101
|
Logtenberg MJ, Akkerman R, Hobé RG, Donners KMH, Van Leeuwen SS, Hermes GDA, de Haan BJ, Faas MM, Buwalda PL, Zoetendal EG, de Vos P, Schols HA. Structure-Specific Fermentation of Galacto-Oligosaccharides, Isomalto-Oligosaccharides and Isomalto/Malto-Polysaccharides by Infant Fecal Microbiota and Impact on Dendritic Cell Cytokine Responses. Mol Nutr Food Res 2021; 65:e2001077. [PMID: 34060703 PMCID: PMC8459273 DOI: 10.1002/mnfr.202001077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/18/2021] [Indexed: 12/23/2022]
Abstract
SCOPE Next to galacto-oligosaccharides (GOS), starch-derived isomalto-oligosaccharide preparation (IMO) and isomalto/malto-polysaccharides (IMMP) could potentially be used as prebiotics in infant formulas. However, it remains largely unknown how the specific molecular structures of these non-digestible carbohydrates (NDCs) impact fermentability and immune responses in infants. METHODS AND RESULTS In vitro fermentation of GOS, IMO and IMMP using infant fecal inoculum of 2- and 8-week-old infants shows that only GOS and IMO are fermented by infant fecal microbiota. The degradation of GOS and IMO coincides with an increase in Bifidobacterium and production of acetate and lactate, which is more pronounced with GOS. Individual isomers with an (1↔1)-linkage or di-substituted reducing terminal glucose residue are more resistant to fermentation. GOS, IMO, and IMMP fermentation digesta attenuates cytokine profiles in immature dendritic cells (DCs), but the extent is dependent on the infants age and NDC structure. CONCLUSION The IMO preparation, containing reducing and non-reducing isomers, shows similar fermentation patterns as GOS in fecal microbiota of 2-week-old infants. Knowledge obtained on the substrate specificities of infant fecal microbiota and the subsequent regulatory effects of GOS, IMO and IMMP on DC responses might contribute to the design of tailored NDC mixtures for infants of different age groups.
Collapse
Affiliation(s)
- Madelon J. Logtenberg
- Laboratory of Food ChemistryWageningen University & ResearchBornse Weilanden 9Wageningen6708 WGThe Netherlands
| | - Renate Akkerman
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of Groningen and University Medical Centre GroningenGroningenThe Netherlands
| | - Rosan G. Hobé
- Laboratory of Food ChemistryWageningen University & ResearchBornse Weilanden 9Wageningen6708 WGThe Netherlands
| | - Kristel M. H. Donners
- Laboratory of Food ChemistryWageningen University & ResearchBornse Weilanden 9Wageningen6708 WGThe Netherlands
| | - Sander S. Van Leeuwen
- Cluster Human Nutrition & HealthDepartment of Laboratory MedicineUniversity Medical Center GroningenGroningenThe Netherlands
| | - Gerben D. A. Hermes
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Bart J. de Haan
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of Groningen and University Medical Centre GroningenGroningenThe Netherlands
| | - Marijke M. Faas
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of Groningen and University Medical Centre GroningenGroningenThe Netherlands
| | - Piet L. Buwalda
- Biobased Chemistry and TechnologyWageningen University & ResearchWageningenThe Netherlands
- Avebe Innovation CenterGroningenThe Netherlands
| | - Erwin G. Zoetendal
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Paul de Vos
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of Groningen and University Medical Centre GroningenGroningenThe Netherlands
| | - Henk A. Schols
- Laboratory of Food ChemistryWageningen University & ResearchBornse Weilanden 9Wageningen6708 WGThe Netherlands
| |
Collapse
|
102
|
Turroni F, Milani C, Ventura M, van Sinderen D. The human gut microbiota during the initial stages of life: insights from bifidobacteria. Curr Opin Biotechnol 2021; 73:81-87. [PMID: 34333445 DOI: 10.1016/j.copbio.2021.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022]
Abstract
Current scientific literature has identified the infant gut microbiota as a multifaceted organ influencing a range of aspects of host-health and development. Many scientific studies have focused on characterizing the main microbial taxa that constitute the resident bacterial population of the infant gut. This has generated a wealth of information on the bacterial composition of the infant gut microbiota, and on the functional role/s exerted by their key microbial members. In this context, one of the most prevalent, abundant and investigated microbial taxon in the human infant gut is the genus Bifidobacterium, due to the purported beneficial activities is bestows upon its host. This review discusses the most recent findings regarding the infant gut microbiota with a particular focus on the molecular mechanisms by which bifidobacteria impact on host health and well-being.
Collapse
Affiliation(s)
- Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy.
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland.
| |
Collapse
|
103
|
Tarracchini C, Milani C, Lugli GA, Mancabelli L, Fontana F, Alessandri G, Longhi G, Anzalone R, Viappiani A, Turroni F, van Sinderen D, Ventura M. Phylogenomic disentangling of the Bifidobacterium longum subsp. infantis taxon. Microb Genom 2021; 7. [PMID: 34319225 PMCID: PMC8477406 DOI: 10.1099/mgen.0.000609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Members of the Bifidobacterium longum species have been shown to possess adaptive abilities to allow colonization of different mammalian hosts, including humans, primates and domesticated mammalian species, such as dogs, horses, cattle and pigs. To date, three subspecies have formally been recognized to belong to this bifidobacterial taxon, i.e. B. longum subsp. longum, B. longum subsp. infantis and B. longum subsp. suis. Although B. longum subsp. longum is widely distributed in the human gut irrespective of host age, B. longum subsp. infantis appears to play a significant role as a prominent member of the gut microbiota of breast-fed infants. Nevertheless, despite the considerable scientific relevance of these taxa and the vast body of genomic data now available, an accurate dissection of the genetic features that comprehensively characterize the B. longum species and its subspecies is still missing. In the current study, we employed 261 publicly available B. longum genome sequences, combined with those of 11 new isolates, to investigate genomic diversity of this taxon through comparative genomic and phylogenomic approaches. These analyses allowed us to highlight a remarkable intra-species genetic and physiological diversity. Notably, characterization of the genome content of members of B. longum subsp. infantis subspecies suggested that this taxon may have acquired genetic features for increased competitiveness in the gut environment of suckling hosts. Furthermore, specific B. longum subsp. infantis genomic features appear to be responsible for enhanced horizontal gene transfer (HGT) occurrences, underpinning an intriguing dedication toward acquisition of foreign DNA by HGT events.
