101
|
Sorby-Adams AJ, Vink R, Turner RJ. Large animal models of stroke and traumatic brain injury as translational tools. Am J Physiol Regul Integr Comp Physiol 2018. [PMID: 29537289 DOI: 10.1152/ajpregu.00163.2017] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acute central nervous system injury, encompassing traumatic brain injury (TBI) and stroke, accounts for a significant burden of morbidity and mortality worldwide. Studies in animal models have greatly enhanced our understanding of the complex pathophysiology that underlies TBI and stroke and enabled the preclinical screening of over 1,000 novel therapeutic agents. Despite this, the translation of novel therapeutics from experimental models to clinical therapies has been extremely poor. One potential explanation for this poor clinical translation is the choice of experimental model, given that the majority of preclinical TBI and ischemic stroke studies have been conducted in small animals, such as rodents, which have small lissencephalic brains. However, the use of large animal species such as nonhuman primates, sheep, and pigs, which have large gyrencephalic human-like brains, may provide an avenue to improve clinical translation due to similarities in neuroanatomical structure when compared with widely adopted rodent models. This purpose of this review is to provide an overview of large animal models of TBI and ischemic stroke, including the surgical considerations, key benefits, and limitations of each approach.
Collapse
Affiliation(s)
- Annabel J Sorby-Adams
- Adelaide Medical School and Adelaide Centre for Neuroscience Research, The University of Adelaide , Adelaide, South Australia
| | - Robert Vink
- Sansom Institute for Health Research, University of South Australia , Adelaide, South Australia
| | - Renée J Turner
- Adelaide Medical School and Adelaide Centre for Neuroscience Research, The University of Adelaide , Adelaide, South Australia
| |
Collapse
|
102
|
Zalewska K, Pietrogrande G, Ong LK, Abdolhoseini M, Kluge M, Johnson SJ, Walker FR, Nilsson M. Sustained administration of corticosterone at stress-like levels after stroke suppressed glial reactivity at sites of thalamic secondary neurodegeneration. Brain Behav Immun 2018; 69:210-222. [PMID: 29162554 DOI: 10.1016/j.bbi.2017.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/07/2017] [Accepted: 11/17/2017] [Indexed: 01/05/2023] Open
Abstract
Secondary neurodegeneration (SND) is an insidious and progressive condition involving the death of neurons in regions of the brain that were connected to but undamaged by the initial stroke. Our group have published compelling evidence that exposure to psychological stress can significantly exacerbate the severity SND, a finding that has considerable clinical implications given that stroke-survivors often report experiencing high and unremitting levels of psychological stress. It may be possible to use one or more targeted pharmacological approaches to limit the negative effects of stress on the recovery process but in order to move forward with this approach the most critical stress signals have to be identified. Accordingly, in the current study we have directed our attention to examining the potential effects of corticosterone, delivered orally at stress-like levels. Our interest is to determine how similar the effects of corticosterone are to stress on repair and remodelling that is known to occur after stroke. The study involved 4 groups, sham and stroke, either administered corticosterone or normal drinking water. The functional impact was assessed using the cylinder task for paw asymmetry, grid walk for sensorimotor function, inverted grid for muscle strength and coordination and open field for anxiety-like behaviour. Biochemically and histologically, we considered disturbances in main cellular elements of the neurovascular unit, including microglia, astrocytes, neurons and blood vessels using both immunohistochemistry and western blotting. In short, we identified that corticosterone delivery after stroke results in significant suppression of key microglial and astroglial markers. No changes were observed on the vasculature and in neuronal specific markers. No changes were identified for sensorimotor function or anxiety-like behaviour. We did, however, observe a significant change in motor function as assessed using the inverted grid walk test. Collectively, these results suggest that pharmacologically targeting corticosterone levels in the future may be warranted but that such an approach is unlikely to limit all the negative effects associated with exposure to chronic stress.
Collapse
Affiliation(s)
- Katarzyna Zalewska
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Giovanni Pietrogrande
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia
| | - Mahmoud Abdolhoseini
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia
| | - Murielle Kluge
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Sarah J Johnson
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia.
| | - Michael Nilsson
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia
| |
Collapse
|
103
|
Focal Ischaemic Infarcts Expand Faster in Cerebellar Cortex than Cerebral Cortex in a Mouse Photothrombotic Stroke Model. Transl Stroke Res 2018; 9:643-653. [PMID: 29455391 DOI: 10.1007/s12975-018-0615-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/02/2018] [Accepted: 02/04/2018] [Indexed: 12/31/2022]
Abstract
It is generally accepted that the cerebellum is particularly vulnerable to ischaemic injury, and this may contribute to the high mortality arising from posterior circulation strokes. However, this has not been systematically examined in an animal model. This study compared the development and resolution of matched photothrombotic microvascular infarcts in the cerebellar and cerebral cortices in adult 129/SvEv mice of both sexes. The photothrombotic lesions were made using tail vein injection of Rose Bengal with a 532 nm laser projected onto a 2 mm diameter aperture over the target region of the brain (with skull thinning). Infarct size was then imaged histologically following 2 h to 30-day survival using serial reconstruction of haematoxylin and eosin stained cryosections. This was complemented with immunohistochemistry for neuron and glial markers. At 2 h post-injury, the cerebellar infarct volume averaged ~ 2.7 times that of the cerebral cortex infarcts. Infarct volume reached maximum in the cerebellum in a quarter of the time (24 h) taken in the cerebral cortex (4 days). Remodelling resolved the infarcts within a month, leaving significantly larger residual injury volume in the cerebellum. The death of neurons in the core lesion at 2 h was confirmed by NeuN and Calbindin immunofluorescence, alongside activation of astrocytes and microglia. The latter persisted in the region within and surrounding the residual infarct at 30 days. This comparison of acute focal ischaemic injuries in cerebellar and cerebral cortices provides direct confirmation of exacerbation of neuropathology and faster kinetics in the cerebellum.
