101
|
Oros-Pantoja R, Córdoba-Adaya JC, Torres-García E, Morales-Avila E, Aranda-Lara L, Santillán-Benítez JG, Sánchez-Holguín M, Hernández-Herrera NO, Otero G, Isaac-Olivé K. Preclinical evaluation of early multi-organ toxicity induced by liposomal doxorubicin using 67Ga-citrate. Nanotoxicology 2022; 16:247-264. [DOI: 10.1080/17435390.2022.2071180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Julio César Córdoba-Adaya
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Eugenio Torres-García
- Laboratorio de Dosimetría y Simulación Monte Carlo, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Enrique Morales-Avila
- Laboratorio de Investigación en Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Liliana Aranda-Lara
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Jonnathan G Santillán-Benítez
- Laboratorio de Investigación en Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Mexico
| | | | | | - Gloria Otero
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Keila Isaac-Olivé
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
102
|
Sun M, Dang UJ, Yuan Y, Psaras AM, Osipitan O, Brooks TA, Lu F, Di Pasqua AJ. Optimization of DOTAP/chol Cationic Lipid Nanoparticles for mRNA, pDNA, and Oligonucleotide Delivery. AAPS PharmSciTech 2022; 23:135. [PMID: 35534697 PMCID: PMC9084260 DOI: 10.1208/s12249-022-02294-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/27/2022] [Indexed: 12/27/2022] Open
Abstract
Lipid nanoparticles (LNPs) can be used as delivery vehicles for nucleic acid biotherapeutics. In fact, LNPs are currently being used in the Pfizer/BioNTech and Moderna COVID-19 vaccines. Cationic LNPs composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)/cholesterol (chol) LNPs have been classified as one of the most efficient gene delivery systems and are being tested in numerous clinical trials. The objective of this study was to examine the effect of the molar ratio of DOTAP/chol, PEGylation, and lipid to mRNA ratio on mRNA transfection, and explore the applications of DOTAP/chol LNPs in pDNA and oligonucleotide transfection. Here we showed that PEGylation significantly decreased mRNA transfection efficiency of DOTAP/chol LNPs. Among non-PEGylated LNP formulations, 1:3 molar ratio of DOTAP/chol in DOTAP/chol LNPs showed the highest mRNA transfection efficiency. Furthermore, the optimal ratio of DOTAP/chol LNPs to mRNA was tested to be 62.5 µM lipid to 1 μg mRNA. More importantly, these mRNA-loaded nanoparticles were stable for 60 days at 4 °C storage without showing reduction in transfection efficacy. We further found that DOTAP/chol LNPs were able to transfect pDNA and oligonucleotides, demonstrating the ability of these LNPs to transport the cargo into the cell nucleus. The influence of various factors in the formulation of DOTAP/chol cationic LNPs is thus described and will help improve drug delivery of nucleic acid-based vaccines and therapies.
Collapse
|
103
|
Guelman S, Zhou Y, Brady A, Peng K. A Fit-for-Purpose Method to Measure Circulating Levels of the mRNA Component of a Liposomal-Formulated Individualized Neoantigen-Specific Therapy for Cancer. AAPS J 2022; 24:64. [PMID: 35501406 DOI: 10.1208/s12248-022-00709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Autogene cevumeran is an individualized neoantigen-specific therapy (iNeST) under development for the treatment of various solid tumors. It consists of an RNA-Lipoplex (RNA-LPX) in which the encapsulated mRNA molecule encodes up to ten neoepitopes identified from each individual patient. In association with major histocompatibility complex (MHC) class I and MHC class II, these neoantigens can potentially stimulate and expand neoantigen-specific CD4+ and CD8+ T cells, leading to antitumor responses. As part of the pharmacokinetic (PK) property assessment of Autogene cevumeran in patients, both the lipid and mRNA content in circulation are measured. This work focused on our efforts to establish a sensitive and robust method for the measurement of mRNA levels of RNA-LPX in plasma. Due to the chemical characteristics of mRNA, extra precautions are required in order to effectively preserve mRNA integrity in human plasma during sample collection, handling and storage. To this end, a number of sample collection tubes and storage conditions were evaluated in order to inform the most optimal and operationally feasible conditions by which to preserve mRNA integrity during sample collection and upon freeze-thaw. PAXgene Blood ccfDNA tubes successfully prevented mRNA degradation and were subsequently selected for patient sample collection in the clinical trial. A branched DNA (bDNA)-based mRNA PK assay was developed to achieve the desired assay performance. Here, we discuss the evaluation of various sample collection and processing conditions as well as the optimization of the work flow during bDNA PK method development.
Collapse
Affiliation(s)
- Sebastian Guelman
- Department of BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080-4990, USA.
| | - Ying Zhou
- Department of BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080-4990, USA
| | - Ann Brady
- Department of BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080-4990, USA
| | - Kun Peng
- Department of BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080-4990, USA
| |
Collapse
|
104
|
Sato J, Shimizu T, Koyama T, Iwasa S, Shimomura A, Kondo S, Kitano S, Yonemori K, Fujiwara Y, Tamura K, Suzuki T, Takase T, Nagai R, Yamaguchi K, Semba T, Zhao ZM, Ren M, Yamamoto N. Dose Escalation Data from the Phase 1 Study of the Liposomal Formulation of Eribulin (E7389-LF) in Japanese Patients with Advanced Solid Tumors. Clin Cancer Res 2022; 28:1783-1791. [PMID: 35180771 PMCID: PMC9365350 DOI: 10.1158/1078-0432.ccr-21-3518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE We report the dose-escalation part of a phase I study of liposomal eribulin (E7389-LF) in Japanese patients with advanced solid tumors and no alternative standard therapy. PATIENTS AND METHODS Patients ≥20 years old were enrolled. E7389-LF doses of 1.0 to 1.5 mg/m2 once every two weeks (Q2W) or 1.0 to 2.5 mg/m2 once every three weeks (Q3W) were planned. The primary objective was to determine the MTD by evaluating dose-limiting toxicities (DLT). Secondary objectives included safety/tolerability assessments, objective response rate (ORR), and progression-free survival; serum biomarker assessment was an exploratory objective. RESULTS Twenty-one patients were enrolled and treated; 12 in the Q3W group (1.0 mg/m2, n = 3; 1.5 mg/m2, n = 3; 2.0 mg/m2, n = 6) and 9 in the Q2W group (1.0 mg/m2, n=3; 1.5 mg/m2, n = 6). The Q3W and Q2W MTDs were 2.0 mg/m2 and 1.5 mg/m2, respectively. One patient receiving 2.0 mg/m2 Q3W had a DLT of grade 3 febrile neutropenia. The most common grade 3 treatment-emergent adverse events were neutropenia (66.7% in Q3W and Q2W) and leukopenia (Q3W, 58.3%; Q2W, 33.3%). One patient in the Q3W group (2.0 mg/m2) and 3 in the Q2W group (1.0 mg/m2, n = 1; 1.5 mg/m2, n = 2) achieved a partial response [overall ORR, 19.0%; 95% confidence interval (CI), 5.4-41.9]. Endothelial [TEK receptor tyrosine kinase (TEK), intercellular adhesion molecule 1 (ICAM1), vascular endothelial growth factor receptor 3 (VEGFR3), platelet/endothelial cell adhesion molecule 1 (PECAM1)], vasculature (collagen IV), and immune-related [interferon gamma (IFNγ), C-X-C motif chemokine ligand 11 (CXCL11), C-X-C motif chemokine ligand 10 (CXCL10)] biomarker levels were increased. CONCLUSIONS E7389-LF was well tolerated at 2.0 mg/m2 Q3W and 1.5 mg/m2 Q2W. Considering the toxicity profile of both regimens, the recommended dose was 2.0 mg/m2 Q3W. Expansion cohorts are ongoing.
Collapse
Affiliation(s)
- Jun Sato
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Toshio Shimizu
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Satoru Iwasa
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Akihiko Shimomura
- Department of Breast and Medical Oncology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shunsuke Kondo
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Shigehisa Kitano
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
- Division of Cancer Immunotherapy Development, Advanced Medical Development Center, The Cancer Institute Hospital of JFCR, Tokyo, Japan
| | - Kan Yonemori
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Yutaka Fujiwara
- Department of Thoracic Oncology, Aichi Cancer Center, Nagoya, Japan
| | - Kenji Tamura
- Department of Respiratory Medicine and Medical Oncology, Faculty of Medicine, Shimane University Hospital, Tokyo, Japan
| | - Takuya Suzuki
- Japan and Asia Clinical Development Department, Oncology Business Group, Eisai Co., Ltd., Tokyo, Japan
| | - Takao Takase
- Clinical Data Science Department, Medicine Development Center, Eisai Co., Ltd., Tokyo, Japan
| | - Reiko Nagai
- Clinical Data Science Department, Medicine Development Center, Eisai Co., Ltd., Tokyo, Japan
| | - Kohei Yamaguchi
- Clinical Pharmacology Science Department, Medicine Development Center, Eisai Co., Ltd., Tokyo, Japan
| | - Taro Semba
- Tsukuba Research Department, Oncology Business Group, Eisai Co., Ltd., Ibaraki, Japan
| | - Zi-Ming Zhao
- Translational Science, Oncology Business Group, Eisai Inc., Nutley, New Jersey
| | - Min Ren
- Biostats, Oncology Business Group, Eisai Inc., Nutley, New Jersey
| | - Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
105
|
Mukherjee D, Bhatt S. Biocomposite-based nanostructured delivery systems for treatment and control of inflammatory lung diseases. Nanomedicine (Lond) 2022; 17:845-863. [PMID: 35477308 DOI: 10.2217/nnm-2021-0425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Diseases related to the lungs are among the most prevalent medical problems threatening human life. The treatment options and therapeutics available for these diseases are hindered by inadequate drug concentrations at pathological sites, a dearth of cell-specific targeting and different biological barriers in the alveoli or conducting airways. Nanostructured delivery systems for lung drug delivery have been significant in addressing these issues. The strategies used include surface engineering by altering the material structure or incorporation of specific ligands to reach prespecified targets. The unique characteristics of nanoparticles, such as controlled size and distribution, surface functional groups and therapeutic release triggering capabilities, are tailored to specific requirements to overcome the major therapeutic barriers in pulmonary diseases. In the present review, the authors intend to deliver significant up-to-date research in nanostructured therapies in inflammatory lung diseases with an emphasis on biocomposite-based nanoparticles.
Collapse
Affiliation(s)
- Dhrubojyoti Mukherjee
- Department of Pharmaceutics, Faculty of Pharmacy, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, 560054, India
| | - Shvetank Bhatt
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, Madhya Pradesh, 474005, India
| |
Collapse
|
106
|
Liposomal Nanoformulation as a Carrier for Curcumin and pEGCG—Study on Stability and Anticancer Potential. NANOMATERIALS 2022; 12:nano12081274. [PMID: 35457986 PMCID: PMC9028936 DOI: 10.3390/nano12081274] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/08/2023]
Abstract
Nanoformulations are regarded as a promising tool to enable the efficient delivery of active pharmaceutical ingredients to the target site. One of the best-known and most studied nanoformulations are liposomes—spherical phospholipid bilayered nanocarriers resembling cell membranes. In order to assess the possible effect of a mixture of polyphenols on both the stability of the formulation and its biological activity, two compounds were embedded in the liposomes—(i) curcumin (CUR), (ii) a peracetylated derivative of (−)-epigallocatechin 3-O-gallate (pEGCG), and (iii) a combination of the aforementioned. The stability of the formulations was assessed in two different temperature ranges (4–8 and 20 °C) by monitoring both the particle size and their concentration. It was found that after 28 days of the experiment, the liposomes remained largely unchanged in terms of the particle size distribution, with the greatest change from 130 to 146 nm. The potential decomposition of the carried substances was evaluated using HPLC. The combined CUR and pEGCG was sensitive to temperature conditions; however its stability was greatly increased when compared to the solutions of the individual compounds alone—up to 9.67% of the initial concentration of pEGCG in liposomes after 28 days storage compared to complete decomposition within hours for the non-encapsulated sample. The potential of the prepared formulations was assessed in vitro on prostate (LNCaP) and bladder cancer (5637) cell lines, as well as on a non-cancerous human lung fibroblast cell line (MRC-5), with the highest activity of IC50 equal 15.33 ± 2.03 µM for the mixture of compounds towards the 5637 cell line.