Collapse
Affiliation(s)
- Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,GenProbio Srl, Parma, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,GenProbio Srl, Parma, Italy
| | | | | | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Ireland and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
104
|
Hanisch FG, Kunz C. Novel Class of Human Milk Oligosaccharides Based on 6'-Galactosyllactose Containing N-Acetylglucosamine Branches Extended by Oligogalactoses. J Proteome Res 2021; 20:3865-3874. [PMID: 34170688 DOI: 10.1021/acs.jproteome.1c00154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human milk oligosaccharides (HMOs) have attracted much attention in recent years not only as a prebiotic factor but also in particular as an essential component of infant nutrition in relation to their impact on innate immunity. The backbone structures of complex HMOs generally contain single or repetitive lacto-N-biose (type 1) or lactosamine (type 2) units in either linear or branched chains extending from a lactose core. While all known branched structures originate from the 3,6-substitution of the lactosyl core galactose, we here describe a new class of HMOs that tentatively branch at the terminal galactose of 6'-galactosyllactose. Another novel feature of this class of HMOs was found in linear oligo-galactosyl chains linked to one of the N-acetylglucosamine (GlcNAc) branches. The novel structures exhibit general formulas with hexose versus hexosamine contents of 5/2 to 8/2 and can be designated as high-galactose (HG)-HMOs. In addition, up to three fucosyl residues are linked to the octa- to dodecasaccharides, which were detected in two human milk samples from the Lewis blood-group-defined donors. Structural analyses of methylated glycans and their alditols comprised matrix-assisted laser desorption ionization mass spectrometry, electrospray-(collision-induced dissociation) mass spectrometry and linkage analyses by gas chromatography-mass spectrometry of the derived partially methylated alditol acetates. Enzymatic degradation by the application of β1-3,4-specific galactosidase supported the presence of terminal galactose-linked β1-6 to one of the two GlcNAc branches. The mass spectrometry glycomic data have been deposited at the GlycoPOST archive with the data set identifier GPST000191 (Username: franz.hanisch@uni-koeln.de; Password: Soma1Dita2Carb. Watanabe, Y. GlycoPOST realizes FAIR principles for glycomics mass spectrometry data. Nucleic Acids Res. 2021, 49, D1523-D1528).
Collapse
Affiliation(s)
- Franz-Georg Hanisch
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Köln, Germany
| | - Clemens Kunz
- Institute of Nutritional Science, University of Giessen, Wilhelmstrasse 20, 35392 Giessen, Germany
| |
Collapse
|
105
|
Ferro LE, Sugino KY, Klepac-Ceraj V, Comstock SS. The Abundance of Human Milk Oligosaccharide (HMO)-Metabolizing Genes in Fecal Samples from Six-Month-Old Human Infants. Microorganisms 2021; 9:1352. [PMID: 34206664 PMCID: PMC8307860 DOI: 10.3390/microorganisms9071352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/04/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
Herein, we report the abundance and prevalence of HMO-metabolizing genes, specifically those of Bifidobacterium infantis, in fecal samples from human infants. Forty dyads were enrolled, and each mother collected a fecal sample from her infant at six months of age. Genomic DNA was extracted, and quantitative real-time PCR was used to determine gene abundance. The mode of delivery was not associated with gene abundance. Several gene regions, Sia (a sialidase), B. inf (16S), and GH750 (a glycoside hydrolase), were more abundant in the feces of human milk-fed infants (p < 0.05). Others, Sia and HC bin (16S), tended to be less abundant when a larger percentage of an infant's diet consisted of solids (p < 0.10). When accounting for solid food intake, human milk exposure was positively associated with Sia and B. inf (p < 0.05) and tended to be related to the abundance of the GH750 and HC bin (p < 0.10) gene regions. With further development and validation in additional populations of infants, these assays could be used to group samples by dietary exposure even where no record of dietary intake exists. Thus, these assays would provide a method by which infant human milk intake can be assessed quickly in any well-equipped molecular biology laboratory.
Collapse
Affiliation(s)
- Lynn E. Ferro
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (L.E.F.); (K.Y.S.)
| | - Kameron Y. Sugino
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (L.E.F.); (K.Y.S.)
| | - Vanja Klepac-Ceraj
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA;
| | - Sarah S. Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (L.E.F.); (K.Y.S.)
| |
Collapse
|
106
|
Rudloff S, Kuntz S, Borsch C, Vazquez E, Buck R, Reutzel M, Eckert GP, Kunz C. Fucose as a Cleavage Product of 2'Fucosyllactose Does Not Cross the Blood-Brain Barrier in Mice. Mol Nutr Food Res 2021; 65:e2100045. [PMID: 34139057 DOI: 10.1002/mnfr.202100045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/31/2021] [Indexed: 01/22/2023]
Abstract
SCOPE To further examine the role of the human milk oligosaccharide 2'fucosyllactose (2´FL) and fucose (Fuc) in cognition. Using 13 C-labeled 2'FL,thestudy previously showed in mice that 13 C-enrichment of the brain is not caused by 13 C1 -2´FL itself, but rather by microbial metabolites. Here, the study applies 13 C1 -Fuc in the same mouse model to investigate its uptake into the brain. METHODS AND RESULTS Mice received 13 C1 -Fuc via oral gavage (2 mmol 13 C1 -Fuc/kg-1 body weight) or intravenously (0.4 mmol/kg-1 body weight). 13 C-enrichment is measured in organs, including various brain regions, biological fluids and excrements. By EA-IRMS, the study observes an early rise of 13 C-enrichment in plasma, 30 min after oral dosing. However, 13 C-enrichment in the brain does not occur until 3-5 h post-dosing, when the 13 C-Fuc bolus has already reached the lower gut. Therefore, the researcher assume that 13 C-Fuc is absorbed in the upper small intestine but cannot cross the blood-brain barrier which is also observed after intravenous application of 13 C1 -Fuc. CONCLUSIONS Late 13 C-enrichment in the rodent brain may be derived from 13 C1 -Fuc metabolites derived from bacterial fermentation. The precise role that Fuc or 2´FL metabolites might play in gut-brain communication needs to be investigated in further studies.
Collapse
Affiliation(s)
- Silvia Rudloff
- Institute of Nutritional Sciences, Justus-Liebig University Giessen, Giessen, 35392, Germany.,Department of Pediatrics, Justus-Liebig University Giessen, Giessen, 35392, Germany
| | - Sabine Kuntz
- Institute of Nutritional Sciences, Justus-Liebig University Giessen, Giessen, 35392, Germany
| | - Christian Borsch
- Institute of Nutritional Sciences, Justus-Liebig University Giessen, Giessen, 35392, Germany
| | | | - Rachael Buck
- Discovery R&D, Abbott Nutrition, Columbus, OH, 43219, USA
| | - Martina Reutzel
- Institute of Nutritional Sciences, Justus-Liebig University Giessen, Giessen, 35392, Germany
| | - Gunter Peter Eckert
- Institute of Nutritional Sciences, Justus-Liebig University Giessen, Giessen, 35392, Germany
| | - Clemens Kunz
- Institute of Nutritional Sciences, Justus-Liebig University Giessen, Giessen, 35392, Germany
| |
Collapse
|
107
|
Gu F, Wang S, Beijers R, de Weerth C, Schols HA. Structure-Specific and Individual-Dependent Metabolization of Human Milk Oligosaccharides in Infants: A Longitudinal Birth Cohort Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6186-6199. [PMID: 34032401 PMCID: PMC8193636 DOI: 10.1021/acs.jafc.0c07484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/09/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
To follow human milk oligosaccharide (HMO) biosynthesis and in vivometabolization, mother milk and infant feces from 68 mother-infant dyads at 2, 6, and 12 weeks postpartum were analyzed, with 18 major HMOs quantitated. Fucosylated and neutral core HMO levels in milk were dependent on mothers' Lewis/Secretor status, whereas most sialylated HMO levels were independent. Infant fecal excretion of HMOs gradually declined with age, especially for neutral core structures. Although decreasing in absolute concentrations in milk during lactation, the relative abundance of total fucosylated HMOs increased in both milk and feces. Mono-fucosylated HMOs were more consumed than those decorated with two fucose moieties. More (α2-3)-sialylated HMOs were degraded than (α2-6)-sialylated HMOs. The transition speed of HMO metabolization from nonspecific or structure-specific consumption stage to the complete consumption stage was individual-dependent. Variation was associated with mode and place of delivery, where caesarean section or early exposure to hospital environment delayed the transition.
