101
|
de Steenhuijsen Piters WAA, Sanders EAM, Bogaert D. The role of the local microbial ecosystem in respiratory health and disease. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140294. [PMID: 26150660 PMCID: PMC4528492 DOI: 10.1098/rstb.2014.0294;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory tract infections are a major global health concern, accounting for high morbidity and mortality, especially in young children and elderly individuals. Traditionally, highly common bacterial respiratory tract infections, including otitis media and pneumonia, were thought to be caused by a limited number of pathogens including Streptococcus pneumoniae and Haemophilus influenzae. However, these pathogens are also frequently observed commensal residents of the upper respiratory tract (URT) and form-together with harmless commensal bacteria, viruses and fungi-intricate ecological networks, collectively known as the 'microbiome'. Analogous to the gut microbiome, the respiratory microbiome at equilibrium is thought to be beneficial to the host by priming the immune system and providing colonization resistance, while an imbalanced ecosystem might predispose to bacterial overgrowth and development of respiratory infections. We postulate that specific ecological perturbations of the bacterial communities in the URT can occur in response to various lifestyle or environmental effectors, leading to diminished colonization resistance, loss of containment of newly acquired or resident pathogens, preluding bacterial overgrowth, ultimately resulting in local or systemic bacterial infections. Here, we review the current body of literature regarding niche-specific upper respiratory microbiota profiles within human hosts and the changes occurring within these profiles that are associated with respiratory infections.
Collapse
Affiliation(s)
- Wouter A. A. de Steenhuijsen Piters
- Department of Paediatric Immunology and Infectious Diseases, The Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Elisabeth A. M. Sanders
- Department of Paediatric Immunology and Infectious Diseases, The Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands,Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, The Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands,e-mail:
| |
Collapse
|
102
|
Ellis GT, Davidson S, Crotta S, Branzk N, Papayannopoulos V, Wack A. TRAIL+ monocytes and monocyte-related cells cause lung damage and thereby increase susceptibility to influenza-Streptococcus pneumoniae coinfection. EMBO Rep 2015; 16:1203-18. [PMID: 26265006 PMCID: PMC4576987 DOI: 10.15252/embr.201540473] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/10/2015] [Indexed: 12/24/2022] Open
Abstract
Streptococcus pneumoniae coinfection is a major cause of influenza-associated mortality; however, the mechanisms underlying pathogenesis or protection remain unclear. Using a clinically relevant mouse model, we identify immune-mediated damage early during coinfection as a new mechanism causing susceptibility. Coinfected CCR2−/− mice lacking monocytes and monocyte-derived cells control bacterial invasion better, show reduced epithelial damage and are overall more resistant than wild-type controls. In influenza-infected wild-type lungs, monocytes and monocyte-derived cells are the major cell populations expressing the apoptosis-inducing ligand TRAIL. Accordingly, anti-TRAIL treatment reduces bacterial load and protects against coinfection if administered during viral infection, but not following bacterial exposure. Post-influenza bacterial outgrowth induces a strong proinflammatory cytokine response and massive inflammatory cell infiltrate. Depletion of neutrophils or blockade of TNF-α facilitate bacterial outgrowth, leading to increased mortality, demonstrating that these factors aid bacterial control. We conclude that inflammatory monocytes recruited early, during the viral phase of coinfection, induce TRAIL-mediated lung damage, which facilitates bacterial invasion, while TNF-α and neutrophil responses help control subsequent bacterial outgrowth. We thus identify novel determinants of protection versus pathology in influenza–Streptococcus pneumoniae coinfection.
Collapse
Affiliation(s)
| | | | | | - Nora Branzk
- Mill Hill Laboratory, Francis Crick Institute, London, UK
| | | | - Andreas Wack
- Mill Hill Laboratory, Francis Crick Institute, London, UK
| |
Collapse
|
103
|
Influenza and Bacterial Superinfection: Illuminating the Immunologic Mechanisms of Disease. Infect Immun 2015. [PMID: 26216421 DOI: 10.1128/iai.00298-15] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Seasonal influenza virus infection presents a major strain on the health care system. Influenza virus infection has pandemic potential, which was repeatedly observed during the last century. Severe disease may occur in the young, in the elderly, in those with preexisting lung disease, and in previously healthy individuals. A common cause of severe influenza pathogenesis is superinfection with bacterial pathogens, namely, Staphylococcus aureus and Streptococcus pneumoniae. A great deal of recent research has focused on the immune pathways involved in influenza-induced susceptibility to secondary bacterial pneumonia. Both innate and adaptive antibacterial host defenses are impaired in the context of preceding influenza virus infection. The goal of this minireview is to highlight these findings and synthesize these data into a shared central theme of pathogenesis.
Collapse
|
104
|
Robinson KM, Kolls JK, Alcorn JF. The immunology of influenza virus-associated bacterial pneumonia. Curr Opin Immunol 2015; 34:59-67. [PMID: 25723597 DOI: 10.1016/j.coi.2015.02.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/06/2015] [Indexed: 10/23/2022]
Abstract
Infection with influenza virus has been a significant cause of morbidity and mortality for more than a hundred years. Severe disease and increased mortality often results from bacterial super-infection of patients with influenza virus infection. Preceding influenza infection alters the host's innate and adaptive immune responses, allowing increased susceptibility to secondary bacterial pneumonia. Recent advances in the field have helped to define how influenza alters the immune response to bacteria through the dysregulation of phagocytes, antimicrobial peptides, and lymphocytes. Viral-induced interferons play a key role in altering the phenotype of the immune response. Potential genetic modifiers of disease will help to define additional immunologic mechanisms that predispose to viral, bacterial super-infection with the overarching goal of developing effective therapeutic strategies to prevent and treat disease.
Collapse
Affiliation(s)
- Keven M Robinson
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Jay K Kolls
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA. 15224, USA; Richard K. Mellon Foundation Institute, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA.
| | - John F Alcorn
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA. 15224, USA.
| |
Collapse
|
105
|
Walaza S, Tempia S, Dawood H, Variava E, Moyes J, Cohen AL, Wolter N, Groome M, von Mollendorf C, Kahn K, Pretorius M, Venter M, Madhi SA, Cohen C. Influenza virus infection is associated with increased risk of death amongst patients hospitalized with confirmed pulmonary tuberculosis in South Africa, 2010-2011. BMC Infect Dis 2015; 15:26. [PMID: 25623944 PMCID: PMC4316613 DOI: 10.1186/s12879-015-0746-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/06/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Data on the association between influenza and tuberculosis are limited. We describe the characteristics of patients with laboratory-confirmed tuberculosis, laboratory-confirmed influenza and tuberculosis-influenza co-infection. METHODS Patients hospitalized with severe respiratory illness (acute and chronic) were enrolled prospectively in four provinces in South Africa. Naso/oropharyngeal specimens were tested for influenza virus by real time reverse transcriptase polymerase chain reaction. Tuberculosis testing was conducted as part of clinical management. RESULTS From June 2010 through December 2011, 8032 patients were enrolled and influenza testing was conducted on 7863 (98%). Influenza virus was detected in 765 (10%) patients. Among 2959 patients with tuberculosis and influenza results, 2227 (75%) were negative for both pathogens, 423 (14%) were positive for tuberculosis alone, 275 (9%) were positive for influenza alone and 34 (1%) had influenza and tuberculosis co-infection. On multivariable analysis amongst individuals with symptoms for ≥7 days, tuberculosis influenza co-infection was associated with increased risk of death, (adjusted relative risk ratio (aRRR) (6.1, 95% confidence interval (CI) 1.6-23.4), as compared to tuberculosis only infection. This association was not observed in individuals with symptoms for <7 days (aRRR.0.8, 95% CI 0.1-7.0). CONCLUSION Tuberculosis and influenza co-infection compared to tuberculosis single infection was associated with increased risk of death in individuals with symptoms ≥7 days. The potential public health impact of influenza vaccination among persons with laboratory-confirmed tuberculosis should be explored.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Child
- Child, Preschool
- Coinfection/diagnosis
- Coinfection/mortality
- Female
- Hospitalization
- Humans
- Infant
- Infant, Newborn
- Influenza, Human/complications
- Influenza, Human/diagnosis
- Influenza, Human/mortality
- Male
- Middle Aged
- Multivariate Analysis
- Prospective Studies
- Public Health Surveillance
- Real-Time Polymerase Chain Reaction
- Risk Factors
- South Africa/epidemiology
- Tuberculosis, Pulmonary/complications
- Tuberculosis, Pulmonary/diagnosis
- Tuberculosis, Pulmonary/mortality
- Tuberculosis, Pulmonary/virology
- Young Adult
Collapse
Affiliation(s)
- Sibongile Walaza
- Centre for Respiratory Disease and Meningitis, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Private Bag X4, Sandringham, 2131, Johannesburg, Gauteng, South Africa.
- School of Public Health, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa.
| | - Stefano Tempia
- US Centres for Disease Control and Prevention, Atlanta, GA, USA.
- US Centres for Disease Control and Prevention, Pretoria, South Africa.
| | - Halima Dawood
- Pietermaritzburg Metropolitan Hospital Complex, KwaZulu- Natal, South Africa.
| | - Ebrahim Variava
- Tshepong Hospital, North West Province, South Africa.
- Faculty of Medicine, University of Witwatersrand, Johannesburg, South Africa.
| | - Jocelyn Moyes
- Centre for Respiratory Disease and Meningitis, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Private Bag X4, Sandringham, 2131, Johannesburg, Gauteng, South Africa.
- School of Public Health, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa.
| | - Adam L Cohen
- US Centres for Disease Control and Prevention, Atlanta, GA, USA.
- US Centres for Disease Control and Prevention, Pretoria, South Africa.
| | - Nicole Wolter
- Centre for Respiratory Disease and Meningitis, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Private Bag X4, Sandringham, 2131, Johannesburg, Gauteng, South Africa.
| | - Michelle Groome
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit and Department of Science and Technology/National Research Foundation: Vaccine-Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa.
| | - Claire von Mollendorf
- Centre for Respiratory Disease and Meningitis, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Private Bag X4, Sandringham, 2131, Johannesburg, Gauteng, South Africa.
- School of Public Health, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa.
| | - Kathleen Kahn
- MRC/Wits Rural Public Health and Health Transition Research Unit (Agincourt), Bushbuckridge, South Africa.
| | - Marthi Pretorius
- Centre for Respiratory Disease and Meningitis, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Private Bag X4, Sandringham, 2131, Johannesburg, Gauteng, South Africa.
| | - Marietjie Venter
- Centre for Respiratory Disease and Meningitis, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Private Bag X4, Sandringham, 2131, Johannesburg, Gauteng, South Africa.