Collapse
|
104
|
Investigation of Mature BDNF and proBDNF Signaling in a Rat Photothrombotic Ischemic Model. Neurochem Res 2018; 43:637-649. [DOI: 10.1007/s11064-017-2464-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/11/2017] [Accepted: 12/29/2017] [Indexed: 12/19/2022]
|
105
|
Ye XC, Hu JX, Li L, Li Q, Tang FL, Lin S, Sun D, Sun XD, Cui GY, Mei L, Xiong WC. Astrocytic Lrp4 (Low-Density Lipoprotein Receptor-Related Protein 4) Contributes to Ischemia-Induced Brain Injury by Regulating ATP Release and Adenosine-A 2AR (Adenosine A2A Receptor) Signaling. Stroke 2018; 49:165-174. [PMID: 29212737 PMCID: PMC5742060 DOI: 10.1161/strokeaha.117.018115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND PURPOSE Lrp4 (low-density lipoprotein receptor-related protein 4) is predominantly expressed in astrocytes, where it regulates glutamatergic neurotransmission by suppressing ATP release. Here, we investigated Lrp4's function in ischemia/stroke-induced brain injury response, which includes glutamate-induced neuronal death and reactive astrogliosis. METHODS The brain-specific Lrp4 conditional knockout mice (Lrp4GFAP-Cre), astrocytic-specific Lrp4 conditional knockout mice (Lrp4GFAP-creER), and their control mice (Lrp4f/f) were subjected to photothrombotic ischemia and the transient middle cerebral artery occlusion. After ischemia/stroke, mice or their brain samples were subjected to behavior tests, brain histology, immunofluorescence staining, Western blot, and quantitative real-time polymerase chain reaction. In addition, primary astrocytes and neurons were cocultured with or without oxygen and glucose deprivation and in the presence or absence of the antagonist for adenosine-A2AR (adenosine A2A receptor) or ATP-P2X7R (P2X purinoceptor 7) signaling. Gliotransmitters, such as glutamate, d-serine, ATP, and adenosine, in the condition medium of cultured astrocytes were also measured. RESULTS Lrp4, largely expressed in astrocytes, was increased in response to ischemia/stroke. Both Lrp4GFAP-Cre and Lrp4GFAP-creER mice showed less brain injury, including reduced neuronal death, and impaired reactive astrogliosis. Mechanistically, Lrp4 conditional knockout in astrocytes increased ATP release and the production of ATP derivative, adenosine, which were further elevated by oxygen and glucose deprivation. Pharmacological inhibition of ATP-P2X7R or adenosine-A2AR signaling diminished Lrp4GFAP-creER's protective effect. CONCLUSIONS The astrocytic Lrp4 plays an important role in ischemic brain injury response. Lrp4 deficiency in astrocytes seems to be protective in response to ischemic brain injury, likely because of the increased ATP release and adenosine-A2AR signaling.
Collapse
Affiliation(s)
- Xin-Chun Ye
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Jin-Xia Hu
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Lei Li
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Qiang Li
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Fu-Lei Tang
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Sen Lin
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Dong Sun
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Xiang-Dong Sun
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Gui-Yun Cui
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Lin Mei
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Wen-Cheng Xiong
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.).
| |
Collapse
|
106
|
Photothrombotic Stroke as a Model of Ischemic Stroke. Transl Stroke Res 2017; 9:437-451. [DOI: 10.1007/s12975-017-0593-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/14/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022]
|
107
|
Jin HJ, Pei L, Li YN, Zheng H, Yang S, Wan Y, Mao L, Xia YP, He QW, Li M, Yue ZY, Hu B. Alleviative effects of fluoxetine on depressive-like behaviors by epigenetic regulation of BDNF gene transcription in mouse model of post-stroke depression. Sci Rep 2017; 7:14926. [PMID: 29097744 PMCID: PMC5668242 DOI: 10.1038/s41598-017-13929-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022] Open
Abstract
Fluoxetine, one of the selective serotonin reuptake inhibitor (SSRI) antidepressants, has been thought to be effective for treating post-stroke depression (PSD). Recent work has shown that fluoxetine may exert an antidepressive effect through increasing the level of brain-derived neurotrophic factor (BDNF), but the underlying mechanism still remains unclear. In the present study, we successfully established the PSD model using male C57BL/6 J mice by photothrombosis of the left anterior cortex combined with isolatied-housing conditions. In the process, we confirmed that fluoxetine could improve the depression-like behaviors of PSD mice and upregulate the expression of BDNF in the hippocampus. However, depletion of BDNF by transfecting lentivirus-derived shBDNF in hippocampus suppressed the effect of fluoxetine. Furthermore, we demonstrated the epigenetic mechanisms involved in regulation of BDNF expression induced by fluoxetine. We found a statistically significant increase in DNA methylation at specific CpG sites (loci 2) of Bdnf promoter IV in the hippocampus of PSD mice. We also found that fluoxetine treatment could disassociate the MeCP2-CREB-Bdnf promoter IV complex via phosphorylation of MeCP2 at Ser421 by Protein Kinase A (PKA). Our research highlighted the importance of fluoxetine in regulating BDNF expression which could represent a potential strategy for preventing PSD.