Collapse
Affiliation(s)
- Fangjie Gu
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Shuang Wang
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Roseriet Beijers
- Department
of Developmental Psychology, Behavioral Science Institute, Radboud University, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition
and Behavior, Radboud University Medical
Center, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Carolina de Weerth
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition
and Behavior, Radboud University Medical
Center, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Henk A. Schols
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
108
|
Laursen MF, Pekmez CT, Larsson MW, Lind MV, Yonemitsu C, Larnkjær A, Mølgaard C, Bode L, Dragsted LO, Michaelsen KF, Licht TR, Bahl MI. Maternal milk microbiota and oligosaccharides contribute to the infant gut microbiota assembly. ISME COMMUNICATIONS 2021; 1:21. [PMID: 36737495 PMCID: PMC9723702 DOI: 10.1038/s43705-021-00021-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Breastfeeding protects against diseases, with potential mechanisms driving this being human milk oligosaccharides (HMOs) and the seeding of milk-associated bacteria in the infant gut. In a cohort of 34 mother-infant dyads we analyzed the microbiota and HMO profiles in breast milk samples and infant's feces. The microbiota in foremilk and hindmilk samples of breast milk was compositionally similar, however hindmilk had higher bacterial load and absolute abundance of oral-associated bacteria, but a lower absolute abundance of skin-associated Staphylococcus spp. The microbial communities within both milk and infant's feces changed significantly over the lactation period. On average 33% and 23% of the bacterial taxa detected in infant's feces were shared with the corresponding mother's milk at 5 and 9 months of age, respectively, with Streptococcus, Veillonella and Bifidobacterium spp. among the most frequently shared. The predominant HMOs in feces associated with the infant's fecal microbiota, and the dominating infant species B. longum ssp. infantis and B. bifidum correlated inversely with HMOs. Our results show that breast milk microbiota changes over time and within a feeding session, likely due to transfer of infant oral bacteria during breastfeeding and suggest that milk-associated bacteria and HMOs direct the assembly of the infant gut microbiota.
Collapse
Affiliation(s)
| | - Ceyda T Pekmez
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Melanie Wange Larsson
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg, Denmark
- Department of Nursing and Nutrition, University College Copenhagen, Copenhagen, Denmark
| | - Mads Vendelbo Lind
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Chloe Yonemitsu
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA, USA
| | - Anni Larnkjær
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Christian Mølgaard
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA, USA
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Kim F Michaelsen
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
109
|
Ioannou A, Knol J, Belzer C. Microbial Glycoside Hydrolases in the First Year of Life: An Analysis Review on Their Presence and Importance in Infant Gut. Front Microbiol 2021; 12:631282. [PMID: 34122357 PMCID: PMC8194493 DOI: 10.3389/fmicb.2021.631282] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/03/2021] [Indexed: 01/15/2023] Open
Abstract
The first year of life is a crucial period during which the composition and functionality of the gut microbiota develop to stabilize and resemble that of adults. Throughout this process, the gut microbiota has been found to contribute to the maturation of the immune system, in gastrointestinal physiology, in cognitive advancement and in metabolic regulation. Breastfeeding, the “golden standard of infant nutrition,” is a cornerstone during this period, not only for its direct effect but also due to its indirect effect through the modulation of gut microbiota. Human milk is known to contain indigestible carbohydrates, termed human milk oligosaccharides (HMOs), that are utilized by intestinal microorganisms. Bacteria that degrade HMOs like Bifidobacterium longum subsp. infantis, Bifidobacterium bifidum, and Bifidobacterium breve dominate the infant gut microbiota during breastfeeding. A number of carbohydrate active enzymes have been found and identified in the infant gut, thus supporting the hypothesis that these bacteria are able to degrade HMOs. It is suggested that via resource-sharing and cross-feeding, the initial utilization of HMOs drives the interplay within the intestinal microbial communities. This is of pronounced importance since these communities promote healthy development and some of their species also persist in the adult microbiome. The emerging production and accessibility to metagenomic data make it increasingly possible to unravel the metabolic capacity of entire ecosystems. Such insights can increase understanding of how the gut microbiota in infants is assembled and makes it a possible target to support healthy growth. In this manuscript, we discuss the co-occurrence and function of carbohydrate active enzymes relevant to HMO utilization in the first year of life, based on publicly available metagenomic data. We compare the enzyme profiles of breastfed children throughout the first year of life to those of formula-fed infants.
Collapse
Affiliation(s)
- Athanasia Ioannou
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Jan Knol
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands.,Danone Nutricia Research, Utrecht, Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
110
|
Sabater C, Ruiz L, Margolles A. A Machine Learning Approach to Study Glycosidase Activities from Bifidobacterium. Microorganisms 2021; 9:1034. [PMID: 34064844 PMCID: PMC8151561 DOI: 10.3390/microorganisms9051034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022] Open
Abstract
This study aimed to recover metagenome-assembled genomes (MAGs) from human fecal samples to characterize the glycosidase profiles of Bifidobacterium species exposed to different prebiotic oligosaccharides (galacto-oligosaccharides, fructo-oligosaccharides and human milk oligosaccharides, HMOs) as well as high-fiber diets. A total of 1806 MAGs were recovered from 487 infant and adult metagenomes. Unsupervised and supervised classification of glycosidases codified in MAGs using machine-learning algorithms allowed establishing characteristic hydrolytic profiles for B. adolescentis, B. bifidum, B. breve, B. longum and B. pseudocatenulatum, yielding classification rates above 90%. Glycosidase families GH5 44, GH32, and GH110 were characteristic of B. bifidum. The presence or absence of GH1, GH2, GH5 and GH20 was characteristic of B. adolescentis, B. breve and B. pseudocatenulatum, while families GH1 and GH30 were relevant in MAGs from B. longum. These characteristic profiles allowed discriminating bifidobacteria regardless of prebiotic exposure. Correlation analysis of glycosidase activities suggests strong associations between glycosidase families comprising HMOs-degrading enzymes, which are often found in MAGs from the same species. Mathematical models here proposed may contribute to a better understanding of the carbohydrate metabolism of some common bifidobacteria species and could be extrapolated to other microorganisms of interest in future studies.
Collapse
Affiliation(s)
- Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares S/N, 33300 Villaviciosa, Asturias, Spain; (L.R.); (A.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares S/N, 33300 Villaviciosa, Asturias, Spain; (L.R.); (A.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares S/N, 33300 Villaviciosa, Asturias, Spain; (L.R.); (A.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| |
Collapse
|
111
|
Bovine Milk Oligosaccharides and Human Milk Oligosaccharides Modulate the Gut Microbiota Composition and Volatile Fatty Acid Concentrations in a Preclinical Neonatal Model. Microorganisms 2021; 9:microorganisms9050884. [PMID: 33919138 PMCID: PMC8143120 DOI: 10.3390/microorganisms9050884] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Milk oligosaccharides (OS) shape microbiome structure and function, but their relative abundances differ between species. Herein, the impact of the human milk oligosaccharides (HMO) (2′-fucosyllactose [2′FL] and lacto-N-neotetraose [LNnT]) and OS isolated from bovine milk (BMOS) on microbiota composition and volatile fatty acid (VFA) concentrations in ascending colon (AC) contents and feces was assessed. Intact male piglets received diets either containing 6.5 g/L BMOS (n = 12), 1.0 g/L 2′FL + 0.5 g/L LNnT (HMO; n = 12), both (HMO + BMOS; n = 10), or neither (CON; n = 10) from postnatal day (PND) 2 to 34. Microbiota were assessed by 16S rRNA gene sequencing and real-time PCR, and VFA were measured by gas chromatography. The microbiota was affected by OS in an intestine region-specific manner. BMOS reduced (p < 0.05) microbial richness in the AC, microbiota composition in the AC and feces, and acetate concentrations in AC, regardless of HMO presence. HMO alone did not affect overall microbial composition, but increased (p < 0.05) the relative proportion of specific taxa, including Blautia, compared to other groups. Bacteroides abundance was increased (p < 0.05) in the AC by BMOS and synergistically by BMOS + HMO in the feces. Distinct effects of HMO and BMOS suggest complementary and sometimes synergistic benefits of supplementing a complex mixture of OS to formula.