- Zoonosis Research Unit, Department of Medical Virology, University of Pretoria, Pretoria, South Africa.
| | - Shabir A Madhi
- Centre for Respiratory Disease and Meningitis, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Private Bag X4, Sandringham, 2131, Johannesburg, Gauteng, South Africa.
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit and Department of Science and Technology/National Research Foundation: Vaccine-Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa.
| | - Cheryl Cohen
- Centre for Respiratory Disease and Meningitis, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Private Bag X4, Sandringham, 2131, Johannesburg, Gauteng, South Africa.
- School of Public Health, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
106
|
Influenza viral neuraminidase primes bacterial coinfection through TGF-β-mediated expression of host cell receptors. Proc Natl Acad Sci U S A 2014; 112:238-43. [PMID: 25535343 DOI: 10.1073/pnas.1414422112] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Influenza infection predisposes the host to secondary bacterial pneumonia, which is a major cause of mortality during influenza epidemics. The molecular mechanisms underlying the bacterial coinfection remain elusive. Neuraminidase (NA) of influenza A virus (IAV) enhances bacterial adherence and also activates TGF-β. Because TGF-β can up-regulate host adhesion molecules such as fibronectin and integrins for bacterial binding, we hypothesized that activated TGF-β during IAV infection contributes to secondary bacterial infection by up-regulating these host adhesion molecules. Flow cytometric analyses of a human lung epithelial cell line indicated that the expression of fibronectin and α5 integrin was up-regulated after IAV infection or treatment with recombinant NA and was reversed through the inhibition of TGF-β signaling. IAV-promoted adherence of group A Streptococcus (GAS) and other coinfective pathogens that require fibronectin for binding was prevented significantly by the inhibition of TGF-β. However, IAV did not promote the adherence of Lactococcus lactis unless this bacterium expressed the fibronectin-binding protein of GAS. Mouse experiments showed that IAV infection enhanced GAS colonization in the lungs of wild-type animals but not in the lungs of mice deficient in TGF-β signaling. Taken together, these results reveal a previously unrecognized mechanism: IAV NA enhances the expression of cellular adhesins through the activation of TGF-β, leading to increased bacterial loading in the lungs. Our results suggest that TGF-β and cellular adhesins may be potential pharmaceutical targets for the prevention of coinfection.
Collapse
|
107
|
Lethal coinfection of influenza virus and Streptococcus pneumoniae lowers antibody response to influenza virus in lung and reduces numbers of germinal center B cells, T follicular helper cells, and plasma cells in mediastinal lymph Node. J Virol 2014; 89:2013-23. [PMID: 25428873 DOI: 10.1128/jvi.02455-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Secondary Streptococcus pneumoniae infection after influenza is a significant clinical complication resulting in morbidity and sometimes mortality. Prior influenza virus infection has been demonstrated to impair the macrophage and neutrophil response to the subsequent pneumococcal infection. In contrast, how a secondary pneumococcal infection after influenza can affect the adaptive immune response to the initial influenza virus infection is less well understood. Therefore, this study focuses on how secondary pneumococcal infection after influenza may impact the humoral immune response to the initial influenza virus infection in a lethal coinfection mouse model. Compared to mice infected with influenza virus alone, mice coinfected with influenza virus followed by pneumococcus had significant body weight loss and 100% mortality. In the lung, lethal coinfection significantly increased virus titers and bacterial cell counts and decreased the level of virus-specific IgG, IgM, and IgA, as well as the number of B cells, CD4 T cells, and plasma cells. Lethal coinfection significantly reduced the size and weight of spleen, as well as the number of B cells along the follicular developmental lineage. In mediastinal lymph nodes, lethal coinfection significantly decreased germinal center B cells, T follicular helper cells, and plasma cells. Adoptive transfer of influenza virus-specific immune serum to coinfected mice improved survival, suggesting the protective functions of anti-influenza virus antibodies. In conclusion, coinfection reduced the B cell response to influenza virus. This study helps us to understand the modulation of the B cell response to influenza virus during a lethal coinfection. IMPORTANCE Secondary pneumococcal infection after influenza virus infection is an important clinical issue that often results in excess mortality. Since antibodies are key mediators of protection, this study aims to examine the antibody response to influenza virus and demonstrates that lethal coinfection reduced the B cell response to influenza virus. This study helps to highlight the complexity of the modulation of the B cell response in the context of coinfection.
Collapse
|
108
|
Warnking K, Klemm C, Löffler B, Niemann S, van Krüchten A, Peters G, Ludwig S, Ehrhardt C. Super-infection with Staphylococcus aureus inhibits influenza virus-induced type I IFN signalling through impaired STAT1-STAT2 dimerization. Cell Microbiol 2014; 17:303-17. [PMID: 25293394 DOI: 10.1111/cmi.12375] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/02/2014] [Accepted: 10/05/2014] [Indexed: 12/24/2022]
Abstract
Bacterial super-infections are a major complication in influenza virus-infected patients. In response to infection with influenza viruses and bacteria, a complex interplay of cellular signalling mechanisms is initiated, regulating the anti-pathogen response but also pathogen-supportive functions. Here, we show that influenza viruses replicate to a higher efficiency in cells co-infected with Staphylococcus aureus (S. aureus). While cells initially respond with increased induction of interferon beta upon super-infection, subsequent interferon signalling and interferon-stimulated gene expression are rather impaired due to a block of STAT1-STAT2 dimerization. Thus, S. aureus interrupts the first line of defence against influenza viruses, resulting in a boost of viral replication, which may lead to enhanced viral pathogenicity.
Collapse
Affiliation(s)
- Kathrin Warnking
- Institute of Molecular Virology (IMV), Center for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University Muenster, Von Esmarch-Str. 56, D-48149, Muenster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Compans RW, Oldstone MBA. Secondary bacterial infections in influenza virus infection pathogenesis. Curr Top Microbiol Immunol 2014; 385:327-56. [PMID: 25027822 PMCID: PMC7122299 DOI: 10.1007/82_2014_394] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Influenza is often complicated by bacterial pathogens that colonize the nasopharynx and invade the middle ear and/or lung epithelium. Incidence and pathogenicity of influenza-bacterial coinfections are multifactorial processes that involve various pathogenic virulence factors and host responses with distinct site- and strain-specific differences. Animal models and kinetic models have improved our understanding of how influenza viruses interact with their bacterial co-pathogens and the accompanying immune responses. Data from these models indicate that considerable alterations in epithelial surfaces and aberrant immune responses lead to severe inflammation, a key driver of bacterial acquisition and infection severity following influenza. However, further experimental and analytical studies are essential to determining the full mechanistic spectrum of different viral and bacterial strains and species and to finding new ways to prevent and treat influenza-associated bacterial coinfections. Here, we review recent advances regarding transmission and disease potential of influenza-associated bacterial infections and discuss the current gaps in knowledge.
Collapse
Affiliation(s)
- Richard W. Compans
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia USA
| | - Michael B. A. Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California USA
| |
Collapse
|
110
|
Ahn KW, Kosoy M, Chan KS. An approach for modeling cross-immunity of two strains, with application to variants of Bartonella in terms of genetic similarity. Epidemics 2014; 7:7-12. [PMID: 24928664 DOI: 10.1016/j.epidem.2014.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 11/18/2022] Open
Abstract
We developed a two-strain susceptible-infected-recovered (SIR) model that provides a framework for inferring the cross-immunity between two strains of a bacterial species in the host population with discretely sampled co-infection time-series data. Moreover, the model accounts for seasonality in host reproduction. We illustrate an approach using a dataset describing co-infections by several strains of bacteria circulating within a population of cotton rats (Sigmodon hispidus). Bartonella strains were clustered into three genetically close groups, between which the divergence is correspondent to the accepted level of separate bacterial species. The proposed approach revealed no cross-immunity between genetic clusters while limited cross-immunity might exist between subgroups within the clusters.
Collapse
Affiliation(s)
- Kwang Woo Ahn
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Michael Kosoy
- Centers for Disease Control and Prevention, Fort Collins, CO, USA.
| | - Kung-Sik Chan
- Department of Statistics and Actuarial Science, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
111
|
Monnier J, Zabel BA. Anti-asialo GM1 NK cell depleting antibody does not alter the development of bleomycin induced pulmonary fibrosis. PLoS One 2014; 9:e99350. [PMID: 24922516 PMCID: PMC4055641 DOI: 10.1371/journal.pone.0099350] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/13/2014] [Indexed: 12/30/2022] Open
Abstract
Despite circumstantial evidence postulating a protective role for NK cells in many fibrotic conditions, their contribution to the development of pulmonary fibrosis has yet to be tested. Lung-migrating NK cells are thought to attenuate the development of bleomycin induced pulmonary fibrosis (BIPF) by providing anti-fibrotic mediators and cytokines, such as IFN-γ. If true, we reasoned that depletion of NK cells during experimentally-induced fibrotic disease would lead to exacerbated fibrosis. To test this, we treated mice with NK cell-depleting antisera (anti-asialo GM1) and evaluated lung inflammation and fibrosis in the BIPF model. While NK cell infiltration into the airways was maximal at day 10 after bleomycin injection, NK cells represented a minor portion (1-3%) of the total leukocytes in BAL fluid. Anti-asialo GM1 significantly abrogated NK cell numbers over the course of the disease. Depletion of NK cells with anti-asialo GM1 before and throughout the BIPF model, or during just the fibrotic phase did not alter fibrosis development or affect the levels of any of the pro-inflammatory/pro-fibrotic cytokines measured (IL-1β, IL-17, IFN-γ, TGF-β and TNF-α). In addition, adoptively transferred NK cells, which were detectable systemically and in the airways throughout BIPF, failed to impact lung fibrosis. These findings indicate that NK cells likely do not play an essential protective role in controlling pulmonary fibrosis development.