Collapse
|
107
|
Lombardo D, Kiselev MA. Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application. Pharmaceutics 2022; 14:pharmaceutics14030543. [PMID: 35335920 PMCID: PMC8955843 DOI: 10.3390/pharmaceutics14030543] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Liposomes are nano-sized spherical vesicles composed of an aqueous core surrounded by one (or more) phospholipid bilayer shells. Owing to their high biocompatibility, chemical composition variability, and ease of preparation, as well as their large variety of structural properties, liposomes have been employed in a large variety of nanomedicine and biomedical applications, including nanocarriers for drug delivery, in nutraceutical fields, for immunoassays, clinical diagnostics, tissue engineering, and theranostics formulations. Particularly important is the role of liposomes in drug-delivery applications, as they improve the performance of the encapsulated drugs, reducing side effects and toxicity by enhancing its in vitro- and in vivo-controlled delivery and activity. These applications stimulated a great effort for the scale-up of the formation processes in view of suitable industrial development. Despite the improvements of conventional approaches and the development of novel routes of liposome preparation, their intrinsic sensitivity to mechanical and chemical actions is responsible for some critical issues connected with a limited colloidal stability and reduced entrapment efficiency of cargo molecules. This article analyzes the main features of the formation and fabrication techniques of liposome nanocarriers, with a special focus on the structure, parameters, and the critical factors that influence the development of a suitable and stable formulation. Recent developments and new methods for liposome preparation are also discussed, with the objective of updating the reader and providing future directions for research and development.
Collapse
Affiliation(s)
- Domenico Lombardo
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, 98158 Messina, Italy
- Correspondence: ; Tel.: +39-090-39762222
| | - Mikhail A. Kiselev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia;
- Department of Nuclear Physics, Dubna State University, 141980 Dubna, Moscow Region, Russia
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Moscow Region, Russia
| |
Collapse
|
108
|
Jacob S, Nair AB, Shah J, Gupta S, Boddu SHS, Sreeharsha N, Joseph A, Shinu P, Morsy MA. Lipid Nanoparticles as a Promising Drug Delivery Carrier for Topical Ocular Therapy-An Overview on Recent Advances. Pharmaceutics 2022; 14:533. [PMID: 35335909 PMCID: PMC8955373 DOI: 10.3390/pharmaceutics14030533] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
Due to complicated anatomical and physical properties, targeted drug delivery to ocular tissues continues to be a key challenge for formulation scientists. Various attempts are currently being made to improve the in vivo performance of therapeutic molecules by encapsulating them in various nanocarrier systems or devices and administering them via invasive/non-invasive or minimally invasive drug administration methods. Biocompatible and biodegradable lipid nanoparticles have emerged as a potential alternative to conventional ocular drug delivery systems to overcome various ocular barriers. Lipid-based nanocarrier systems led to major technological advancements and therapeutic advantages during the last few decades of ocular therapy, such as high precorneal residence time, sustained drug release profile, minimum dosing frequency, decreased drug toxicity, targeted site delivery, and, therefore, an improvement in ocular bioavailability. In addition, such formulations can be given as fine dispersion in patient-friendly droppable preparation without causing blurred vision and ocular sensitivity reactions. The unique advantages of lipid nanoparticles, namely, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, and liposomes in intraocular targeted administration of various therapeutic drugs are extensively discussed. Ongoing and completed clinical trials of various liposome-based formulations and various characterization techniques designed for nanoemulsion in ocular delivery are tabulated. This review also describes diverse solid lipid nanoparticle preparation methods, procedures, advantages, and limitations. Functionalization approaches to overcome the drawbacks of lipid nanoparticles, as well as the exploration of new functional additives with the potential to improve the penetration of macromolecular pharmaceuticals, would quickly progress the challenging field of ocular drug delivery systems.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana 133203, India;
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
109
|
DEMİRBOLAT GM, ERDOĞAN Ö, COŞKUN GP, ÇEVİK Ö. PEG4000 modified liposomes enhance the solubility of quercetin and improve the liposome functionality: in vitro characterization and the cellular efficacy. Turk J Chem 2022; 46:1011-1023. [PMID: 37538767 PMCID: PMC10395731 DOI: 10.55730/1300-0527.3411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 08/05/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Quercetin, a multifunctional therapeutic agent, is used in various types of cancer. However, its therapeutic effect is limited by virtue of poorly aqueous solubility and instability in the physiological medium. To overcome these limitations, we aimed (i) to design quercetin loaded liposomes with unlinked-PEG4000 with regard to not only surface modification but also solubility enhancement, and (ii) to investigate the antineoplastic effects on HeLa cells. PEG4000 increased the quercetin solubility 2.2 fold. PEG4000 modified liposomes displayed small particle size (254 ± 69 nm), low polydispersity index (0.236 ± 0.018), favorable zeta potential (-35.4 ± 0.6 mV), high quercetin encapsulation efficiency (87.6 ± 5.6%), and drug loading (22.2 ± 6.9%). The homogeneity and particle size of stable PEGylated liposomes were proved by transmission electron microscopy. The drug release was reached up to 65.1 ± 3.8% in 6 h. The IC50 value of quercetin loaded PEGylated liposomes was 16.3 μg/mL on HeLa cells, while that of quercetin was 88.3 μg/mL. PEGylated liposomes remarkably hampered the adherence and colony formation ability of cells according to crystal violet staining tests. The convenience of PEGylated liposomes for the parenteral application was stated by the hemolysis assay. The high-throughput screening assays based on AO/PI staining proved the drastic decrease of viable cell count. Moreover, qPCR tests based on gene expression levels revealed that the quercetin loaded PEGylated liposomes treatment could be more effective than free quercetin on the mitochondrial apoptosis of HeLa cells. These promising results allow considering further in vivo studies for efficient cancer treatment with quercetin loaded PEG4000 modified liposomes.
Collapse
Affiliation(s)
- Gülen Melike DEMİRBOLAT
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydınlar University, İstanbul,
Turkey
| | - Ömer ERDOĞAN
- Department of Biochemistry, School of Medicine, Aydın Adnan Menderes University, Aydın,
Turkey
| | - Göknil Pelin COŞKUN
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydınlar University, İstanbul,
Turkey
| | - Özge ÇEVİK
- Department of Biochemistry, School of Medicine, Aydın Adnan Menderes University, Aydın,
Turkey
| |
Collapse
|
110
|
An On-Demand Drug Delivery System for Control of Epileptiform Seizures. Pharmaceutics 2022; 14:pharmaceutics14020468. [PMID: 35214199 PMCID: PMC8879600 DOI: 10.3390/pharmaceutics14020468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/03/2023] Open
Abstract
Drug delivery systems have the potential to deliver high concentrations of drug to target areas on demand, while elsewhere and at other times encapsulating the drug, to limit unwanted actions. Here we show proof of concept in vivo and ex vivo tests of a novel drug delivery system based on hollow-gold nanoparticles tethered to liposomes (HGN-liposomes), which become transiently permeable when activated by optical or acoustic stimulation. We show that laser or ultrasound simulation of HGN-liposomes loaded with the GABAA receptor agonist, muscimol, triggers rapid and repeatable release in a sufficient concentration to inhibit neurons and suppress seizure activity. In particular, laser-stimulated release of muscimol from previously injected HGN-liposomes caused subsecond hyperpolarizations of the membrane potential of hippocampal pyramidal neurons, measured by whole cell intracellular recordings with patch electrodes. In hippocampal slices and hippocampal–entorhinal cortical wedges, seizure activity was immediately suppressed by muscimol release from HGN-liposomes triggered by laser or ultrasound pulses. After intravenous injection of HGN-liposomes in whole anesthetized rats, ultrasound stimulation applied to the brain through the dura attenuated the seizure activity induced by pentylenetetrazol. Ultrasound alone, or HGN-liposomes without ultrasound stimulation, had no effect. Intracerebrally-injected HGN-liposomes containing kainic acid retained their contents for at least one week, without damage to surrounding tissue. Thus, we demonstrate the feasibility of precise temporal control over exposure of neurons to the drug, potentially enabling therapeutic effects without continuous exposure. For future application, studies on the pharmacokinetics, pharmacodynamics, and toxicity of HGN-liposomes and their constituents, together with improved methods of targeting, are needed, to determine the utility and safety of the technology in humans.
Collapse
|
111
|
coupled Hydrodynamic Flow Focusing (cHFF) to Engineer Lipid–Polymer Nanoparticles (LiPoNs) for Multimodal Imaging and Theranostic Applications. Biomedicines 2022; 10:biomedicines10020438. [PMID: 35203647 PMCID: PMC8962394 DOI: 10.3390/biomedicines10020438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 02/03/2023] Open
Abstract
An optimal design of nanocarriers is required to overcome the gap between synthetic and biological identity, improving the clinical translation of nanomedicine. A new generation of hybrid vehicles based on lipid–polymer coupling, obtained by Microfluidics, is proposed and validated for theranostics and multimodal imaging applications. A coupled Hydrodynamic Flow Focusing (cHFF) is exploited to control the time scales of solvent exchange and the coupling of the polymer nanoprecipitation with the lipid self-assembly simultaneously, guiding the formation of Lipid–Polymer NPs (LiPoNs). This hybrid lipid–polymeric tool is made up of core–shell structure, where a polymeric chitosan core is enveloped in a lipid bilayer, capable of co-encapsulating simultaneously Gd-DTPA and Irinotecan/Atto 633 compounds. As a result, a monodisperse population of hybrid NPs with an average size of 77 nm, with preserved structural integrity in different environmental conditions and high biocompatibility, can be used for MRI and Optical applications. Furthermore, preliminary results show the enhanced delivery and therapeutic efficacy of Irinotecan-loaded hybrid formulation against U87 MG cancers cells.
Collapse
|
112
|
Zhang Y, Hu Y, Tian H, Chen X. Opportunities and Challenges for mRNA Delivery Nanoplatforms. J Phys Chem Lett 2022; 13:1314-1322. [PMID: 35107010 DOI: 10.1021/acs.jpclett.1c03898] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the global outbreak of SARS-CoV-2, mRNA vaccines became the first type of COVID-19 vaccines to enter clinical trials because of their facile production, low cost, and relative safety, which initiated great advances in mRNA therapeutic techniques. However, the development of mRNA therapeutic techniques still confronts some challenges. First, in vitro transcribed mRNA molecules can be easily degraded by ribonuclease (RNase), resulting in their low stability. Next, the negative charge of mRNA molecules prevents them from direct cell entry. Therefore, finding efficient and safe delivery technology could be the key issue to improve mRNA therapeutic techniques. In this Perspective, we mainly discuss the problems of the existing mRNA-based delivery nanoplatforms, including safety evaluation, administration routes, and preparation technology. Moreover, we also propose some views on strategies to further improve mRNA delivery technology.
Collapse
Affiliation(s)
- Yuyan Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yingying Hu
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
113
|
Rodriguez-Salazar CA, Recalde-Reyes DP, Bedoya JP, Padilla-Sanabria L, Castaño-Osorio JC, Giraldo MI. In Vitro Inhibition of Replication of Dengue Virus Serotypes 1-4 by siRNAs Bound to Non-Toxic Liposomes. Viruses 2022; 14:339. [PMID: 35215929 PMCID: PMC8875542 DOI: 10.3390/v14020339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/29/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022] Open
Abstract
Dengue virus is a ssRNA+ flavivirus, which produces the dengue disease in humans. Currently, no specific treatment exists. siRNAs regulate gene expression and have been used systematically to silence viral genomes; however, they require controlled release. Liposomes show favorable results encapsulating siRNA for gene silencing. The objective herein was to design and evaluate in vitro siRNAs bound to liposomes that inhibit DENV replication. siRNAs were designed against DENV1-4 from conserved regions using siDirect2.0 and Web-BLOCK-iT™ RNAiDesigner; the initial in vitro evaluation was carried out through transfection into HepG2 cells. siRNA with silencing capacity was encapsulated in liposomes composed of D-Lin-MC3-DMA, DSPC, Chol. Cytotoxicity, hemolysis, pro-inflammatory cytokine release and antiviral activity were evaluated using plaque assay and RT-qPCR. A working concentration of siRNA was established at 40 nM. siRNA1, siRNA2, siRNA3.1, and siRNA4 were encapsulated in liposomes, and their siRNA delivery through liposomes led to a statistically significant decrease in viral titers, yielded no cytotoxicity or hemolysis and did not stimulate release of pro-inflammatory cytokines. Finally, liposomes were designed with siRNA against DENV, which proved to be safe in vitro.
Collapse
Affiliation(s)
- Carlos Andrés Rodriguez-Salazar
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia; (D.P.R.-R.); (J.P.B.); (L.P.-S.); (J.C.C.-O.)