Collapse
Affiliation(s)
- Hui-Juan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Pei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huahzong University of Science and Technology, Wuhan, 430030, China.,The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ya-Nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuai Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuan-Peng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Quan-Wei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhen-Yu Yue
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
108
|
Percie du Sert N, Alfieri A, Allan SM, Carswell HV, Deuchar GA, Farr TD, Flecknell P, Gallagher L, Gibson CL, Haley MJ, Macleod MR, McColl BW, McCabe C, Morancho A, Moon LD, O'Neill MJ, Pérez de Puig I, Planas A, Ragan CI, Rosell A, Roy LA, Ryder KO, Simats A, Sena ES, Sutherland BA, Tricklebank MD, Trueman RC, Whitfield L, Wong R, Macrae IM. The IMPROVE Guidelines (Ischaemia Models: Procedural Refinements Of in Vivo Experiments). J Cereb Blood Flow Metab 2017; 37:3488-3517. [PMID: 28797196 PMCID: PMC5669349 DOI: 10.1177/0271678x17709185] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Most in vivo models of ischaemic stroke target the middle cerebral artery and a spectrum of stroke severities, from mild to substantial, can be achieved. This review describes opportunities to improve the in vivo modelling of ischaemic stroke and animal welfare. It provides a number of recommendations to minimise the level of severity in the most common rodent models of middle cerebral artery occlusion, while sustaining or improving the scientific outcomes. The recommendations cover basic requirements pre-surgery, selecting the most appropriate anaesthetic and analgesic regimen, as well as intraoperative and post-operative care. The aim is to provide support for researchers and animal care staff to refine their procedures and practices, and implement small incremental changes to improve the welfare of the animals used and to answer the scientific question under investigation. All recommendations are recapitulated in a summary poster (see supplementary information).
Collapse
Affiliation(s)
- Nathalie Percie du Sert
- 1 National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK
| | - Alessio Alfieri
- 2 The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Stuart M Allan
- 3 Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hilary Vo Carswell
- 4 Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| | - Graeme A Deuchar
- 5 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow/Arum Biosciences, Glasgow, UK
| | - Tracy D Farr
- 6 School of Life Sciences, University of Nottingham Medical School, Nottingham, UK
| | | | - Lindsay Gallagher
- 5 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow/Arum Biosciences, Glasgow, UK
| | - Claire L Gibson
- 8 Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Michael J Haley
- 3 Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Malcolm R Macleod
- 9 Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Barry W McColl
- 2 The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Christopher McCabe
- 5 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow/Arum Biosciences, Glasgow, UK
| | - Anna Morancho
- 10 Neurovascular Research Laboratory. Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona; Barcelona, Spain
| | - Lawrence Df Moon
- 11 Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | | | - Isabel Pérez de Puig
- 13 Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, Barcelona, Spain
| | - Anna Planas
- 13 Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, Barcelona, Spain
| | | | - Anna Rosell
- 10 Neurovascular Research Laboratory. Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona; Barcelona, Spain
| | - Lisa A Roy
- 5 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow/Arum Biosciences, Glasgow, UK
| | | | - Alba Simats
- 10 Neurovascular Research Laboratory. Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona; Barcelona, Spain
| | - Emily S Sena
- 9 Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Brad A Sutherland
- 16 Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,17 School of Medicine, Faculty of Health, University of Tasmania, Hobart, Australia
| | - Mark D Tricklebank
- 18 Centre for Neuroimaging Sciences, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Rebecca C Trueman
- 6 School of Life Sciences, University of Nottingham Medical School, Nottingham, UK
| | | | - Raymond Wong
- 3 Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - I Mhairi Macrae
- 5 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow/Arum Biosciences, Glasgow, UK
| |
Collapse
|
109
|
Guglielmotto M, Monteleone D, Vasciaveo V, Repetto IE, Manassero G, Tabaton M, Tamagno E. The Decrease of Uch-L1 Activity Is a Common Mechanism Responsible for Aβ 42 Accumulation in Alzheimer's and Vascular Disease. Front Aging Neurosci 2017; 9:320. [PMID: 29033830 PMCID: PMC5627155 DOI: 10.3389/fnagi.2017.00320] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/19/2017] [Indexed: 01/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial pathology causing common brain spectrum disorders in affected patients. These mixed neurological disorders not only include structural AD brain changes but also cerebrovascular lesions. The main aim of the present issue is to find the factors shared by the two pathologies. The decrease of ubiquitin C-terminal hydrolase L1 (Uch-L1), a major neuronal enzyme involved in the elimination of misfolded proteins, was observed in ischemic injury as well as in AD, but its role in the pathogenesis of AD is far to be clear. In this study we demonstrated that Uch-L1 inhibition induces BACE1 up-regulation and increases neuronal and apoptotic cell death in control as well as in transgenic AD mouse model subjected to Bengal Rose, a light-sensitive dye inducing that induces a cortical infarction through photo-activation. Under the same conditions we also found a significant activation of NF-κB. Thus, the restoration of Uch-L1 was able to completely prevent both the increase in BACE1 protein levels and the amount of cell death. Our data suggest that the Uch-L1-mediated BACE1 up-regulation could be an important mechanism responsible for Aβ peptides accumulation in vascular injury and indicate that the modulation of the activity of this enzyme could provide new therapeutic strategies in AD.