Collapse
Affiliation(s)
- Justin Monnier
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- Palo Alto Institute for Research and Education, Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Brian A. Zabel
- Palo Alto Institute for Research and Education, Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
- * E-mail:
| |
Collapse
|
112
|
Joseph C, Togawa Y, Shindo N. Bacterial and viral infections associated with influenza. Influenza Other Respir Viruses 2014; 7 Suppl 2:105-113. [PMID: 24034494 PMCID: PMC5909385 DOI: 10.1111/irv.12089] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Influenza‐associated bacterial and viral infections are responsible for high levels of morbidity and death during pandemic and seasonal influenza episodes. A review was undertaken to assess and evaluate the incidence, epidemiology, aetiology, clinical importance and impact of bacterial and viral co‐infection and secondary infection associated with influenza. A review was carried out of published articles covering bacterial and viral infections associated with pandemic and seasonal influenza between 1918 and 2009 (and published through December 2011) to include both pulmonary and extra‐pulmonary infections. While pneumococcal infection remains the predominant cause of bacterial pneumonia, the review highlights the importance of other co‐ and secondary bacterial and viral infections associated with influenza, and the emergence of newly identified dual infections associated with the 2009 H1N1 pandemic strain. Severe influenza‐associated pneumonia is often bacterial and will necessitate antibiotic treatment. In addition to the well‐known bacterial causes, less common bacteria such as Legionella pneumophila may also be associated with influenza when new influenza strains emerge. This review should provide clinicians with an overview of the range of bacterial and viral co‐ or secondary infections that could present with influenza illness.
Collapse
Affiliation(s)
- Carol Joseph
- Global Influenza Programme, World Health Organization, Geneva, Switzerland
| | | | | |
Collapse
|
113
|
Damjanovic D, Khera A, Medina MF, Ennis J, Turner JD, Gauldie J, Xing Z. Type 1 interferon gene transfer enhances host defense against pulmonary Streptococcus pneumoniae infection via activating innate leukocytes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:5. [PMID: 26015944 PMCID: PMC4378291 DOI: 10.1038/mtm.2014.5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 01/29/2014] [Indexed: 11/11/2022]
Abstract
Pneumococcal infections are the leading cause of community-acquired pneumonia. Although the type 1 interferon-α (IFN-α) is a well-known antiviral cytokine, the role of IFN-α in antipneumococcal host defense and its therapeutic potential remain poorly understood. We have investigated these issues by using a murine transgene expression model. We found that in control animals, Streptococcus pneumoniae infection caused severe weight loss and excessive lung inflammation, associated with rapid bacterial outgrowth. In contrast, the animals that received a single dose of an adenoviral vector expressing IFN-α prior to pneumococcal infection demonstrated rapid and effective control of bacterial replication and lung inflammation and improved clinical outcome. Enhanced protection by IFN-α was due to increased activation of neutrophils and macrophages with increased release of reactive oxygen and nitrogen species and bacterial killing. Furthermore, we found that raised levels of IFN-α in the lung remained immune protective even when the gene transfer vector was given at a time postpneumococcal infection. Our study thus shows that the classically antiviral type 1 IFN can be exploited for enhancing immunity against pneumococcal infection via its activating effects on innate immune cells. Our findings hold implications for the therapeutic use of IFN-α gene transfer strategies to combat pneumococcal infections.
Collapse
Affiliation(s)
- Daniela Damjanovic
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University , Hamilton, Ontario, Canada ; M.G. DeGroote Institute for Infectious Disease Research, McMaster University , Hamilton, Ontario, Canada
| | - Amandeep Khera
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University , Hamilton, Ontario, Canada ; M.G. DeGroote Institute for Infectious Disease Research, McMaster University , Hamilton, Ontario, Canada
| | - Maria Fe Medina
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University , Hamilton, Ontario, Canada ; M.G. DeGroote Institute for Infectious Disease Research, McMaster University , Hamilton, Ontario, Canada
| | | | | | - Jack Gauldie
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University , Hamilton, Ontario, Canada ; M.G. DeGroote Institute for Infectious Disease Research, McMaster University , Hamilton, Ontario, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University , Hamilton, Ontario, Canada ; M.G. DeGroote Institute for Infectious Disease Research, McMaster University , Hamilton, Ontario, Canada
| |
Collapse
|
114
|
|
115
|
Sun K, Metzger DW. Influenza infection suppresses NADPH oxidase-dependent phagocytic bacterial clearance and enhances susceptibility to secondary methicillin-resistant Staphylococcus aureus infection. THE JOURNAL OF IMMUNOLOGY 2014; 192:3301-7. [PMID: 24563256 DOI: 10.4049/jimmunol.1303049] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has emerged as a leading contributor to mortality during recent influenza pandemics. The mechanism for this influenza-induced susceptibility to secondary S. aureus infection is poorly understood. In this study, we show that innate antibacterial immunity was significantly suppressed during the recovery stage of influenza infection, even though MRSA superinfection had no significant effect on viral burdens. Compared with mice infected with bacteria alone, postinfluenza MRSA-infected mice exhibited impaired bacterial clearance, which was not due to defective phagocyte recruitment, but rather coincided with reduced intracellular reactive oxygen species levels in alveolar macrophages and neutrophils. NADPH oxidase is responsible for reactive oxygen species production during phagocytic bacterial killing, a process also known as oxidative burst. We found that gp91(phox)-containing NADPH oxidase activity in macrophages and neutrophils was essential for optimal bacterial clearance during respiratory MRSA infections. In contrast to wild-type animals, gp91(phox-/-) mice exhibited similar defects in MRSA clearance before and after influenza infection. Using gp91(phox+/-) mosaic mice, we further demonstrate that influenza infection inhibits a cell-intrinsic contribution of NADPH oxidase to phagocyte bactericidal activity. Taken together, our results establish that influenza infection suppresses NADPH oxidase-dependent bacterial clearance and leads to susceptibility to secondary MRSA infection.
Collapse
Affiliation(s)
- Keer Sun
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | | |
Collapse
|
116
|
Xu X, Weiss ID, Zhang H, Singh SP, Wynn TA, Wilson MS, Farber JM. Conventional NK cells can produce IL-22 and promote host defense in Klebsiella pneumoniae pneumonia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:1778-86. [PMID: 24442439 PMCID: PMC3995347 DOI: 10.4049/jimmunol.1300039] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It was reported that host defense against pulmonary Klebsiella pneumoniae infection requires IL-22, which was proposed to be of T cell origin. Supporting a role for IL-22, we found that Il22(-/-) mice had decreased survival compared with wild-type mice after intratracheal infection with K. pneumoniae. Surprisingly, however, Rag2(-/-) mice did not differ from wild-type mice in survival or levels of IL-22 in the lungs postinfection with K. pneumoniae. In contrast, K. pneumoniae-infected Rag2(-/-)Il2rg(-/-) mice failed to produce IL-22. These data suggested a possible role for NK cells or other innate lymphoid cells in host defense and production of IL-22. Unlike NK cell-like innate lymphoid cells that produce IL-22 and display a surface phenotype of NK1.1(-)NKp46(+)CCR6(+), lung NK cells showed the conventional phenotype, NK1.1(+)NKp46(+)CCR6(-). Mice depleted of NK cells using anti-asialo GM1 showed decreased survival and higher lung bacterial counts, as well as increased dissemination of K. pneumoniae to blood and liver, compared with control-treated mice. NK cell depletion also led to decreased production of IL-22 in the lung. Within 1 d postinfection, although there was no increase in the number of lung NK cells, a subset of lung NK cells became competent to produce IL-22, and such cells were found in both wild-type and Rag2(-/-) mice. Our data suggest that, during pulmonary infection of mice with K. pneumoniae, conventional NK cells are required for optimal host defense, which includes the production of IL-22.
Collapse
Affiliation(s)
- Xin Xu
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ido D. Weiss
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongwei Zhang
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Satya P. Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas A. Wynn
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark S. Wilson
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua M. Farber
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
117
|
Pawlowski B, Nowak J, Borkowska BARBARA, Drulis-Kawa Z. Human body morphology, prevalence of nasopharyngeal potential bacterial pathogens, and immunocompetence handicap principal. Am J Hum Biol 2014; 26:305-10. [DOI: 10.1002/ajhb.22510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/29/2013] [Accepted: 01/08/2014] [Indexed: 11/09/2022] Open
Affiliation(s)
- Boguslaw Pawlowski
- Department of Human Biology; University of Wroclaw; Kuznicza 35 50-138 Wroclaw Poland
| | - Judyta Nowak
- Department of Human Biology; University of Wroclaw; Kuznicza 35 50-138 Wroclaw Poland
| | - BARBARA Borkowska
- Department of Human Biology; University of Wroclaw; Kuznicza 35 50-138 Wroclaw Poland
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology; University of Wroclaw; Przybyszewskiego 63/77 51-148 Wroclaw Poland
| |
Collapse
|
118
|
Zhao X, Dai J, Xiao X, Wu L, Zeng J, Sheng J, Su J, Chen X, Wang G, Li K. PI3K/Akt signaling pathway modulates influenza virus induced mouse alveolar macrophage polarization to M1/M2b. PLoS One 2014; 9:e104506. [PMID: 25105760 PMCID: PMC4126709 DOI: 10.1371/journal.pone.0104506] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 07/11/2014] [Indexed: 02/05/2023] Open
Abstract
Macrophages polarized to M1 (pro-inflammation) or M2 (anti-inflammation) phenotypes in response to environmental signals. In this study, we examined the polarization of alveolar macrophage (AM), following induction by different influenza virus strains (ST169 (H1N1), ST602 (H3N2) and HKG9 (H9N2)). Macrophages from other tissues or cell line exert alternative responding pattern, and AM is necessary for investigating the respiratory system. AM polarized toward the M1 phenotype after 4 hours of infection by all three virus strains, and AM to presented M2b phenotype after 8 hours induction, and immunosuppressive phenotype after 24 hours of induction. Protein expression assay showed similar results as the gene expression analysis for phenotype verification. The ELISA assay showed that TNF-α secretion was up-regulated after 4 and 8 hours of infection by influenza viruses, and it returned to basal levels after 24 hours of infection. IL-10 expression was elevated after 8 and 24 hours of infection. Immunofluorescence showed that iNOS expression was up-regulated but not Arg1 expression. Influenza virus notably increased phospho-Akt but not phospho-Erk1/2 or phospho-p38, and the AM polarization pattern have been changed by LY294002 (PI3K inhibitor). In conclusion, our results demonstrate the dynamic polarization of AM induced by influenza viruses, and suggested that PI3K/Akt signaling pathway modulates AM polarization to M1/M2b.