Collapse
|
112
|
Kononova S, Litvinova E, Vakhitov T, Skalinskaya M, Sitkin S. Acceptive Immunity: The Role of Fucosylated Glycans in Human Host-Microbiome Interactions. Int J Mol Sci 2021; 22:ijms22083854. [PMID: 33917768 PMCID: PMC8068183 DOI: 10.3390/ijms22083854] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
The growth in the number of chronic non-communicable diseases in the second half of the past century and in the first two decades of the new century is largely due to the disruption of the relationship between the human body and its symbiotic microbiota, and not pathogens. The interaction of the human immune system with symbionts is not accompanied by inflammation, but is a physiological norm. This is achieved via microbiota control by the immune system through a complex balance of pro-inflammatory and suppressive responses, and only a disturbance of this balance can trigger pathophysiological mechanisms. This review discusses the establishment of homeostatic relationships during immune system development and intestinal bacterial colonization through the interaction of milk glycans, mucins, and secretory immunoglobulins. In particular, the role of fucose and fucosylated glycans in the mechanism of interactions between host epithelial and immune cells is discussed.
Collapse
Affiliation(s)
- Svetlana Kononova
- Department of Microbiology, State Research Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (T.V.); (M.S.); (S.S.)
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence:
| | - Ekaterina Litvinova
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
- Siberian Federal Scientific Center of Agro-BioTechnologies, Russian Academy of Sciences, Krasnoobsk, 633501 Novosibirsk, Russia
| | - Timur Vakhitov
- Department of Microbiology, State Research Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (T.V.); (M.S.); (S.S.)
| | - Maria Skalinskaya
- Department of Microbiology, State Research Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (T.V.); (M.S.); (S.S.)
- Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University Named after I.I. Mechnikov, 191015 St. Petersburg, Russia
| | - Stanislav Sitkin
- Department of Microbiology, State Research Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (T.V.); (M.S.); (S.S.)
- Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University Named after I.I. Mechnikov, 191015 St. Petersburg, Russia
- Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| |
Collapse
|
113
|
Moubareck CA. Human Milk Microbiota and Oligosaccharides: A Glimpse into Benefits, Diversity, and Correlations. Nutrients 2021; 13:1123. [PMID: 33805503 PMCID: PMC8067037 DOI: 10.3390/nu13041123] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Human milk represents a cornerstone for growth and development of infants, with extensive array of benefits. In addition to exceptionally nutritive and bioactive components, human milk encompasses a complex community of signature bacteria that helps establish infant gut microbiota, contributes to maturation of infant immune system, and competitively interferes with pathogens. Among bioactive constituents of milk, human milk oligosaccharides (HMOs) are particularly significant. These are non-digestible carbohydrates forming the third largest solid component in human milk. Valuable effects of HMOs include shaping intestinal microbiota, imparting antimicrobial effects, developing intestinal barrier, and modulating immune response. Moreover, recent investigations suggest correlations between HMOs and milk microbiota, with complex links possibly existing with environmental factors, genetics, geographical location, and other factors. In this review, and from a physiological and health implications perspective, milk benefits for newborns and mothers are highlighted. From a microbiological perspective, a focused insight into milk microbiota, including origins, diversity, benefits, and effect of maternal diet is presented. From a metabolic perspective, biochemical, physiological, and genetic significance of HMOs, and their probable relations to milk microbiota, are addressed. Ongoing research into mechanistic processes through which the rich biological assets of milk promote development, shaping of microbiota, and immunity is tackled.
Collapse
Affiliation(s)
- Carole Ayoub Moubareck
- College of Natural and Health Sciences, Zayed University, Dubai 19282, United Arab Emirates
| |
Collapse
|
114
|
Liu F, Yan J, Wang X, Wang C, Chen L, Li Y, Chen J, Guo H. Maternal Fucosyltransferase 2 Status Associates with the Profiles of Human Milk Oligosaccharides and the Fecal Microbiota Composition of Breastfed Infants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3032-3043. [PMID: 33677972 DOI: 10.1021/acs.jafc.0c04575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Human milk oligosaccharides (HMOs) play key roles in shaping infant fecal microbiota, and HMOs profiles have been reported to vary according to the mother's glycosyltransferase phenotype. In this study, the profiles of HMOs in human milk from secretor or non-secretor mothers collected at 2 months postpartum were analyzed by liquid chromatography quadrupole time-of-flight tandem mass spectrometry. 16S rRNA sequencing was used to characterize the fecal microbiota of breastfed infants. The amount of total and fucosylated HMOs were higher in secretor than non-secretor mothers, while Bifidobacterium genus were highly enriched in infants fed by non-secretor mothers. Associations between HMOs and infant fecal microbiota showed that the relative abundance of Bifidobacterium-OTU158 was positively associated with 2'-fucosyllactose and 3-fucosyllactose, and Bifidobacterium-OTU90 was negatively associated with lacto-N-difucohexaose. The present study provides the HMO profiles from Chinese mothers and their associations with infant fecal microbiota composition, suggesting that HMO compositions are associated with different Bifidobacterium strains in species-specific manner.
Collapse
Affiliation(s)
- Fan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jingyu Yan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011, China
| | - Xifan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chenyuan Wang
- Key Laboratory of Functional Dairy, China Agricultural University, Beijing 100083, China
| | - Lingli Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yiran Li
- Key Laboratory of Functional Dairy, China Agricultural University, Beijing 100083, China
| | - Jianliang Chen
- Key Laboratory of Functional Dairy, China Agricultural University, Beijing 100083, China
| | - Huiyuan Guo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, China Agricultural University, Beijing 100083, China
| |
Collapse
|
115
|
Alessandri G, van Sinderen D, Ventura M. The genus bifidobacterium: From genomics to functionality of an important component of the mammalian gut microbiota running title: Bifidobacterial adaptation to and interaction with the host. Comput Struct Biotechnol J 2021; 19:1472-1487. [PMID: 33777340 PMCID: PMC7979991 DOI: 10.1016/j.csbj.2021.03.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Members of the genus Bifidobacterium are dominant and symbiotic inhabitants of the mammalian gastrointestinal tract. Being vertically transmitted, bifidobacterial host colonization commences immediately after birth and leads to a phase of host infancy during which bifidobacteria are highly prevalent and abundant to then transit to a reduced, yet stable abundance phase during host adulthood. However, in order to reach and stably colonize their elective niche, i.e. the large intestine, bifidobacteria have to cope with a multitude of oxidative, osmotic and bile salt/acid stress challenges that occur along the gastrointestinal tract (GIT). Concurrently, bifidobacteria not only have to compete with the myriad of other gut commensals for nutrient acquisition, but they also require protection against bacterial viruses. In this context, Next-Generation Sequencing (NGS) techniques, allowing large-scale comparative and functional genome analyses have helped to identify the genetic strategies that bifidobacteria have developed in order to colonize, survive and adopt to the highly competitive mammalian gastrointestinal environment. The current review is aimed at providing a comprehensive overview concerning the molecular strategies on which bifidobacteria rely to stably and successfully colonize the mammalian gut.