- Molecular Biology and Virology Laboratory, Faculty of Medicine and Health Sciences, Corporación Universitaria Empresarial Alexander Von Humboldt, Armenia 630003, Colombia
| | - Delia Piedad Recalde-Reyes
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia; (D.P.R.-R.); (J.P.B.); (L.P.-S.); (J.C.C.-O.)
- Molecular Biology and Virology Laboratory, Faculty of Medicine and Health Sciences, Corporación Universitaria Empresarial Alexander Von Humboldt, Armenia 630003, Colombia
| | - Juan Pablo Bedoya
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia; (D.P.R.-R.); (J.P.B.); (L.P.-S.); (J.C.C.-O.)
| | - Leonardo Padilla-Sanabria
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia; (D.P.R.-R.); (J.P.B.); (L.P.-S.); (J.C.C.-O.)
| | - Jhon Carlos Castaño-Osorio
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia; (D.P.R.-R.); (J.P.B.); (L.P.-S.); (J.C.C.-O.)
| | - Maria Isabel Giraldo
- Department of Microbiology, Immunology University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
114
|
Bollareddy SR, Krishna V, Roy G, Dasari D, Dhar A, Venuganti VVK. Transfersome Hydrogel Containing 5-Fluorouracil and Etodolac Combination for Synergistic Oral Cancer Treatment. AAPS PharmSciTech 2022; 23:70. [PMID: 35132496 DOI: 10.1208/s12249-022-02221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Oral cancer is one of the most common malignancies with an increased rate of incidence. 5-Fluorouracil (5FU) is an effective chemotherapeutic indicated for oral cancer treatment. Etodolac (Et), a cyclooxygenase-2 inhibitor, can be used as an adjuvant agent to sensitize cancer cells to chemotherapy. The aim of this work was to prepare and characterize 5FU and Et dual drug-loaded transfersomes to treat oral cancer. Transfersomes were prepared by thin-film hydration method and characterized for the average particle size and zeta-potential using dynamic light scattering and scanning electron microscopy techniques. The prepared transfersomes were further characterized for their drug loading, entrapment efficiencies using amicon centrifuge tubes and drug release behavior using cellulose membrane. The synergistic activity of dual drug-loaded transfersomes was studied in FaDu oral cancer cells. Results showed that the average particle size, polydispersity index, and zeta potential were 91±6.4 nm, 0.28±0.03, and (-)46.9±9.5 mV, respectively, for 5FU- and Et (1:1)-loaded transfersomes. The highest encapsulation efficiency achieved was 36.9±3.8% and 79.8±6.4% for 5FU and Et (1:1), respectively. Growth inhibition studies in FaDu cells using different concentrations of 5FU and Et showed a combination index of 0.36, indicating a synergistic effect. The FaDu cell uptake of drug-loaded transfersomes was significantly (p<0.05) greater than that of free drugs. The transfersome hydrogel made of HPMC (2% w/w) showed similar flux, lag time, and permeation coefficient as that of drug-loaded transfersomes across excised porcine buccal tissue. In conclusion, 5FU and Et transfersome hydrogel can be developed for localized delivery to treat oral cancer.
Collapse
|
115
|
Liposomal-Based Formulations: A Path from Basic Research to Temozolomide Delivery Inside Glioblastoma Tissue. Pharmaceutics 2022; 14:pharmaceutics14020308. [PMID: 35214041 PMCID: PMC8875825 DOI: 10.3390/pharmaceutics14020308] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GBM) is a lethal brain cancer with a very difficult therapeutic approach and ultimately frustrating results. Currently, therapeutic success is mainly limited by the high degree of genetic and phenotypic heterogeneity, the blood brain barrier (BBB), as well as increased drug resistance. Temozolomide (TMZ), a monofunctional alkylating agent, is the first line chemotherapeutic drug for GBM treatment. Yet, the therapeutic efficacy of TMZ suffers from its inability to cross the BBB and very short half-life (~2 h), which requires high doses of this drug for a proper therapeutic effect. Encapsulation in a (nano)carrier is a promising strategy to effectively improve the therapeutic effect of TMZ against GBM. Although research on liposomes as carriers for therapeutic agents is still at an early stage, their integration in GBM treatment has a great potential to advance understanding and treating this disease. In this review, we provide a critical discussion on the preparation methods and physico-chemical properties of liposomes, with a particular emphasis on TMZ-liposomal formulations targeting GBM developed within the last decade. Furthermore, an overview on liposome-based formulations applied to translational oncology and clinical trials formulations in GBM treatment is provided. We emphasize that despite many years of intense research, more careful investigations are still needed to solve the main issues related to the manufacture of reproducible liposomal TMZ formulations for guaranteed translation to the market.
Collapse
|
116
|
Cyclodextrin nanosponges as potential anticancer drug delivery systems to be introduced into the market, compared with liposomes. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
117
|
Piffoux M, Silva AKA, Gazeau F, Tareste D. Generation of Hybrid Extracellular Vesicles by Fusion with Functionalized Liposomes. Methods Mol Biol 2022; 2473:385-396. [PMID: 35819777 DOI: 10.1007/978-1-0716-2209-4_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extracellular vesicles (EVs) and liposomes are natural and synthetic drug delivery systems, respectively, with their own advantages and limitations. EV/liposome fusion allows the generation of hybrid EVs that benefit from both the versatility of liposomes (tunable lipid and protein composition, surface functionalization, lumen loading, etc.) and the functionality of EVs (natural targeting properties, low immunogenicity, anti-inflammatory properties, etc.). Here, we describe the methods to (1) produce EVs and liposomes, (2) induce and monitor their fusion, and (3) purify the obtained hybrid EVs.
Collapse
Affiliation(s)
- Max Piffoux
- Laboratoire Matières et Systèmes Complexes, CNRS UMR 7057, Université de Paris, Paris, France
- Interaction Cellules Souches-Niches: Physiologie, Tumeurs Et Réparation Tissulaire, Inserm UMR 1197, Université Paris-Saclay, Villejuif, France
- Département d'oncologie Médicale, Centre Léon Bérard, Lyon, France
- Oncology Department, CITOHL, Lyon-Sud Hospital, Cancer Institute of Hospices Civils de Lyon (IC-HCL), Hospices Civils de Lyon, Lyon, France
| | | | - Florence Gazeau
- Laboratoire Matières et Systèmes Complexes, CNRS UMR 7057, Université de Paris, Paris, France
| | - David Tareste
- Institut de Psychiatrie et Neurosciences de Paris, Inserm UMR 1266, Université de Paris, Paris, France.
| |
Collapse
|
118
|
Holm A, Hansen SN, Klitgaard H, Kauppinen S. Clinical advances of RNA therapeutics for treatment of neurological and neuromuscular diseases. RNA Biol 2021; 19:594-608. [PMID: 35482908 PMCID: PMC9067473 DOI: 10.1080/15476286.2022.2066334] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
RNA therapeutics comprise a diverse group of oligonucleotide-based drugs such as antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), and short hairpin RNAs (shRNAs) that can be designed to selectively interact with drug targets currently undruggable with small molecule-based drugs or monoclonal antibodies. Furthermore, RNA-based therapeutics have the potential to modulate entire disease pathways, and thereby represent a new modality with unprecedented potential for generating disease-modifying drugs for a wide variety of human diseases, including central nervous system (CNS) disorders. Here, we describe different strategies for delivering RNA drugs to the CNS and review recent advances in clinical development of ASO drugs and siRNA-based therapeutics for the treatment of neurological diseases and neuromuscular disorders.Abbreviations 2'-MOE: 2'-O-(2-methoxyethyl); 2'-O-Me: 2'-O-methyl; 2'-F: 2'-fluoro; AD: Alzheimer's disease; ALS: Amyotrophic lateral sclerosis; ALSFRS-R: Revised Amyotrophic Lateral Sclerosis Functional Rating Scale; ARC: Antibody siRNA Conjugate; AS: Angelman Syndrome; ASGRP: Asialoglycoprotein receptor; ASO: Antisense oligonucleotide; AxD: Alexander Disease; BBB: Blood brain barrier; Bp: Basepair; CNM: Centronuclear myopathies; CNS: Central Nervous System; CPP: Cell-penetrating Peptide; CSF: Cerebrospinal fluid; DMD: Duchenne muscular dystrophy; DNA: Deoxyribonucleic acid; FAP: Familial amyloid polyneuropathy; FALS: Familial amyotrophic lateral sclerosis; FDA: The United States Food and Drug Administration; GalNAc: N-acetylgalactosamine; GoF: Gain of function; hATTR: Hereditary transthyretin amyloidosis; HD: Huntington's disease; HRQOL: health-related quality of life; ICV: Intracerebroventricular; IT: Intrathecal; LNA: Locked nucleic acid; LoF: Loss of function; mRNA: Messenger RNA; MS: Multiple Sclerosis; MSA: Multiple System Atrophy; NBE: New Biological Entity; NCE: New Chemical Entity; NHP: Nonhuman primate; nt: Nucleotide; PD: Parkinson's disease; PNP: Polyneuropathy; PNS: Peripheral nervous system; PS: Phosphorothioate; RISC: RNA-Induced Silencing Complex; RNA: Ribonucleic acid; RNAi: RNA interference; s.c.: Subcutaneous; siRNA: Small interfering RNA; SMA: Spinal muscular atrophy; SMN: Survival motor neuron; TTR: Transthyretin.
Collapse
Affiliation(s)
- Anja Holm
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, A.C. Meyers Vænge 15, 2450Copenhagen, Denmark
| | - Stine N. Hansen
- Neumirna Therapeutics, A.C. Meyers Vænge 15, 2450Copenhagen, Denmark
| | - Henrik Klitgaard
- Neumirna Therapeutics, A.C. Meyers Vænge 15, 2450Copenhagen, Denmark
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, A.C. Meyers Vænge 15, 2450Copenhagen, Denmark
| |
Collapse
|
119
|
Ghosh S, Lovell JF. Two Laser Treatments Can Improve Tumor Ablation Efficiency of Chemophototherapy. Pharmaceutics 2021; 13:pharmaceutics13122183. [PMID: 34959464 PMCID: PMC8704214 DOI: 10.3390/pharmaceutics13122183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Chemophototherapy is an emerging tumor ablation modality that can improve local delivery of chemotherapeutic agents. Long circulating doxorubicin (Dox) in porphyrin-phospholipid (PoP) liposomes (LC-Dox-PoP) has previously been developed as an effective chemophototherapy agent. In the present study, we observed that in mice, LC-Dox-PoP showed enhanced accumulation in human pancreatic tumor xenografts even with suboptimal light doses, as assessed by fluorometric analysis of tissue homogenates and microscopic imaging of Dox and PoP in tumor slices. A second laser treatment, at a time point in which tumors had greater drug accumulation as a result of the first laser treatment, induced potent tumor ablation. Efficacy studies were carried out in two human pancreatic cancer subcutaneous mouse tumor models; MIA PaCa-2 or low-passage patient derived pancreatic cancer xenografts. A single treatment of 3 mg/kg LC-Dox-PoP and an initial 150 J/cm2 laser treatment 1 h after drug administration, followed by second laser treatment of 50 J/cm2 8 h after drug administration, was more effective than a single laser treatment of 200 J/cm2 at either of those time points. Thus, this study presents proof-of-principle and rationale for using two discrete laser treatments to enhance the efficacy of chemophototherapy.
Collapse
|
120
|
Sambamoorthy U, Manjappa AS, Eswara BRM, Sanapala AK, Nagadeepthi N. Vitamin E Oil Incorporated Liposomal Melphalan and Simvastatin: Approach to Obtain Improved Physicochemical Characteristics of Hydrolysable Melphalan and Anticancer Activity in Combination with Simvastatin Against Multiple Myeloma. AAPS PharmSciTech 2021; 23:23. [PMID: 34907484 DOI: 10.1208/s12249-021-02177-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
The objective of this research was to develop vitamin E oil (VEO)-loaded liposomes for intravenous delivery and to study the VEO effect on melphalan (MLN) loading, release, and stability. Further, the research aim was to determine the in vitro anticancer activity and in vivo systemic toxicity of MLN and simvastatin (SVN) combinations, for repurposing SVN in multiple myeloma. The liposomes were prepared by thin-film hydration technique. The optimized liposomes were surface modified with Pluronic F108, lyophilized, and evaluated for mean particle size, MLN content and release behavior, and in vitro hemolysis, cytotoxicity, and macrophage uptake characteristics. Further, in vivo acute toxicity of plain MLN + SVN combination was determined in comparison to their liposomal combination. The VEO alone and in combination with D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) has significantly increased the MLN and SVN loading. The reconstituted liposomes showed the mean particle size below 200 nm (cryo-transmission electron microscope analysis also revealed the liposome formation). In presence of VEO, the liposomes have shown substantially controlled drug release, lower hemolysis, sustained cytotoxicity, lower phagocytosis, and moderately improved chemical stability. Besides, the effect of liposomal combination on mice bodyweight is found substantially lower than the plain drug combination. In conclusion, the VEO could be used along with phospholipids and cholesterol to develop liposomal drugs with improved physicochemical characteristics. Further, the interesting cytotoxicity study results indicated that SVN could be repurposed in combination with anticancer drug MLN against multiple myeloma; liposomal drugs could be preferred to obtain improved efficacy with decreased systemic toxicity.