Collapse
Affiliation(s)
- Xiangfeng Zhao
- Department of Microbiology and Immunology, Shantou University Medical College, College, Shantou, Guangdong, China
| | - Jianping Dai
- Department of Microbiology and Immunology, Shantou University Medical College, College, Shantou, Guangdong, China
| | - Xuejun Xiao
- Department of Nursing, Guilin Medical University, Guilin, Guangxi, China
| | - Liqi Wu
- Department of Microbiology and Immunology, Shantou University Medical College, College, Shantou, Guangdong, China
| | - Jun Zeng
- Department of Microbiology and Immunology, Shantou University Medical College, College, Shantou, Guangdong, China
| | - Jiangtao Sheng
- Department of Microbiology and Immunology, Shantou University Medical College, College, Shantou, Guangdong, China
| | - Jinghua Su
- Department of Microbiology and Immunology, Shantou University Medical College, College, Shantou, Guangdong, China
| | - Xiaoxuan Chen
- Department of Microbiology and Immunology, Shantou University Medical College, College, Shantou, Guangdong, China
| | - Gefei Wang
- Department of Microbiology and Immunology, Shantou University Medical College, College, Shantou, Guangdong, China
- * E-mail: (KsL); (GfW)
| | - Kangsheng Li
- Department of Microbiology and Immunology, Shantou University Medical College, College, Shantou, Guangdong, China
- * E-mail: (KsL); (GfW)
| |
Collapse
|
119
|
Subramaniam R, Barnes PF, Fletcher K, Boggaram V, Hillberry Z, Neuenschwander P, Shams H. Protecting against post-influenza bacterial pneumonia by increasing phagocyte recruitment and ROS production. J Infect Dis 2013; 209:1827-36. [PMID: 24367039 DOI: 10.1093/infdis/jit830] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Seasonal and especially pandemic influenza predispose patients to secondary bacterial pneumonias, which are a major cause of deaths and morbidity. Staphylococcus aureus is a particularly common and deadly form of post-influenza pneumonia, and increasing staphylococcal drug resistance makes the development of new therapies urgent. We explored an innate immune-mediated model of the lung to define novel mechanisms by which the host can be protected against secondary staphylococcal pneumonia after sub-lethal influenza infection. We found that stimulating the innate immunity in the lung by overexpression of GM-CSF will result in resistance to S. aureus pneumonia after sublethal influenza infection. Resistance was mediated by alveolar macrophages and neutrophils, and was associated with increased production of reactive oxygen species (ROS) by alveolar macrophages. Resistance was abrogated by treatment with agents that scavenged ROS. We conclude that stimulating innate immunity in the lung markedly reduces susceptibility to post-influenza staphylococcal pneumonia and that this may represent a novel immunomodulatory strategy for prevention and treatment of secondary bacterial pneumonia after influenza.
Collapse
|
120
|
McHugh KJ, Mandalapu S, Kolls JK, Ross TM, Alcorn JF. A novel outbred mouse model of 2009 pandemic influenza and bacterial co-infection severity. PLoS One 2013; 8:e82865. [PMID: 24324838 PMCID: PMC3855784 DOI: 10.1371/journal.pone.0082865] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/06/2013] [Indexed: 11/23/2022] Open
Abstract
Influenza viruses pose a significant health risk and annually impose a great cost to patients and the health care system. The molecular determinants of influenza severity, often exacerbated by secondary bacterial infection, are largely unclear. We generated a novel outbred mouse model of influenza virus, Staphylococcus aureus, and co-infection utilizing influenza A/CA/07/2009 virus and S. aureus (USA300). Outbred mice displayed a wide range of pathologic phenotypes following influenza virus or co-infection ranging broadly in severity. Influenza viral burden positively correlated with weight loss although lung histopathology did not. Inflammatory cytokines including IL-6, TNF-α, G-CSF, and CXCL10 positively correlated with both weight loss and viral burden. In S. aureus infection, IL-1β, G-CSF, TNF-α, and IL-6 positively correlated with weight loss and bacterial burden. In co-infection, IL-1β production correlated with decreased weight loss suggesting a protective role. The data demonstrate an approach to identify biomarkers of severe disease and to understand pathogenic mechanisms in pneumonia.
Collapse
Affiliation(s)
- Kevin J. McHugh
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Sivanarayana Mandalapu
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Jay K. Kolls
- Richard K. Mellon Foundation Institute, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Ted M. Ross
- Department of Microbiology & Molecular Genetics, University of Pittsburgh Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America
| | - John F. Alcorn
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
121
|
Tripathi S, White MR, Hartshorn KL. The amazing innate immune response to influenza A virus infection. Innate Immun 2013; 21:73-98. [PMID: 24217220 DOI: 10.1177/1753425913508992] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Influenza A viruses (IAVs) remain a major health threat and a prime example of the significance of innate immunity. Our understanding of innate immunity to IAV has grown dramatically, yielding new concepts that change the way we view innate immunity as a whole. Examples include the role of p53, autophagy, microRNA, innate lymphocytes, endothelial cells and gut commensal bacteria in pulmonary innate immunity. Although the innate response is largely beneficial, it also contributes to major complications of IAV, including lung injury, bacterial super-infection and exacerbation of reactive airways disease. Research is beginning to dissect out which components of the innate response are helpful or harmful. IAV uses its limited genetic complement to maximum effect. Several viral proteins are dedicated to combating innate responses, while other viral structural or replication proteins multitask as host immune modulators. Many host innate immune proteins also multitask, having roles in cell cycle, signaling or normal lung biology. We summarize the plethora of new findings and attempt to integrate them into the larger picture of how humans have adapted to the threat posed by this remarkable virus. We explore how our expanded knowledge suggests ways to modulate helpful and harmful inflammatory responses, and develop novel treatments.
Collapse
Affiliation(s)
- Shweta Tripathi
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA
| | - Mitchell R White
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA
| | - Kevan L Hartshorn
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA
| |
Collapse
|
122
|
DeBerge MP, Ely KH, Cheng GS, Enelow RI. ADAM17-mediated processing of TNF-α expressed by antiviral effector CD8+ T cells is required for severe T-cell-mediated lung injury. PLoS One 2013; 8:e79340. [PMID: 24223177 PMCID: PMC3819268 DOI: 10.1371/journal.pone.0079340] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/26/2013] [Indexed: 01/16/2023] Open
Abstract
Influenza infection in humans evokes a potent CD8(+) T-cell response, which is important for clearance of the virus but may also exacerbate pulmonary pathology. We have previously shown in mice that CD8(+) T-cell expression of TNF-α is required for severe and lethal lung injury following recognition of an influenza antigen expressed by alveolar epithelial cells. Since TNF-α is first expressed as a transmembrane protein that is then proteolytically processed to release a soluble form, we sought to characterize the role of TNF-α processing in CD8(+) T-cell-mediated injury. In this study we observed that inhibition of ADAM17-mediated processing of TNF-α by CD8(+) T cells significantly attenuated the diffuse alveolar damage that occurs after T-cell transfer, resulting in enhanced survival. This was due in part to diminished chemokine expression, as TNF-α processing was required for lung epithelial cell expression of CXCL2 and the subsequent inflammatory infiltration. We confirmed the importance of CXCL2 expression in acute lung injury by transferring influenza-specific CD8(+) T cells into transgenic mice lacking CXCR2. These mice exhibited reduced airway infiltration, attenuated lung injury, and enhanced survival. Theses studies describe a critical role for TNF-α processing by CD8(+) T cells in the initiation and severity of acute lung injury, which may have important implications for limiting immunopathology during influenza infection and other human infectious or inflammatory diseases.
Collapse
Affiliation(s)
- Matthew P. DeBerge
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Kenneth H. Ely
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Guang-Shing Cheng
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, United States of America
| | - Richard I. Enelow
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| |
Collapse
|
123
|
Metzger DW, Sun K. Immune dysfunction and bacterial coinfections following influenza. THE JOURNAL OF IMMUNOLOGY 2013; 191:2047-52. [PMID: 23964104 DOI: 10.4049/jimmunol.1301152] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Secondary pulmonary infections by encapsulated bacteria including Streptococcus pneumoniae and Staphylococcus aureus following influenza represent a common and challenging clinical problem. The reasons for this polymicrobial synergy are still not completely understood, hampering development of effective prophylactic and therapeutic interventions. Although it has been commonly thought that viral-induced epithelial cell damage allows bacterial invasiveness, recent studies by several groups have now implicated dysfunctional innate immune defenses following influenza as the primary culprit for enhanced susceptibility to secondary bacterial infections. Understanding the immunological imbalances that are responsible for virus/bacteria synergy will ultimately allow the design of effective, broad-spectrum therapeutic approaches for prevention of enhanced susceptibility to these pathogens.
Collapse
Affiliation(s)
- Dennis W Metzger
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA.
| | | |
Collapse
|
124
|
Löffler B, Niemann S, Ehrhardt C, Horn D, Lanckohr C, Lina G, Ludwig S, Peters G. Pathogenesis of Staphylococcus aureus necrotizing pneumonia: the role of PVL and an influenza coinfection. Expert Rev Anti Infect Ther 2013; 11:1041-51. [PMID: 24073746 DOI: 10.1586/14787210.2013.827891] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Only recently necrotizing pneumonia was defined as a specific disease entity that is caused by a Panton-Valentine leukocidin (PVL)-producing Staphylococcus aureus strain and is frequently preceded by an influenza infection. Necrotizing pneumonia is characterized by a sudden onset and rapid worsening of symptoms, leukopenia, airway hemorrhages, severe respiratory failure and a high mortality rate. Despite clear epidemiological data, the function of PVL in necrotizing pneumonia has been controversially discussed due to conflicting results from different disease models. Furthermore, there are many proposed mechanisms how a viral infection could facilitate and interact with a bacterial superinfection. In this review, we summarize current data from 43 clinical cases and results from various infection models on necrotizing pneumonia. We discuss the contribution of S. aureus PVL and a preceding influenza infection and present a concept of the pathogenesis of necrotizing pneumonia.
Collapse
Affiliation(s)
- Bettina Löffler
- Institute of Medical Microbiology, University Hospital of Münster, Domagkstraße 10, D-48149 Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Robinson KM, McHugh KJ, Mandalapu S, Clay ME, Lee B, Scheller EV, Enelow RI, Chan YR, Kolls JK, Alcorn JF. Influenza A virus exacerbates Staphylococcus aureus pneumonia in mice by attenuating antimicrobial peptide production. J Infect Dis 2013; 209:865-75. [PMID: 24072844 DOI: 10.1093/infdis/jit527] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Influenza A represents a significant cause of morbidity and mortality worldwide. Bacterial complications of influenza A confer the greatest risk to patients. TH17 pathway inhibition has been implicated as a mechanism by which influenza A alters bacterial host defense. Here we show that preceding influenza causes persistent Staphylococcus aureus infection and suppression of TH17 pathway activation in mice. Influenza does not inhibit S. aureus binding and uptake by phagocytic cells but instead attenuates S. aureus induced TH17 related antimicrobial peptides necessary for bacterial clearance in the lung. Importantly, exogenous lipocalin 2 rescued viral exacerbation of S. aureus infection and decreased free iron levels in the bronchoalveolar lavage from mice coinfected with S. aureus and influenza. These findings indicate a novel mechanism by which influenza A inhibits TH17 immunity and increases susceptibility to secondary bacterial pneumonia. Identification of new mechanisms in the pathogenesis of bacterial pneumonia could lead to future therapeutic targets.