Collapse
Affiliation(s)
- Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Ireland and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
116
|
Schimmel P, Kleinjans L, Bongers RS, Knol J, Belzer C. Breast milk urea as a nitrogen source for urease positive Bifidobacterium infantis. FEMS Microbiol Ecol 2021; 97:fiab019. [PMID: 33538807 PMCID: PMC7947585 DOI: 10.1093/femsec/fiab019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Human milk stimulates a health-promoting gut microbiome in infants. However, it is unclear how the microbiota salvages and processes its required nitrogen from breast milk. Human milk nitrogen sources such as urea could contribute to the composition of this early life microbiome. Urea is abundant in human milk, representing a large part of the non-protein nitrogen (NPN). We found that B. longum subsp. infantis (ATCC17930) can use urea as a main source of nitrogen for growth in synthetic medium and enzyme activity was induced by the presence of urea in the medium. We furthermore confirmed the expression of both urease protein subunits and accessory proteins of B. longum subsp. infantis through proteomics. To the same end, metagenome data were mined for urease-related genes. It was found that the breastfed infant's microbiome possessed more urease-related genes than formula fed infants (51.4:22.1; 2.3-fold increase). Bifidobacteria provided a total of 106 of urease subunit alpha alignments, found only in breastfed infants. These experiments show how an important gut commensal that colonizes the infant intestine can metabolize urea. The results presented herein further indicate how dietary nitrogen can determine bacterial metabolism in the neonate gut and shape the overall microbiome.
Collapse
Affiliation(s)
- Patrick Schimmel
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Helix Building, 6708 WE, Wageningen, the Netherlands
| | - Lennart Kleinjans
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Helix Building, 6708 WE, Wageningen, the Netherlands
| | - Roger S Bongers
- Danone Nutricia Research, Uppsalalaan 12, 3584CT Utrecht, the Netherlands
| | - Jan Knol
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Helix Building, 6708 WE, Wageningen, the Netherlands
- Danone Nutricia Research, Uppsalalaan 12, 3584CT Utrecht, the Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Helix Building, 6708 WE, Wageningen, the Netherlands
| |
Collapse
|
117
|
Structure and evolution of the bifidobacterial carbohydrate metabolism proteins and enzymes. Biochem Soc Trans 2021; 49:563-578. [PMID: 33666221 PMCID: PMC8106489 DOI: 10.1042/bst20200163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 01/05/2023]
Abstract
Bifidobacteria have attracted significant attention because they provide health-promoting effects in the human gut. In this review, we present a current overview of the three-dimensional structures of bifidobacterial proteins involved in carbohydrate uptake, degradation, and metabolism. As predominant early colonizers of the infant's gut, distinct bifidobacterial species are equipped with a panel of transporters and enzymes specific for human milk oligosaccharides (HMOs). Interestingly, Bifidobacterium bifidum and Bifidobacterium longum possess lacto-N-biosidases with unrelated structural folds to release the disaccharide lacto-N-biose from HMOs, suggesting the convergent evolution of this activity from different ancestral proteins. The crystal structures of enzymes that confer the degradation of glycans from the mucin glycoprotein layer provide a structural basis for the utilization of this sustainable nutrient in the gastrointestinal tract. The utilization of several plant dietary oligosaccharides has been studied in detail, and the prime importance of oligosaccharide-specific ATP-binding cassette (ABC) transporters in glycan utilisations by bifidobacteria has been revealed. The structural elements underpinning the high selectivity and roles of ABC transporter binding proteins in establishing competitive growth on preferred oligosaccharides are discussed. Distinct ABC transporters are conserved across several bifidobacterial species, e.g. those targeting arabinoxylooligosaccharide and α-1,6-galactosides/glucosides. Less prevalent transporters, e.g. targeting β-mannooligosaccharides, may contribute to the metabolic specialisation within Bifidobacterium. Some bifidobacterial species have established symbiotic relationships with humans. Structural studies of carbohydrate-utilizing systems in Bifidobacterium have revealed the interesting history of molecular coevolution with the host, as highlighted by the early selection of bifidobacteria by mucin and breast milk glycans.
Collapse
|
118
|
Salli K, Hirvonen J, Siitonen J, Ahonen I, Anglenius H, Maukonen J. Selective Utilization of the Human Milk Oligosaccharides 2'-Fucosyllactose, 3-Fucosyllactose, and Difucosyllactose by Various Probiotic and Pathogenic Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:170-182. [PMID: 33382612 DOI: 10.1021/acs.jafc.0c06041] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Prebiotic human milk oligosaccharides (HMOs) are found in human milk, which are not digested by infants but are metabolized by beneficial gut bacteria. We determined the ability of 57 bacterial strains within the Family Lactobacillaceae and genera Bifidobacterium and Bacteroides and potentially pathogenic bacteria to ferment the HMOs 2'-fucosyllactose, 3-fucosyllactose, and difucosyllactose. In addition, prebiotic galacto-oligosaccharides (GOS), lactose, fucose, and glucose were evaluated as carbon sources for these bacterial strains. Bacterial growth was monitored using the automatic Bioscreen C system. Only certain bifidobacteria, such as Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum, as well as Bacteroides fragilis, Bacteroides vulgatus, and Bacteroides thetaiotaomicron utilized the studied HMOs as their sole carbon source, whereas almost all studied bacterial strains were able to utilize GOS, lactose, and glucose. The selectivity in utilization of HMOs by only certain bacteria can be advantageous by promoting beneficial microbes but not supporting the harmful pathogens in contrast to other less selective prebiotics.
Collapse
Affiliation(s)
- Krista Salli
- Global Health and Nutrition Science, DuPont Nutrition & Biosciences, 02460 Kantvik, Finland
| | - Johanna Hirvonen
- Global Health and Nutrition Science, DuPont Nutrition & Biosciences, 02460 Kantvik, Finland
| | - Jani Siitonen
- Manufacturing Technology, DuPont Nutrition & Biosciences, 02460 Kantvik, Finland
| | | | - Heli Anglenius
- Global Health and Nutrition Science, DuPont Nutrition & Biosciences, 02460 Kantvik, Finland
| | - Johanna Maukonen
- Global Health and Nutrition Science, DuPont Nutrition & Biosciences, 02460 Kantvik, Finland
| |
Collapse
|
119
|
Laursen MF, Bahl MI, Licht TR. Settlers of our inner surface - Factors shaping the gut microbiota from birth to toddlerhood. FEMS Microbiol Rev 2021; 45:6081092. [PMID: 33428723 PMCID: PMC8371275 DOI: 10.1093/femsre/fuab001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
During the first 3 years of life, the microbial ecosystem within the human gut undergoes a process that is unlike what happens in this ecosystem at any other time of our life. This period in time is considered a highly important developmental window, where the gut microbiota is much less resilient and much more responsive to external and environmental factors than seen in the adult gut. While advanced bioinformatics and clinical correlation studies have received extensive focus within studies of the human microbiome, basic microbial growth physiology has attracted much less attention, although it plays a pivotal role to understand the developing gut microbiota during early life. In this review, we will thus take a microbial ecology perspective on the analysis of factors that influence the temporal development of the infant gut microbiota. Such factors include sources of microbes that seed the intestinal environment, physico-chemical (abiotic) conditions influencing microbial growth and the availability of nutrients needed by the intestinal microbes.