Collapse
Affiliation(s)
- Michela Guglielmotto
- Department of Neuroscience, University of Torino, Torino, Italy.,Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Torino, Italy
| | - Debora Monteleone
- Department of Neuroscience, University of Torino, Torino, Italy.,Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Torino, Italy
| | - Valeria Vasciaveo
- Department of Neuroscience, University of Torino, Torino, Italy.,Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Torino, Italy
| | - Ivan Enrico Repetto
- Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Torino, Italy.,Department of Neuroscience, Université de Lausanne, Lausanne, Switzerland
| | - Giusi Manassero
- Department of Neuroscience, University of Torino, Torino, Italy.,Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Torino, Italy
| | - Massimo Tabaton
- Department of Internal Medicine and Medical Specialties (DIMI), Unit of Geriatric Medicine, University of Genova, Genova, Italy
| | - Elena Tamagno
- Department of Neuroscience, University of Torino, Torino, Italy.,Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Torino, Italy
| |
Collapse
|
110
|
Reversible Disruption of Neuronal Mitochondria by Ischemic and Traumatic Injury Revealed by Quantitative Two-Photon Imaging in the Neocortex of Anesthetized Mice. J Neurosci 2017; 37:333-348. [PMID: 28077713 DOI: 10.1523/jneurosci.1510-16.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 10/03/2016] [Accepted: 10/23/2016] [Indexed: 12/31/2022] Open
Abstract
Mitochondria play a variety of functional roles in cortical neurons, from metabolic support and neuroprotection to the release of cytokines that trigger apoptosis. In dendrites, mitochondrial structure is closely linked to their function, and fragmentation (fission) of the normally elongated mitochondria indicates loss of their function under pathological conditions, such as stroke and brain trauma. Using in vivo two-photon microscopy in mouse brain, we quantified mitochondrial fragmentation in a full spectrum of cortical injuries, ranging from severe to mild. Severe global ischemic injury was induced by bilateral common carotid artery occlusion, whereas severe focal stroke injury was induced by Rose Bengal photosensitization. The moderate and mild traumatic injury was inflicted by focal laser lesion and by mild photo-damage, respectively. Dendritic and mitochondrial structural changes were tracked longitudinally using transgenic mice expressing fluorescent proteins localized either in cytosol or in mitochondrial matrix. In response to severe injury, mitochondrial fragmentation developed in parallel with dendritic damage signified by dendritic beading. Reconstruction from serial section electron microscopy confirmed mitochondrial fragmentation. Unlike dendritic beading, fragmentation spread beyond the injury core in focal stroke and focal laser lesion models. In moderate and mild injury, mitochondrial fragmentation was reversible with full recovery of structural integrity after 1-2 weeks. The transient fragmentation observed in the mild photo-damage model was associated with changes in dendritic spine density without any signs of dendritic damage. Our findings indicate that alterations in neuronal mitochondria structure are very sensitive to the tissue damage and can be reversible in ischemic and traumatic injuries. SIGNIFICANCE STATEMENT During ischemic stroke or brain trauma, mitochondria can either protect neurons by supplying ATP and adsorbing excessive Ca2+, or kill neurons by releasing proapoptotic factors. Mitochondrial function is tightly linked to their morphology: healthy mitochondria are thin and long; dysfunctional mitochondria are thick (swollen) and short (fragmented). To date, fragmentation of mitochondria was studied either in dissociated cultured neurons or in brain slices, but not in the intact living brain. Using real-time in vivo two-photon microscopy, we quantified mitochondrial fragmentation during acute pathological conditions that mimic severe, moderate, and mild brain injury. We demonstrated that alterations in neuronal mitochondria structural integrity can be reversible in traumatic and ischemic injuries, highlighting mitochondria as a potential target for therapeutic interventions.
