101
|
Nguyen N, de Esch C, Cameron B, Kumar RK, Zekry A, Lloyd AR. Positioning of leukocyte subsets in the portal and lobular compartments of hepatitis C virus-infected liver correlates with local chemokine expression. J Gastroenterol Hepatol 2014; 29:860-9. [PMID: 24236853 DOI: 10.1111/jgh.12462] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND AIM Chronic hepatitis C virus infection is characterized by infiltration of a mixed population of leukocytes into portal tracts and infiltration almost exclusively by CD8+ T cells into lobules of the liver. This pattern of leukocyte recruitment is likely to be orchestrated in a cell-specific fashion by local chemokine expression. METHODS Portal or lobular tissues were isolated by laser capture microdissection from 17 liver biopsy specimens to examine regional gene expression of a panel of chemokine ligands and receptors. The biopsies were also stained immunohistochemically to enumerate regional cell numbers. RESULTS Expression of multiple chemokine ligands and receptors was evident, although few correlated with leukocyte numbers. In the lobule, expression of CXCL10 correlated with T-cell subsets (CD3+, P = 0.0002; CD4+, P = 0.0053; and CD8+, P = 0.0061), as did CCL5 (CD3+, P = 0.0005; CD8+, P = 0.0199) and CCL3 (CD3+, P = 0.0016; CD8+, P = 0.008). In the portal tracts, expression of CXCL10 and CCL5 was correlated with CD8+ T-cell numbers (P = 0.0040 and P = 0.0114, respectively), whereas CXCL13 was strongly correlated with CD20+ B-cell numbers (P < 0.0001). CXCR3 expression correlated with CD3+ and CD4+ T cells (P < 0.0001 and P = 0.0208, respectively), CCR5 with CD8+ T cells (P < 0.0001), and CXCR5 with CD20+ B-cell infiltration (P = 0.0022). CONCLUSION CXCR3, CCR5, and CXCR5 and their ligands form key elements of the "zip code" responsible for regional localization of specific lymphocyte subsets in the HCV-infected liver.
Collapse
Affiliation(s)
- Nam Nguyen
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
102
|
The role of chemokines in hepatitis C virus-mediated liver disease. Int J Mol Sci 2014; 15:4747-79. [PMID: 24646914 PMCID: PMC3975423 DOI: 10.3390/ijms15034747] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 12/21/2022] Open
Abstract
The hepatitis C virus (HCV) is a global health problem affecting more than 170 million people. A chronic HCV infection is associated with liver fibrosis, liver cirrhosis and hepatocellular carcinoma. To enable viral persistence, HCV has developed mechanisms to modulate both innate and adaptive immunity. The recruitment of antiviral immune cells in the liver is mainly dependent on the release of specific chemokines. Thus, the modulation of their expression could represent an efficient viral escape mechanism to hamper specific immune cell migration to the liver during the acute phase of the infection. HCV-mediated changes in hepatic immune cell chemotaxis during the chronic phase of the infection are significantly affecting antiviral immunity and tissue damage and thus influence survival of both the host and the virus. This review summarizes our current understanding of the HCV-mediated modulation of chemokine expression and of its impact on the development of liver disease. A profound knowledge of the strategies used by HCV to interfere with the host's immune response and the pro-fibrotic and pro-carcinogenic activities of HCV is essential to be able to design effective immunotherapies against HCV and HCV-mediated liver diseases.
Collapse
|
103
|
Zhen J, Li Q, Zhu Y, Yao X, Wang L, Zhou A, Sun S. Increased serum CXCL16 is highly correlated with blood lipids, urine protein and immune reaction in children with active nephrotic syndrome. Diagn Pathol 2014; 9:23. [PMID: 24460887 PMCID: PMC3915750 DOI: 10.1186/1746-1596-9-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 01/15/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Primary nephrotic syndrome (NS) is a common disease in children. Lipid nephrotoxicity and cellular immune dysfunction are known features of this disease. Recently, CXCL16 was found to participate in inflammation and mediate cellular uptake of lipids. Here, we investigated the involvement of CXCL16 in the occurrence and development of primary NS. METHODS Serum CXCL16, blood lipids and albumin, 24-hour urine protein, interferon-γ and immune cells were detected in 25 children with steroid sensitive NS during their active nephrotic and remissive stages. Twenty healthy children served as the control group. RESULTS Levels of serum CXCL16, blood lipids, interferon-γ and CXCR6+ T cells were significantly increased and albumin and NK cell number were significantly decreased in the active status group compared with remissive status and control groups. Correlation analysis showed that serum CXCL16 was positively correlated with blood lipids, 24-hour urine protein, interferon-γ and CXCR6+ T cells but negatively correlated with albumin in patients with active NS. CONCLUSION Serum CXCL16 was increased in patients with active NS and correlated with blood lipids, urine protein and immune and inflammation responses, suggesting that CXCL16 may serve as a useful index or biomarker for disease activity in children with nephrotic syndrome. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1120468411154766.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuzhen Sun
- School of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
104
|
Sahin H, Berres ML, Wasmuth HE. Therapeutic potential of chemokine receptor antagonists for liver disease. Expert Rev Clin Pharmacol 2014; 4:503-13. [DOI: 10.1586/ecp.11.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
105
|
Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AEI, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2013; 66:1-79. [PMID: 24218476 DOI: 10.1124/pr.113.007724] [Citation(s) in RCA: 653] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
Collapse
Affiliation(s)
- Francoise Bachelerie
- Chair, Subcommittee on Chemokine Receptors, Nomenclature Committee-International Union of Pharmacology, Bldg. 10, Room 11N113, NIH, Bethesda, MD 20892.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Pollheimer MJ, Fickert P, Stieger B. Chronic cholestatic liver diseases: clues from histopathology for pathogenesis. Mol Aspects Med 2013; 37:35-56. [PMID: 24141039 DOI: 10.1016/j.mam.2013.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 02/06/2023]
Abstract
Chronic cholestatic liver diseases include fibrosing cholangiopathies such as primary biliary cirrhosis or primary sclerosing cholangitis. These and related cholangiopathies clearly display pathologies associated with (auto)immunologic processes. As the cholangiocyte's apical membrane is exposed to the toxic actions of the bile fluid, the interaction of bile with cholangiocytes and the biliary tree in general must be considered to completely understand the pathogenesis of cholangiopathies. While the molecular processes involved in the hepatocellular formation of bile are well understood in both normal and pathophysiologic conditions, those in the bile ducts of normal liver and in livers with cholangiopathies lag behind. This survey highlights key mechanisms known to date that are important for the formation of bile by hepatocytes and its modification by the biliary tree. It also delineates the clinical pathophysiologic findings for cholangiopathies and puts them in perspective with current experimental models to reveal the pathogenesis of cholangiopathies and develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Marion J Pollheimer
- Division of Gastroenterology and Hepatology, Laboratory of Experimental and Molecular Hepatology, Department of Internal Medicine, Medical University of Graz, Austria; Institute of Pathology, Medical University of Graz, Austria
| | - Peter Fickert
- Division of Gastroenterology and Hepatology, Laboratory of Experimental and Molecular Hepatology, Department of Internal Medicine, Medical University of Graz, Austria; Institute of Pathology, Medical University of Graz, Austria.
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
107
|
Damm G, Pfeiffer E, Burkhardt B, Vermehren J, Nüssler AK, Weiss TS. Human parenchymal and non-parenchymal liver cell isolation, culture and characterization. Hepatol Int 2013. [PMID: 26202025 DOI: 10.1007/s12072-013-9475-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many reports describing parenchymal liver cell isolation have been published so far. However, recent evidence has clearly demonstrated that non-parenchymal liver cells play an important role in many pathophysiologies of the liver, such as drug-induced liver diseases, inflammation, and the development of liver fibrosis and cirrhosis. In this study, we present an overview of the current methods for isolating and characterizing parenchymal and non-parenchymal liver cells.
Collapse
Affiliation(s)
- Georg Damm
- Charité University Medicine Berlin, Department of General, Visceral, and Transplant Surgery, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Elisa Pfeiffer
- Charité University Medicine Berlin, Department of General, Visceral, and Transplant Surgery, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Britta Burkhardt
- Eberhard Karls University Tübingen, BG Trauma Center, Siegfried Weller Institut, BG-Tübingen, Siegfried Weller Institut, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Jan Vermehren
- Department of Pediatrics and Juvenile Medicine, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany
| | - Andreas K Nüssler
- Eberhard Karls University Tübingen, BG Trauma Center, Siegfried Weller Institut, BG-Tübingen, Siegfried Weller Institut, Schnarrenbergstr. 95, 72076, Tübingen, Germany.
| | - Thomas S Weiss
- Department of Pediatrics and Juvenile Medicine, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
108
|
Björkström NK, Kekäläinen E, Mjösberg J. Tissue-specific effector functions of innate lymphoid cells. Immunology 2013; 139:416-27. [PMID: 23489335 DOI: 10.1111/imm.12098] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 02/06/2023] Open
Abstract
Innate lymphoid cells (ILCs) is the collective term for a group of related innate lymphocytes, including natural killer (NK) cells and the more recently discovered non-NK ILCs, which all lack rearranged antigen receptors such as those expressed by T and B cells. Similar to NK cells, the newly discovered ILCs depend on the transcription factor Id2 and the common γ-chain of the interleukin-2 receptor for development. However, in contrast to NK cells, non-NK ILCs also require interleukin-7. In addition to the cytotoxic functions of NK cells, assuring protection against tumour development and viruses, new data indicate that ILCs contribute to a wide range of homeostatic and pathophysiological conditions in various organs via specialized cytokine production capabilities. Here we summarize current knowledge on ILCs with a particular emphasis on their tissue-specific effector functions, in the gut, liver, lungs and uterus. When possible, we try to highlight the role that these cells play in humans.