Collapse
|
121
|
The Analysis of Chitosan-Coated Nanovesicles Containing Erythromycin-Characterization and Biocompatibility in Mice. Antibiotics (Basel) 2021; 10:antibiotics10121471. [PMID: 34943683 PMCID: PMC8698811 DOI: 10.3390/antibiotics10121471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
Nanoantibiotics have proved improved pharmacokinetic characteristics and antimicrobial features. Recent studies have shown non-toxicity, non-immunogenicity, antioxidant, anti-hyperlipidemic, and hepatocyte protective actions, among other advantages of chitosan-based nanoparticles. The purpose of our study was the structural analysis of novel chitosan-coated vesicles entrapping erythromycin (ERT) and the assessment of their biocompatibility in mice. According to the group in which they were randomly assigned, the mice were treated orally with one of the following: distilled water; chitosan; ERT; chitosan vesicles containing ERT. Original nanosystems entrapping ERT in liposomes stabilized with chitosan were designed. Their oral administration did not produce sizeable modifications in the percentages of the leukocyte formula elements, of some blood constants useful for evaluating the hepatic and renal function, respectively, and of some markers of oxidative stress and immune system activity, which suggests a good biocompatibility in mice. The histological examination did not reveal significant alterations of liver and kidney architecture in mice treated with chitosan liposomes entrapping ERT. The results indicate the designed liposomes are a promising approach to overcome disadvantages of conventional ERT treatments and to amplify their benefits and can be further studied as carrier systems.
Collapse
|
122
|
Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid Nanoparticles─From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS NANO 2021; 15:16982-17015. [PMID: 34181394 DOI: 10.1021/acsnano.1c04996] [Citation(s) in RCA: 803] [Impact Index Per Article: 267.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lipid nanoparticles (LNPs) have emerged across the pharmaceutical industry as promising vehicles to deliver a variety of therapeutics. Currently in the spotlight as vital components of the COVID-19 mRNA vaccines, LNPs play a key role in effectively protecting and transporting mRNA to cells. Liposomes, an early version of LNPs, are a versatile nanomedicine delivery platform. A number of liposomal drugs have been approved and applied to medical practice. Subsequent generations of lipid nanocarriers, such as solid lipid nanoparticles, nanostructured lipid carriers, and cationic lipid-nucleic acid complexes, exhibit more complex architectures and enhanced physical stabilities. With their ability to encapsulate and deliver therapeutics to specific locations within the body and to release their contents at a desired time, LNPs provide a valuable platform for treatment of a variety of diseases. Here, we present a landscape of LNP-related scientific publications, including patents and journal articles, based on analysis of the CAS Content Collection, the largest human-curated collection of published scientific knowledge. Rising trends are identified, such as nanostructured lipid carriers and solid lipid nanoparticles becoming the preferred platforms for numerous formulations. Recent advancements in LNP formulations as drug delivery platforms, such as antitumor and nucleic acid therapeutics and vaccine delivery systems, are discussed. Challenges and growth opportunities are also evaluated in other areas, such as medical imaging, cosmetics, nutrition, and agrochemicals. This report is intended to serve as a useful resource for those interested in LNP nanotechnologies, their applications, and the global research effort for their development.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Allison E Curtze
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Qiongqiong Zhou
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| |
Collapse
|
123
|
Attia MA, Essa EA, Elebyary TT, Faheem AM, Elkordy AA. Brief on Recent Application of Liposomal Vaccines for Lower Respiratory Tract Viral Infections: From Influenza to COVID-19 Vaccines. Pharmaceuticals (Basel) 2021; 14:1173. [PMID: 34832955 PMCID: PMC8619292 DOI: 10.3390/ph14111173] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/11/2022] Open
Abstract
Vaccination is the most effective means of preventing infectious diseases and saving lives. Modern biotechnology largely enabled vaccine development. In the meantime, recent advances in pharmaceutical technology have resulted in the emergence of nanoparticles that are extensively investigated as promising miniaturized drug delivery systems. Scientists are particularly interested in liposomes as an important carrier for vaccine development. Wide acceptability of liposomes lies in their flexibility and versatility. Due to their unique vesicular structure with alternating aqueous and lipid compartments, liposomes can enclose both hydrophilic and lipophilic compounds, including antigens. Liposome composition can be tailored to obtain the desired immune response and adjuvant characteristics. During the current pandemic of COVID-19, many liposome-based vaccines have been developed with great success. This review covers a liposome-based vaccine designed particularly to combat viral infection of the lower respiratory tract (LRT), i.e., infection of the lung, specifically in the lower airways. Viruses such as influenza, respiratory syncytial virus (RSV), severe acute respiratory syndrome (SARS-CoV-1 and SARS-CoV-2) are common causes of LRT infections, hence this review mainly focuses on this category of viruses.
Collapse
Affiliation(s)
- Mohamed Ahmed Attia
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (M.A.A.); (A.M.F.)
| | - Ebtessam Ahmed Essa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31511, Egypt; (E.A.E.); (T.T.E.)
| | - Toka Tarek Elebyary
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31511, Egypt; (E.A.E.); (T.T.E.)
| | - Ahmed Mostafa Faheem
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (M.A.A.); (A.M.F.)
| | - Amal Ali Elkordy
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (M.A.A.); (A.M.F.)
| |
Collapse
|
124
|
Yu JR, Varrey P, Liang BJ, Huang HC, Fisher JP. Liposomal SDF-1 Alpha Delivery in Nanocomposite Hydrogels Promotes Macrophage Phenotype Changes and Skin Tissue Regeneration. ACS Biomater Sci Eng 2021; 7:5230-5241. [PMID: 34699182 DOI: 10.1021/acsbiomaterials.1c01140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Skin regeneration in chronic wounds is often delayed due to persistent inflammation induced by underlying conditions such as diabetes. This effect is mediated, in part, by macrophages present in the wound, which can be stimulated to adopt either pro- or anti-inflammatory phenotypes depending on the status of the local microenvironment. In this work, the prohealing chemokine stromal cell-derived factor-1 alpha (SDF-1α) is controllably released from a hydrogel-based biomaterial to promote skin tissue regeneration and wound closure. This innovative nanocomposite hydrogel system releases liposomal stromal cell-derived factor-1 alpha (lipoSDF) as a new treatment approach for dorsal full-thickness skin wounds in wild-type and diabetic mice. Using this strategy, the recruitment and polarization of macrophages primarily of the anti-inflammatory phenotype were observed, along with a decreased amount of open wound surface area in diabetic mice after 28 days. This was accompanied by histological observations of increased epidermal stratification and dermal angiogenesis. These findings represent an important step of investigation distinctive in its field for developing immunomodulatory biomaterials that are able to influence macrophage phenotype and promote healing as hydrogel-based wound dressings.
Collapse
Affiliation(s)
- Justine R Yu
- Fischell Department of Bioengineering, University of Maryland, College Park, 3121 A. James Clark Hall, 8278 Paint Branch Drive, College Park, Maryland 20742, United States.,NIH/NBIB Center for Engineering Complex Tissues, University of Maryland, College Park, 3121 A. James Clark Hall, 8278 Paint Branch Drive, College Park, Maryland 20742, United States.,University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Pranav Varrey
- Fischell Department of Bioengineering, University of Maryland, College Park, 3121 A. James Clark Hall, 8278 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Barry J Liang
- Fischell Department of Bioengineering, University of Maryland, College Park, 3121 A. James Clark Hall, 8278 Paint Branch Drive, College Park, Maryland 20742, United States.,NIH/NCI, Laboratory of Cell Biology, Center for Cancer Research, Bethesda, Maryland 20892, United States
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, 3121 A. James Clark Hall, 8278 Paint Branch Drive, College Park, Maryland 20742, United States.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, 3121 A. James Clark Hall, 8278 Paint Branch Drive, College Park, Maryland 20742, United States.,NIH/NBIB Center for Engineering Complex Tissues, University of Maryland, College Park, 3121 A. James Clark Hall, 8278 Paint Branch Drive, College Park, Maryland 20742, United States
| |
Collapse
|
125
|
Klimek L, Novak N, Cabanillas B, Jutel M, Bousquet J, Akdis CA. Allergenic components of the mRNA-1273 vaccine for COVID-19: Possible involvement of polyethylene glycol and IgG-mediated complement activation. Allergy 2021; 76:3307-3313. [PMID: 33657648 PMCID: PMC8013891 DOI: 10.1111/all.14794] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/20/2021] [Indexed: 12/22/2022]
Abstract
Following the emergency use authorization of the mRNA-1273 vaccine on the 18th of December 2020, two mRNA vaccines are in current use for the prevention of coronavirus disease 2019 (COVID-19). For both mRNA vaccines, the phase III pivotal trials excluded individuals with a history of allergy to vaccine components. Immediately after the initiation of vaccination in the United Kingdom, Canada, and the United States, anaphylactic reactions were reported. While the culprit trigger requires investigation, initial reports suggested the excipient polyethylene glycol 2000 (PEG-2000)-contained in both vaccines as the PEG-micellar carrier system-as the potential culprit. Surface PEG chains form a hydrate shell to increase stability and prevent opsonization. Allergic reactions to such PEGylated lipids can be IgE-mediated, but may also result from complement activation-related pseudoallergy (CARPA) that has been described in similar liposomes. In addition, mRNA-1273 also contains tromethamine (trometamol), which has been reported to cause anaphylaxis to substances such as gadolinium-based contrast media. Skin prick, intradermal and epicutaneous tests, in vitro sIgE assessment, evaluation of sIgG/IgM, and basophil activation tests are being used to demonstrate allergic reactions to various components of the vaccines.
Collapse
Affiliation(s)
- Ludger Klimek
- Center for Rhinology and Allergology Wiesbaden Germany
| | - Natalija Novak
- Department of Dermatology and Allergy University Hospital Bonn Germany
| | - Beatriz Cabanillas
- Department of Allergy Research Institute Hospital 12 de Octubre Madrid Spain
| | - Marek Jutel
- Department of Clinical Immunology Wrocław Medical University, PolandALL‐MED Medical research Institute Wroclaw Poland
| | - Jean Bousquet
- Comprehensive Allergy Center Department of Dermatology and Allergy Charité – Universitätsmedizin BerlinCorporate Member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of Health Berlin Germany
- MACVIA‐France Montpellier France
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAFUniversity of Zurich Davos Switzerland
| |
Collapse
|
126
|
Baldino L, Reverchon E. Niosomes formation using a continuous supercritical CO2 assisted process. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
127
|
Quispe C, Cruz-Martins N, Manca ML, Manconi M, Sytar O, Hudz N, Shanaida M, Kumar M, Taheri Y, Martorell M, Sharifi-Rad J, Pintus G, Cho WC. Nano-Derived Therapeutic Formulations with Curcumin in Inflammation-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3149223. [PMID: 34584616 PMCID: PMC8470924 DOI: 10.1155/2021/3149223] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/29/2021] [Indexed: 12/20/2022]
Abstract
Due to its vast therapeutic potential, the plant-derived polyphenol curcumin is utilized in an ever-growing number of health-related applications. Here, we report the extraction methodologies, therapeutic properties, advantages and disadvantages linked to curcumin employment, and the new strategies addressed to improve its effectiveness by employing advanced nanocarriers. The emerging nanotechnology applications used to enhance CUR bioavailability and its targeted delivery in specific pathological conditions are collected and discussed. In particular, new aspects concerning the main strategic nanocarriers employed for treating inflammation and oxidative stress-related diseases are reported and discussed, with specific emphasis on those topically employed in conditions such as wounds, arthritis, or psoriasis and others used in pathologies such as bowel (colitis), neurodegenerative (Alzheimer's or dementia), cardiovascular (atherosclerosis), and lung (asthma and chronic obstructive pulmonary disease) diseases. A brief overview of the relevant clinical trials is also included. We believe the review can provide the readers with an overview of the nanostrategies currently employed to improve CUR therapeutic applications in the highlighted pathological conditions.