Collapse
Affiliation(s)
- Keven M Robinson
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Salk HM, Haralambieva IH, Ovsyannikova IG, Goergen KM, Poland GA. Granzyme B ELISPOT assay to measure influenza-specific cellular immunity. J Immunol Methods 2013; 398-399:44-50. [PMID: 24055591 DOI: 10.1016/j.jim.2013.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/29/2013] [Accepted: 09/04/2013] [Indexed: 12/13/2022]
Abstract
The immunogenicity and efficacy of influenza vaccination are markedly lower in the elderly. Granzyme B (GrzB), quantified in fresh cell lysates, has been suggested to be a marker of cytotoxic T lymphocyte (CTL) response and a predictor of influenza illness among vaccinated older individuals. We have developed an influenza-specific GrzB ELISPOT assay using cryopreserved PBMCs. This method was tested on 106 healthy older subjects (ages 50-74) at baseline (Day 0) and three additional time points post-vaccination (Day 3, Day 28, Day 75) with influenza A/H1N1-containing vaccine. No significant difference was seen in GrzB response between any of the time points, although influenza-specific GrzB response appears to be elevated at all post-vaccination time points. There was no correlation between GrzB response and hemagglutination inhibition (HAI) titers, indicating no relationship between the cytolytic activity and humoral antibody levels in this cohort. Additionally, a significant negative correlation between GrzB response and age was observed. These results reveal a reduction in influenza-specific GrzB response as one ages. In conclusion, we have developed and optimized an influenza-specific ELISPOT assay for use with frozen cells to quantify the CTL-specific serine protease GrzB, as a measure of cellular immunity after influenza vaccination.
Collapse
|
127
|
Caswell JL. Failure of respiratory defenses in the pathogenesis of bacterial pneumonia of cattle. Vet Pathol 2013; 51:393-409. [PMID: 24021557 DOI: 10.1177/0300985813502821] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The respiratory system is well defended against inhaled bacteria by a dynamic system of interacting layers, including mucociliary clearance, host defense factors including antimicrobial peptides in the epithelial lining fluid, proinflammatory responses of the respiratory epithelium, resident alveolar macrophages, and recruited neutrophils and monocytes. Nevertheless, these manifold defenses are susceptible to failure as a result of stress, glucocorticoids, viral infections, abrupt exposure to cold air, and poor air quality. When some of these defenses fail, the lung can be colonized by bacterial pathogens that are equipped to evade the remaining defenses, resulting in the development of pneumonia. This review considers the mechanisms by which these predisposing factors compromise the defenses of the lung, with a focus on the development of bacterial pneumonia in cattle and supplemented with advances based on mouse models and the study of human disease. Deepening our understanding of how the respiratory defenses fail is expected to lead to interventions that restore these dynamic immune responses and prevent disease.
Collapse
Affiliation(s)
- J L Caswell
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
128
|
Marked Improvement of Severe Lung Immunopathology by Influenza-Associated Pneumococcal Superinfection Requires the Control of Both Bacterial Replication and Host Immune Responses. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:868-80. [DOI: 10.1016/j.ajpath.2013.05.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 04/21/2013] [Accepted: 05/13/2013] [Indexed: 12/19/2022]
|
129
|
Redford PS, Mayer-Barber KD, McNab FW, Stavropoulos E, Wack A, Sher A, O'Garra A. Influenza A virus impairs control of Mycobacterium tuberculosis coinfection through a type I interferon receptor-dependent pathway. J Infect Dis 2013; 209:270-4. [PMID: 23935205 PMCID: PMC3873785 DOI: 10.1093/infdis/jit424] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Influenza followed by severe acute bacterial pneumonia is a major cause of mortality worldwide. Several mechanisms account for this enhanced susceptibility, including increased production of type I interferon (IFN). In individuals infected with Mycobacterium tuberculosis, the influence of acute viral infections on tuberculosis progression is unclear. We show that prior exposure of mice to influenza A virus, followed by M. tuberculosis infection, leads to enhanced mycobacterial growth and decreased survival. Following M. tuberculosis/influenza virus coinfection, mycobacterial growth is enhanced by a type I IFN signaling pathway. Our findings highlight the detrimental influence influenza virus infection can have before or during M. tuberculosis infection.
Collapse
Affiliation(s)
- Paul S Redford
- Division of Immunoregulation, Medical Research Council National Institute for Medical Research, The Ridgeway, Mill Hill, London
| | | | | | | | | | | | | |
Collapse
|
130
|
Liu YF, Gao Y, Chen MF, Cao B, Yang XH, Wei L. Etiological analysis and predictive diagnostic model building of community-acquired pneumonia in adult outpatients in Beijing, China. BMC Infect Dis 2013; 13:309. [PMID: 23834931 PMCID: PMC3728139 DOI: 10.1186/1471-2334-13-309] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/05/2013] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Etiological epidemiology and diagnosis are important issues in adult community-acquired pneumonia (CAP), and identifying pathogens based on patient clinical features is especially a challenge. CAP-associated main pathogens in adults include viruses as well as bacteria. However, large-scale epidemiological investigations of adult viral CAP in China are still lacking. In this study, we analyzed the etiology of adult CAP in Beijing, China and constructed diagnostic models based on combinations of patient clinical factors. METHODS A multicenter cohort was established with 500 adult CAP outpatients enrolled in Beijing between November 2010 to October 2011. Multiplex and quantitative real-time fluorescence PCR were used to detect 15 respiratory viruses and mycoplasma pneumoniae, respectively. Bacteria were detected with culture and enzyme immunoassay of the Streptococcus pneumoniae urinary antigen. Univariate analysis, multivariate analysis, discriminatory analysis and Receiver Operating Characteristic (ROC) curves were used to build predictive models for etiological diagnosis of adult CAP. RESULTS Pathogens were detected in 54.2% (271/500) of study patients. Viruses accounted for 36.4% (182/500), mycoplasma pneumoniae for 18.0% (90/500) and bacteria for 14.4% (72/500) of the cases. In 182 of the patients with viruses, 219 virus strains were detected, including 166 single and 53 mixed viral infections. Influenza A virus represented the greatest proportion with 42.0% (92/219) and 9.1% (20/219) in single and mixed viral infections, respectively. Factors selected for the predictive etiological diagnostic model of viral CAP included cough, dyspnea, absence of chest pain and white blood cell count (4.0-10.0) × 10(9)/L, and those of mycoplasma pneumoniae CAP were being younger than 45 years old and the absence of a coexisting disease. However, these models showed low accuracy levels for etiological diagnosis (areas under ROC curve for virus and mycoplasma pneumoniae were both 0.61, P < 0.05). CONCLUSIONS Greater consideration should be given to viral and mycoplasma pneumoniae infections in adult CAP outpatients. While predictive etiological diagnostic models of viral and mycoplasma pneumoniae based on combinations of demographic and clinical factors may provide indications of etiology, diagnostic confirmation of CAP remains dependent on laboratory pathogen test results.
Collapse
Affiliation(s)
- Ya-Fen Liu
- Peking University People's Hospital, Department of Infectious Disease, Peking University Hepatology Institute, Beijing 100044, P R China
| | | | | | | | | | | |
Collapse
|
131
|
Shrestha S, Foxman B, Dawid S, Aiello AE, Davis BM, Berus J, Rohani P. Time and dose-dependent risk of pneumococcal pneumonia following influenza: a model for within-host interaction between influenza and Streptococcus pneumoniae. J R Soc Interface 2013; 10:20130233. [PMID: 23825111 DOI: 10.1098/rsif.2013.0233] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A significant fraction of seasonal and in particular pandemic influenza deaths are attributed to secondary bacterial infections. In animal models, influenza virus predisposes hosts to severe infection with both Streptococcus pneumoniae and Staphylococcus aureus. Despite its importance, the mechanistic nature of the interaction between influenza and pneumococci, its dependence on the timing and sequence of infections as well as the clinical and epidemiological consequences remain unclear. We explore an immune-mediated model of the viral-bacterial interaction that quantifies the timing and the intensity of the interaction. Taking advantage of the wealth of knowledge gained from animal models, and the quantitative understanding of the kinetics of pathogen-specific immunological dynamics, we formulate a mathematical model for immune-mediated interaction between influenza virus and S. pneumoniae in the lungs. We use the model to examine the pathogenic effect of inoculum size and timing of pneumococcal invasion relative to influenza infection, as well as the efficacy of antivirals in preventing severe pneumococcal disease. We find that our model is able to capture the key features of the interaction observed in animal experiments. The model predicts that introduction of pneumococcal bacteria during a 4-6 day window following influenza infection results in invasive pneumonia at significantly lower inoculum size than in hosts not infected with influenza. Furthermore, we find that antiviral treatment administered later than 4 days after influenza infection was not able to prevent invasive pneumococcal disease. This work provides a quantitative framework to study interactions between influenza and pneumococci and has the potential to accurately quantify the interactions. Such quantitative understanding can form a basis for effective clinical care, public health policies and pandemic preparedness.
Collapse
Affiliation(s)
- Sourya Shrestha
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
132
|
Complications and factors associated with severity of influenza in hospitalized children and adults during the pandemic wave of A(H1N1)pdm2009 infections--the Fluco French cohort. J Clin Virol 2013; 58:114-9. [PMID: 23829965 DOI: 10.1016/j.jcv.2013.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/24/2013] [Accepted: 05/30/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND The emergence of novel A(H1N1)pdm2009 virus threatened to lead to frequent severe manifestations. OBJECTIVES To describe the clinical, virological, and biological characteristics of the disease and identify the factors associated with severe presentations. STUDY DESIGN This prospective multicenter study recruited consecutive hospitalized patients with confirmed A(H1N1)pdm2009 disease. Clinical, virological and biological assessments were carried out at inclusion and 30 days post-inclusion. Disease manifestations were assessed by an adjudication committee using pre-identified definitions of complications and severity scores. RESULTS The study analyzed from November 30th, 2009 to February 8th, 2010, 40 hospitalized patients, 21 children and 19 adults. Eighteen (45%) were considered to have severe presentations. Except age, main characteristics in children and adults did not differ. The majority (18/21) of children and all adults had a respiratory presentation; extra-respiratory manifestations tended to be more frequent in children (12 vs. 6, P=0.10). Two children against 5 adults presented acute respiratory distress syndrome (ARDS, P=0.23), but more children suffered respiratory failure (7 vs. 1, P=0.046) without ARDS. At day 30, one death had occurred in each group. The main factor associated with non-severe presentation was an early (<48 h) implementation of oseltamivir treatment (P=0.038). CONCLUSIONS Although the study failed to achieve its main objective, due mainly to the difficulty of carrying a study of this nature in the midst of a pandemic, it allowed the description of a panel of unusual and complicated forms and confirmed the added value of early oseltamivir treatment in limiting severity in hospitalized children and adults.