Collapse
Affiliation(s)
- Niklas K Björkström
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
109
|
The role of chemokines in acute and chronic hepatitis C infection. Cell Mol Immunol 2013; 11:25-40. [PMID: 23954947 DOI: 10.1038/cmi.2013.37] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/08/2013] [Accepted: 07/14/2013] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C imposes a significant burden on global healthcare. Chronic infection is associated with progressive inflammation of the liver which typically manifests in cirrhosis, organ failure and cancer. By virtue of elaborate evasion strategies, hepatitis C virus (HCV) succeeds as a persistent human virus. It has an extraordinary capacity to subvert the immune response enabling it to establish chronic infections and associated liver disease. Chemokines are low molecular weight chemotactic peptides that mediate the recruitment of inflammatory cells into tissues and back into the lymphatics and peripheral blood. Thus, they are central to the temporal and spatial distribution of effector and regulatory immune cells. The interactions between chemokines and their cognate receptors help shape the immune response and therefore, have a major influence on the outcome of infection. However, chemokines represent a target for modulation by viruses including the HCV. HCV is known to modulate chemokine expression in vitro and may therefore enable its survival by subverting the immune response in vivo through altered leukocyte chemotaxis resulting in impaired viral clearance and the establishment of chronic low-grade inflammation. In this review, the roles of chemokines in acute and chronic HCV infection are described with a particular emphasis placed on chemokine modulation as a means of immune subversion. We provide an in depth discussion of the part played by chemokines in mediating hepatic fibrosis while addressing the potential applications for these chemoattractants in prognostic medicine.
Collapse
|
110
|
Tuncer C, Oo YH, Murphy N, Adams DH, Lalor PF. The regulation of T-cell recruitment to the human liver during acute liver failure. Liver Int 2013; 33:852-63. [PMID: 23617240 DOI: 10.1111/liv.12182] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 03/23/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Acute liver failure (ALF) is a rare clinical syndrome with high mortality resulting from hepatocellular necrosis and loss of function. In seronegative hepatitis (SNH), a T-cell-rich infiltrate leads to immune-mediated hepatocyte destruction, whereas in paracetamol poisoning, toxic metabolites induce hepatocyte necrosis, followed by a macrophage-rich, lymphocytic infiltrate that is an important factor in driving repair and regeneration. The nature of the hepatic inflammatory infiltrate, key to ALF pathogenesis and outcome, is determined by the recruitment of effector cells from blood, but the molecular basis of recruitment is poorly understood. To determine the phenotype of circulating and hepatic lymphocytes in patients with ALF secondary to paracetamol overdose (POD) or SNH and investigate the molecular basis of lymphocyte recruitment. METHODS We used FACS, immunohistochemistry and flow-based adhesion assays to determine the regulation of lymphocyte adhesion. RESULTS SNH and POD intrahepatic lymphocytes were αLβ2(hi), CD69(hi) and CD38(hi) with a distinct homing phenotype being L-selectin(lo), CXCR3(hi) and CCR5(+). Expression of chemokine ligands for the receptors CCR5, CXCR3 and CXCR6 and the adhesion molecules ICAM-1, VCAM-1 and VAP-1 was markedly increased in the liver in ALF. Lymphocytes isolated from the livers of patients with SNH showed enhanced chemokine-dependent adhesion and transmigration across the human hepatic endothelium in vitro under flow and used a combination of β1 and β2 integrins to adhere to endothelium and β2 integrins, CD31 and VAP-1 to transmigrate. CONCLUSION Aetiology-dependent combinations of adhesion molecules and chemokines expressed within tissue during ALF recruit lymphocytes with a distinct homing phenotype.
Collapse
Affiliation(s)
- Ceren Tuncer
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, UK
| | | | | | | | | |
Collapse
|
111
|
Leukocyte transmigration across endothelial and extracellular matrix protein barriers in liver ischemia/reperfusion injury. Curr Opin Organ Transplant 2013; 16:34-40. [PMID: 21150609 DOI: 10.1097/mot.0b013e328342542e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Hepatic ischemia reperfusion injury (IRI) linked to leukocyte recruitment and subsequent release of cytokines and free radicals remains a significant complication in organ transplantation. The aim of this review is to bring attention to advances made in our understanding of the mechanisms of leukocyte recruitment to sites of inflammatory stimulation in liver IRI. RECENT FINDINGS Leukocyte transmigration across endothelial and extracellular matrix barriers is dependent on adhesive events, as well as on focal matrix degradation mechanisms. Whereas adhesion molecules are critical for the successful promotion of leukocyte transmigration by providing leukocyte attachment to the vascular endothelium, matrix metalloproteinases (MMPs) are important for facilitating leukocyte movement across vascular barriers. Among different MMPs, MMP-9, an inducible gelatinase expressed by leukocytes during hepatic IRI, is emerging as an important mediator of leukocyte traffic to inflamed liver. SUMMARY It is generally accepted that the understanding of the molecular mechanisms involved in leukocyte recruitment will lead to the development of novel targeted therapeutic approaches for hepatic IRI and liver transplantation. Here, we review mechanisms of leukocyte traffic in liver IRI and the role of some of the proteins that are thought to be important for this process.
Collapse
|
112
|
Wehr A, Baeck C, Heymann F, Niemietz PM, Hammerich L, Martin C, Zimmermann HW, Pack O, Gassler N, Hittatiya K, Ludwig A, Luedde T, Trautwein C, Tacke F. Chemokine receptor CXCR6-dependent hepatic NK T Cell accumulation promotes inflammation and liver fibrosis. THE JOURNAL OF IMMUNOLOGY 2013; 190:5226-36. [PMID: 23596313 DOI: 10.4049/jimmunol.1202909] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic liver injury characteristically results in hepatic inflammation, which represents a prerequisite for organ fibrosis. Although NKT cells are abundantly present in liver and involved in hepatic inflammation, molecular mechanisms of their recruitment in liver fibrosis remained elusive. We hypothesized that chemokine receptor CXCR6 and its ligand CXCL16 control NKT cell migration and functionality in liver fibrosis. In patients with chronic liver diseases (n = 58), CXCR6 and CXCL16 expression was intrahepatically upregulated compared with controls. In murine liver, Cxcl16 was strongly expressed by endothelium and macrophages, whereas lymphocyte populations (NKT, NK, CD4 T, CD8 T cells) expressed CXCR6. Intravital two-photon microscopy imaging of Cxcr6(+/gfp) and Cxcr6(gfp/gfp) mice and chemotaxis studies in vitro revealed that CXCR6 specifically controls hepatic NKT cell accumulation during the early response upon experimental liver damage. Hepatic invariant NKT cells expressed distinct proinflammatory cytokines including IFN-γ and IL-4 upon injury. CXCR6-deficient mice were protected from liver fibrosis progression in two independent experimental models. Macrophage infiltration and protein levels of inflammatory cytokines IFN-γ, TNF-α, and IL-4 were also reduced in fibrotic livers of Cxcr6(-/-) mice, corroborating that hepatic NKT cells provide essential cytokine signals perpetuating hepatic inflammation and fibrogenesis. Adoptive transfer of NKT cells, but not CD4 T cells, isolated from wild type livers restored hepatic fibrosis in Cxcr6(-/-) mice upon experimental steatohepatitis. Our results demonstrate that hepatic NKT cells accumulate CXCR6-dependent early upon injury, thereby accentuating the inflammatory response in the liver and promoting hepatic fibrogenesis. Interfering with CXCR6/CXCL16 might therefore bear therapeutic potential in liver fibrosis.
Collapse
Affiliation(s)
- Alexander Wehr
- Department of Medicine III, University-Hospital Aachen, 52074 Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Kee JY, Ito A, Hojo S, Hashimoto I, Igarashi Y, Tsukada K, Irimura T, Shibahara N, Nakayama T, Yoshie O, Sakurai H, Saiki I, Koizumi K. Chemokine CXCL16 suppresses liver metastasis of colorectal cancer via augmentation of tumor-infiltrating natural killer T cells in a murine model. Oncol Rep 2012; 29:975-82. [PMID: 23242131 DOI: 10.3892/or.2012.2185] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/27/2012] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is a typical lifestyle-related disease, and it metastasizes mostly to the liver. It is important to understand the molecular mechanisms of CRC metastasis in order to design new and effective treatments for CRC patients. Chemokines are known to have antitumor effects as their chemoattractant properties stimulate the accumulation of infiltrating immune cells (TILs) in tumors. Chemokine (C-X-C motif) ligand 16 (CXCL16), also known as SR-PSOX, is a unique membrane-bound chemokine that induces the expression of its specific receptor CXCR6. We previously reported that the expression of CXCL16 by cancer cells enhances the recruitment of TILs, thereby improving the prognosis of CRC. It has since been reported that CXCL16/CXCR6 expression is involved in the metastasis of various types of cancer. However, there is no report of the association between CXCL16 expression and liver metastasis in CRC. In this study, we investigated the role of cancer-derived CXCL16 and the possibility of gene therapy using CXCL16. Therefore, we examined the metastasis of colon 38 SL4 cells to the liver in an experimental model. Following injection of cancer cells into the intraportal vein, CXCL16-expressing CRC cells drastically inhibited liver metastasis. We also found that CD8 T cells and natural killer T (NKT) cells, known as CXCR6-expressing cells, increased in CXCL16-expressing metastatic tissue. Collectively, the inhibitory effect on metastasis to the liver by CXCL16 was observed in NKT cell-depleted mice but not in CD8 T cell-depleted mice. These results demonstrate the inhibitory effect of CXCL16 on liver metastasis via NKT cells in CRC.
Collapse
Affiliation(s)
- Ji-Ye Kee
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
|
115
|
Guidotti LG, Iannacone M. Effector CD8 T cell trafficking within the liver. Mol Immunol 2012; 55:94-9. [PMID: 23149103 DOI: 10.1016/j.molimm.2012.10.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 10/17/2012] [Accepted: 10/22/2012] [Indexed: 01/06/2023]
Abstract
CD8 T cells play a critical role in several pathological conditions affecting the liver, most notably viral hepatitis. Accordingly, understanding the mechanisms that modulate the intrahepatic recruitment of CD8 T cells is of paramount importance. Some of the rules governing the behavior of these cells in the liver have been characterized at the population level, or have been inferred by studying the intrahepatic behavior of other leukocyte subpopulations. In contrast to most microvascular beds where leukocyte adhesion is restricted to the endothelium of post-capillary venules, it is now becoming clear that in the liver leukocytes, including CD8 T cells, can efficiently interact with the endothelium of hepatic capillaries (i.e. the sinusoids). While physical trapping has been proposed to play an important role in leukocyte adhesion to hepatic sinusoids, there is mounting evidence that T cell recruitment to the liver is highly regulated and depends on recruitment signals that are either constitutive or induced by inflammation. We review here several specific adhesive mechanisms that have been shown to regulate CD8 T cell trafficking within the liver, as well as highlight recent data that establish platelets as key cellular regulators of intrahepatic CD8 T cell accumulation.