Collapse
Affiliation(s)
| | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby
| |
Collapse
|
120
|
Fuhren J, Schwalbe M, Peralta-Marzal L, Rösch C, Schols HA, Kleerebezem M. Phenotypic and genetic characterization of differential galacto-oligosaccharide utilization in Lactobacillus plantarum. Sci Rep 2020; 10:21657. [PMID: 33303847 PMCID: PMC7728778 DOI: 10.1038/s41598-020-78721-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/27/2020] [Indexed: 11/24/2022] Open
Abstract
Several Lactobacillus plantarum strains are marketed as probiotics for their potential health benefits. Prebiotics, e.g., galacto-oligosaccharides (GOS), have the potential to selectively stimulate the growth of L. plantarum probiotic strains based on their phenotypic diversity in carbohydrate utilization, and thereby enhance their health promoting effects in the host in a strain-specific manner. Previously, we have shown that GOS variably promotes the strain-specific growth of L. plantarum. In this study we investigated this variation by molecular analysis of GOS utilization by L. plantarum. HPAEC-PAD analysis revealed two distinct GOS utilization phenotypes in L. plantarum. Linking these phenotypes to the strain-specific genotypes led to the identification of a lac operon encoding a β-galactosidase (lacA), a permease (lacS), and a divergently oriented regulator (lacR), that are predicted to be involved in the utilization of higher degree of polymerization (DP) constituents present in GOS (specifically DP of 3-4). Mutation of lacA and lacS in L. plantarum NC8 resulted in reduced growth on GOS, and HPAEC analysis confirmed the role of these genes in the import and utilization of higher-DP GOS constituents. Overall, the results enable the design of highly-selective synbiotic combinations of L. plantarum strain-specific probiotics and specific GOS-prebiotic fractions.
Collapse
Affiliation(s)
- Jori Fuhren
- Host Microbe Interactomics Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Markus Schwalbe
- Host Microbe Interactomics Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Lucía Peralta-Marzal
- Host Microbe Interactomics Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Christiane Rösch
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Michiel Kleerebezem
- Host Microbe Interactomics Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands.
| |
Collapse
|
121
|
Fernández L, Pannaraj PS, Rautava S, Rodríguez JM. The Microbiota of the Human Mammary Ecosystem. Front Cell Infect Microbiol 2020; 10:586667. [PMID: 33330129 PMCID: PMC7718026 DOI: 10.3389/fcimb.2020.586667] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Human milk contains a dynamic and complex site-specific microbiome, which is not assembled in an aleatory way, formed by organized microbial consortia and networks. Presence of some genera, such as Staphylococcus, Streptococcus, Corynebacterium, Cutibacterium (formerly known as Propionibacterium), Lactobacillus, Lactococcus and Bifidobacterium, has been detected by both culture-dependent and culture-independent approaches. DNA from some gut-associated strict anaerobes has also been repeatedly found and some studies have revealed the presence of cells and/or nucleic acids from viruses, archaea, fungi and protozoa in human milk. Colostrum and milk microbes are transmitted to the infant and, therefore, they are among the first colonizers of the human gut. Still, the significance of human milk microbes in infant gut colonization remains an open question. Clinical studies trying to elucidate the question are confounded by the profound impact of non-microbial human milk components to intestinal microecology. Modifications in the microbiota of human milk may have biological consequences for infant colonization, metabolism, immune and neuroendocrine development, and for mammary health. However, the factors driving differences in the composition of the human milk microbiome remain poorly known. In addition to colostrum and milk, breast tissue in lactating and non-lactating women may also contain a microbiota, with implications in the pathogenesis of breast cancer and in some of the adverse outcomes associated with breast implants. This and other open issues, such as the origin of the human milk microbiome, and the current limitations and future prospects are addressed in this review.
Collapse
Affiliation(s)
- Leónides Fernández
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, Madrid, Spain
| | - Pia S. Pannaraj
- Department of Pediatrics and Molecular Microbiology and Immunology, Keck School of Medicine and Children’s Hospital, Los Angeles, CA, United States
| | - Samuli Rautava
- University of Helsinki and Helsinki University Hospital, New Children’s Hospital, Pediatric Research Center, Helsinki, Finland
| | - Juan M. Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
122
|
In Love with Shaping You-Influential Factors on the Breast Milk Content of Human Milk Oligosaccharides and Their Decisive Roles for Neonatal Development. Nutrients 2020; 12:nu12113568. [PMID: 33233832 PMCID: PMC7699834 DOI: 10.3390/nu12113568] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/08/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Human milk oligosaccharides (HMOs) are structurally versatile sugar molecules constituting the third major group of soluble components in human breast milk. Based on the disaccharide lactose, the mammary glands of future and lactating mothers produce a few hundreds of different HMOs implicating that their overall anabolism utilizes rather high amounts of energy. At first sight, it therefore seems contradictory that these sugars are indigestible for infants raising the question of why such an energy-intensive molecular class evolved. However, in-depth analysis of their molecular modes of action reveals that Mother Nature created HMOs for neonatal development, protection and promotion of health. This is not solely facilitated by HMOs in their indigestible form but also by catabolites that are generated by microbial metabolism in the neonatal gut additionally qualifying HMOs as natural prebiotics. This narrative review elucidates factors influencing the HMO composition as well as physiological roles of HMOs on their way through the infant body and within the gut, where a major portion of HMOs faces microbial catabolism. Concurrently, this work summarizes in vitro, preclinical and observational as well as interventional clinical studies that analyzed potential health effects that have been demonstrated by or were related to either human milk-derived or synthetic HMOs or HMO fractions.
Collapse
|
123
|
Duar RM, Casaburi G, Mitchell RD, Scofield LN, Ortega Ramirez CA, Barile D, Henrick BM, Frese SA. Comparative Genome Analysis of Bifidobacterium longum subsp. infantis Strains Reveals Variation in Human Milk Oligosaccharide Utilization Genes among Commercial Probiotics. Nutrients 2020; 12:nu12113247. [PMID: 33114073 PMCID: PMC7690671 DOI: 10.3390/nu12113247] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
Dysbiosis is associated with acute and long-term consequences for neonates. Probiotics can be effective in limiting the growth of bacteria associated with dysbiosis and promoting the healthy development of the infant microbiome. Given its adaptation to the infant gut, and promising data from animal and in vitro models, Bifidobacterium longum subsp. infantis is an attractive candidate for use in infant probiotics. However, strain-level differences in the ability of commercialized strains to utilize human milk oligosaccharides (HMOs) may have implications in the performance of strains in the infant gut. In this study, we characterized twelve B. infantis probiotic strains and identified two main variants in one of the HMO utilization gene clusters. Some strains possessed the full repertoire of HMO utilization genes (H5-positive strains), while H5-negative strains lack an ABC-type transporter known to bind core HMO structures. H5-positive strains achieved significantly superior growth on lacto-N-tetraose and lacto-N-neotetraose. In vitro, H5-positive strains had a significant fitness advantage over H5-negative strains, which was also observed in vivo in breastfed infants. This work provides evidence of the functional implications of genetic differences among B. infantis strains and highlights that genotype and HMO utilization phenotype should be considered when selecting a strain for probiotic use in infants.