Collapse
|
133
|
Influenza virus infection but not H1N1 influenza virus immunization is associated with changes in peripheral blood NK cell subset levels. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1291-7. [PMID: 23784853 DOI: 10.1128/cvi.00194-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The innate immune system constitutes the first line of defense against viral agents, and NK cells seem to have an important protective role during the early phases of influenza virus infections. We decided to assess the levels of NK and NKT lymphocytes and the expression levels of different membrane receptors (NKp44, NKp46, NKG2A, killer cell immune-like receptor [KIR] 3DL1/DS1, KIR2DL1/DS1, and CD161) in peripheral blood samples of patients with influenza (n = 17) and healthy individuals immunized against this virus (seasonal and [H1N1]pdm2009 influenza vaccines; n = 15 and 12, respectively). Blood samples were obtained from all individuals, and NK and NKT cell subsets were analyzed by multiparametric flow cytometry. We found that the patients with severe influenza (n = 9) showed significant increases in the percentages of NKp46(+) NKp44(+) NK cells and the proportions of NK and NKT lymphocytes expressing KIR2DL1 and KIR3DL1 and reductions in the percentages of NKp46(+) NKp44(-) NK cells compared to those in the healthy controls (n = 27). In contrast, influenza immunization, against either the seasonal or the pandemic H1N1 virus, was not associated with important changes in the levels of NK and NKT lymphocytes or the expression levels of the different receptors by these cells. Our data suggest that severe influenza is associated with important and complex alterations on NK cells, which might contribute to the pathogenesis of this condition.
Collapse
|
134
|
Kimaro Mlacha SZ, Peret TCT, Kumar N, Romero-Steiner S, Dunning Hotopp JC, Ishmael N, Grinblat-Huse V, Riley DR, Erdman DD, Carlone GM, Sampson J, Scott JAG, Tettelin H. Transcriptional adaptation of pneumococci and human pharyngeal cells in the presence of a virus infection. BMC Genomics 2013; 14:378. [PMID: 23742656 PMCID: PMC3681581 DOI: 10.1186/1471-2164-14-378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 05/24/2013] [Indexed: 11/26/2022] Open
Abstract
Background Viral upper respiratory tract infections are associated with increased colonization by Streptococcus pneumoniae but the mechanisms underlying this relationship are unclear. The objective of this study is to describe a comprehensive picture of the cellular interaction between the adhering bacteria and host cells in the presence or absence of a viral co-infection. Results Gene expression profiles of Detroit-562 pharyngeal cells, which were either mock-infected or infected with human respiratory syncytial virus (RSV) or human parainfluenza virus 3 (HPIV3), were analyzed using human microarrays. Transcription response of S. pneumoniae strain TIGR4 (serotype 4) in the presence of either mock- or viral-infected cells was analyzed by pneumococcal microarray. Significantly regulated genes were identified by both significance analysis of microarray (SAM) and a ≥ 2-fold change ratio cut-off. The adherence of S. pneumoniae to human pharyngeal cells was significantly augmented in the presence of RSV or HPIV3 infection. Global gene expression profiling of the host cells during infection with RSV or HPIV3 revealed increased transcription of carcinoembryonic antigen-related cell adhesion molecules (CEACAM1), CD47, fibronectin, interferon-stimulated genes and many other host cell adhesion molecules. Pneumococci increased transcription of several genes involved in adhesive functions (psaA, pilus islet), choline uptake and incorporation (lic operon), as well as transport and binding. Conclusions We have identified a core transcriptome that represents the basic machinery required for adherence of pneumococci to D562 cells infected or not infected with a virus. These bacterial genes and cell adhesion molecules can potentially be used to control pneumococcal adherence occurring secondary to a viral infection.
Collapse
|
135
|
Smith AM, Adler FR, Ribeiro RM, Gutenkunst RN, McAuley JL, McCullers JA, Perelson AS. Kinetics of coinfection with influenza A virus and Streptococcus pneumoniae. PLoS Pathog 2013; 9:e1003238. [PMID: 23555251 PMCID: PMC3605146 DOI: 10.1371/journal.ppat.1003238] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 02/01/2013] [Indexed: 12/12/2022] Open
Abstract
Secondary bacterial infections are a leading cause of illness and death during epidemic and pandemic influenza. Experimental studies suggest a lethal synergism between influenza and certain bacteria, particularly Streptococcus pneumoniae, but the precise processes involved are unclear. To address the mechanisms and determine the influences of pathogen dose and strain on disease, we infected groups of mice with either the H1N1 subtype influenza A virus A/Puerto Rico/8/34 (PR8) or a version expressing the 1918 PB1-F2 protein (PR8-PB1-F2(1918)), followed seven days later with one of two S. pneumoniae strains, type 2 D39 or type 3 A66.1. We determined that, following bacterial infection, viral titers initially rebound and then decline slowly. Bacterial titers rapidly rise to high levels and remain elevated. We used a kinetic model to explore the coupled interactions and study the dominant controlling mechanisms. We hypothesize that viral titers rebound in the presence of bacteria due to enhanced viral release from infected cells, and that bacterial titers increase due to alveolar macrophage impairment. Dynamics are affected by initial bacterial dose but not by the expression of the influenza 1918 PB1-F2 protein. Our model provides a framework to investigate pathogen interaction during coinfections and to uncover dynamical differences based on inoculum size and strain. Influenza virus infected individuals often become coinfected with a bacterial pathogen and, consequently, morbidity and mortality are significantly increased. A better understanding of how these pathogens interact with each other and the host is of key importance. Here, we use data from infected mice together with mathematical modeling and quantitative analyses to understand how each pathogen influences the other, and how the 1918 influenza PB1-F2 protein and the bacterial strain and dose contribute to coinfection kinetics. We find that influenza viral titers increase when Streptococcus pneumoniae is present and that the bacteria establish and grow rapidly when influenza is present. Our model and analyses suggest that the influenza infection reduces the bacterial clearance ability of alveolar macrophages and that the subsequent S. pneumoniae infection enhances viral release from infected cells. These results provide new insights into the mechanisms of influenza coinfection and the differences in pathogenesis of influenza and S. pneumoniae strains.
Collapse
Affiliation(s)
- Amber M Smith
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America.
| | | | | | | | | | | | | |
Collapse
|
136
|
Narayana Moorthy A, Narasaraju T, Rai P, Perumalsamy R, Tan KB, Wang S, Engelward B, Chow VTK. In vivo and in vitro studies on the roles of neutrophil extracellular traps during secondary pneumococcal pneumonia after primary pulmonary influenza infection. Front Immunol 2013; 4:56. [PMID: 23467809 PMCID: PMC3587798 DOI: 10.3389/fimmu.2013.00056] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/12/2013] [Indexed: 12/31/2022] Open
Abstract
Seasonal influenza virus infections may lead to debilitating disease, and account for significant fatalities annually worldwide. Most of these deaths are attributed to the complications of secondary bacterial pneumonia. Evidence is accumulating to support the notion that neutrophil extracellular traps (NETs) harbor several antibacterial proteins, and trap and kill bacteria. We have previously demonstrated the induction of NETs that contribute to lung tissue injury in severe influenza pneumonia. However, the role of these NETs in secondary bacterial pneumonia is unclear. In this study, we explored whether NETs induced during pulmonary influenza infection have functional significance against infections with Streptococcus pneumoniae and other bacterial and fungal species. Our findings revealed that NETs do not participate in killing of Streptococcus pneumoniae in vivo and in vitro. Dual viral and bacterial infection elevated the bacterial load compared to animals infected with bacteria alone. Concurrently, enhanced lung pathogenesis was observed in dual-infected mice compared to those challenged with influenza virus or bacteria alone. The intensified NETs in dual-infected mice often appeared as clusters that were frequently filled with partially degraded DNA, as evidenced by punctate histone protein staining. The severe pulmonary pathology and excessive NETs generation in dual infection correlated with exaggerated inflammation and damage to the alveolar-capillary barrier. NETs stimulation in vitro did not significantly alter the gene expression of several antimicrobial proteins, and these NETs did not exhibit any bactericidal activity. Fungicidal activity against Candida albicans was observed at similar levels both in presence or absence of NETs. These results substantiate that the NETs released by primary influenza infection do not protect against secondary bacterial infection, but may compromise lung function.
Collapse
Affiliation(s)
- Anandi Narayana Moorthy
- Department of Microbiology, Infectious Diseases Program, National University of Singapore Kent Ridge, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Innate immune function and mortality in critically ill children with influenza: a multicenter study. Crit Care Med 2013; 41:224-36. [PMID: 23222256 DOI: 10.1097/ccm.0b013e318267633c] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To prospectively evaluate relationships among serum cytokine levels, innate immune responsiveness, and mortality in a multicenter cohort of critically ill children with influenza infection. DESIGN Prospective, multicenter, observational study. SETTING Fifteen pediatric ICUs among members of the Pediatric Acute Lung Injury and Sepsis Investigators network. PATIENTS Patients ≤18 yrs old admitted to a PICU with community-acquired influenza infection. A control group of outpatient children was also evaluated. INTERVENTIONS ICU patients underwent sampling within 72 hrs of ICU admission for measurement of a panel of 31 serum cytokine levels and quantification of whole blood ex vivo lipopolysaccharide-stimulated tumor necrosis factor-α production capacity using a standardized stimulation protocol. Outpatient control subjects also underwent measurement of tumor necrosis factor-α production capacity. MEASUREMENTS AND MAIN RESULTS Fifty-two patients (44 survivors, eight deaths) were sampled. High levels of serum cytokines (granulocyte macrophage colony-stimulating factor, interleukin-6, interleukin-8, interferon-inducible protein-10, monocyte chemotactic protein-1, and macrophage inflammatory protein-1α) were associated with mortality (p < 0.0016 for each comparison) as was the presence of secondary infection with Staphylococcus aureus (p = 0.007), particularly methicillin-resistant S. aureus (p < 0.0001). Nonsurvivors were immunosuppressed with leukopenia and markedly reduced tumor necrosis factor-α production capacity compared with outpatient control subjects (n = 21, p < 0.0001) and to ICU survivors (p < 0.0001). This association remained after controlling for multiple covariables. A tumor necrosis factor-α response <250 pg/mL was highly predictive of death and longer duration of ICU stay (p < 0.0001). Patients with S. aureus coinfection demonstrated the greatest degree of immunosuppression (p < 0.0001). CONCLUSIONS High serum levels of cytokines can coexist with marked innate immune suppression in children with critical influenza. Severe, early innate immune suppression is highly associated with both S. aureus coinfection and mortality in this population. Multicenter innate immune function testing is feasible and can identify these high-risk children.