Collapse
Affiliation(s)
- Luca G Guidotti
- Division of Immunology, Infectious Diseases and Transplantation, San Raffaele Scientific Institute, Milano, Italy
| | | |
Collapse
|
116
|
Oo YH, Banz V, Kavanagh D, Liaskou E, Withers DR, Humphreys E, Reynolds GM, Lee-Turner L, Kalia N, Hubscher SG, Klenerman P, Eksteen B, Adams DH. CXCR3-dependent recruitment and CCR6-mediated positioning of Th-17 cells in the inflamed liver. J Hepatol 2012; 57:1044-51. [PMID: 22796894 PMCID: PMC3994510 DOI: 10.1016/j.jhep.2012.07.008] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 06/30/2012] [Accepted: 07/05/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS IL-17 secreting CD4 (Th17) and CD8 (Tc17) T cells have been implicated in immune-mediated liver diseases, but the molecular basis for their recruitment and positioning within the liver is unknown. METHODS The phenotype and migratory behaviour of human liver-derived Th17 and Tc17 cells were investigated by flow cytometry and chemotaxis and flow-based adhesion assays. The recruitment of murine Th17 cells to the liver was studied in vivo using intra-vital microscopy. RESULTS IL-17(+) T cells comprised 1-3% of the T cell infiltrate in inflammatory liver diseases and included both CD4 (Th17) and CD8 (Tc17) cells. They expressed RORC and the IL-23 receptor and included subsets that secreted IL-22 and interferon-γ. Th17 and Tc17 cells expressed high levels of CXCR3 and CCR6, Tc17 cells also expressed CXCR6. Binding to human sinusoidal endothelium from flow was dependent on β1 and β2 integrins, CXCR3, and, in the case of Th17 cells, VAP-1. Th17 recruitment via sinusoids in mice with liver inflammation was reduced by treatment with antibodies against CXCR3 ligands, confirming the role of CXCR3 in Th17 recruitment in vivo. In human liver, IL-17(+) cells were detected in portal infiltrates close to inflamed bile ducts expressing the CCR6 ligand CCL20. Cytokine-treated human cholangiocytes secreted CCL20 and induced CCR6-dependent migration of Th17 cells suggesting that local cholangiocyte chemokine secretion localises Th17 cells to bile ducts. CONCLUSIONS CXCR3 promotes recruitment of Th17 cells from the blood into the liver in both human and murine liver injury. Their subsequent positioning near bile ducts is dependent on cholangiocyte-secreted CCL20.
Collapse
Key Words
- th17, interleukin-17 secreting cd4 t helper cells
- tc17, interleukin-17 secreting cd8 t helper cells
- lil, liver infiltrating lymphocytes
- hsec, hepatic sinusoidal endothelial cell
- bec, biliary epithelial cells
- rorc, retinoic acid-related orphan receptor c
- aih, autoimmune hepatitis
- hcv, chronic hepatitis c
- pbc, primary biliary cirrhosis
- ald, alcoholic liver disease
- nanb, non-a non-b acute hepatitis
- nash, non-alcoholic steato-hepatitis
- nl, normal liver
- ccl4, carbon tetrachloride
- cona, concanavalin a
- tnf-α, tumour necrosis factor-α
- ifn-γ, interferon gamma
- cfse, carboxyfluorescein succinimidyl ester
- interleukin-17
- hepatitis
- th17 cells
- tc17 cells
- liver
- bile ducts
- chemokine receptor
- chemokine
- concanavalin a
Collapse
Affiliation(s)
- Ye Htun Oo
- Centre for Liver Research & NIHR Biomedical Research Unit in Liver Disease, University of Birmingham, Birmingham, United Kingdom.
| | - Vanessa Banz
- Centre for Liver Research & NIHR Biomedical Research Unit in Liver Disease, University of Birmingham, Birmingham, United Kingdom,Department of Visceral Surgery, Inselspital, University of Berne, Switzerland
| | - Dean Kavanagh
- Centre for Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Evaggelia Liaskou
- Centre for Liver Research & NIHR Biomedical Research Unit in Liver Disease, University of Birmingham, Birmingham, United Kingdom
| | - David R. Withers
- MRC Centre for Immune Regulation, University of Birmingham, Birmingham, United Kingdom
| | - Elizabeth Humphreys
- Centre for Liver Research & NIHR Biomedical Research Unit in Liver Disease, University of Birmingham, Birmingham, United Kingdom
| | - Gary M. Reynolds
- Centre for Liver Research & NIHR Biomedical Research Unit in Liver Disease, University of Birmingham, Birmingham, United Kingdom
| | - Laura Lee-Turner
- Centre for Liver Research & NIHR Biomedical Research Unit in Liver Disease, University of Birmingham, Birmingham, United Kingdom
| | - Neena Kalia
- Centre for Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Stefan G. Hubscher
- Centre for Liver Research & NIHR Biomedical Research Unit in Liver Disease, University of Birmingham, Birmingham, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Bertus Eksteen
- Centre for Liver Research & NIHR Biomedical Research Unit in Liver Disease, University of Birmingham, Birmingham, United Kingdom
| | - David H. Adams
- Centre for Liver Research & NIHR Biomedical Research Unit in Liver Disease, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
117
|
Béland K, Lapierre P, Djilali-Saiah I, Alvarez F. Liver restores immune homeostasis after local inflammation despite the presence of autoreactive T cells. PLoS One 2012; 7:e48192. [PMID: 23110209 PMCID: PMC3480501 DOI: 10.1371/journal.pone.0048192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 09/24/2012] [Indexed: 12/11/2022] Open
Abstract
The liver must keep equilibrium between immune tolerance and immunity in order to protect itself from pathogens while maintaining tolerance to food antigens. An imbalance between these two states could result in an inflammatory liver disease. The aims of this study were to identify factors responsible for a break of tolerance and characterize the subsequent restoration of liver immune homeostasis. A pro-inflammatory environment was created in the liver by the co-administration of TLR ligands CpG and Poly(I:C) in presence or absence of activated liver-specific autoreactive CD8(+) T cells. Regardless of autoreactive CD8(+) T cells, mice injected with CpG and Poly(I:C) showed elevated serum ALT levels and a transient liver inflammation. Both CpG/Poly(I:C) and autoreactive CD8(+)T cells induced expression of TLR9 and INF-γ by the liver, and an up-regulation of homing and adhesion molecules CXCL9, CXCL10, CXCL16, ICAM-1 and VCAM-1. Transferred CFSE-labeled autoreactive CD8(+) T cells, in presence of TLR3 and 9 ligands, were recruited by the liver and spleen and proliferated. This population then contracted by apoptosis through intrinsic and extrinsic pathways. Up-regulation of FasL and PD-L1 in the liver was observed. In conclusion, TLR-mediated activation of the innate immune system results in a pro-inflammatory environment that promotes the recruitment of lymphocytes resulting in bystander hepatitis. Despite this pro-inflammatory environment, the presence of autoreactive CD8(+) T cells is not sufficient to sustain an autoimmune response against the liver and immune homeostasis is rapidly restored through the apoptosis of T cells.
Collapse
Affiliation(s)
- Kathie Béland
- Division of Gastroenterology, Hepatology and Nutrition, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec, Canada
| | - Pascal Lapierre
- Division of Gastroenterology, Hepatology and Nutrition, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec, Canada
| | - Idriss Djilali-Saiah
- Division of Gastroenterology, Hepatology and Nutrition, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec, Canada
- Microbiology and Immunology department, University of Montreal, Montréal, Quebec, Canada
| | - Fernando Alvarez
- Division of Gastroenterology, Hepatology and Nutrition, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec, Canada
- Microbiology and Immunology department, University of Montreal, Montréal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montréal, Quebec, Canada
- * E-mail:
| |
Collapse
|
118
|
|
119
|
Abstract
Integrins and other cell adhesion molecules regulate numerous physiological and pathological mechanisms by mediating the interaction between cells and their extracellular environment. Although the significance of integrins in the evolution and progression of certain cancers is well recognized, their involvement in nonmalignant processes, such as organ fibrosis or inflammation, is only beginning to emerge. However, accumulating evidence points to an instrumental role of integrin-mediated signaling in a variety of chronic and acute noncancerous diseases, particularly of the liver.
Collapse
Affiliation(s)
- Eleonora Patsenker
- Department of Visceral Surgery and Medicine, Inselspital, University of Bern, Switzerland.
| | | |
Collapse
|
120
|
Abstract
Irrespective of the immune status, the vast majority of all lymphocytes reside in peripheral tissues whereas those present in blood only amount to a small fraction of the total. It has been estimated that T cells in healthy human skin outnumber those present in blood by at least a factor of two. How lymphocytes within these two compartments relate to each other is not well understood. However, mounting evidence suggest that the study of T cell subsets present in peripheral blood does not reflect the function of their counterparts at peripheral sites. This is especially true under steady-state conditions whereby long-lived memory T cells in healthy tissues, notably those in epithelial tissues at body surfaces, are thought to fulfill a critical immune surveillance function by contributing to the first line of defense against a series of local threats, including microbes, tumors, and toxins, and by participating in wound healing. The relative scarcity of information regarding peripheral T cells and the factors regulating their localization is primarily due to inherent difficulties in obtaining healthy tissue for the extraction and study of immune cells on a routine basis. This is most certainly true for humans. Here, we review our current understanding of T cell homing to human skin and compare it when possible with gut-selective homing. We also discuss candidate chemokines that may account for the tissue selectivity in this process and present a model whereby CCR8, and its ligand CCL1, selectively regulate the homeostatic migration of memory lymphocytes to skin tissue.
Collapse
Affiliation(s)
- Michelle L McCully
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University Cardiff, UK
| | | |
Collapse
|
121
|
Abstract
Natural killer (NK) cells are bone marrow–derived granular lymphocytes that have a key role in immune defense against viral and bacterial infections and malignancies. NK cells are traditionally defined as cells of the innate immune response because they lack RAG recombinase–dependent clonal antigen receptors. However, evidence suggests that specific subsets of mouse NK cells can nevertheless develop long-lived and highly specific memory to a variety of antigens. Here we review published evidence of NK cell–mediated, RAG-independent adaptive immunity. We also compare and contrast candidate mechanisms for mammalian NK cell memory and antigen recognition with other examples of RAG-independent pathways that generate antigen receptor diversity in non-mammalian species and discuss NK cell memory in the context of lymphocyte evolution.