Collapse
Affiliation(s)
- Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
| | - Maria Letizia Manca
- Department of Scienze della Vita e dell'Ambiente, Drug Science Division, University of Cagliari, 09124 Cagliari, Italy
| | - Maria Manconi
- Department of Scienze della Vita e dell'Ambiente, Drug Science Division, University of Cagliari, 09124 Cagliari, Italy
| | - Oksana Sytar
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 94976 Nitra, Slovakia
- Department of Plant Biology, Educational and Scientific Center “Institute of Biology and Medicine”, Kiev National University of Taras Shevchenko, Volodymyrska, 64, 01033 Kyiv, Ukraine
| | - Nataliia Hudz
- Department of Drug Technology and Biopharmaceutics, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, Ukraine
| | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, Voli 1, Ternopil, Ukraine
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion 4070386, Chile
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, 22272 Sharjah, UAE
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
128
|
The importance of nanoparticle physicochemical characterization for immunology research: What we learned and what we still need to understand. Adv Drug Deliv Rev 2021; 176:113897. [PMID: 34314786 DOI: 10.1016/j.addr.2021.113897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/02/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023]
Abstract
Physicochemical characterization of nanoparticles intended for immunology research is important as it helps explain the observed immunological effects. More importantly, it relates the physicochemical properties with the immunological properties to draw meaningful conclusions. There are many physicochemical parameters, with each having numerous analytical techniques and instrumentation to measure them. Thus, where to begin can be challenging even for the experienced scientist. This paper aims to provide guidance to the immunology scientist on how best to characterize their nanoparticles. A step-by-step guide for the physicochemical characterization of liposomal formulations, based on the FDA's guidance for industry for Liposome Drug Products, is provided. Eight critical quality attributes have been identified and for each, the methodology and the physicochemical questions one should consider are discussed. This chapter also addresses common physicochemical characterization mistakes and concludes with a perspective on the type of measurements needed to address current physicochemical characterization gaps and challenges.
Collapse
|
129
|
Allahou LW, Madani SY, Seifalian A. Investigating the Application of Liposomes as Drug Delivery Systems for the Diagnosis and Treatment of Cancer. Int J Biomater 2021; 2021:3041969. [PMID: 34512761 PMCID: PMC8426107 DOI: 10.1155/2021/3041969] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy is the routine treatment for cancer despite the poor efficacy and associated off-target toxicity. Furthermore, therapeutic doses of chemotherapeutic agents are limited due to their lack of tissue specificity. Various developments in nanotechnology have been applied to medicine with the aim of enhancing the drug delivery of chemotherapeutic agents. One of the successful developments includes nanoparticles which are particles that range between 1 and 100 nm that may be utilized as drug delivery systems for the treatment and diagnosis of cancer as they overcome the issues associated with chemotherapy; they are highly efficacious and cause fewer side effects on healthy tissues. Other nanotechnological developments include organic nanocarriers such as liposomes which are a type of nanoparticle, although they can deviate from the standard size range of nanoparticles as they may be several hundred nanometres in size. Liposomes are small artificial spherical vesicles ranging between 30 nm and several micrometres and contain one or more concentric lipid bilayers encapsulating an aqueous core that can entrap both hydrophilic and hydrophobic drugs. Liposomes are biocompatible and low in toxicity and can be utilized to encapsulate and facilitate the intracellular delivery of chemotherapeutic agents as they are biodegradable and have reduced systemic toxicity compared with free drugs. Liposomes may be modified with PEG chains to prolong blood circulation and enable passive targeting. Grafting of targeting ligands on liposomes enables active targeting of anticancer drugs to tumour sites. In this review, we shall explore the properties of liposomes as drug delivery systems for the treatment and diagnosis of cancer. Moreover, we shall discuss the various synthesis and functionalization techniques associated with liposomes including their drug delivery, current clinical applications, and toxicology.
Collapse
Affiliation(s)
- Latifa W. Allahou
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Seyed Yazdan Madani
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd.) London BioScience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK
| |
Collapse
|
130
|
Liposome Photosensitizer Formulations for Effective Cancer Photodynamic Therapy. Pharmaceutics 2021; 13:pharmaceutics13091345. [PMID: 34575424 PMCID: PMC8470396 DOI: 10.3390/pharmaceutics13091345] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising non-invasive strategy in the fight against that which circumvents the systemic toxic effects of chemotherapeutics. It relies on photosensitizers (PSs), which are photoactivated by light irradiation and interaction with molecular oxygen. This generates highly reactive oxygen species (such as 1O2, H2O2, O2, ·OH), which kill cancer cells by necrosis or apoptosis. Despite the promising effects of PDT in cancer treatment, it still suffers from several shortcomings, such as poor biodistribution of hydrophobic PSs, low cellular uptake, and low efficacy in treating bulky or deep tumors. Hence, various nanoplatforms have been developed to increase PDT treatment effectiveness and minimize off-target adverse effects. Liposomes showed great potential in accommodating different PSs, chemotherapeutic drugs, and other therapeutically active molecules. Here, we review the state-of-the-art in encapsulating PSs alone or combined with other chemotherapeutic drugs into liposomes for effective tumor PDT.
Collapse
|
131
|
Altrichter S, Wöhrl S, Horak F, Idzko M, Jordakieva G, Untersmayr E, Szepfalusi Z, Zieglmayer P, Jensen-Jarolim E, Wiedermann U, Rosenkranz A, Hötzenecker W. Antworten auf brennende Fragen an klinische Allergolog*innen im Zusammenhang mit den neuen COVID-19-Impfstoffen. ALLERGO JOURNAL 2021; 30:48-54. [PMID: 34393385 PMCID: PMC8349618 DOI: 10.1007/s15007-021-4847-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hintergrund: Mit den neu zugelassenen Impfungen gegen COVID-19 kam es zu ersten Berichten über allergische beziehungsweise Unverträglichkeitsreaktionen. In der Folge stellte sich die Frage, ob von diesen Impfstoffen eine erhöhte Gefahr für Unverträglichkeitsreaktionen ausgeht und ob Allergiker gegebenenfalls hierfür ein höheres Risiko aufweisen. Ergebnisse: Allergische Reaktionen nach COVID-19-Impfungen wurden berichtet, jedoch meist von mildem Ausprägungsgrad und in bei Impfstoffen normaler (Moderna®) oder nur gering erhöhter Frequenz (BioNTech/Pfizer®). Das Risiko einer allergischen Reaktion auf die neu zugelassenen Vektorimpfstoffe (AstraZeneca®, Johnson & Johnson®) kann noch nicht abschließend beurteilt werden, scheint jedoch ebenfalls gering. Es gibt aktuell keinen Hinweis, dass Patienten mit Allergien häufiger oder schwerer reagieren. Man geht momentan davon aus, dass Unverträglichkeitsreaktionen vom Soforttyp einerseits Typ-I-allergisch (IgE-vermittelt) oder über Komplement-Aktivierung (CARPA, "complement activation-related pseudoallergy") stattfinden. Als Auslöser hierfür werden Polyethylenglycol (PEG) oder Polysorbat, die als Stabilisatoren in den Impfstoffen vorhanden sind, vermutet. Diskussion: Die bisher verfügbaren Daten zeigen kein wesentlich erhöhtes Risiko hinsichtlich allergischer Reaktionen vom Soforttyp bei Allergikern. Allergiker können zumeist problemlos geimpft werden. Standardisierte Testungen zur Nachverfolgung möglicher Allergien oder CARPA-vermittelten Reaktionen sind derzeit nur begrenzt verfügbar. Zitierweise: Altrichter S, Wöhrl S, Horak F, Idzko M, Jordakieva G, Untersmayr E, Szepfalusi Z, Zieglmayer P, Jensen-Jarolim E, Wiedermann U, Rosenkranz A, Hötzenecker W. Answers to burning questions for clinical allergologists related to the new COVID-19 vaccines. Allergo J Int 2021; 30:169-75 https://doi.org/10.1007/s40629-021-00177-3
Collapse
Affiliation(s)
- Sabine Altrichter
- Universitätsklinik für Dermatologie und Venerologie,, Kepler Universitätsklinikum, Krankenhausstraße 9, 4020 Linz, Österreich
| | - Stefan Wöhrl
- Pius-Parsch-Platz 1/3, Floridsdorfer Allergiezentrum (FAZ), Währinger Gürtel 18-20, 1210 Wien, Österreich
| | | | - Marco Idzko
- Universitätsklinik für Innere Medizin II, Medizinische Universität Wien, Wien, Österreich
| | - Galateja Jordakieva
- Universitätsklinik für Physikalische Medizin, Rehabilitation und Arbeitsmedizin, Medizinische Universität Wien, Wien, Österreich
| | - Eva Untersmayr
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
| | - Zsolt Szepfalusi
- Universitätsklinik für Kinder und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
| | - Petra Zieglmayer
- Allergieambulatorium Wien West, Hütteldorferstr. 46, 1150 Wien, Österreich
| | - Erika Jensen-Jarolim
- Institut für Pathophysiologie AKH Wien, Ebene 3 Q, Währinger Gürtel 18-20, 1090 Wien, Österreich
| | - Ursula Wiedermann
- Institut für Spezifische Prophylaxe und Tropenmedizin, Zentrum für Pathophysiologie, Infektiologie und Immunologie, Medizinische Universität Wien, Wien, Österreich
| | - Alexander Rosenkranz
- Klinische Abteilung für Nephrologie, Universitätsklinik für Innere Medizin, Graz, Graz, Österreich
| | - Wolfram Hötzenecker
- Klinik für Dermatologie und Venerologie, Kepler Universitätsklinikum / Med Campus III., Krankenhausstr. 9, 4021 Linz, Österreich
| |
Collapse
|
132
|
Gladkikh DV, Sen′kova AV, Chernikov IV, Kabilova TO, Popova NA, Nikolin VP, Shmendel EV, Maslov MA, Vlassov VV, Zenkova MA, Chernolovskaya EL. Folate-Equipped Cationic Liposomes Deliver Anti-MDR1-siRNA to the Tumor and Increase the Efficiency of Chemotherapy. Pharmaceutics 2021; 13:pharmaceutics13081252. [PMID: 34452213 PMCID: PMC8399439 DOI: 10.3390/pharmaceutics13081252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/22/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
In this study, we examined the in vivo toxicity of the liposomes F consisting of 1,26-bis(cholest-5-en-3-yloxycarbonylamino)-7,11,16,20-tetraazahexacosan tetrahydrochloride, lipid-helper 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine and folate lipoconjugate (O-{2-[rac-2,3-di(tetradecyloxy)prop-1-yloxycarbonyl]aminoethyl}-O'-[2-(pteroyl-L-glutam-5-yl)aminoethyl]octadecaethyleneglycol) and investigated the antitumor effect of combined antitumor therapy consisting of MDR1-targeted siMDR/F complexes and conventional polychemotherapy using tumor xenograft initiated in immunodeficient mice. Detailed analysis of acute and chronic toxicity of this liposomal formulation in healthy C57BL/6J mice demonstrated that formulation F and parent formulation L (without folate lipoconjugate) have no acute and chronic toxicity in mice. The study of the biodistribution of siMDR/F lipoplexes in SCID mice with xenograft tumors formed by tumor cells differing in the expression level of folate receptors showed that the accumulation in various types of tumors strongly depends on the abandons of folate receptors in tumor cells and effective accumulation occurs only in tumors formed by cells with the highest FR levels. Investigating the effects of combined therapy including anti-MDR1 siRNA/F complexes and polychemotherapy on a multidrug-resistant KB-8-5 tumor xenograft in SCID mice demonstrated that siMDR/F increases the efficiency of polychemotherapy: the treatment leads to pronounced inhibition of tumor growth, reduced necrosis and inflammation, and stimulates apoptosis in KB-8-5 tumor tissue. At the same time, it does not induce liver toxicity in tumor-bearing mice. These data confirm that folate-containing liposome F mediated the extremely efficient delivery of siRNA in FR-expressing tumors in vivo and ensured the safety and effectiveness of its action.