Collapse
|
138
|
Coinfection with Staphylococcus aureus increases risk of severe coagulopathy in critically ill children with influenza A (H1N1) virus infection. Crit Care Med 2013; 40:3246-50. [PMID: 22971587 DOI: 10.1097/ccm.0b013e318260c7f8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVES H1N1 influenza with coinfections has been implicated to have high morbidity and mortality. We hypothesized that critically ill children with 2009 H1N1 and coinfections are at a higher risk of developing disseminated intravascular coagulation. DESIGN The chart review included demographics, length-of-stay, severity of illness score (Pediatric Risk of Mortality III acute physiology score), clinical laboratories, and outcomes at hospital day 90 data. Patients were classified as having methicillin-sensitive or -resistant Staphylococcus aureus, other, or no coinfections. SETTING Single-center pediatric intensive care unit. PATIENTS Sixty-six consecutive patients with 2009 H1N1 and influenza A infection. INTERVENTIONS None. MAIN RESULTS : There were 12, 22, and 32 patients with methicillin-sensitive or -resistant Staphylococcus aureus, other, and no coinfections, respectively. Pediatric critical care unit length-of-stay was 11, 10, and 5.5 days (median), and survival at day 90 was 83%, 96%, and 91% in patients with methicillin-sensitive or -resistant Staphylococcus aureus, other, and no coinfections. Patients with methicillin-sensitive or -resistant Staphylococcus aureus coinfections compared to patients with other, and no coinfections had higher Pediatric Risk of Mortality III acute physiology scores (14 [6-25] vs. 7 [2-10], p = .052 and 6 [2.5-10], p = .008; median [interquartile range]), higher D-dimer (16.1 [7.9-19.3] vs. 1.6 [1.1-4], p = .02 and 2.3 [0.8-8.7] µg/mL, p = .05), longer prothrombin time (19.3 [15.4-25.9] vs. 15.3 [14.8-17.1], p = .04 and 16.6 [14.7-20.4] secs, p < .39) at admission, and lower day-7 platelet counts (90K [26-161K] vs. 277K [98-314], p = .03 and 256K [152-339]/mm, p < .07). Patients with methicillin-sensitive or -resistant Staphylococcus aureus coinfections compared to patients without coinfections were more likely to be sicker with Pediatric Risk of Mortality III acute physiology score >10 vs. <10 (relative risk 2.4; 95% confidence interval 1.2-4.7; p = .035) and have overt disseminated intravascular coagulation (relative risk 4.4; 95% confidence interval 1.3-15.8, p = .025). CONCLUSIONS During the 2009-2010 H1N1 pandemic, pediatric patients with influenza A and methicillin-sensitive or -resistant Staphylococcus aureus coinfections were sicker and more likely to develop disseminated intravascular coagulation than patients with other or no coinfections.
Collapse
|
139
|
Bosch AATM, Biesbroek G, Trzcinski K, Sanders EAM, Bogaert D. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog 2013; 9:e1003057. [PMID: 23326226 PMCID: PMC3542149 DOI: 10.1371/journal.ppat.1003057] [Citation(s) in RCA: 423] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Respiratory infectious diseases are mainly caused by viruses or bacteria that often interact with one another. Although their presence is a prerequisite for subsequent infections, viruses and bacteria may be present in the nasopharynx without causing any respiratory symptoms. The upper respiratory tract hosts a vast range of commensals and potential pathogenic bacteria, which form a complex microbial community. This community is assumed to be constantly subject to synergistic and competitive interspecies interactions. Disturbances in the equilibrium, for instance due to the acquisition of new bacteria or viruses, may lead to overgrowth and invasion. A better understanding of the dynamics between commensals and pathogens in the upper respiratory tract may provide better insight into the pathogenesis of respiratory diseases. Here we review the current knowledge regarding specific bacterial–bacterial and viral–bacterial interactions that occur in the upper respiratory niche, and discuss mechanisms by which these interactions might be mediated. Finally, we propose a theoretical model to summarize and illustrate these mechanisms.
Collapse
Affiliation(s)
- Astrid A. T. M. Bosch
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center-Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Giske Biesbroek
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center-Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Krzysztof Trzcinski
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center-Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Elisabeth A. M. Sanders
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center-Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Debby Bogaert
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center-Wilhelmina Children's Hospital, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
140
|
Hasenberg M, Stegemann-Koniszewski S, Gunzer M. Cellular immune reactions in the lung. Immunol Rev 2012; 251:189-214. [DOI: 10.1111/imr.12020] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mike Hasenberg
- Institute of Experimental Immunology and Imaging; University of Duisburg/Essen; University Hospital; Essen; Germany
| | | | - Matthias Gunzer
- Institute of Experimental Immunology and Imaging; University of Duisburg/Essen; University Hospital; Essen; Germany
| |
Collapse
|
141
|
Palmer JM, Rajasekaran K, Thakar MS, Malarkannan S. Clinical relevance of natural killer cells following hematopoietic stem cell transplantation. J Cancer 2012; 4:25-35. [PMID: 23386902 PMCID: PMC3564244 DOI: 10.7150/jca.5049] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/01/2012] [Indexed: 01/17/2023] Open
Abstract
Natural killer (NK) cells are one of the first cells to recover following allogeneic hematopoietic stem cell transplantation (HSCT), and are believed to play an important role in facilitating engraftment or preventing post-transplant infection and tumor recurrence. Recent studies have provided novel insights into the mechanisms by which NK cells mediate these highly clinically relevant immunological functions. In particular, the ability of NK cells to reduce the risk of graft versus host disease (GVHD) and increase the graft versus leukemia effect (GVL) in the setting of human leukocyte antigen (HLA)-haploidentical HSCT highlights their clinical potentials. NK cells also mediate anti-viral protection, in particular against cytomegalovirus (CMV), an infection that causes significant morbidity and mortality following transplant. Another crucial function of NK cells is providing protection against bacterial infections at the mucosal barriers. NK cells achieve this by promoting anti-microbial defenses and regeneration of epithelial cells. These recent exciting findings provide a strong basis for the formulation of novel NK cell-based immunotherapies. In this review, we summarize the recent advances related to the mechanisms, functions, and future clinical prospects of NK cells that can impact post-transplant outcomes.
Collapse
Affiliation(s)
- Jeanne M Palmer
- 1. Laboratory of Molecular Immunology, Blood Research Institute, 8727 Watertown Plank Road, Milwaukee, WI 53226, USA
- 2. Departments of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kamalakannan Rajasekaran
- 1. Laboratory of Molecular Immunology, Blood Research Institute, 8727 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Monica S Thakar
- 1. Laboratory of Molecular Immunology, Blood Research Institute, 8727 Watertown Plank Road, Milwaukee, WI 53226, USA
- 3. Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Subramaniam Malarkannan
- 1. Laboratory of Molecular Immunology, Blood Research Institute, 8727 Watertown Plank Road, Milwaukee, WI 53226, USA
- 2. Departments of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
142
|
Stegemann-Koniszewski S, Gereke M, Orrskog S, Lienenklaus S, Pasche B, Bader SR, Gruber AD, Akira S, Weiss S, Henriques-Normark B, Bruder D, Gunzer M. TLR7 contributes to the rapid progression but not to the overall fatal outcome of secondary pneumococcal disease following influenza A virus infection. J Innate Immun 2012; 5:84-96. [PMID: 23154432 DOI: 10.1159/000345112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 10/05/2012] [Indexed: 12/21/2022] Open
Abstract
Increased risk for bacterial superinfections substantially contributes to the mortality caused by influenza A virus (IAV) epidemics. While the mechanistic basis for this lethal synergism is still insufficiently understood, immune modulation through the viral infection has been shown to be involved. Since the pattern-recognition receptor (PRR) toll-like receptor 7 (TLR7) is a major sensor for the viral genome, we studied how IAV recognition by TLR7 influences the development of secondary pneumococcal infection. In a mouse model of IAV, TLR7-deficient hosts induced a potent antiviral response and showed unchanged survival. In secondary pneumococcal infection during acute influenza, TLR7ko mice showed a fatal outcome similar to wild-type (WT) hosts, despite significantly delayed disease progression. Also, when bacterial superinfection occurred after virus clearance, WT and TLR7-deficient hosts showed similar mortality, even though we found the phagocytic activity of alveolar macrophages isolated from IAV-pre-infected hosts to be enhanced in TLR7ko over WT mice. Thus, we show that a virus-sensing PRR modulates the progression of secondary pneumococcal infection following IAV. However, the fatal overall outcome in WT as well as TLR7ko hosts suggests that processes distinct from TLR7-triggering override the contribution of this single PRR.
Collapse
|
143
|
Type I interferon induction during influenza virus infection increases susceptibility to secondary Streptococcus pneumoniae infection by negative regulation of γδ T cells. J Virol 2012; 86:12304-12. [PMID: 22951826 DOI: 10.1128/jvi.01269-12] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The majority of deaths following influenza virus infection result from secondary bacterial superinfection, most commonly caused by Streptococcus pneumoniae. Several models have been proposed to explain how primary respiratory viral infections exacerbate secondary bacterial disease, but the mechanistic explanations have been contradictory. In this study, mice were infected with S. pneumoniae at different days after primary influenza A (X31) virus infection. Our findings show that the induction of type I interferons (IFNs) during a primary nonlethal influenza virus infection is sufficient to promote a deadly S. pneumoniae secondary infection. Moreover, mice deficient in type I interferon receptor (IFNAR knockout [KO] mice) effectively cleared the secondary bacterial infection from their lungs, increased the recruitment of neutrophils, and demonstrated an enhanced innate expression of interleukin-17 (IL-17) relative to wild-type (WT) mice. Lung γδ T cells were responsible for almost all IL-17 production, and their function is compromised during secondary S. pneumoniae infection of WT but not IFNAR KO mice. Adoptive transfer of γδ T cells from IFNAR KO mice reduced the susceptibility to secondary S. pneumoniae infection in the lung of WT mice. Altogether, our study highlights the importance of type I interferon as a key master regulator that is exploited by opportunistic pathogens such as S. pneumoniae. Our findings may be utilized to design effective preventive and therapeutic strategies that may be beneficial for coinfected patients during influenza epidemics.