Collapse
Affiliation(s)
- Silke Paust
- Harvard Medical School, Department of Pathology, Boston, Massachusetts, USA
| | | |
Collapse
|
122
|
Manabe S, Iwase A, Goto M, Kobayashi H, Takikawa S, Nagatomo Y, Nakahara T, Bayasula, Nakamura T, Hirokawa W, Kikkawa F. Expression and localization of CXCL16 and CXCR6 in ovarian endometriotic tissues. Arch Gynecol Obstet 2011; 284:1567-72. [DOI: 10.1007/s00404-011-2002-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 07/08/2011] [Indexed: 12/18/2022]
|
123
|
Abstract
The liver is an organ in which several major pathogens evade immune clearance and achieve chronicity. How do they do it? Recent research has documented multiple mechanisms by which immune responses in the liver are biased towards tolerance. In this review, the induction of local, intrahepatic tolerance is explored from the perspective of antigen presentation. Experiments support the role not only of liver dendritic cell subsets but also of diverse subsets of unconventional antigen-presenting cells in inducing immune suppression. The literature on this topic is controversial and sometimes contradictory, making it difficult to formulate a unified model of antigen handling and T cell priming in the liver. Here I offer a critical review of the state of the art in understanding antigen presentation in the liver.
Collapse
|
124
|
Chemokine CXC Ligand 16 serum concentration but not A181V genotype is associated with atherosclerotic stroke. Clin Chim Acta 2010; 411:1447-51. [PMID: 20621591 DOI: 10.1016/j.cca.2010.05.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 05/23/2010] [Accepted: 05/24/2010] [Indexed: 02/01/2023]
Abstract
BACKGROUND Serum chemokine CXC Ligand 16 (CXCL16) concentration is associated with atherosclerosis and CXCL16 expression may be influenced by the polymorphism, A181V. We established whether serum CXCL16 concentration or the A181V genotype is more strongly associated with atherosclerotic stroke and its associated risk factor, carotid atherosclerosis. METHODS PCR-RFLP was used to genotype 244 atherosclerotic stroke patients (AS group), 153 stroke-free controls (patient controls) and 167 healthy controls. Serum CXCL16 concentration was determined for a subset of patients (n=135) and all controls. The same subset of patients was then examined using ultrasound to evaluate their carotid atherosclerotic lesions, including intima-media thickness (IMT), plaque stability and carotid plaque area (CPA). RESULTS Compared with the patient controls and healthy controls, serum CXCL16 concentration was significantly increased in the AS group (P<0.05, and 0.01). It was also strongly associated with increased IMT, vulnerable plaque and increased CPA (P<0.05, <0.001, and <0.01). However, the CXCL16 A181V genotype distribution and allele frequencies showed no differences between AS and control groups, nor did it influence serum CXCL16 concentration. CONCLUSION Serum CXCL16 concentration is significantly associated with atherosclerotic stroke and carotid atherosclerosis, suggesting that this biochemical test may be useful to identify patients at increased risk of atherosclerosis.
Collapse
|
125
|
Syn WK, Oo YH, Pereira TA, Karaca GF, Jung Y, Omenetti A, Witek RP, Choi SS, Guy CD, Fearing CM, Teaberry V, Pereira FEL, Adams DH, Diehl AM. Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology 2010; 51:1998-2007. [PMID: 20512988 PMCID: PMC2920131 DOI: 10.1002/hep.23599] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Liver inflammation is greater in nonalcoholic steatohepatitis (NASH) than steatosis, suggesting that immune responses contribute to nonalcoholic fatty liver disease (NAFLD) progression. Livers normally contain many natural killer T (NKT) cells that produce factors that modulate inflammatory and fibrogenic responses. Such cells are relatively depleted in steatosis, but their status in more advanced NAFLD is uncertain. We hypothesized that NKT cells accumulate and promote fibrosis progression in NASH. We aimed to determine if livers become enriched with NKT cells during NASH-related fibrosis; identify responsible mechanisms; and assess if NKT cells stimulate fibrogenesis. NKT cells were analyzed in wildtype mice and Patched-deficient (Ptc(+/-)) mice with an overly active Hedgehog (Hh) pathway, before and after feeding methionine choline-deficient (MCD) diets to induce NASH-related fibrosis. Effects of NKT cell-derived factors on hepatic stellate cells (HSC) were examined and fibrogenesis was evaluated in CD1d-deficient mice that lack NKT cells. NKT cells were quantified in human cirrhotic and nondiseased livers. During NASH-related fibrogenesis in wildtype mice, Hh pathway activation occurred, leading to induction of factors that promoted NKT cell recruitment, retention, and viability, plus liver enrichment with NKT cells. Ptc(+/-) mice accumulated more NKT cells and developed worse liver fibrosis; CD1d-deficient mice that lack NKT cells were protected from fibrosis. NKT cell-conditioned medium stimulated HSC to become myofibroblastic. Liver explants were 2-fold enriched with NKT cells in patients with non-NASH cirrhosis, and 4-fold enriched in patients with NASH cirrhosis. CONCLUSION Hh pathway activation leads to hepatic enrichment with NKT cells that contribute to fibrosis progression in NASH.
Collapse
Affiliation(s)
- Wing-Kin Syn
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Ye Htun Oo
- Centre for Liver Research, University of Birmingham, Edgbaston, Birmingham, UK
| | - Thiago A Pereira
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA,Núcleo de Doenças Infecciosas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Gamze F Karaca
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Youngmi Jung
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Alessia Omenetti
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Rafal P Witek
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Steve S Choi
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA,Section of Gastroenterology, Department of Medicine, Durham Veteran Affairs Medical Center, Durham, NC, USA
| | - Cynthia D Guy
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Caitlin M Fearing
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Vanessa Teaberry
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Fausto E L Pereira
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - David H Adams
- Centre for Liver Research, University of Birmingham, Edgbaston, Birmingham, UK
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
126
|
Adams DH, Ju C, Ramaiah SK, Uetrecht J, Jaeschke H. Mechanisms of immune-mediated liver injury. Toxicol Sci 2010; 115:307-21. [PMID: 20071422 PMCID: PMC2871750 DOI: 10.1093/toxsci/kfq009] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 01/04/2010] [Indexed: 12/11/2022] Open
Abstract
Hepatic inflammation is a common finding during a variety of liver diseases including drug-induced liver toxicity. The inflammatory phenotype can be attributed to the innate immune response generated by Kupffer cells, monocytes, neutrophils, and lymphocytes. The adaptive immune system is also influenced by the innate immune response leading to liver damage. This review summarizes recent advances in specific mechanisms of immune-mediated hepatotoxicity and its application to drug-induced liver injury. Basic mechanisms of activation of lymphocytes, macrophages, and neutrophils and their unique mechanisms of recruitment into the liver vasculature are discussed. In particular, the role of adhesion molecules and various inflammatory mediators in this process are explored. In addition, the authors describe mechanisms of liver cell damage by these inflammatory cells and critically evaluate the functional significance of each cell type for predictive and idiosyncratic drug-induced liver injury. It is expected that continued advances in our understanding of immune mechanisms of liver injury will lead to an earlier detection of the hepatotoxic potential of drugs under development and to an earlier identification of susceptible individuals at risk for predictive and idiosyncratic drug toxicities.
Collapse
Affiliation(s)
- David H. Adams
- Center for Liver Research, Institute of Biomedical Research, University of Birmingham, Birmingham B15 2TH, UK
| | - Cynthia Ju
- Department of Pharmaceutical Sciences, University of Colorado, Denver, Colorado 80045
| | - Shashi K. Ramaiah
- Biomarker and Clinical Pathology Lead, Pfizer-Drug Safety Research and Development, St Louis, Missouri 63017
| | - Jack Uetrecht
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2 Canada
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
127
|
Burke ML, McManus DP, Ramm GA, Duke M, Li Y, Jones MK, Gobert GN. Co-ordinated gene expression in the liver and spleen during Schistosoma japonicum infection regulates cell migration. PLoS Negl Trop Dis 2010; 4:e686. [PMID: 20502518 PMCID: PMC2872641 DOI: 10.1371/journal.pntd.0000686] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/26/2010] [Indexed: 12/15/2022] Open
Abstract
Determining the molecular events induced in the spleen during schistosome infection is an essential step in better understanding the immunopathogenesis of schistosomiasis and the mechanisms by which schistosomes modulate the host immune response. The present study defines the transcriptional and cellular events occurring in the murine spleen during the progression of Schistosoma japonicum infection. Additionally, we compared and contrasted these results with those we have previously reported for the liver. Microarray analysis combined with flow cytometry and histochemistry demonstrated that transcriptional changes occurring in the spleen were closely related to changes in cellular composition. Additionally, the presence of alternatively activated macrophages, as indicated by up-regulation of Chi3l3 and Chi3l4 and expansion of F4/80+ macrophages, together with enhanced expression of the immunoregulatory genes ANXA1 and CAMP suggests the spleen may be an important site for the control of S. japonicum-induced immune responses. The most striking difference between the transcriptional profiles of the infected liver and spleen was the contrasting expression of chemokines and cell adhesion molecules. Lymphocyte chemokines, including the homeostatic chemokines CXCL13, CCL19 and CCL21, were significantly down-regulated in the spleen but up-regulated in the liver. Eosinophil (CCL11, CCL24), neutrophil (CXCL1) and monocyte (CXCL14, CCL12) chemokines and the cell adhesion molecules VCAM1, NCAM1, PECAM1 were up-regulated in the liver but unchanged in the spleen. Chemokines up-regulated in both organs were expressed at significantly higher levels in the liver. Co-ordinated expression of these genes probably contributes to the development of a chemotactic signalling gradient that promotes recruitment of effector cells to the liver, thereby facilitating the development of hepatic granulomas and fibrosis. Together these data provide, for the first time, a comprehensive overview of the molecular events occurring in the spleen during schistosomiasis and will substantially further our understanding of the local and systemic mechanisms driving the immunopathogenesis of this disease. Schistosomiasis is a significant cause of illness and death in the developing world. Inflammation and scarring in the liver and enlargement of the spleen (splenomegaly) are common features of the disease. Changes occurring in the spleen have the potential to influence the way in which the body deals with infection but the mechanisms driving these changes are not well characterised. In the present study we determined, for the first time, the gene expression profile of the mouse spleen during infection with Schistosoma japonicum and compared these results to those previously reported for the liver to determine if processes occurring in these organs co-operate to promote hepatic inflammation and granuloma formation. Our data indicated that gene expression in the spleen is related to the types of cells present and suggest that the spleen might be important in controlling schistosome-induced inflammation. Comparison of the liver and spleen showed that expression of cell signalling molecules (chemokines) was much higher in the liver, potentially promoting the recruitment of specific cell types to this organ, causing inflammation and scarring. The results from this study enhance our knowledge of the mechanisms that drive schistosome-induced splenomegaly and liver inflammation.