Collapse
Affiliation(s)
- Daniil V. Gladkikh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (D.V.G.); (A.V.S.); (I.V.C.); (T.O.K.); (V.V.V.); (M.A.Z.)
| | - Aleksandra V. Sen′kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (D.V.G.); (A.V.S.); (I.V.C.); (T.O.K.); (V.V.V.); (M.A.Z.)
| | - Ivan V. Chernikov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (D.V.G.); (A.V.S.); (I.V.C.); (T.O.K.); (V.V.V.); (M.A.Z.)
| | - Tatyana O. Kabilova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (D.V.G.); (A.V.S.); (I.V.C.); (T.O.K.); (V.V.V.); (M.A.Z.)
| | - Nelly A. Popova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Acad. Lavrentjev Avenue, 630090 Novosibirsk, Russia; (N.A.P.); (V.P.N.)
| | - Valery P. Nikolin
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Acad. Lavrentjev Avenue, 630090 Novosibirsk, Russia; (N.A.P.); (V.P.N.)
| | - Elena V. Shmendel
- Institute of Fine Chemical Technologies, MIREA, Russian Technological University, 119571 Moscow, Russia; (E.V.S.); (M.A.M.)
| | - Mikhail A. Maslov
- Institute of Fine Chemical Technologies, MIREA, Russian Technological University, 119571 Moscow, Russia; (E.V.S.); (M.A.M.)
| | - Valentin V. Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (D.V.G.); (A.V.S.); (I.V.C.); (T.O.K.); (V.V.V.); (M.A.Z.)
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (D.V.G.); (A.V.S.); (I.V.C.); (T.O.K.); (V.V.V.); (M.A.Z.)
| | - Elena L. Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia; (D.V.G.); (A.V.S.); (I.V.C.); (T.O.K.); (V.V.V.); (M.A.Z.)
- Correspondence: ; Tel.: +7-383-363-5161
| |
Collapse
|
133
|
Tehrani Fateh S, Moradi L, Kohan E, Hamblin MR, Shiralizadeh Dezfuli A. Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:808-862. [PMID: 34476167 PMCID: PMC8372309 DOI: 10.3762/bjnano.12.64] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/15/2021] [Indexed: 05/03/2023]
Abstract
The field of theranostics has been rapidly growing in recent years and nanotechnology has played a major role in this growth. Nanomaterials can be constructed to respond to a variety of different stimuli which can be internal (enzyme activity, redox potential, pH changes, temperature changes) or external (light, heat, magnetic fields, ultrasound). Theranostic nanomaterials can respond by producing an imaging signal and/or a therapeutic effect, which frequently involves cell death. Since ultrasound (US) is already well established as a clinical imaging modality, it is attractive to combine it with rationally designed nanoparticles for theranostics. The mechanisms of US interactions include cavitation microbubbles (MBs), acoustic droplet vaporization, acoustic radiation force, localized thermal effects, reactive oxygen species generation, sonoluminescence, and sonoporation. These effects can result in the release of encapsulated drugs or genes at the site of interest as well as cell death and considerable image enhancement. The present review discusses US-responsive theranostic nanomaterials under the following categories: MBs, micelles, liposomes (conventional and echogenic), niosomes, nanoemulsions, polymeric nanoparticles, chitosan nanocapsules, dendrimers, hydrogels, nanogels, gold nanoparticles, titania nanostructures, carbon nanostructures, mesoporous silica nanoparticles, fuel-free nano/micromotors.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lida Moradi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Kohan
- Department of Science, University of Kurdistan, Kurdistan, Sanandaj, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | | |
Collapse
|
134
|
Batchelor DV, Armistead FJ, Ingram N, Peyman SA, Mclaughlan JR, Coletta PL, Evans SD. Nanobubbles for therapeutic delivery: Production, stability and current prospects. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
135
|
Ballacchino G, Weaver E, Mathew E, Dorati R, Genta I, Conti B, Lamprou DA. Manufacturing of 3D-Printed Microfluidic Devices for the Synthesis of Drug-Loaded Liposomal Formulations. Int J Mol Sci 2021; 22:ijms22158064. [PMID: 34360832 PMCID: PMC8348465 DOI: 10.3390/ijms22158064] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Microfluidic technique has emerged as a promising tool for the production of stable and monodispersed nanoparticles (NPs). In particular, this work focuses on liposome production by microfluidics and on factors involved in determining liposome characteristics. Traditional fabrication techniques for microfluidic devices suffer from several disadvantages, such as multistep processing and expensive facilities. Three-dimensional printing (3DP) has been revolutionary for microfluidic device production, boasting facile and low-cost fabrication. In this study, microfluidic devices with innovative micromixing patterns were developed using fused deposition modelling (FDM) and liquid crystal display (LCD) printers. To date, this work is the first to study liposome production using LCD-printed microfluidic devices. The current study deals with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes with cholesterol (2:1) prepared using commercial and 3D-printed microfluidic devices. We evaluated the effect of microfluidic parameters, chip manufacturing, material, and channel design on liposomal formulation by analysing the size, PDI, and ζ-potential. Curcumin exhibits potent anticancer activity and it has been reported that curcumin-loaded liposomes formulated by microfluidics show enhanced encapsulation efficiency when compared with other reported systems. In this work, curcumal liposomes were produced using the developed microfluidic devices and particle sizing, ζ-potential, encapsulation efficiency, and in vitro release studies were performed at 37 °C.
Collapse
Affiliation(s)
- Giulia Ballacchino
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (G.B.); (E.W.); (E.M.)
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.D.); (I.G.)
| | - Edward Weaver
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (G.B.); (E.W.); (E.M.)
| | - Essyrose Mathew
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (G.B.); (E.W.); (E.M.)
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.D.); (I.G.)
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.D.); (I.G.)
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.D.); (I.G.)
- Correspondence: (B.C.); (D.A.L.); Tel.: +39-0382-987378 (B.C.); +44-(0)28-9097-2617 (D.A.L.)
| | - Dimitrios A. Lamprou
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (G.B.); (E.W.); (E.M.)
- Correspondence: (B.C.); (D.A.L.); Tel.: +39-0382-987378 (B.C.); +44-(0)28-9097-2617 (D.A.L.)
| |
Collapse
|
136
|
Bozzer S, Bo MD, Toffoli G, Macor P, Capolla S. Nanoparticles-Based Oligonucleotides Delivery in Cancer: Role of Zebrafish as Animal Model. Pharmaceutics 2021; 13:1106. [PMID: 34452067 PMCID: PMC8400075 DOI: 10.3390/pharmaceutics13081106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/29/2022] Open
Abstract
Oligonucleotide (ON) therapeutics are molecular target agents composed of chemically synthesized DNA or RNA molecules capable of inhibiting gene expression or protein function. How ON therapeutics can efficiently reach the inside of target cells remains a problem still to be solved in the majority of potential clinical applications. The chemical structure of ON compounds could affect their capability to pass through the plasma membrane. Other key factors are nuclease degradation in the extracellular space, renal clearance, reticulo-endothelial system, and at the target cell level, the endolysosomal system and the possible export via exocytosis. Several delivery platforms have been proposed to overcome these limits including the use of lipidic, polymeric, and inorganic nanoparticles, or hybrids between them. The possibility of evaluating the efficacy of the proposed therapeutic strategies in useful in vivo models is still a pivotal need, and the employment of zebrafish (ZF) models could expand the range of possibilities. In this review, we briefly describe the main ON therapeutics proposed for anticancer treatment, and the different strategies employed for their delivery to cancer cells. The principal features of ZF models and the pros and cons of their employment in the development of ON-based therapeutic strategies are also discussed.
Collapse
Affiliation(s)
- Sara Bozzer
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (M.D.B.); (G.T.); (S.C.)
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (M.D.B.); (G.T.); (S.C.)
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (M.D.B.); (G.T.); (S.C.)
| |
Collapse
|
137
|
Altrichter S, Wöhrl S, Horak F, Idzko M, Jordakieva G, Untersmayr E, Szepfalusi Z, Zieglmayer P, Jensen-Jarolim E, Wiedermann U, Rosenkranz A, Hötzenecker W. Answers to burning questions for clinical allergologists related to the new COVID-19 vaccines. ACTA ACUST UNITED AC 2021; 30:169-175. [PMID: 34277326 PMCID: PMC8278365 DOI: 10.1007/s40629-021-00177-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/16/2021] [Indexed: 11/28/2022]
Abstract
Background Along with the newly approved vaccines against coronavirus disease 2019 (COVID-19), first reports of allergic or intolerance reactions were published. Subsequently, questions arose whether these vaccines pose an increased risk for intolerance reactions and whether allergic patients may be at higher risk for this. Results Allergic reactions following COVID-19 vaccinations have been reported, but mostly of mild severity and at normal (Moderna®) or only slightly increased frequency (BioNTech/Pfizer®) compared to established conventional vaccines. The risk of allergic reaction to the newly licensed vector vaccines (AstraZeneca®, Johnson&Johnson®) cannot be conclusively assessed yet, but also appears to be low. There is currently no evidence that patients with allergic diseases (atopic patients) react more frequently or more severely to these vaccines. It is currently assumed that intolerance reactions of the immediate-type are either type I allergic (IgE-mediated) reactions or occur via complement activation (CARPA, “complement activation-related pseudoallergy”). Polyethylene glycol (PEG) or polysorbate, which are present as stabilizers in the vaccines, are suspected as triggers for this. Conclusion The data available so far do not show a significantly increased risk of immediate-type allergic reactions in atopic persons. In almost all cases, atopic patients can be vaccinated without problems. Standardized follow-up tests after suspected allergic reactions or CARPA-mediated reactions are currently limited.
Collapse
Affiliation(s)
- Sabine Altrichter
- Department of Dermatology und Venerology, Comprehensive Allergy Center, Kepler University Hospital, Krankenhausstraße 9, 4020 Linz, Austria.,Department of Dermatology und Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Wöhrl
- Floridsdorfer Allergiezentrum (FAZ), Vienna, Austria
| | | | - Marco Idzko
- Department for Medicine II, Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Galateja Jordakieva
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Vienna, Austria
| | - Eva Untersmayr
- Department of Pathophysiology und Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Zsolt Szepfalusi
- Department of Pediatrics and Adolescent Medicine, Division for Pediatric Pulmonology, Allergology and Endokrinology, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Petra Zieglmayer
- Competence Center for Allergology and Immunology, Karl Landsteiner Privatuniversität für Gesundheitswissenschaften, Krems, Austria
| | - Erika Jensen-Jarolim
- Department of Pathophysiology und Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Department of Interdisciplinary Life Sciences, Messerli Research Institute, University of Veterinary Medicine, Vienna, Austria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alexander Rosenkranz
- Division of Nephrology, Department for Medicine, Medical University Graz, Graz, Austria
| | - Wolfram Hötzenecker
- Department of Dermatology und Venerology, Comprehensive Allergy Center, Kepler University Hospital, Krankenhausstraße 9, 4020 Linz, Austria
| |
Collapse
|
138
|
Huda MN, Nafiujjaman M, Deaguero IG, Okonkwo J, Hill ML, Kim T, Nurunnabi M. Potential Use of Exosomes as Diagnostic Biomarkers and in Targeted Drug Delivery: Progress in Clinical and Preclinical Applications. ACS Biomater Sci Eng 2021; 7:2106-2149. [PMID: 33988964 PMCID: PMC8147457 DOI: 10.1021/acsbiomaterials.1c00217] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022]
Abstract
Exosomes are cell-derived vesicles containing heterogeneous active biomolecules such as proteins, lipids, mRNAs, receptors, immune regulatory molecules, and nucleic acids. They typically range in size from 30 to 150 nm in diameter. An exosome's surfaces can be bioengineered with antibodies, fluorescent dye, peptides, and tailored for small molecule and large active biologics. Exosomes have enormous potential as a drug delivery vehicle due to enhanced biocompatibility, excellent payload capability, and reduced immunogenicity compared to alternative polymeric-based carriers. Because of active targeting and specificity, exosomes are capable of delivering their cargo to exosome-recipient cells. Additionally, exosomes can potentially act as early stage disease diagnostic tools as the exosome carries various protein biomarkers associated with a specific disease. In this review, we summarize recent progress on exosome composition, biological characterization, and isolation techniques. Finally, we outline the exosome's clinical applications and preclinical advancement to provide an outlook on the importance of exosomes for use in targeted drug delivery, biomarker study, and vaccine development.