Collapse
Affiliation(s)
- Rebbeca M. Duar
- Evolve BioSystems, Inc., Davis, CA 95618, USA; (R.M.D.); (G.C.); (R.D.M.); (L.N.C.S.); (C.A.O.R.); (B.M.H.)
| | - Giorgio Casaburi
- Evolve BioSystems, Inc., Davis, CA 95618, USA; (R.M.D.); (G.C.); (R.D.M.); (L.N.C.S.); (C.A.O.R.); (B.M.H.)
| | - Ryan D. Mitchell
- Evolve BioSystems, Inc., Davis, CA 95618, USA; (R.M.D.); (G.C.); (R.D.M.); (L.N.C.S.); (C.A.O.R.); (B.M.H.)
| | - Lindsey N.C. Scofield
- Evolve BioSystems, Inc., Davis, CA 95618, USA; (R.M.D.); (G.C.); (R.D.M.); (L.N.C.S.); (C.A.O.R.); (B.M.H.)
| | - Camila A. Ortega Ramirez
- Evolve BioSystems, Inc., Davis, CA 95618, USA; (R.M.D.); (G.C.); (R.D.M.); (L.N.C.S.); (C.A.O.R.); (B.M.H.)
| | - Daniela Barile
- Foods for Health Institute, University of California at Davis, Davis, CA 95616, USA;
- Department of Food Science and Technology, University of California at Davis, Davis, CA 95616, USA
| | - Bethany M. Henrick
- Evolve BioSystems, Inc., Davis, CA 95618, USA; (R.M.D.); (G.C.); (R.D.M.); (L.N.C.S.); (C.A.O.R.); (B.M.H.)
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA
| | - Steven A. Frese
- Evolve BioSystems, Inc., Davis, CA 95618, USA; (R.M.D.); (G.C.); (R.D.M.); (L.N.C.S.); (C.A.O.R.); (B.M.H.)
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA
- Correspondence: ; Tel.: +1-530-747-2045
| |
Collapse
|
124
|
Phipps KR, Lynch B, Stannard DR, Gilby B, Baldwin N, Mikš MH, Lau A, Röhrig CH. Genotoxicity and neonatal subchronic toxicity assessment of a novel mixture of the human-identical milk oligosaccharides lacto-N-fucopentaose I and 2'-fucosyllactose. J Appl Toxicol 2020; 41:632-649. [PMID: 33000492 DOI: 10.1002/jat.4071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 11/08/2022]
Abstract
Human milk oligosaccharides (HMOs) are a complex group of bioactive molecules largely observed in human breast milk but also occurring in limited amounts in other mammalian milks. Advances in biotechnology have enabled production of human-identical milk oligosaccharides (HiMOs), structurally identical molecules to HMOs found naturally in human milk, intended for addition to infant formula to more closely replicate breast milk. Biosynthesis of a novel mixture of two major HMOs, lacto-N-fucopentaose I and 2'-fucosyllactose (LNFP-I/2'-FL), recently became possible. To support the safety of LNFP-I/2'-FL for use in infant formula and other foods, it was subject to a safety assessment comprising a bacterial reverse mutation test, an in vitro mammalian cell micronucleus test, and a 90-day oral gavage study in neonatal rats. In the 90-day study (the first HiMO study to include the new endocrine-sensitive endpoints described in the 2018 version of OECD Test Guideline 408), LNFP-I/2'-FL was administered by oral gavage to neonatal rats once daily (from Day 7 of age) for 90 consecutive days, at doses up to 5000 mg/kg bw/day, followed by a 4-week recovery period. Concurrent reference controls received 5000 mg/kg bw/day of the approved infant formula ingredient oligofructose. LNFP-I/2'-FL was nongenotoxic in vitro. The highest dose tested (5000 mg/kg bw/day) was established as the no-observed-adverse-effect level in the 90-day study, as there were no test article-related adverse effects on clinical observations, body weight, food consumption, clinical pathology, and organ weights nor any noteworthy macroscopic or microscopic findings. This supports the safety of LNFP-I/2'-FL for its intended uses in food.
Collapse
Affiliation(s)
- Kirt R Phipps
- Intertek Health Sciences Inc., Farnborough, Hampshire, UK
| | - Barry Lynch
- Intertek Health Sciences Inc., Mississauga, Ontario, Canada
| | | | - Ben Gilby
- Covance Laboratories Limited, Huntingdon, Cambridgeshire, UK
| | | | - Marta Hanna Mikš
- Glycom A/S, Hørsholm, Denmark.,Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | | |
Collapse
|
125
|
Zabel BE, Gerdes S, Evans KC, Nedveck D, Singles SK, Volk B, Budinoff C. Strain-specific strategies of 2'-fucosyllactose, 3-fucosyllactose, and difucosyllactose assimilation by Bifidobacterium longum subsp. infantis Bi-26 and ATCC 15697. Sci Rep 2020; 10:15919. [PMID: 32985563 PMCID: PMC7522266 DOI: 10.1038/s41598-020-72792-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
Human milk provides essential nutrients for infant nutrition. A large proportion of human milk is composed of human milk oligosaccharides (HMOs), which are resistant to digestion by the infant. Instead, HMOs act as a bioactive and prebiotic enriching HMO-utilizing bacteria and cause systematic changes in the host. Several species of Bifidobacterium have been shown to utilize HMOs by conserved, as well as species-specific pathways, but less work has been done to study variation within species or sub-species. B. longum subsp. infantis is a prevalent species in the breast-fed infant gut and the molecular mechanisms of HMO utilization for the type strain B. longum subsp. infantis ATCC 15697 (type strain) have been well characterized. We used growth, transcriptomic, and metabolite analysis to characterize key differences in the utilization of 2'FL, 3FL and DFL (FLs) between B. longum subsp. infantis Bi-26 (Bi-26) and the type strain. Bi-26 grows faster, produces unique metabolites, and has a distinct global gene transcription response to FLs compared to the type strain. Taken together the findings demonstrate major strain specific adaptations in Bi-26 to efficient utilization of FLs.
Collapse
Affiliation(s)
- Bryan E Zabel
- Genomics and Microbiome Science, DuPont Nutrition and Biosciences, Madison, WI, USA.