Collapse
Affiliation(s)
- Melissa L. Burke
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
- The School of Population Health, The University of Queensland, Herston, Queensland, Australia
| | - Donald P. McManus
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Grant A. Ramm
- Hepatic Fibrosis Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Mary Duke
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Yuesheng Li
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Malcolm K. Jones
- Parasite Cell Biology Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
- The School of Veterinary Science, The University of Queensland, St. Lucia, Queensland, Australia
| | - Geoffrey N. Gobert
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
- * E-mail:
| |
Collapse
|
128
|
Abstract
Chemokines direct leukocyte trafficking and positioning within tissues, thus playing critical roles in regulating immune responses and inflammation. The chemokine system is complex, involving interactions between multiple chemokines and their receptors that operate in combinatorial cascades with adhesion molecules. The involvement of multiple chemokines and chemokine receptors in these processes brings flexibility and specificity to recruitment. The hepatic vascular bed is a unique low-flow environment through which leukocytes are recruited to the liver during homeostatic immune surveillance and in response to infection or injury. The rate of leukocyte recruitment and the nature of cells recruited through the sinusoids in response to inflammatory signals will shape the severity of disease. At one end of the spectrum, fulminant liver failure results from a rapid recruitment of leukocytes that leads to hepatocyte destruction and liver failure; at the other end, diseases such as chronic hepatitis C infection may progress over many years from hepatitis to fibrosis and cirrhosis. Chronic hepatitis is characterized by a T lymphocyte-rich infiltrate and the nature and outcome of hepatitis will depend on the T cell subsets recruited, their activation and function within the liver. Different subsets of effector T cells have been described based on their secretion of cytokines and specific functions. These include Th1 and Th2 cells, and more recently Th17 and Th9 cells, which are associated with different types of immune response and which express distinct patterns of chemokine receptors that promote their recruitment under particular conditions. The effector function of these cells is balanced by the recruitment of regulatory T cells that are able to suppress antigen-specific effectors to allow resolution of immune responses and restoration of immune homeostasis. Understanding the signals that are responsible for recruiting different lymphocyte subsets to the liver will elucidate disease pathogenesis and open up new therapeutic approaches to modulate recruitment in favor of resolution rather than injury.
Collapse
Affiliation(s)
| | | | - David H. Adams
- *Prof. David H. Adams, MD, FRCP, FmedSci, 5th Floor, Institute of Biomedical Research, University of Birmingham Medical School, Wolfson Drive, Edgbaston, Birmingham B15 2TT (UK), Tel. +44 121 415 8702, Fax +44 121 415 8701, E-Mail
| |
Collapse
|
129
|
Clinical implications of novel aspects of biliary pathophysiology. Dig Liver Dis 2010; 42:238-44. [PMID: 20167547 DOI: 10.1016/j.dld.2010.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 01/11/2010] [Accepted: 01/11/2010] [Indexed: 12/11/2022]
Abstract
Cholangiocytes are the epithelial cells that line the biliary tree; they are the target of chronic diseases termed cholangiopathies, which represent a daily challenge for clinicians, since definitive medical treatments are not available yet. It is generally accepted that the progression of injury in the course of cholangiopathies, and promotion and progression of cholangiocarcinoma are at least in part due to the failure of the cholangiocytes' mechanisms of adaptation to injury. Recently, several studies on the pathophysiology of the biliary epithelium have shed some light on the mechanisms that govern cholangiocyte response to injury. These studies provide novel information to help interpret some of the clinical aspects of cholangiopathies and cholangiocarcinoma; the purpose of this review is thus to describe some of these novel findings, focusing on their significance from a clinical perspective.
Collapse
|
130
|
van der Voort R, Verweij V, de Witte TM, Lasonder E, Adema GJ, Dolstra H. An alternatively spliced CXCL16 isoform expressed by dendritic cells is a secreted chemoattractant for CXCR6+ cells. J Leukoc Biol 2010; 87:1029-39. [PMID: 20181724 DOI: 10.1189/jlb.0709482] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
DC are professional APCs that initiate and regulate adaptive immune responses by interacting with naïve and memory T cells. Chemokines released by DC play an essential role in T cell recruitment and in the maintenance of antigen-specific T cell-DC conjugates. Here, we characterized the expression of the T cell-attracting chemokine CXCL16 by murine DC. We demonstrate that through alternative RNA splicing, DC not only express the previously characterized transmembrane CXCL16 isoform, which can be cleaved from the cell surface, but also a novel isoform lacking the transmembrane and cytoplasmic domains. Transfection of HEK293 cells shows that this novel isoform, termed CXCL16v, is not expressed on the cell membrane but is secreted as a protein of approximately 10 kDa. Quantitative PCR demonstrates that CXCL16v is broadly expressed in lymphoid and nonlymphoid tissues resembling the tissue distribution of DC. Indeed, CXCL16v mRNA is expressed significantly by spleen DC and BM-DC. Moreover, we show that mature DC have increased CXCL16v mRNA levels and express transmembrane and soluble CXCL16 proteins. Finally, we show that CXCL16v specifically attracts cells expressing the chemokine receptor CXCR6. Our data demonstrate that mature DC express secreted, transmembrane, and cleaved CXCL16 isoforms to recruit and communicate efficiently with CXCR6(+) lymphoid cells.
Collapse
Affiliation(s)
- Robbert van der Voort
- Laboratory Medicine, Laboratory of Hematology and Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
131
|
Burke ML, McManus DP, Ramm GA, Duke M, Li Y, Jones MK, Gobert GN. Temporal expression of chemokines dictates the hepatic inflammatory infiltrate in a murine model of schistosomiasis. PLoS Negl Trop Dis 2010; 4:e598. [PMID: 20161726 PMCID: PMC2817718 DOI: 10.1371/journal.pntd.0000598] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 12/16/2009] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis continues to be an important cause of parasitic morbidity and mortality world-wide. Determining the molecular mechanisms regulating the development of granulomas and fibrosis will be essential for understanding how schistosome antigens interact with the host environment. We report here the first whole genome microarray analysis of the murine liver during the progression of Schistosoma japonicum egg-induced granuloma formation and hepatic fibrosis. Our results reveal a distinct temporal relationship between the expression of chemokine subsets and the recruitment of cells to the infected liver. Genes up-regulated earlier in the response included T- and B-cell chemoattractants, reflecting the early recruitment of these cells illustrated by flow cytometry. The later phases of the response corresponded with peak recruitment of eosinophils, neutrophils, macrophages and myofibroblasts/hepatic stellate cells (HSCs) and the expression of chemokines with activity for these cells including CCL11 (eotaxin 1), members of the Monocyte-chemoattractant protein family (CCL7, CCL8, CCL12) and the Hepatic Stellate Cell/Fibrocyte chemoattractant CXCL1. Peak expression of macrophage chemoattractants (CCL6, CXCL14) and markers of alternatively activated macrophages (e.g. Retnla) during this later phase provides further evidence of a role for these cells in schistosome-induced pathology. Additionally, we demonstrate that CCL7 immunolocalises to the fibrotic zone of granulomas. Furthermore, striking up-regulation of neutrophil markers and the localisation of neutrophils and the neutrophil chemokine S100A8 to fibrotic areas suggest the involvement of neutrophils in S. japonicum-induced hepatic fibrosis. These results further our understanding of the immunopathogenic and, especially, chemokine signalling pathways that regulate the development of S. japonicum-induced granulomas and fibrosis and may provide correlative insight into the pathogenesis of other chronic inflammatory diseases of the liver where fibrosis is a common feature. Schistosomiasis, a disease caused by parasitic worms, is a significant cause of illness and death in the developing world. Furthermore, recent reports suggest that the global burden of disease due to schistosomiasis has been significantly underestimated. Schistosomiasis of the liver arises due to inflammation and the deposition of scar tissue around parasite eggs trapped in this organ. In the current study we analysed the gene-expression profile of the mouse liver at several time points following infection with a virulent strain of Schistosoma japonicum to better understand the mechanisms that regulate this process. Progression of disease was associated with increased expression of different groups of genes with distinct biological functions. Specifically, we identified several genes encoding chemical signalling molecules that contribute to different phases of the response by recruiting key cell types to the site of inflammation. This study represents the most comprehensive report to date of the gene expression profile in the liver during schistosomiasis. These results provide further insight into the mechanisms that regulate the development of schistosome-induced inflammation and scarring and will aid in the development of novel treatments to alleviate the burden of disease caused by this parasite.
