collapse
|
150
|
Putri AF, Utomo DH, Tunjung WAS, Putri WA. Analysis of the anti-Alzheimer potential of bioactive compounds from Citrus hystrix DC. peel, leaf, and essential oil by network pharmacology. Heliyon 2024; 10:e33496. [PMID: 39050443 PMCID: PMC11267028 DOI: 10.1016/j.heliyon.2024.e33496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease (AD) is the most known neurodegenerative disease, and its prevalence is predicted to increase significantly. Discovering novel drugs and treatments for AD is urgently needed. Drugs from natural products have been preferred lately due to their high potential and low toxicity. Citrus hystrix DC. (kaffir lime; KL) is one such herbal plant that is found abundantly in Southeast Asia with many biological activities. In this study, the potential of bioactive compounds from KL peel, leaf, and essential oil as anti-AD agents was explored using network pharmacology. First, the compounds were identified with KNApSAcK database and related literature. Subsequently, the targets of each corresponding compound were determined with SEA Search Server and Swiss Target Prediction, while the proteins associated with AD were identified using OMIM, GenCLiP3, and DisGeNET. Furthermore, a protein-protein interaction network and a compound-target interaction network were constructed to identify the most crucial proteins and compounds in the network by employing Cytoscape v3.9.1. The study continued with pathway enrichment analysis using STRING v1.7.1, molecular docking with PyRx and SwissDock, and molecular dynamics simulation with YASARA for further confirmation. Our results showed that almost all the secondary metabolites of KL targeted AD-associated genes, with oxypeucedanin and citrusoside A showing the highest anti-AD potential and targeting essential genes, EGFR and MAPK14, respectively. These targets were associated with inflammatory and oxidative stress pathways, indicating the potential mechanism of KL in attenuating AD clinical manifestation.
Collapse
Affiliation(s)
- Adhisa Fathirisari Putri
- Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
- Bioinformatics Research Center, INBIO-Indonesia, Malang, 65162, Indonesia
| | - Didik Huswo Utomo
- Bioinformatics Research Center, INBIO-Indonesia, Malang, 65162, Indonesia
- Biosystem Education Center, Brawijaya University, Malang, 65145, Indonesia
| | - Woro Anindito Sri Tunjung
- Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Wahyu Aristyaning Putri
- Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
| |
Collapse
|