Collapse
|
111
|
Balbi M, Vanni MP, Silasi G, Sekino Y, Bolanos L, LeDue JM, Murphy TH. Targeted ischemic stroke induction and mesoscopic imaging assessment of blood flow and ischemic depolarization in awake mice. NEUROPHOTONICS 2017; 4:035001. [PMID: 28721356 PMCID: PMC5512458 DOI: 10.1117/1.nph.4.3.035001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/16/2017] [Indexed: 05/24/2023]
Abstract
Despite advances in experimental stroke models, confounding factors such as anesthetics used during stroke induction remain. Furthermore, imaging of blood flow during stroke is not routinely done. We take advantage of in vivo bihemispheric transcranial windows for longitudinal mesoscopic imaging of cortical function to establish a protocol for focal ischemic stroke induction in target brain regions using photothrombosis in awake head-fixed mice. Our protocol does not require any surgical steps at the time of stroke induction or anesthetics during either head fixation or photoactivation. In addition, we performed laser speckle contrast imaging and wide-field calcium imaging to reveal the effect of cortical spreading ischemic depolarization after stroke in both anesthetized and awake animals over a spatial scale encompassing both hemispheres. With our combined approach, we observed ischemic depolarizing waves (3 to [Formula: see text]) propagating across the cortex 1 to 5 min after stroke induction in genetically encoded calcium indicator mice. Measures of blood flow by laser speckle were correlated with neurological impairment and lesion volume, suggesting a metric for reducing experimental variability. The ability to follow brain dynamics immediately after stroke as well as during recovery may provide a valuable guide to develop activity-dependent therapeutic interventions to be performed shortly after stroke induction.
Collapse
Affiliation(s)
- Matilde Balbi
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavillion, Vancouver, British Columbia, Canada
| | - Matthieu P. Vanni
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavillion, Vancouver, British Columbia, Canada
| | - Gergely Silasi
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavillion, Vancouver, British Columbia, Canada
| | - Yuki Sekino
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavillion, Vancouver, British Columbia, Canada
| | - Luis Bolanos
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavillion, Vancouver, British Columbia, Canada
| | - Jeffrey M. LeDue
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavillion, Vancouver, British Columbia, Canada
- University of British Columbia, Djavad Mowafaghian Center for Brain Health, Vancouver, British Columbia, Canada
| | - Timothy H. Murphy
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavillion, Vancouver, British Columbia, Canada
- University of British Columbia, Djavad Mowafaghian Center for Brain Health, Vancouver, British Columbia, Canada
| |
Collapse
|
112
|
Shah AM, Ishizaka S, Cheng MY, Wang EH, Bautista AR, Levy S, Smerin D, Sun G, Steinberg GK. Optogenetic neuronal stimulation of the lateral cerebellar nucleus promotes persistent functional recovery after stroke. Sci Rep 2017; 7:46612. [PMID: 28569261 PMCID: PMC5451884 DOI: 10.1038/srep46612] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/21/2017] [Indexed: 12/16/2022] Open
Abstract
Stroke induces network-wide changes in the brain, affecting the excitability in both nearby and remotely connected regions. Brain stimulation is a promising neurorestorative technique that has been shown to improve stroke recovery by altering neuronal activity of the target area. However, it is unclear whether the beneficial effect of stimulation is a result of neuronal or non-neuronal activation, as existing stimulation techniques nonspecifically activate/inhibit all cell types (neurons, glia, endothelial cells, oligodendrocytes) in the stimulated area. Furthermore, which brain circuit is efficacious for brain stimulation is unknown. Here we use the optogenetics approach to selectively stimulate neurons in the lateral cerebellar nucleus (LCN), a deep cerebellar nucleus that sends major excitatory output to multiple motor and sensory areas in the forebrain. Repeated LCN stimulations resulted in a robust and persistent recovery on the rotating beam test, even after cessation of stimulations for 2 weeks. Furthermore, western blot analysis demonstrated that LCN stimulations significantly increased the axonal growth protein GAP43 in the ipsilesional somatosensory cortex. Our results demonstrate that pan-neuronal stimulations of the LCN is sufficient to promote robust and persistent recovery after stroke, and thus is a promising target for brain stimulation.
Collapse
Affiliation(s)
- Aatman M Shah
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shunsuke Ishizaka
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle Y Cheng
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eric H Wang
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alex R Bautista
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sabrina Levy
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel Smerin
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Guohua Sun
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gary K Steinberg
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
113
|
Ye X, Shen T, Hu J, Zhang L, Zhang Y, Bao L, Cui C, Jin G, Zan K, Zhang Z, Yang X, Shi H, Zu J, Yu M, Song C, Wang Y, Qi S, Cui G. Purinergic 2X7 receptor/NLRP3 pathway triggers neuronal apoptosis after ischemic stroke in the mouse. Exp Neurol 2017; 292:46-55. [DOI: 10.1016/j.expneurol.2017.03.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/19/2017] [Accepted: 03/03/2017] [Indexed: 12/31/2022]
|
114
|
Kim M, Hong J, Kim J, Shin HJ. Fiber bundle-based integrated platform for wide-field fluorescence imaging and patterned optical stimulation for modulation of vasoconstriction in the deep brain of a living animal. BIOMEDICAL OPTICS EXPRESS 2017; 8:2781-2795. [PMID: 28663906 PMCID: PMC5480429 DOI: 10.1364/boe.8.002781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/12/2017] [Accepted: 04/25/2017] [Indexed: 05/26/2023]
Abstract
We report a fiber optics-based intravital fluorescence imaging platform that includes epi-fluorescence microscopy and laser patterned-light stimulation system. The platform can perform real-time fluorescence imaging with a lateral resolution of ~4.9 μm while directly inserted into the intact mouse brain, optically stimulate vasoconstriction during real-time imaging, and avoid vessel damage in the penetration path of imaging probe. Using 473-nm patterned-light stimulation, we successfully modulated the vasoconstriction of a single targeted 37-μm-diameter blood vessel located more than 4.7 mm below the brain surface of a live SM22-ChR2 mouse. This platform may permit the hemodynamic studies associated with deeper brain neurovascular disorders.