Collapse
Affiliation(s)
- Melissa L. Burke
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
- The School of Population Health, The University of Queensland, Herston, Queensland, Australia
| | - Donald P. McManus
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Grant A. Ramm
- Hepatic Fibrosis Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Mary Duke
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Yuesheng Li
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Malcolm K. Jones
- Parasite Cell Biology Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
- The School of Veterinary Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Geoffrey N. Gobert
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
- * E-mail:
| |
Collapse
|
132
|
Deng L, Chen N, Li Y, Zheng H, Lei Q. CXCR6/CXCL16 functions as a regulator in metastasis and progression of cancer. Biochim Biophys Acta Rev Cancer 2010; 1806:42-9. [PMID: 20122997 DOI: 10.1016/j.bbcan.2010.01.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 01/12/2010] [Accepted: 01/24/2010] [Indexed: 02/05/2023]
Abstract
Metastasis is considered the obvious mark for most aggressive cancers. However, little is known about the molecular mechanism of the regulation of cancer metastasis. Recent evidence increasingly suggests that the interaction between chemokines and chemokine receptors is pivotal in the process of metastasis. The chemokine receptor CXCR4 and its ligand CXCL12, for example, have been reported to play a vital role in cancer metastasis. Another chemokine and chemokine receptor pair, the CXCL16/CXCR6 axis, has been studied by several independent research groups. Here, we summarize recent advances in our knowledge of the function of CXC chemokine receptor CXCR6 and its ligand CXCL16 in regulating metastasis and invasion of cancer. CXCR6 and CXCL16 are up-regulated in multiple cancer tissue types and cancer cell lines relative to normal tissues and cell lines. In addition, both CXCR6 and CXCL16 levels increase as tumor malignancy increases. Trans-membranous CXCL16 chemokine reduces proliferation while soluble CXCL16 chemokine enhances proliferation and migration. TM-CXCL16 functions as an inducer for lymphocyte build-up around tumor sites. High trans-membranous CXCL16 expression correlates with a good prognosis. Moreover, the Akt/mTOR signal pathway is involved in activating the CXCR6/CXCL16 axis. These findings suggest multiple opportunities for blocking the CXCR6/CXCL16 axis and the Akt/mTOR signal pathway in novel cancer therapies.
Collapse
Affiliation(s)
- Ling Deng
- Department of Radiation Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | |
Collapse
|
133
|
Zou Z, Xu D, Li B, Xin S, Zhang Z, Huang L, Fu J, Yang Y, Jin L, Zhao JM, Shi M, Zhou G, Sun Y, Wang FS. Compartmentalization and its implication for peripheral immunologically-competent cells to the liver in patients with HBV-related acute-on-chronic liver failure. Hepatol Res 2009; 39:1198-207. [PMID: 19788691 DOI: 10.1111/j.1872-034x.2009.00571.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIMS This study attempts to characterize the feature of immunologically competent cells (ICCs) and evaluate its clinical implication in patients with acute-on-chronic liver failure (ACLF) in relation to chronic hepatitis B virus (HBV) infection. METHODS Circulating ICCs were examined in ACLF patients (n = 75), as well as in patients with hepatitis B (CHB, n = 31), CHB-related liver cirrhosis (LC, n = 36), and normal controls (NC, n = 30). Intrahepatic ICCs in some patients were further analyzed via immunohistochemical and flow cytometric assays. RESULTS Total lymphocytes, CD4(+) T cells, CD8(+) T cells, and NK cells in circulation were numerically lower in the ACLF and LC groups compared to the CHB and NC groups. Importantly, the number of these cells was significantly lower in non-surviving ACLF patients compared with surviving ACLF patients. In comparison to NC, ACLF patients displayed a significantly higher ratio of liver-infiltrating CD4(+) T-cell frequency than its circulating counterpart, suggesting that the possiblility of the ICCs compartmentalization from the peripheral blood into the liver in ACLF. Immunohistochemical analysis showed that intrahepatic CD4(+) cells, CD8(+) cells, and CD56(+) cells were significantly higher in the ACLF group compared with the other three groups, suggesting a stronger cellular immune response-mediated inflammation in ACLF group than other patient groups. CONCLUSIONS The abnormal prevalence of circulating and intrahepatic ICCs possibly acts as an important factor that may drive the progression of HBV-related ACLF.
Collapse
Affiliation(s)
- Zhengsheng Zou
- Beijing 302 Hospital, Beijing Institute of Infectious Diseases, eijing 302 Hospital, 100 Xi Si Huan Middle Road, Beijing 100039, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Zhang L, Ran L, Garcia GE, Wang XH, Han S, Du J, Mitch WE. Chemokine CXCL16 regulates neutrophil and macrophage infiltration into injured muscle, promoting muscle regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2518-27. [PMID: 19893053 DOI: 10.2353/ajpath.2009.090275] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Only a few specific chemokines that mediate interactions between inflammatory and satellite cells in muscle regeneration have been identified. The chemokine CXCL16 differs from other chemokines because it has both a transmembrane region and active, soluble chemokine forms. Indeed, we found increased expression of CXCL16 and its receptor, CXCR6, in regenerating myofibers. Muscle regeneration in CXCL16-deficient (CXCL16KO) mice was severely impaired compared with regeneration in wild-type mice. In addition, there was decreased MyoD and myogenin expression in regenerating muscle in CXCL16KO mice, indicating impaired satellite cell proliferation and differentiation. After 1 month, new myofibers in CXCL16KO mice remained significantly smaller than those in muscle of wild-type mice. To understand how CXCL16 regulates muscle regeneration, we examined cells infiltrating injured muscle. There were more infiltrating neutrophils and fewer macrophages in injured muscle of CXCL16KO mice compared with events in wild-type mice. Moreover, absence of CXCL16 led to different expression of cytokines/chemokines in injured muscles: mRNAs of macrophage-inflammatory protein (MIP)-1alpha, MIP-1beta, and MIP-2 were increased, whereas regulated on activation normal T cell expressed and secreted, T-cell activation-3, and monocyte chemoattractant protein-1 mRNAs were lower compared with results in muscles of wild-type mice. Impaired muscle regeneration in CXCL16KO mice also resulted in fibrosis, which was linked to transforming growth factor-beta1 expression. Thus, CXCL16 expression is a critical mediator of muscle regeneration, and it suppresses the development of fibrosis.
Collapse
Affiliation(s)
- Liping Zhang
- Nephrology Division, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
135
|
Landrø L, Damås JK, Halvorsen B, Fevang B, Ueland T, Otterdal K, Heggelund L, Frøland SS, Aukrust P. CXCL16 in HIV infection - a link between inflammation and viral replication. Eur J Clin Invest 2009; 39:1017-24. [PMID: 19674076 DOI: 10.1111/j.1365-2362.2009.02207.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND While some chemokines are thought to be protective in HIV-infected individuals by their ability to block HIV entry into T cells and macrophages, chemokines could also have harmful effects in HIV infection through their ability to promote inflammation. Here, we examined the regulation and the effects of CXCL16, a newly discovered chemokine of the CXC family, in HIV-infected patients. MATERIALS AND METHODS We examined serum levels of CXCL16 in clinically well-defined subgroups of HIV-infected individuals both before (n = 62) and during HAART (n = 40) as well as in age- and sex-matched healthy controls (n = 30). We also examined the effects of CXCL16 on inflammatory and anti-inflammatory cytokines and HIV replication in peripheral blood mononuclear cells (PBMC). RESULTS Our main and novel findings were: (i) HIV-infected patients had significant raised CXCL16 levels according to disease severity and progression. (ii) During HAART, the immunological improvement was accompanied by a modest increase in CXCL16 level. (iii) While soluble CXCL16 promoted an anti-inflammatory response in PBMC from those on successful HAART, it induced an inflammatory response and enhanced HIV replication in PBMC from those with high viral load irrespectively of ongoing HAART. (iv) Recombinant HIV-tat protein significantly increased CXCL16 release in THP-1 macrophages. CONCLUSIONS Our findings suggest a complex interaction between CXCL16 and HIV, promoting both inflammatory and anti-inflammatory effects as well as HIV replication, partly dependent on accompanying HIV replication.
Collapse
Affiliation(s)
- L Landrø
- University of Oslo, 0027 Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Oo YH, Adams DH. The role of chemokines in the recruitment of lymphocytes to the liver. J Autoimmun 2009; 34:45-54. [PMID: 19744827 DOI: 10.1016/j.jaut.2009.07.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 07/29/2009] [Indexed: 12/13/2022]
Abstract
Chemokines direct leukocyte trafficking and positioning within tissues. They thus play critical roles in regulating immune responses and inflammation. The chemokine system is complex involving interactions between multiple chemokines and their receptors that operate in combinatorial cascades with adhesion molecules. The involvement of multiple chemokines and chemokine receptors in these processes brings flexibility and specificity to recruitment. The hepatic vascular bed is a unique low flow environment through which leukocyte are recruited to the liver during homeostatic immune surveillance and in response to infection or injury. The rate of leukocyte recruitment and the nature of cells recruited through the sinusoids in response to inflammatory signals will shape the severity of disease. At one end of the spectrum fulminant liver failure results from a rapid recruitment of leukocytes that leads to hepatocyte destruction and liver failure at the other diseases such as chronic hepatitis C infection may progress over many years from hepatitis to fibrosis and cirrhosis. Chronic hepatitis is charactezised by a T lymphocyte rich infiltrate and the nature and outcome of hepatitis will depend on the T cell subsets recruited, their activation and function within the liver. Different subsets of effector T cells have been described based on their secretion of cytokines and specific functions. These include Th1 and Th2 cells and more recently Th17 and Th9 cells which are associated with different types of immune response and which express distinct patterns of chemokine receptors that promote their recruitment under particular conditions. The effector function of these cells is balanced by the recruitment of regulatory T cells that are able to suppress antigen-specific effectors to allow resolution of immune responses and restoration of immune homeostasis. Understanding the signals that are responsible for recruiting different lymphocyte subsets to the liver will elucidate disease pathogenesis and open up new therapeutic approaches to modulate recruitment in favour of resolution rather than injury.
Collapse
Affiliation(s)
- Ye H Oo
- Centre for Liver Research, 5th Floor, Institute of Biomedical Research, University of Birmingham, Wolfson Drive, Edgbaston, Birmingham B15 2TT, UK
| | | |
Collapse
|
137
|
Darash-Yahana M, Gillespie JW, Hewitt SM, Chen YYK, Maeda S, Stein I, Singh SP, Bedolla RB, Peled A, Troyer DA, Pikarsky E, Karin M, Farber JM. The chemokine CXCL16 and its receptor, CXCR6, as markers and promoters of inflammation-associated cancers. PLoS One 2009; 4:e6695. [PMID: 19690611 PMCID: PMC2723911 DOI: 10.1371/journal.pone.0006695] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 07/21/2009] [Indexed: 12/11/2022] Open
Abstract
Clinical observations and mouse models have suggested that inflammation can be pro-tumorigenic. Since chemokines are critical in leukocyte trafficking, we hypothesized that chemokines play essential roles in inflammation-associated cancers. Screening for 37 chemokines in prostate cancer cell lines and xenografts revealed CXCL16, the ligand for the receptor CXCR6, as the most consistently expressed chemokine. Immunohistochemistry and/or immunofluorescence and confocal imaging of 121 human prostate specimens showed that CXCL16 and CXCR6 were co-expressed, both on prostate cancer cells and adjacent T cells. Expression levels of CXCL16 and CXCR6 on cancer cells correlated with poor prognostic features including high-stage and high-grade, and expression also correlated with post-inflammatory changes in the cancer stroma as revealed by loss of alpha-smooth muscle actin. Moreover, CXCL16 enhanced the growth of CXCR6-expressing cancer and primary CD4 T cells. We studied expression of CXCL16 in an additional 461 specimens covering 12 tumor types, and found that CXCL16 was expressed in multiple human cancers associated with inflammation. Our study is the first to describe the expression of CXCL16/CXCR6 on both cancer cells and adjacent T cells in humans, and to demonstrate correlations between CXCL16 and CXCR6 vs. poor both prognostic features and reactive changes in cancer stoma. Taken together, our data suggest that CXCL16 and CXCR6 may mark cancers arising in an inflammatory milieu and mediate pro-tumorigenic effects of inflammation through direct effects on cancer cell growth and by inducing the migration and proliferation of tumor-associated leukocytes.