Collapse
|
144
|
Short KR, Habets MN, Hermans PWM, Diavatopoulos DA. Interactions between Streptococcus pneumoniae and influenza virus: a mutually beneficial relationship? Future Microbiol 2012; 7:609-24. [PMID: 22568716 DOI: 10.2217/fmb.12.29] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Historically, most research on infectious diseases has focused on infections with single pathogens. However, infections with pathogens often occur in the context of pre-existing viral and bacterial infections. Clinically, this is of particular relevance for coinfections with Streptococcus pneumoniae and influenza virus, which together are an important cause of global morbidity and mortality. In recent years new evidence has emerged regarding the underlying mechanisms of influenza virus-induced susceptibility to secondary pneumococcal infections, in particular regarding the sustained suppression of innate recognition of S. pneumoniae. Conversely, it is also increasingly being recognized that there is not a unidirectional effect of the virus on S. pneumoniae, but that asymptomatic pneumococcal carriage may also affect subsequent influenza virus infection and the clinical outcome. Here, we will review both aspects of pneumococcal influenza virus infection, with a particular focus on the age-related differences in pneumococcal colonization rates and invasive pneumococcal disease.
Collapse
Affiliation(s)
- Kirsty R Short
- Department of Microbiology and Immunology, The University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
145
|
Damjanovic D, Small CL, Jeyananthan M, McCormick S, Xing Z. Immunopathology in influenza virus infection: Uncoupling the friend from foe. Clin Immunol 2012; 144:57-69. [DOI: 10.1016/j.clim.2012.05.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 04/30/2012] [Accepted: 05/08/2012] [Indexed: 12/23/2022]
|
146
|
Abdul-Careem MF, Mian MF, Yue G, Gillgrass A, Chenoweth MJ, Barra NG, Chew MV, Chan T, Al-Garawi AA, Jordana M, Ashkar AA. Critical role of natural killer cells in lung immunopathology during influenza infection in mice. J Infect Dis 2012; 206:167-77. [PMID: 22561366 DOI: 10.1093/infdis/jis340] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Influenza viral infection results in excessive pulmonary inflammation that has been linked to the damage caused by immune responses and viral replication. The multifunctional cytokine interleukin (IL-15), influences the proliferation and maintenance of immune cells such as CD8(+) T cells and natural killer (NK) cells. Here we show that IL-15(-/-) mice are protected from lethal influenza infection. Irrespective of the mouse strains, the protection observed was linked to the lack of NK cells. Increased survival in the IL-15(-/-) or NK1.1(+) cell-depleted wild-type mice was associated with significantly lower lung lesions as well as decreased mononuclear cells and neutrophils in the airway lumen. Levels of interleukin 10 were significantly higher and levels of proinflammatory cytokines, including interleukin 6 and interleukin 12, were significantly lower in the bronchoalveolar lavage fluid from IL-15(-/-) and NK1.1(+) cell-depleted wild-type mice than in that from control mice. Our data suggest that NK cells significantly augment pulmonary inflammation, contributing to the pathogenesis of influenza infection.
Collapse
Affiliation(s)
- Mohamed F Abdul-Careem
- McMaster Immunology Research Centre and Institute for Infectious Diseases Research, Department of Pathology and Molecular Medicine, McMaster University Health Sciences Center, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Souza-Fonseca-Guimaraes F, Adib-Conquy M, Cavaillon JM. Natural killer (NK) cells in antibacterial innate immunity: angels or devils? Mol Med 2012; 18:270-85. [PMID: 22105606 DOI: 10.2119/molmed.2011.00201] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/09/2011] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells were first described as immune leukocytes that could kill tumor cells and soon after were reported to kill virus-infected cells. In the mid-1980s, 10 years after their discovery, NK cells were also demonstrated to contribute to the fight against bacterial infection, particularly because of crosstalk with other leukocytes. A wide variety of immune cells are now recognized to interact with NK cells through the production of cytokines such as interleukin (IL)-2, IL-12, IL-15 and IL-18, which boost NK cell activities. The recent demonstration that NK cells express pattern recognition receptors, namely Toll-like and nucleotide oligomerization domain (NOD)-like receptors, led to the understanding that these cells are not only under the control of accessory cells, but can be directly involved in the antibacterial response thanks to their capacity to recognize pathogen-associated molecular patterns. Interferon (IFN)-γ is the predominant cytokine produced by activated NK cells. IFN-γ is a key contributor to antibacterial immune defense. However, in synergy with other inflammatory cytokines, IFN-γ can also lead to deleterious effects similar to those observed during sepsis. Accordingly, as the main source of IFN-γ in the early phase of infection, NK cells display both beneficial and deleterious effects, depending on the circumstances.
Collapse
|
148
|
Braciale TJ, Sun J, Kim TS. Regulating the adaptive immune response to respiratory virus infection. Nat Rev Immunol 2012; 12:295-305. [PMID: 22402670 PMCID: PMC3364025 DOI: 10.1038/nri3166] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The respiratory tract is a major portal of entry for viruses into the body. Infection of the respiratory tract can, if severe, induce life-threatening damage to the lungs. Various strategies to control virus replication and to limit immune-mediated inflammation and tissue injury have evolved in the respiratory tract. Multiple innate immune cell types, particularly dendritic cells (DCs), within the pulmonary interstitium and between airway epithelial cells are strategically poised to recognize and sample airway particulates, such as viruses. In response to respiratory virus infection, several distinct DC subsets are stimulated to migrate from the site of infection in the lungs to the draining lymph nodes. Here, these migrant DCs have a crucial role in initiating the antivirus adaptive immune response to the invading viruses. After entering the infected lungs, effector T cells that were generated in the lymph nodes undergo further modifications that are shaped by the inflammatory milieu. Co-stimulatory receptor–ligand interactions between effector T cells and various cell types presenting viral antigens in the infected lungs modulate the host adaptive immune response in situ. Effector T cells that produce pro-inflammatory mediators are also the major producers of regulatory (anti-inflammatory) cytokines, providing a fine-tuning mechanism of self-control by effector T cells responding to viruses in the inflamed tissue. The immune mechanisms that control virus replication and/or excessive inflammation in the virus-infected lungs can also predispose the individual recovering from a virus infection to bacterial superinfection. Therapeutic strategies should consider balancing the need to inhibit virus replication and excessive inflammation with the need to optimize the antibacterial functions of innate immune phagocytes, which are crucial for clearing the bacteria from the lungs.
This article reviews the interplay between innate and adaptive immune cells in the response to viral infection of the lower respiratory tract and describes the fine-tuning mechanisms that control antiviral T cells in the lungs but that can also predispose an individual to subsequent pulmonary bacterial infections. Recent years have seen several advances in our understanding of immunity to virus infection of the lower respiratory tract, including to influenza virus infection. Here, we review the cellular targets of viruses and the features of the host immune response that are unique to the lungs. We describe the interplay between innate and adaptive immune cells in the induction, expression and control of antiviral immunity, and discuss the impact of the infected lung milieu on moulding the response of antiviral effector T cells. Recent findings on the mechanisms that underlie the increased frequency of severe pulmonary bacterial infections following respiratory virus infection are also discussed.
Collapse
Affiliation(s)
- Thomas J Braciale
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
149
|
Lin SJ, Cheng PJ, Lin TY, Lee PT, Hsiao HS, Kuo ML. Effect of influenza A infection on umbilical cord blood natural killer function regulation with interleukin-15. J Infect Dis 2012; 205:745-56. [PMID: 22262794 DOI: 10.1093/infdis/jir843] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Influenza A is a major pathogen of humans and has the potential to cause worldwide pandemics. Natural killer (NK) cells are important effector cells in the innate immune response against viruses, including influenza A. Infants are more susceptible to severe influenza A viral infection, possibly attributed in part to their defective NK function. METHODS We compared the NK responses to influenza using umbilical cord blood (UCB) and adult peripheral blood (APB) mononuclear cells and purified NK cells. RESULTS Influenza A induced dose-dependent apoptosis of NK cells with down-regulation of NKp46 expression, which was more pronounced in UCB. Both UCB and APB NK cells responded to influenza infection by up-regulating CD69 and CD107a expression, a process further enhanced by interleukin (IL) 15. Influenza exposure also down-regulated perforin expression and K562 cytotoxicity in UCB NK cells, which was partially restored by IL-15. The production of interferon (IFN) γ and tumor necrosis factor (TNF) α by NK cells in responding to influenza was further enhanced by IL-15. CONCLUSIONS Our findings show differential NK responses between newborns and adults. IL-15 may be beneficial in combating influenza by enhancing cytotoxic function and IFN-γ production.
Collapse
Affiliation(s)
- Syh-Jae Lin
- Division of Asthma, Allergy, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | | | | | | | | |
Collapse
|
150
|
A Time Course for Susceptibility to Staphylococcus aureus Respiratory Infection during Influenza in a Swine Model. INFLUENZA RESEARCH AND TREATMENT 2012; 2011:846910. [PMID: 23074662 PMCID: PMC3447286 DOI: 10.1155/2011/846910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 02/07/2023]
Abstract
Bacterial superinfections following influenza A virus (IAV) are predominant causes of morbidity in humans. The recent emergence of methicillin-resistant Staphylococcus aureus (MRSA) and highly virulent IAV strains has reduced treatment options. Development of an appropriate animal model to study secondary S. aureus infections may provide important information regarding disease pathogenesis. Pigs are natural hosts to both IAV and S. aureus and have respiratory physiology and immune response comparable to humans. To establish a time course of susceptibility to S. aureus after IAV infection, nursery pigs infected intranasally with IAV were challenged with MRSA at different time points. Lung pathology scores and MRSA CFU were evaluated in dual-infected animals after IAV infection. Flow cytometric analysis of bronchoalveolar lavage fluid indicated differences between treatments. These results demonstrate the appropriateness of an intranasal challenge model in nursery pigs for studying the pathogenesis of IAV and S. aureus coinfection and provide insights into the timeframe for susceptibility of IAV-infected pigs to secondary S. aureus infection.
Collapse
|