Collapse
Affiliation(s)
- Minkyung Kim
- Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Biomedical Engineering, Korea University of Science and Technology, Daejeon, South Korea
| | - Jinki Hong
- Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Biomedical Engineering, Korea University of Science and Technology, Daejeon, South Korea
| | - Jinsik Kim
- Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul, South Korea
| | - Hyun-joon Shin
- Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Biomedical Engineering, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
115
|
Larpthaveesarp A, Gonzalez FF. Transient Middle Cerebral Artery Occlusion Model of Neonatal Stroke in P10 Rats. JOURNAL OF VISUALIZED EXPERIMENTS : JOVE 2017:54830. [PMID: 28518065 PMCID: PMC5565067 DOI: 10.3791/54830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A number of animal models have been used to study hypoxic-ischemic injury, traumatic injury, global hypoxia, or permanent ischemia in both the immature and mature brain. Stroke occurs commonly in the perinatal period in humans, and transient ischemia-reperfusion is the most common form of stroke in neonates. The reperfusion phase is a critical component of injury progression, which occurs over a period of days to weeks, and of the endogenous response to injury. This postnatal day 10 (p10) rat model of transient middle cerebral artery occlusion (tMCAO) creates a unilateral, non-hemorrhagic focal ischemia-reperfusion injury that can be utilized to study the mechanisms of focal injury and repair in the full-term-equivalent brain. The injury pattern that is produced by tMCAO is consistent and highly reproducible and can be confirmed with MRI or histological analyses. The severity of injury can be manipulated through changes in occlusion time and other methods that will be discussed.
Collapse
|
116
|
Zalewska K, Ong LK, Johnson SJ, Nilsson M, Walker FR. Oral administration of corticosterone at stress-like levels drives microglial but not vascular disturbances post-stroke. Neuroscience 2017; 352:30-38. [PMID: 28288898 DOI: 10.1016/j.neuroscience.2017.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/14/2017] [Accepted: 03/02/2017] [Indexed: 01/15/2023]
Abstract
Exposure to chronic stress following stroke has been shown, both clinically and pre-clinically, to impact negatively on the recovery process. While this phenomenon is well established, the specific mechanisms involved have remained largely unexplored. One obvious signaling pathway through which chronic stress may impact on the recovery process is via corticosterone, and its effects on microglial activity and vascular remodeling. In the current study, we were interested in examining how orally delivered corticosterone at a stress-like concentration impacted on microglial activity and vascular remodeling after stroke. We identified that corticosterone administration for two weeks following stroke significantly increased tissue loss and decreased the weight of the spleen and thymus. We also identified that corticosterone administration significantly altered the expression of the key microglial complement receptor, CD11b after stroke. Corticosterone administration did not alter the expression of the vessel basement membrane protein, Collagen IV after stroke. Together, these results suggest that corticosterone is likely to represent only one of the major stress signals responsible for driving the negative impacts of chronic stress on recovery.
Collapse
Affiliation(s)
- Katarzyna Zalewska
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
| | - Sarah J Johnson
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia
| | - Michael Nilsson
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia.
| |
Collapse
|
117
|
Kucheryavykh LY, Dávila-Rodríguez J, Rivera-Aponte DE, Zueva LV, Washington AV, Sanabria P, Inyushin MY. Platelets are responsible for the accumulation of β-amyloid in blood clots inside and around blood vessels in mouse brain after thrombosis. Brain Res Bull 2016; 128:98-105. [PMID: 27908798 DOI: 10.1016/j.brainresbull.2016.11.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Platelets contain beta-amyloid precursor protein (APP) as well as Aβ peptide (Aβ) that can be released upon activation. During thrombosis, platelets are concentrated in clots and activated. METHODS We used in vivo fluorescent analysis and electron microscopy in mice to determine to what degree platelets are concentrated in clots. We used immunostaining to visualize Aβ after photothrombosis in mouse brains. RESULTS Both in vivo results and electron microscopy revealed that platelets were 300-500 times more concentrated in clots than in non-clotted blood. After thrombosis in control mice, but not in thrombocytopenic animals, Aβ immunofluorescence was present inside blood vessels in the visual cortex and around capillaries in the entorhinal cortex. CONCLUSION The increased concentration of platelets allows enhanced release of Aβ during thrombosis, suggesting an additional source of Aβ in the brains of Alzheimer's patients that may arise if frequent micro-thrombosis events occur in their brains.