Collapse
Affiliation(s)
- Merav Darash-Yahana
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- * E-mail: (MDY); (JMF)
| | - John W. Gillespie
- SAIC Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Stephen M. Hewitt
- Tissue Array Research Program, Laboratory of Pathology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Yun-Yun K. Chen
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Shin Maeda
- Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan
| | - Ilan Stein
- Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Satya P. Singh
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Roble B. Bedolla
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Amnon Peled
- Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dean A. Troyer
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Eli Pikarsky
- Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Michael Karin
- University of California San Diego, San Diego, California, United States of America
| | - Joshua M. Farber
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail: (MDY); (JMF)
| |
Collapse
|
138
|
Omenetti A, Syn WK, Jung Y, Francis H, Porrello A, Witek RP, Choi SS, Yang L, Mayo M, Gershwin ME, Alpini G, Diehl AM. Repair-related activation of hedgehog signaling promotes cholangiocyte chemokine production. Hepatology 2009; 50:518-27. [PMID: 19575365 PMCID: PMC2722691 DOI: 10.1002/hep.23019] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
UNLABELLED The mechanisms mediating hepatic accumulation of inflammatory cells in cholestatic liver disease remain enigmatic. Our thesis is that Hedgehog (Hh) pathway activation promotes hepatic accumulation of immune cells that interact with cholangiocytes. We believe that myofibroblastic hepatic stellate cells (MF-HSCs) release soluble Hh ligands that stimulate cholangiocytes to express chemokines that recruit mononuclear cell types with cognate receptors for these chemokines, thereby orchestrating a repair-related mechanism for liver inflammation. To address this thesis, we used three experimental systems that allow the definition of Hh-dependent mechanisms that induce phenotypic changes in cholangiocytes. First, cholangiocytes were cultured alone or in the presence of Hh-producing MF-HSCs in a transwell coculture system and/or treated with MF-HSC-conditioned medium with or without Hh-neutralizing antibodies. Changes in the cholangiocyte phenotype were then evaluated by microarray analysis, quantitative reverse-transcriptase polymerase chain reaction (QRT-PCR), and/or enzyme-linked immunosorbent assay for chemokine (C-X-C) motif ligand 16 (Cxcl16). Bile duct ligation was chosen to model biliary fibrosis in mice with an overly active Hh pathway, control littermates, and healthy rats, and the gene profile was evaluated by QRT-PCR in whole liver tissue. Second, a transwell chemotaxis assay was used to examine natural killer T (NKT) cell migration in response to cholangiocytes and particularly cholangiocyte-derived Cxcl16. Finally, we studied liver samples from primary biliary cirrhosis patients and controls by QRT-PCR to compare differences in the Hh pathway and Cxcl16. Co-immunostaining of cytokeratin-7 and Cxcl16 was then performed to localize the phenotypic source of Cxcl16. We found that MF-HSCs release soluble Hh ligands that stimulate cholangiocytes to produce Cxcl16 and recruit NKT cells. Hh pathway activation during cholestatic liver injury also induces cholangiocyte expression of Cxcl16. CONCLUSION During biliary injury, Hh pathway activation induces cholangiocyte production of chemokines that recruit NKT cells to portal tracts.
Collapse
Affiliation(s)
- Alessia Omenetti
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC, USA
| | - Wing-Kin Syn
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC, USA
| | - Youngmi Jung
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC, USA
| | - Heather Francis
- Department of Medicine, Texas A&M Health Science Center, College of Medicine, Scott & White Hospital, Systems Biology and Translational Medicine, Texas A&M University System Health Science Center, College of Medicine
| | | | - Rafal P. Witek
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC, USA
| | - Steve S. Choi
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC, USA
| | - Liu Yang
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC, USA
| | - Marlyn Mayo
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - Gianfranco Alpini
- Department of Medicine, Texas A&M Health Science Center, College of Medicine, Scott & White Hospital, Systems Biology and Translational Medicine, Texas A&M University System Health Science Center, College of Medicine, Division of Research, Central Texas Veterans Health Care System
| | - Anna Mae Diehl
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
139
|
Day C, Patel R, Guillen C, Wardlaw AJ. The chemokine CXCL16 is highly and constitutively expressed by human bronchial epithelial cells. Exp Lung Res 2009; 35:272-83. [PMID: 19415545 PMCID: PMC2685639 DOI: 10.1080/01902140802635517] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The chemokine receptor CXCR6 is highly expressed on lung-derived T cells compared to blood T cells, especially in inflammatory diseases characterised by T-cell migration to the lung. This suggests that CXCR6 is a candidate lung homing receptor. The sole ligand of CXCR6, CXCL16, has previously been shown to be expressed by alveolar macrophages. The authors hypothesized that also structural lung cells express CXCL16. CXCL16 expression was detected using real-time reverse transcriptase–polymerase chain reaction (RT-PCR), Western blotting, enzyme-linked immunosorbent assay (ELISA), and flow cytometry. Chemotaxis assays were used to test functionality of the secreted protein. Human bronchial epithelial cells secreted relatively high basal levels of CXCL16 (> 1000 pg/mL). Interferon (IFN)-γ, but not tumor necrosis factor (TNF)-α or interleukin (IL)-4, caused a modest but significant up-regulation in secretion. Airway smooth muscle and fibroblasts also expressed CXCL16, but at lower levels. Western blotting detected expression of the full-length (60-kDa) form of the chemokine in cell lysates, and the cleaved (35-kDa) form in culture supernatants. Concentrated supernatants from a bronchial epithelial cell line (BEAS-2B) were chemotactic for CXCR6 expressing T cells from blood. In conclusion, these results suggest that the bronchial epithelium is an important source of constitutively expressed CXCL16, which may be involved in T-cell recruitment to the lung in health and disease.
Collapse
Affiliation(s)
- Caroline Day
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, Glenfield Hospital, University of Leicester, Leicester, UK
| | | | | | | |
Collapse
|
140
|
Borchers AT, Shimoda S, Bowlus C, Keen CL, Gershwin ME. Lymphocyte recruitment and homing to the liver in primary biliary cirrhosis and primary sclerosing cholangitis. Semin Immunopathol 2009; 31:309-22. [PMID: 19533132 PMCID: PMC2758172 DOI: 10.1007/s00281-009-0167-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 05/27/2009] [Indexed: 02/07/2023]
Abstract
The mechanisms operating in lymphocyte recruitment and homing to liver are reviewed. A literature review was performed on primary biliary cirrhosis (PBC), progressive sclerosing cholangitis (PSC), and homing mechanisms; a total of 130 papers were selected for discussion. Available data suggest that in addition to a specific role for CCL25 in PSC, the CC chemokines CCL21 and CCL28 and the CXC chemokines CXCL9 and CXCL10 are involved in the recruitment of T lymphocytes into the portal tract in PBC and PSC. Once entering the liver, lymphocytes localize to bile duct and retain by the combinatorial or sequential action of CXCL12, CXCL16, CX3CL1, and CCL28 and possibly CXCL9 and CXCL10. The relative importance of these chemokines in the recruitment or the retention of lymphocytes around the bile ducts remains unclear. The available data remain limited but underscore the importance of recruitment and homing.
Collapse
Affiliation(s)
- Andrea T Borchers
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
141
|
Gutwein P, Abdel-Bakky MS, Schramme A, Doberstein K, Kämpfer-Kolb N, Amann K, Hauser IA, Obermüller N, Bartel C, Abdel-Aziz AAH, El Sayed ESM, Pfeilschifter J. CXCL16 is expressed in podocytes and acts as a scavenger receptor for oxidized low-density lipoprotein. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:2061-72. [PMID: 19435795 DOI: 10.2353/ajpath.2009.080960] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Podocytes are a crucial cell type in the kidney and play an important role in the pathology of glomerular kidney diseases like membranous nephropathy (MN). The identification of new factors involved in the progression of glomerular kidney diseases is of great importance to the development of new strategies for the treatment of renal injury. Here we demonstrate that CXCL16 and ADAM10 are constitutively expressed in human podocytes in normal renal tissue. Proinflammatory cytokines like interferon-gamma and tumor necrosis factor-alpha induced the expression of cellular CXCL16 and the release of its soluble form from human podocytes. Using different metalloproteinase inhibitors, we provide evidence that ADAM10 is involved in the interferon-gamma- and tumor necrosis factor-alpha-induced shedding of CXCL16 from human podocytes. In addition, ADAM10 knockdown by siRNA significantly increased both CXCL16 levels and, surprisingly, its ADAM17-mediated release. Notably, targeting of CXCL16 in human podocytes both decreased the chemotaxis of CXCR6-expressing T cells and strongly reduced oxidized low-density lipoprotein uptake in human podocytes. Importantly, in kidney biopsies of patients with MN, increased glomerular CXCL16 expression was accompanied by high levels of oxidized low-density lipoprotein and decreased expression of ADAM10. In addition, we found increased glomerular ADAM17 expression in patients diagnosed with MN. In summary, we presume important roles for CXCL16, ADAM10, and ADAM17 in the development of MN, suggesting these proteins as new therapeutic targets in this glomerular kidney disease.