| | - Svetlana Gerdes
- Genomics and Microbiome Science, DuPont Nutrition and Biosciences, Madison, WI, USA
| | - Kara C Evans
- Genomics and Microbiome Science, DuPont Nutrition and Biosciences, Madison, WI, USA
| | - Derek Nedveck
- Genomics and Microbiome Science, DuPont Nutrition and Biosciences, Madison, WI, USA
| | | | - Barbara Volk
- Advanced Analytical, DuPont Nutrition and Biosciences, Wilmington, DE, USA
| | - Charles Budinoff
- Genomics and Microbiome Science, DuPont Nutrition and Biosciences, Madison, WI, USA
| |
Collapse
|
126
|
Saito K, Viborg AH, Sakamoto S, Arakawa T, Yamada C, Fujita K, Fushinobu S. Crystal structure of β-L-arabinobiosidase belonging to glycoside hydrolase family 121. PLoS One 2020; 15:e0231513. [PMID: 32479540 PMCID: PMC7263609 DOI: 10.1371/journal.pone.0231513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/18/2020] [Indexed: 01/06/2023] Open
Abstract
Enzymes acting on α-L-arabinofuranosides have been extensively studied; however, the structures and functions of β-L-arabinofuranosidases are not fully understood. Three enzymes and an ABC transporter in a gene cluster of Bifidobacterium longum JCM 1217 constitute a degradation and import system of β-L-arabinooligosaccharides on plant hydroxyproline-rich glycoproteins. An extracellular β-L-arabinobiosidase (HypBA2) belonging to the glycoside hydrolase (GH) family 121 plays a key role in the degradation pathway by releasing β-1,2-linked arabinofuranose disaccharide (β-Ara2) for the specific sugar importer. Here, we present the crystal structure of the catalytic region of HypBA2 as the first three-dimensional structure of GH121 at 1.85 Å resolution. The HypBA2 structure consists of a central catalytic (α/α)6 barrel domain and two flanking (N- and C-terminal) β-sandwich domains. A pocket in the catalytic domain appears to be suitable for accommodating the β-Ara2 disaccharide. Three acidic residues Glu383, Asp515, and Glu713, located in this pocket, are completely conserved among all members of GH121; site-directed mutagenesis analysis showed that they are essential for catalytic activity. The active site of HypBA2 was compared with those of structural homologs in other GH families: GH63 α-glycosidase, GH94 chitobiose phosphorylase, GH142 β-L-arabinofuranosidase, GH78 α-L-rhamnosidase, and GH37 α,α-trehalase. Based on these analyses, we concluded that the three conserved residues are essential for catalysis and substrate binding. β-L-Arabinobiosidase genes in GH121 are mainly found in the genomes of bifidobacteria and Xanthomonas species, suggesting that the cleavage and specific import system for the β-Ara2 disaccharide on plant hydroxyproline-rich glycoproteins are shared in animal gut symbionts and plant pathogens.
Collapse
Affiliation(s)
- Keita Saito
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | | | - Shiho Sakamoto
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Takatoshi Arakawa
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Chihaya Yamada
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Kiyotaka Fujita
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
127
|
Wong CB, Odamaki T, Xiao JZ. Insights into the reason of Human-Residential Bifidobacteria (HRB) being the natural inhabitants of the human gut and their potential health-promoting benefits. FEMS Microbiol Rev 2020; 44:369-385. [PMID: 32319522 PMCID: PMC7326374 DOI: 10.1093/femsre/fuaa010] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Members of Bifidobacterium are among the first microbes to colonise the human gut, and certain species are recognised as the natural resident of human gut microbiota. Their presence in the human gut has been associated with health-promoting benefits and reduced abundance of this genus is linked with several diseases. Bifidobacterial species are assumed to have coevolved with their hosts and include members that are naturally present in the human gut, thus recognised as Human-Residential Bifidobacteria (HRB). The physiological functions of these bacteria and the reasons why they occur in and how they adapt to the human gut are of immense significance. In this review, we provide an overview of the biology of bifidobacteria as members of the human gut microbiota and address factors that contribute to the preponderance of HRB in the human gut. We highlight some of the important genetic attributes and core physiological traits of these bacteria that may explain their adaptive advantages, ecological fitness, and competitiveness in the human gut. This review will help to widen our understanding of one of the most important human commensal bacteria and shed light on the practical consideration for selecting bifidobacterial strains as human probiotics.
Collapse
Affiliation(s)
- Chyn Boon Wong
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252–8583 Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252–8583 Japan
| | - Jin-zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252–8583 Japan
| |
Collapse
|
128
|
Orczyk-Pawiłowicz M, Lis-Kuberka J. The Impact of Dietary Fucosylated Oligosaccharides and Glycoproteins of Human Milk on Infant Well-Being. Nutrients 2020; 12:nu12041105. [PMID: 32316160 PMCID: PMC7230487 DOI: 10.3390/nu12041105] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Apart from optimal nutritional value, human milk is the feeding strategy to support the immature immunological system of developing newborns and infants. The most beneficial dietary carbohydrate components of breast milk are human milk oligosaccharides (HMOs) and glycoproteins (HMGs), involved in both specific and nonspecific immunity. Fucosylated oligosaccharides represent the largest fraction of human milk oligosaccharides, with the simplest and the most abundant being 2'-fucosyllactose (2'FL). Fucosylated oligosaccharides, as well as glycans of glycoproteins, as beneficial dietary sugars, elicit anti-adhesive properties against fucose-dependent pathogens, and on the other hand are crucial for growth and metabolism of beneficial bacteria, and in this aspect participate in shaping a healthy microbiome. Well-documented secretor status related differences in the fucosylation profile of HMOs and HMGs may play a key but underestimated role in assessment of susceptibility to fucose-dependent pathogen infections, with a potential impact on applied clinical procedures. Nevertheless, due to genetic factors, about 20% of mothers do not provide their infants with beneficial dietary carbohydrates such as 2'-FL and other α1,2-fucosylated oligosaccharides and glycans of glycoproteins, despite breastfeeding them. The lack of such structures may have important implications for a wide range of aspects of infant well-being and healthcare. In light of the above, some artificial mixtures used in infant nutrition are supplemented with 2'-FL to more closely approximate the unique composition of maternal milk, including dietary-derived fucosylated oligosaccharides and glycoproteins.
Collapse
Affiliation(s)
| | - Jolanta Lis-Kuberka
- Correspondence: (M.O.-P.); (J.L.-K.); Tel.: +48-71-770-30-64 (M.O.-P.); +48-71-770-32-17 (J.L.-K.)
| |
Collapse
|
129
|
Katoh T, Ojima MN, Sakanaka M, Ashida H, Gotoh A, Katayama T. Enzymatic Adaptation of Bifidobacterium bifidum to Host Glycans, Viewed from Glycoside Hydrolyases and Carbohydrate-Binding Modules. Microorganisms 2020; 8:microorganisms8040481. [PMID: 32231096 PMCID: PMC7232152 DOI: 10.3390/microorganisms8040481] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Certain species of the genus Bifidobacterium represent human symbionts. Many studies have shown that the establishment of symbiosis with such bifidobacterial species confers various beneficial effects on human health. Among the more than ten (sub)species of human gut-associated Bifidobacterium that have significantly varied genetic characteristics at the species level, Bifidobacterium bifidum is unique in that it is found in the intestines of a wide age group, ranging from infants to adults. This species is likely to have adapted to efficiently degrade host-derived carbohydrate chains, such as human milk oligosaccharides (HMOs) and mucin O-glycans, which enabled the longitudinal colonization of intestines. The ability of this species to assimilate various host glycans can be attributed to the possession of an adequate set of extracellular glycoside hydrolases (GHs). Importantly, the polypeptides of those glycosidases frequently contain carbohydrate-binding modules (CBMs) with deduced affinities to the target glycans, which is also a distinct characteristic of this species among members of human gut-associated bifidobacteria. This review firstly describes the prevalence and distribution of B. bifidum in the human gut and then explains the enzymatic machinery that B. bifidum has developed for host glycan degradation by referring to the functions of GHs and CBMs. Finally, we show the data of co-culture experiments using host-derived glycans as carbon sources, which underpin the interesting altruistic behavior of this species as a cross-feeder.
Collapse
Affiliation(s)
- Toshihiko Katoh
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; (T.K.); (M.N.O.); (A.G.)
| | - Miriam N. Ojima
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; (T.K.); (M.N.O.); (A.G.)
| | - Mikiyasu Sakanaka
- National Food Institute, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark;
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Hisashi Ashida
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan;
| | - Aina Gotoh
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; (T.K.); (M.N.O.); (A.G.)
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; (T.K.); (M.N.O.); (A.G.)
- Correspondence: ; Tel.: +81-75-753-9233
| |
Collapse
|