Collapse
Affiliation(s)
- Lilia Y Kucheryavykh
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamon, PR 00960-6032, (P.O. Box 60327), USA.
| | - Josué Dávila-Rodríguez
- School of Medicine, Universidad Central del Caribe, Bayamon, PR 00960-6032, (P.O. Box 60327), USA.
| | - David E Rivera-Aponte
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamon, PR 00960-6032, (P.O. Box 60327), USA.
| | - Lidia V Zueva
- Department of Physics, University of Puerto Rico Rio Piedras, San Juan, PR 00936, USA.
| | - A Valance Washington
- Department of Anatomy, School of Medicine, Universidad Central del Caribe, Bayamon, PR 00960-6032, (P.O. Box 60327), USA; The Department of Biology, University of Puerto Rico Rio Piedras, San Juan, PR 00936, USA.
| | - Priscilla Sanabria
- Department of Physiology, School of Medicine, Universidad Central del Caribe, Bayamon, PR 00960-6032, (P.O. Box 60327), USA.
| | - Mikhail Y Inyushin
- Department of Physiology, School of Medicine, Universidad Central del Caribe, Bayamon, PR 00960-6032, (P.O. Box 60327), USA.
| |
Collapse
|
118
|
Choi YK, Urnukhsaikhan E, Yoon HH, Seo YK, Park JK. Effect of human mesenchymal stem cell transplantation on cerebral ischemic volume-controlled photothrombotic mouse model. Biotechnol J 2016; 11:1397-1404. [PMID: 27440447 PMCID: PMC5132146 DOI: 10.1002/biot.201600057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/03/2022]
Abstract
Various animal models of stroke have been developed to simulate the human stroke with the development of the ischemic method facilitates preclinical stroke research. The photothrombotic ischemia model, based on the intravascular photochemical reaction, is widely used for in vivo studies. However, this study has limitations, which generated a relatively small‐sized infarction model on superficial cortex compared to that of the MCAO stroke model. In this study, the photothorombosis mouse model is adapted and the optimum conditions for generation of cell death and deficits with high reproducibility is determined. The extent of damage within the cortex was assessed by infarct volume and cellular/behavioral analyses. In this model, the neural cell death and inflammatory responses is detected; moreover, the degree of behavioral impairment is correlated with the brain infarct volume. Further, to enhance the understanding of neural repair, the effect of neural differentiation by transplantation of human bone marrow‐derived mesenchymal stem cells (BM‐MSCs) is analyzed. The authors demonstrated that transplantation of BM‐MSCs promoted the neural differentiation and behavioral performance in their photothrombosis model. Therefore, this research was meaningful to provide a stable animal model of stroke with low variability. Moreover, this model will facilitate development of novel MSC‐based therapeutics for stroke.
Collapse
Affiliation(s)
- Yun-Kyong Choi
- Department of Medical Biotechnology, Dongguk University, Gyeonggi-do, Republic of Korea
| | - Enerelt Urnukhsaikhan
- Department of Medical Biotechnology, Dongguk University, Gyeonggi-do, Republic of Korea
| | - Hee-Hoon Yoon
- Department of Medical Biotechnology, Dongguk University, Gyeonggi-do, Republic of Korea
| | - Young-Kwon Seo
- Department of Medical Biotechnology, Dongguk University, Gyeonggi-do, Republic of Korea
| | - Jung-Keug Park
- Department of Medical Biotechnology, Dongguk University, Gyeonggi-do, Republic of Korea
| |
Collapse
|
119
|
Nishimura Y, Abe R, Sasaki T, Ikegaya Y. Homeostatic changes in neuronal network oscillations in response to continuous hypoperfusion in the mouse forebrain. Neurosci Res 2016; 109:28-34. [PMID: 26945618 DOI: 10.1016/j.neures.2016.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
Abstract
Neuronal activity is highly sensitive to changes in oxygen tension. In this study, we examined the impact of hypoxic/ischemic conditions on neuronal ensemble activity patterns in the mouse brain using in vivo extracellular electrophysiological recordings from up to 8 sites in the thalamus, dorsal hippocampus, and neocortex, while cerebral hypoperfusion was induced by unilateral carotid artery occlusion. After a few minutes, the occlusion triggered a rapid change in the power of the local field oscillations. In the hippocampus, but not in the neocortex, the absolute power changes at all frequency ranges (relative to the baseline) became less pronounced with time, and no significant changes were observed 30min after the occlusion-induced hypoperfusion. We also tested whether continuous hypoperfusion induced by the occlusion for up to 1 week alters neuronal activity. In the hippocampus and the thalamus, the chronic occlusion did not lead to a reduction in the power of the local field oscillations. These results indicate that certain neuronal populations have the ability to maintain internal neurophysiological homeostasis against continuous hypoperfusion.