Collapse
Affiliation(s)
- Md Nurul Huda
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX 79968
| | - Md Nafiujjaman
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Isaac G Deaguero
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968
| | - Jude Okonkwo
- John A Paulson School of Engineering, Harvard University, Cambridge, MA 02138
| | - Meghan L. Hill
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Taeho Kim
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Md Nurunnabi
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX 79968
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968
| |
Collapse
|
139
|
Tombácz I, Laczkó D, Shahnawaz H, Muramatsu H, Natesan A, Yadegari A, Papp TE, Alameh MG, Shuvaev V, Mui BL, Tam YK, Muzykantov V, Pardi N, Weissman D, Parhiz H. Highly efficient CD4+ T cell targeting and genetic recombination using engineered CD4+ cell-homing mRNA-LNP. Mol Ther 2021; 29:3293-3304. [PMID: 34091054 PMCID: PMC8571164 DOI: 10.1016/j.ymthe.2021.06.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/30/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022] Open
Abstract
Nucleoside-modified messenger RNA (mRNA)-lipid nanoparticles (LNPs) are the basis for the first two EUA (Emergency Use Authorization) COVID-19 vaccines. The use of nucleoside-modified mRNA as a pharmacological agent opens immense opportunities for therapeutic, prophylactic and diagnostic molecular interventions. In particular, mRNA-based drugs may specifically modulate immune cells, such as T lymphocytes, for immunotherapy of oncologic, infectious and other conditions. The key challenge, however, is that T cells are notoriously resistant to transfection by exogenous mRNA. Here, we report that conjugating CD4 antibody to LNPs enables specific targeting and mRNA interventions to CD4+ cells, including T cells. After systemic injection in mice, CD4-targeted radiolabeled mRNA-LNPs accumulated in spleen, providing ∼30-fold higher signal of reporter mRNA in T cells isolated from spleen as compared with non-targeted mRNA-LNPs. Intravenous injection of CD4-targeted LNPs loaded with Cre recombinase-encoding mRNA provided specific dose-dependent loxP-mediated genetic recombination, resulting in reporter gene expression in about 60% and 40% of CD4+ T cells in spleen and lymph nodes, respectively. T cell phenotyping showed uniform transfection of T cell subpopulations, with no variability in uptake of CD4-targeted mRNA-LNPs in naive, central memory, and effector cells. The specific and efficient targeting and transfection of mRNA to T cells established in this study provides a platform technology for immunotherapy of devastating conditions and HIV cure.
Collapse
Affiliation(s)
- István Tombácz
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dorottya Laczkó
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamna Shahnawaz
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hiromi Muramatsu
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ambika Natesan
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amir Yadegari
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tyler E Papp
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohamad-Gabriel Alameh
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir Shuvaev
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | - Vladimir Muzykantov
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Norbert Pardi
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamideh Parhiz
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
140
|
Rutkowski K, Mirakian R, Till S, Rutkowski R, Wagner A. Adverse reactions to COVID-19 vaccines: A practical approach. Clin Exp Allergy 2021; 51:770-777. [PMID: 33813758 PMCID: PMC8250847 DOI: 10.1111/cea.13880] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/10/2021] [Indexed: 12/19/2022]
Abstract
COVID-19-related mortality in high-risk individuals is substantial and current treatment options are limited. There is convincing evidence that the COVID-19 vaccines reduce the severity of infection and prevent deaths. Three COVID-19 vaccines are approved in the United Kingdom with many more in development. There are limited data on the triggers and mechanisms of anaphylaxis to these vaccines. We review the potential allergenic compounds in the COVID-19 vaccines and describe an innovative allergy support model for the vaccination hubs that allows most patients with severe allergy be immunized. Finally, we propose a practical algorithm for the investigations of anaphylaxis to these vaccines.
Collapse
Affiliation(s)
| | - Rita Mirakian
- Department of AllergyAddenbrooke’s HospitalCambridgeUK
| | - Stephen Till
- Department of Adult AllergyGuy’s and St Thomas’ HospitalLondonUK
- Peter Gorer Department of ImmunobiologySchool of Immunology and Microbial SciencesSchool of MedicineGuy’s HospitalKing’s College LondonLondonUK
| | - Ryszard Rutkowski
- Department of Respiratory Diagnostics and BronchofiberoscopyMedical UniversityBialystokPoland
| | - Annette Wagner
- Department of Adult AllergyGuy’s and St Thomas’ HospitalLondonUK
| |
Collapse
|
141
|
Liposomes Prevent In Vitro Hemolysis Induced by Streptolysin O and Lysenin. MEMBRANES 2021; 11:membranes11050364. [PMID: 34069894 PMCID: PMC8157566 DOI: 10.3390/membranes11050364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
The need for alternatives to antibiotics in the fight against infectious diseases has inspired scientists to focus on antivirulence factors instead of the microorganisms themselves. In this respect, prior work indicates that tiny, enclosed bilayer lipid membranes (liposomes) have the potential to compete with cellular targets for toxin binding, hence preventing their biological attack and aiding with their clearance. The effectiveness of liposomes as decoy targets depends on their availability in the host and how rapidly they are cleared from the circulation. Although liposome PEGylation may improve their circulation time, little is known about how such a modification influences their interactions with antivirulence factors. To fill this gap in knowledge, we investigated regular and long-circulating liposomes for their ability to prevent in vitro red blood cell hemolysis induced by two potent lytic toxins, lysenin and streptolysin O. Our explorations indicate that both regular and long-circulating liposomes are capable of similarly preventing lysis induced by streptolysin O. In contrast, PEGylation reduced the effectiveness against lysenin-induced hemolysis and altered binding dynamics. These results suggest that toxin removal by long-circulating liposomes is feasible, yet dependent on the particular virulence factor under scrutiny.
Collapse
|
142
|
Immune Responses to Nanomaterials for Biomedical Applications. NANOMATERIALS 2021; 11:nano11051241. [PMID: 34066755 PMCID: PMC8150963 DOI: 10.3390/nano11051241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
|
143
|
Klimek L, Bergmann KC, Brehler R, Pfützner W, Worm M, Hartmann K, Jakob T, Novak N, Ring J, Hamelmann E, Ankermann T, Schmidt SM, Untersmayr E, Hötzenecker W, Jensen-Jarolim E, Zuberbier T. Praktischer Umgang mit allergischen Reaktionen auf COVID-19-Impfstoffe. ALLERGO JOURNAL 2021; 30:22-43. [PMID: 33967401 PMCID: PMC8091634 DOI: 10.1007/s15007-021-4773-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hintergrund: Zur vorbeugenden Behandlung von COVID-19 (Coronaviruserkrankung 2019) wurden in einer beispiellosen weltweiten Forschungsanstrengung Sicherheit und Wirksamkeit neuer Impfstoffplattformen studiert, die noch nie zuvor am Menschen eingesetzt wurden. Weniger als ein Jahr nach der Entdeckung der SARS-CoV-2-Virussequenz (SARS-CoV-2, "severe acute respiratory syndrome coronavirus type 2") wurden diese in zahlreichen Ländern für den Einsatz zugelassen und es wurde mit Massenimpfungen begonnen. Die bislang in der Europäischen Union (EU) zugelassenen mRNA-Impfstoffe (mRNA, "messenger"-RNA) gegen SARS-CoV-2 BNT162b2 und mRNA-1273 basieren auf einer ähnlichen lipidbasierten Nanopartikelträgertechnologie; die Lipidkomponenten unterscheiden sich jedoch. Schwere allergische Reaktionen und Anaphylaxien nach COVID-19-Impfungen sind sehr seltene unerwünschte Nebenwirkungen, die aber aufgrund potenziell letaler Ausgänge viel Aufmerksamkeit erhalten und ein hohes Maß an Verunsicherung ausgelöst haben. Methoden: Das aktuelle Wissen zu anaphylaktischen Reaktionen auf Impfstoffe und speziell zu den derzeit neuen mRNA-COVID-19-Impfstoffen wurde zusammengestellt mittels einer Literaturanalyse durch Recherchen in Medline, Pubmed sowie den nationalen und internationalen Studien- und Leitlinienregistern, der Cochrane Library und dem Internet unter besonderer Berücksichtigung offizieller Webseiten der World Health Oranization (WHO), der Centers for Disease Control and Prevention (CDC), der European Medicines Agency (EMA), des Robert-Koch-Instituts (RKI) und des Paul-Ehrlich-Instituts (PEI). Ergebnisse: Basierend auf der internationalen Literatur und bisheriger Erfahrungen zu schweren allergischen Reaktionen im Kontext der COVID-19-Impfungen werden von einem Expertengremium Empfehlungen für Prophylaxe, Diagnostik und Therapie dieser allergischen Reaktionen gegeben. Schlussfolgerung: Vor einer COVID-19-Impfung mit den derzeit zugelassenen Impfstoffen sind Allergietests für die allermeisten Allergiker nicht notwendig. Bei allergischer/anaphylaktischer Reaktion auf den verabreichten COVID-19-Impfstoff wird eine allergologische Abklärung empfohlen, wie auch für eine kleine potenzielle Risikopopulation vor der ersten Impfung. Die Evaluierung und Zulassung von Testverfahren sollten hierfür erfolgen. Zitierweise: Klimek L, Bergmann K-C, Brehler R, Pfützner W, Zuberbier T, Hartmann K, Jakob T, Novak N, Ring J, Merk H; Hamelmann E, Ankermann T, Schmidt S, Untersmayr E, Hötzenecker W, Jensen-Jarolim E, Brockow K, Mahler V, Worm M. Practical Handling of Allergic Reactions to COVID-19 vaccines. A Position Paper from German and Austrian Allergy Societies AeDA, DGAKI, GPA and ÖGAI. Allergo J Int 2021;30:79-95 https: //doi.org/10.1007/s40629-021-00165-7
Collapse
Affiliation(s)
- Ludger Klimek
- Zentrum f. Rhinologie und Allergologie, An den Quellen 10, 65183 Wiesbaden, Germany
| | | | - Randolf Brehler
- Wilhelm-Univ. Münster, Abtlg. Dermatologie, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Wolfgang Pfützner
- Klinik für Dermatologie und Allergologie, Baldingerstraße, 35043 Marburg, Germany
| | - Margitta Worm
- Allergie-Centrum-Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | - Thilo Jakob
- Universitäts-Hautklinik Gießen, Gießen, Germany
| | - Natalija Novak
- Klinik u. Poliklinik f. Dermatologie u. Allergologie, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Johannes Ring
- Haut- und Laserzentrum an der Oper, Perusastraße 5, 80333 München, Germany
| | - Eckard Hamelmann
- Evangelisches Krankenhaus Bielefeld gGmbH, Grenzweg 10, 33617 Bielefeld, Germany
| | - Tobias Ankermann
- Klinik f. Allg. Pädiatrie, Univ. Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | | | - Eva Untersmayr
- Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
| | - Wolfram Hötzenecker
- Kepler Universitätsklinikum \/ Med Campus III., Krankenhausstr. 9, 4021 Linz, Österreich
| | - Erika Jensen-Jarolim
- Institut für Pathophysiologie AKH Wien, Ebene 3 Q, Währinger Gürtel 18-20, 1090 Wien, Österreich
| | - Torsten Zuberbier
- Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
144
|
Klimek L, Bergmann KC, Brehler R, Pfützner W, Zuberbier T, Hartmann K, Jakob T, Novak N, Ring J, Merk H, Hamelmann E, Ankermann T, Schmidt S, Untersmayr E, Hötzenecker W, Jensen-Jarolim E, Brockow K, Mahler V, Worm M. Practical handling of allergic reactions to COVID-19 vaccines: A position paper from German and Austrian Allergy Societies AeDA, DGAKI, GPA and ÖGAI. ALLERGO JOURNAL INTERNATIONAL 2021; 30:79-95. [PMID: 33898162 PMCID: PMC8054127 DOI: 10.1007/s40629-021-00165-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND For the preventive treatment of the 2019 coronavirus disease (COVID-19) an unprecedented global research effort studied the safety and efficacy of new vaccine platforms that have not been previously used in humans. Less than one year after the discovery of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral sequence, these vaccines were approved for use in the European Union (EU) as well as in numerous other countries and mass vaccination efforts began. The so far in the EU approved mRNA vaccines BNT162b2 and mRNA-1273 are based on similar lipid-based nanoparticle carrier technologies; however, the lipid components differ. Severe allergic reactions and anaphylaxis after COVID-19 vaccination are very rare adverse events but have drawn attention due to potentially lethal outcomes and have triggered a high degree of uncertainty. METHODS Current knowledge on anaphylactic reactions to vaccines and specifically the new mRNA COVID-19 vaccines was compiled using a literature search in Medline, PubMed, as well as the national and international study and guideline registries, the Cochrane Library, and the Internet, with special reference to official websites of the World Health Organization (WHO), US Centers for Disease Control and Prevention (CDC), Robert Koch Institute (RKI), and Paul Ehrlich Institute (PEI). RESULTS Based on the international literature and previous experience, recommendations for prophylaxis, diagnosis and therapy of these allergic reactions are given by a panel of experts. CONCLUSION Allergy testing is not necessary for the vast majority of allergic patients prior to COVID-19 vaccination with currently licensed vaccines. In case of allergic/anaphylactic reactions after vaccination, allergy workup is recommended, as it is for a small potential risk population prior to the first vaccination. Evaluation and approval of diagnostic tests should be done for this purpose.