Collapse
Affiliation(s)
- Paul Gutwein
- Pharmazentrum Frankfurt, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Abstract
Chronic infection with the hepatitis C virus, a noncytopathic hepatotropic RNA virus, affects over 170 million people worldwide. In the majority of cases, neither the early innate immune response nor the later adaptive immune response succeeds in clearing the virus, and the infection becomes chronic. Furthermore, in many patients, the ineffective inflammatory response drives fibrogenesis and the development of cirrhosis. It is critical to understand this immune pathology if preventative and curative therapies are to be developed. Chemokines are a superfamily of small proteins that promote leukocyte migration and orchestrate the immune response to viruses, including hepatitis C virus. Chemokines are crucial for viral elimination, but inappropriate persistence of expression in chronic hepatitis C infection can drive tissue damage and inflammation. Here we review the role of chemokines and their receptors in hepatitis C virus infection.
Collapse
Affiliation(s)
- Mathis Heydtmann
- NIHR Biomedical Research Unit for Liver Disease, MRC Centre for Immune Regulation, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
143
|
Differential expression of the CXCR3 ligands in chronic hepatitis C virus (HCV) infection and their modulation by HCV in vitro. J Virol 2008; 83:836-46. [PMID: 18987152 DOI: 10.1128/jvi.01388-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To investigate chemokine expression networks in chronic hepatitis C virus (HCV) infection, we used microarray analysis to determine chemokine expression in human infection and in chimpanzees experimentally infected with HCV. The CXCR3 chemokine family was highly expressed in both human and chimpanzee infection. CXCL10 was the only CXCR3 chemokine elevated in the serum, suggesting that it may neutralize any CXCR3 chemokine gradient established between the periphery and liver by CXCL11 and CXCL9. Thus, CXCR3 chemokines may not be responsible for recruitment of T lymphocytes but may play a role in positioning these cells within the liver. The importance of the CXCR3 chemokines, in particular CXCL11, was highlighted by replicating HCV (JFH-1) to selectively upregulate its expression in response to gamma interferon (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha). This selective upregulation was confirmed at the transcriptional level by using the CXCL11 promoter driving the luciferase reporter gene. This synergistic increase in expression was not a result of HCV protein expression but the nonspecific innate response to double-stranded RNA (dsRNA), as both in vitro-transcribed HCV RNA and the dsRNA analogue poly(I:C) increased CXCL11 expression and promoter activity. Furthermore, we show that CXCL11 is an IRF3 (interferon regulatory factor 3) response gene whose expression is selectively enhanced by IFN-gamma and TNF-alpha. In conclusion, the CXCR3 chemokines are the most significantly expressed chemokines in chronic hepatitis C and most likely play a role in positioning T cells in the liver. Furthermore, HCV can selectively increase CXCL11 expression in response to IFN-gamma and TNF-alpha stimulation that may play a role in the pathogenesis of HCV-related liver disease.
Collapse
|
144
|
Abstract
Liver cirrhosis is caused by iterative cycles of tissue injury, inflammation, and repair. Although most causes of acute hepatitis resolve without scarring, chronic hepatitis is associated with persistent inflammation and matrix remodeling, which leads to fibrosis and, eventually, cirrhosis. The mechanisms that govern wound healing involve interactions between the innate and adaptive immune systems and stromal cells within a microenvironment composed of cytokines, growth factors, and modified matricellular proteins. The immune system plays a central role in the regulation of fibrosis, tissue repair, and recovery that is vital for the maintenance of tissue homeostasis. Chronic inflammation and fibrosis are inextricably linked and the cellular interactions between immune effector cells, local fibroblasts, and tissue macrophages at sites of scar formation determine the outcome of liver injury and the development of scarring.
Collapse
Affiliation(s)
- Andrew P Holt
- Honorary Clinical Fellow in Hepatology, Liver Research Group, MRC Centre for Immune Regulation, University of Birmingham, Birmingham. U.K
| | - Mike Salmon
- Professor of Experimental Rheumatology, MRC Centre for Immune Regulation, University of Birmingham, UK
| | - Christopher D Buckley
- ARC Professor of Rheumatology, MRC Centre for Immune Regulation, University of Birmingham, UK
| | - David H Adams
- Professor of Hepatology, Liver Research Group, MRC Centre for Immune Regulation, University of Birmingham, Birmingham. U.K
| |
Collapse
|
145
|
Gaida MM, Günther F, Wagner C, Friess H, Giese NA, Schmidt J, Hänsch GM, Wente MN. Expression of the CXCR6 on polymorphonuclear neutrophils in pancreatic carcinoma and in acute, localized bacterial infections. Clin Exp Immunol 2008; 154:216-23. [PMID: 18778363 DOI: 10.1111/j.1365-2249.2008.03745.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The chemokine receptor CXCR6 has been described on lymphoid cells and is thought to participate in the homing of activated T-cells to non-lymphoid tissue. We now provide evidence that the chemokine receptor CXCR6 is also expressed by activated polymorphonuclear neutrophils (PMN) in vivo: Examination of biopsies derived from patients with pancreatic carcinoma by confocal laser scan microscopy revealed a massive infiltration of PMN that expressed CXCR6, while PMN of the peripheral blood of these patients did not. To answer the question whether CXCR6 expression is a property of infiltrated and activated PMN, leucocytes were collected from patients with localized soft tissue infections in the course of the wound debridement. By cytofluorometry, the majority of these cells were identified as PMN. Up to 50% of these PMN were also positive for CXCR6. Again, PMN from the peripheral blood of these patients were nearly negative for CXCR6, as were PMN of healthy donors. In a series of in vitro experiments, up-regulation of CXCR6 on PMN of healthy donors by a variety of cytokines was tested. So far, a minor, although reproducible, effect of tumour necrosis factor (TNFalpha) was seen: brief exposure with low-dose TNFalpha induced expression of CXCR6 on the surface of PMN. Furthermore, we could show an increased migration of PMN induced by the axis CXCL16 and CXCR6. In summary, our data provide evidence that CXCR6 is not constitutively expressed on PMN, but is up-regulated under inflammatory conditions and mediates migration of CXCR6-positive PMN.
Collapse
Affiliation(s)
- M M Gaida
- Department of Surgery, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Hattermann K, Ludwig A, Gieselmann V, Held-Feindt J, Mentlein R. The chemokine CXCL16 induces migration and invasion of glial precursor cells via its receptor CXCR6. Mol Cell Neurosci 2008; 39:133-41. [DOI: 10.1016/j.mcn.2008.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 03/11/2008] [Accepted: 03/28/2008] [Indexed: 12/17/2022] Open
|
147
|
Shetty S, Lalor PF, Adams DH. Lymphocyte recruitment to the liver: molecular insights into the pathogenesis of liver injury and hepatitis. Toxicology 2008; 254:136-46. [PMID: 18775762 DOI: 10.1016/j.tox.2008.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/04/2008] [Accepted: 08/05/2008] [Indexed: 12/11/2022]
Abstract
Recirculation of blood lymphocytes through the liver occurs under normal conditions as part of the process of immune surveillance. In response to injury or infection recruitment from blood increases and the nature and distribution of the infiltrate will determine the type and outcome of the resulting hepatitis. Recruitment from blood occurs via the hepatic sinusoids and is controlled by interactions between circulating lymphocytes and the highly specialised sinusoidal endothelial cells. This is a low flow vascular bed and the molecular basis of recruitment differs from other tissues. In this review we outline the molecular basis of lymphocyte recruitment to the liver and the effect on it of the local tissue microenvironment and how dysregulation of these processes can lead to uncontrolled inflammation and liver damage.
Collapse
Affiliation(s)
- Shishir Shetty
- Liver Research Group, MRC centre for immune regulation, 5th Floor, Institute of Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
148
|
Meijer J, Ogink J, Kreike B, Nuyten D, de Visser KE, Roos E. The chemokine receptor CXCR6 and its ligand CXCL16 are expressed in carcinomas and inhibit proliferation. Cancer Res 2008; 68:4701-8. [PMID: 18559516 DOI: 10.1158/0008-5472.can-08-0482] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The chemokine receptor CXCR6 and its ligand CXCL16 are involved in inflammation. Thus far, they were known to be expressed mainly by T cells and macrophages, respectively. However, we detected both in all of 170 human primary mammary carcinomas and at similar levels in all 8 human mammary carcinoma cell lines tested by microarray analysis. Expression was confirmed by reverse transcription-PCR and for the cell lines also by fluorescence-activated cell sorting analysis. CXCR6 and CXCL16 were also detected in several mouse and human mammary, colon, and pancreatic carcinoma cell lines. CXCL16 is a transmembrane protein from which the soluble chemokine can be cleaved off. The transmembrane form is present on the surface of the carcinoma cells. Surprisingly, suppression of either CXCR6 or CXCL16 led to greatly enhanced proliferation in vitro as well as in vivo, indicating that their interaction inhibits proliferation. This notion was verified using inhibitory antibodies and by introduction of CXCL16 into a rare CXCL16-negative cell line. The effect was mediated by the G protein-coupled receptor CXCR6 because it was blocked by the G(i) protein inhibitor pertussis toxin. In contrast, the soluble CXCL16 chemokine enhanced proliferation, and this was also mediated by CXCR6 but not via G(i) protein. It is remarkable that both CXCR6 and CXCL16 are expressed by all mammary carcinomas because cells that lose either acquire a growth advantage and should be selected during tumor progression. This suggests an unknown important role in tumor formation. Proteases, possibly macrophage derived, might convert inhibitory transmembrane CXCL16 into the stimulatory chemokine.
Collapse
Affiliation(s)
- Joost Meijer
- Divisions of Cell Biology, Radiotherapy, Experimental Therapy, and Molecular Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
149
|
Strick-Marchand H, Masse GX, Weiss MC, Di Santo JP. Lymphocytes Support Oval Cell-Dependent Liver Regeneration. THE JOURNAL OF IMMUNOLOGY 2008; 181:2764-71. [DOI: 10.4049/jimmunol.181.4.2764] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
150
|
Schramme A, Abdel-Bakky MS, Gutwein P, Obermüller N, Baer PC, Hauser IA, Ludwig A, Gauer S, Schäfer L, Sobkowiak E, Altevogt P, Koziolek M, Kiss E, Gröne HJ, Tikkanen R, Goren I, Radeke H, Pfeilschifter J. Characterization of CXCL16 and ADAM10 in the normal and transplanted kidney. Kidney Int 2008; 74:328-38. [DOI: 10.1038/ki.2008.181] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|