Collapse
Affiliation(s)
- Yuya Nishimura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Reimi Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takuya Sasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan; Center for Information and Neural Networks, Suita City, Osaka 565-0871, Japan.
| |
Collapse
|
120
|
Hou B, Ma J, Guo X, Ju F, Gao J, Wang D, Liu J, Li X, Zhang S, Ren H. Exogenous Neural Stem Cells Transplantation as a Potential Therapy for Photothrombotic Ischemia Stroke in Kunming Mice Model. Mol Neurobiol 2016; 54:1254-1262. [PMID: 26820680 DOI: 10.1007/s12035-016-9740-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/20/2016] [Indexed: 12/26/2022]
Abstract
Stroke is considered as the second leading cause of death worldwide. The survivors of stroke experience different levels of impairment in brain function resulting in debilitating disabilities. Current therapies for stroke are primarily palliative and may be effective in only a small population of stroke patients. In this study, we explore the transplantation of exogenous neural stem cells (NSCs) as the potential therapy for the photothrombotic ischemia stroke in a Kunming mice model. After stroke, mice receiving NSC transplantation demonstrated a better recovery of brain function during the neurobehavioral tests. Histology analysis of the brain samples from NSC transplanted mice demonstrated a reduction of brain damage caused by stroke. Moreover, immunofluorescence assay for biomarkers in brain sections confirmed that transplanted NSCs indeed differentiated to neurons and astrocytes, consistent with the improved brain function after stroke. Taken together, our data suggested that exogenous NSC transplantation could be a promising therapy for stroke.
Collapse
Affiliation(s)
- Boru Hou
- School of Life Sciences, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730000, Gansu, China.,Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Junning Ma
- School of Life Sciences, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730000, Gansu, China.,Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Xiumei Guo
- School of Life Sciences, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730000, Gansu, China.,Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Furong Ju
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Junwei Gao
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Dengfeng Wang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Jixing Liu
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Xiaohui Li
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Shengxiang Zhang
- School of Life Sciences, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730000, Gansu, China.
| | - Haijun Ren
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
121
|
Experimental animal models and inflammatory cellular changes in cerebral ischemic and hemorrhagic stroke. Neurosci Bull 2015; 31:717-34. [PMID: 26625873 DOI: 10.1007/s12264-015-1567-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/25/2015] [Indexed: 01/04/2023] Open
Abstract
Stroke, including cerebral ischemia, intracerebral hemorrhage, and subarachnoid hemorrhage, is the leading cause of long-term disability and death worldwide. Animal models have greatly contributed to our understanding of the risk factors and the pathophysiology of stroke, as well as the development of therapeutic strategies for its treatment. Further development and investigation of experimental models, however, are needed to elucidate the pathogenesis of stroke and to enhance and expand novel therapeutic targets. In this article, we provide an overview of the characteristics of commonly-used animal models of stroke and focus on the inflammatory responses to cerebral stroke, which may provide insights into a framework for developing effective therapies for stroke in humans.
Collapse
|
122
|
Li H, Roy Choudhury G, Zhang N, Ding S. Photothrombosis-induced Focal Ischemia as a Model of Spinal Cord Injury in Mice. J Vis Exp 2015:e53161. [PMID: 26274772 DOI: 10.3791/53161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating clinical condition causing permanent changes in sensorimotor and autonomic functions of the spinal cord (SC) below the site of injury. The secondary ischemia that develops following the initial mechanical insult is a serious complication of the SCI and severely impairs the function and viability of surviving neuronal and non-neuronal cells in the SC. In addition, ischemia is also responsible for the growth of lesion during chronic phase of injury and interferes with the cellular repair and healing processes. Thus there is a need to develop a spinal cord ischemia model for studying the mechanisms of ischemia-induced pathology. Focal ischemia induced by photothrombosis (PT) is a minimally invasive and very well established procedure used to investigate the pathology of ischemia-induced cell death in the brain. Here, we describe the use of PT to induce an ischemic lesion in the spinal cord of mice. Following retro-orbital sinus injection of Rose Bengal, the posterior spinal vein and other capillaries on the dorsal surface of SC were irradiated with a green light resulting in the formation of a thrombus and thus ischemia in the affected region. Results from histology and immunochemistry studies show that PT-induced ischemia caused spinal cord infarction, loss of neurons and reactive gliosis. Using this technique a highly reproducible and relatively easy model of SCI in mice can be achieved that would serve the purpose of scientific investigations into the mechanisms of ischemia induced cell death as well as the efficacy of neuroprotective drugs. This model will also allow exploration of the pathological changes that occur following SCI in live mice like axonal degeneration and regeneration, neuronal and astrocytic Ca(2+) signaling using two-photon microscopy.
Collapse
Affiliation(s)
- Hailong Li
- Department of Bioengineering, Dalton Cardiovascular Research Center, University of Missouri
| | - Gourav Roy Choudhury
- Department of Bioengineering, Dalton Cardiovascular Research Center, University of Missouri
| | - Nannan Zhang
- Department of Bioengineering, Dalton Cardiovascular Research Center, University of Missouri
| | - Shinghua Ding
- Department of Bioengineering, Dalton Cardiovascular Research Center, University of Missouri;
| |
Collapse
|