Collapse
Affiliation(s)
- Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Karl-Christian Bergmann
- Clinic for Dermatology, Venereology and Allergy, Charité—University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health, Charité—Medical University Berlin, Berlin, Germany
| | - Randolf Brehler
- Outpatient Clinic for Allergology, Occupational Dermatology and Environmental Medicine, General Dermatology and Venereology, Department of Skin Diseases, Münster University Hospital, Münster, Germany
| | - Wolfgang Pfützner
- Department of Dermatology and Allergology, University Hospital Marburg, UKGM, Philipps University Marburg, Marburg, Germany
| | - Torsten Zuberbier
- Clinic for Dermatology, Venereology and Allergy, Charité—University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health, Charité—Medical University Berlin, Berlin, Germany
| | - Karin Hartmann
- Department of Dermatology and Allergology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Thilo Jakob
- Department of Dermatology and Allergology, Giessen University Hospital, UKGM, Justus Liebig University Giessen, Giessen, Germany
| | - Natalija Novak
- Clinic and Polyclinic for Dermatology and Allergology, University Hospital Bonn, Bonn, Germany
| | - Johannes Ring
- Clinic and Polyclinic for Dermatology and Allergology at Biederstein, Technical University of Munich, Munich, Germany
| | - Hans Merk
- Department of Dermatology and Allergology, RWTH Aachen University Hospital, Aachen, Germany
| | - Eckard Hamelmann
- Pediatric and Adolescent Medicine, Bethel Children’s Center, OWL University Hospital, Bielefeld University, Bielefeld, Germany
| | - Tobias Ankermann
- Clinic for Pediatric and Adolescent Medicine, Municipal Hospital Kiel GmbH, Kiel, Germany
| | - Sebastian Schmidt
- Center for Pediatric and Adolescent Medicine, Clinic and Polyclinic for Pediatric and Adolescent Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Eva Untersmayr
- Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wolfram Hötzenecker
- Clinic for Dermatology and Venereology, Allergy Center, Kepler University Hospital GmbH, Linz, Austria
| | - Erika Jensen-Jarolim
- Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Inter-university Messerli Research Institute Vienna, Vienna, Austria
| | - Knut Brockow
- Clinic and Polyclinic for Dermatology and Allergology at Biederstein, Technical University of Munich, Munich, Germany
| | | | - Margitta Worm
- Allergology and Immunology, Department of Dermatology, Venereology and Allergology, Charité—University Medicine Berlin, Berlin, Germany
| |
Collapse
|
145
|
Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm 2021; 601:120571. [PMID: 33812967 DOI: 10.1016/j.ijpharm.2021.120571] [Citation(s) in RCA: 421] [Impact Index Per Article: 140.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022]
Abstract
Liposomes are spherical vesicles consisting of one or more concentric phospholipid bilayers enclosing an aqueous core. Being both nontoxic and biodegradable, liposomes represent a powerful delivery system for several drugs. They have improved the therapeutic efficacy of drugs through stabilizing compounds, overcoming obstacles to cellular and tissue uptake and increasing drug biodistribution to target sites in vivo, while minimizing systemic toxicity. This review offers an overview of liposomes, thought the exploration of their key fundamentals. Initially, the main design aspects to obtain a successful liposomal formulation were addressed, following the techniques for liposome production and drug loading. Before application, liposomes required an extensive characterization to assurance in vitro and in vivo performance. Thus, several properties to characterize liposomes were explored, such as size, polydispersity index, zeta potential, shape, lamellarity, phase behavior, encapsulation efficiency, and in vitro drug release. Topics related with liposomal functionalization and effective targeting strategies were also addressed, as well as stability and some limitations of liposomes. Finally, this review intends to explore the current market liposomes used as a drug delivery system in different therapeutic applications.
Collapse
|
146
|
Kyriakides TR, Raj A, Tseng TH, Xiao H, Nguyen R, Mohammed FS, Halder S, Xu M, Wu MJ, Bao S, Sheu WC. Biocompatibility of nanomaterials and their immunological properties. Biomed Mater 2021; 16:10.1088/1748-605X/abe5fa. [PMID: 33578402 PMCID: PMC8357854 DOI: 10.1088/1748-605x/abe5fa] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
Nanomaterials (NMs) have revolutionized multiple aspects of medicine by enabling novel sensing, diagnostic, and therapeutic approaches. Advancements in processing and fabrication have also allowed significant expansion in the applications of the major classes of NMs based on polymer, metal/metal oxide, carbon, liposome, or multi-scale macro-nano bulk materials. Concomitantly, concerns regarding the nanotoxicity and overall biocompatibility of NMs have been raised. These involve putative negative effects on both patients and those subjected to occupational exposure during manufacturing. In this review, we describe the current state of testing of NMs including those that are in clinical use, in clinical trials, or under development. We also discuss the cellular and molecular interactions that dictate their toxicity and biocompatibility. Specifically, we focus on the reciprocal interactions between NMs and host proteins, lipids, and sugars and how these induce responses in immune and other cell types leading to topical and/or systemic effects.
Collapse
Affiliation(s)
- Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
- Department of Pathology, Yale University, New Haven, CT 06405, United States of America
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06405, United States of America
| | - Arindam Raj
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06405, United States of America
| | - Tiffany H Tseng
- Department of Pathology, Yale University, New Haven, CT 06405, United States of America
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06405, United States of America
| | - Hugh Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Ryan Nguyen
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Farrah S Mohammed
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Saiti Halder
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Mengqing Xu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06405, United States of America
| | - Michelle J Wu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Shuozhen Bao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06405, United States of America
| | - Wendy C Sheu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| |
Collapse
|
147
|
Klimek L, Eckrich J, Hagemann J, Casper I, Huppertz J. [Allergic reactions to COVID-19 vaccines: evidence and practice-oriented approach]. Internist (Berl) 2021; 62:326-332. [PMID: 33580823 PMCID: PMC7881317 DOI: 10.1007/s00108-021-00959-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 11/24/2022]
Abstract
Less than a year after the first detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), vaccines have been approved for routine use in numerous countries and have already been used in mass vaccination programs. Vaccines include the mRNA BNT162b2 and mRNA 1273. Allergic reactions and anaphylaxis account for a substantial proportion of the adverse reactions to these vaccines observed to date, but overall they are rare. The incidence of anaphylaxis in the context of SARS-CoV‑2 vaccination with the mRNA vaccines appears to be approximately 10-fold higher than with previous vaccines, at approximately 1 per 100,000 vaccine injections. One focus of the present article is a systematic review of the components of mRNA vaccines against " coronavirus disease 2019 " (COVID-19). Differences from established vaccines are addressed and the allergic potential of liposomes, polyethylene glycol, tromethamine/trometamol, and mRNA are discussed. Another focus is on the clinical presentation and course of allergic reactions to the COVID-19 vaccines. This is followed by a discussion of the therapeutic approach to anaphylactic reactions, as well as the drugs and medical supplies required to treat them. It is important to note that any vaccinee may be affected by anaphylaxis, regardless of whether or not allergic diseases are already known. Therefore, every vaccination site and every vaccinator must be prepared to recognize and treat severe allergic reactions.
Collapse
Affiliation(s)
- L Klimek
- Zentrum für Rhinologie und Allergologie, An den Quellen 10, 65183, Wiesbaden, Deutschland.
| | - J Eckrich
- Universitätsklinik für Hals-Nasen-Ohrenheilkunde und Kopf-Hals-Chirurgie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland
| | - J Hagemann
- Universitätsklinik für Hals-Nasen-Ohrenheilkunde und Kopf-Hals-Chirurgie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland
| | - I Casper
- Zentrum für Rhinologie und Allergologie, An den Quellen 10, 65183, Wiesbaden, Deutschland
| | - J Huppertz
- Universitätsklinik für Hals-Nasen-Ohrenheilkunde und Kopf-Hals-Chirurgie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland
| |
Collapse
|
148
|
Petrichenko O, Plotniece A, Pajuste K, Rucins M, Dimitrijevs P, Sobolev A, Sprugis E, Cēbers A. Evaluation of Physicochemical Properties of Amphiphilic 1,4-Dihydropyridines and Preparation of Magnetoliposomes. NANOMATERIALS 2021; 11:nano11030593. [PMID: 33673422 PMCID: PMC7996955 DOI: 10.3390/nano11030593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023]
Abstract
This study was focused on the estimation of the targeted modification of 1,4-DHP core with (1) different alkyl chain lengths at 3,5-ester moieties of 1,4-DHP (C12, C14 and C16); (2) N-substituent at position 1 of 1,4-DHP (N-H or N-CH3); (3) substituents of pyridinium moieties at positions 2 and 6 of 1,4-DHP (H, 4-CN and 3-Ph); (4) substituent at position 4 of 1,4-DHP (phenyl and napthyl) on physicochemical properties of the entire molecules and on the characteristics of the obtained magnetoliposomes formed by them. It was shown that thermal behavior of the tested 1,4-DHP amphiphiles was related to the alkyl chains length, the elongation of which decreased their transition temperatures. The properties of 1,4-DHP amphiphile monolayers and their polar head areas were determined. The packing parameters of amphiphiles were in the 0.43–0.55 range. It was demonstrated that the structure of 1,4-DHPs affected the physicochemical properties of compounds. “Empty” liposomes and magnetoliposomes were prepared from selected 1,4-DHP amphiphiles. It was shown that the variation of alkyl chains length or the change of substituents at positions 4 of 1,4-DHP did not show a significant influence on properties of liposomes.
Collapse
Affiliation(s)
- Oksana Petrichenko
- Laboratory of Magnetic Soft Materials, Faculty of Physics, Mathematics and Optometry, University of Latvia, 3 Jelgavas str., LV-1004 Riga, Latvia;
- Correspondence:
| | - Aiva Plotniece
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia; (A.P.); (K.P.); (M.R.); (P.D.); (A.S.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, 21 Dzirciema Str., LV-1007 Riga, Latvia
| | - Karlis Pajuste
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia; (A.P.); (K.P.); (M.R.); (P.D.); (A.S.)
| | - Martins Rucins
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia; (A.P.); (K.P.); (M.R.); (P.D.); (A.S.)
| | - Pavels Dimitrijevs
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia; (A.P.); (K.P.); (M.R.); (P.D.); (A.S.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, 21 Dzirciema Str., LV-1007 Riga, Latvia
| | - Arkadij Sobolev
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia; (A.P.); (K.P.); (M.R.); (P.D.); (A.S.)
| | - Einars Sprugis
- Laboratory of Chemical Technologies, Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga, Latvia;
| | - Andrejs Cēbers
- Laboratory of Magnetic Soft Materials, Faculty of Physics, Mathematics and Optometry, University of Latvia, 3 Jelgavas str., LV-1004 Riga, Latvia;
| |
Collapse
|
149
|
Impact of Liposomal Drug Formulations on the RBCs Shape, Transmembrane Potential, and Mechanical Properties. Int J Mol Sci 2021; 22:ijms22041710. [PMID: 33567766 PMCID: PMC7914935 DOI: 10.3390/ijms22041710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
Liposomal technologies are used in order to improve the effectiveness of current therapies or to reduce their negative side effects. However, the liposome–erythrocyte interaction during the intravenous administration of liposomal drug formulations may result in changes within the red blood cells (RBCs). In this study, it was shown that phosphatidylcholine-composed liposomal formulations of Photolon, used as a drug model, significantly influences the transmembrane potential, stiffness, as well as the shape of RBCs. These changes caused decreasing the number of stomatocytes and irregular shapes proportion within the cells exposed to liposomes. Thus, the reduction of anisocytosis was observed. Therefore, some nanodrugs in phosphatidylcholine liposomal formulation may have a beneficial effect on the survival time of erythrocytes.
Collapse
|
150
|
Weber F, Ivan DC, Proulx ST, Locatelli G, Aleandri S, Luciani P. Beyond Trial and Error: A Systematic Development of Liposomes Targeting Primary Macrophages. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Florian Weber
- Department of Chemistry Biochemistry and Pharmaceutical Sciences University of Bern Bern 3012 Switzerland
| | - Daniela C. Ivan
- Theodor Kocher Institute University of Bern Bern 3012 Switzerland
| | - Steven T. Proulx
- Theodor Kocher Institute University of Bern Bern 3012 Switzerland
| | | | - Simone Aleandri
- Department of Chemistry Biochemistry and Pharmaceutical Sciences University of Bern Bern 3012 Switzerland
| | - Paola Luciani
- Department of Chemistry Biochemistry and Pharmaceutical Sciences University of Bern Bern 3012 Switzerland
| |
Collapse
|