101
|
Lee H, Sunden Y, Sakai Y, Ochiai K, Umemura T. CXCL12 improves immune responses to neurotropic virus propagation in the CNS by attracting antibody secreting cells. Vet Immunol Immunopathol 2012; 150:19-26. [PMID: 22939585 DOI: 10.1016/j.vetimm.2012.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 08/04/2012] [Accepted: 08/06/2012] [Indexed: 01/02/2023]
Abstract
A previous study showed that increases in chemokine expression and recruitment of antibody secreting cells (ASCs) in the CNS after intracerebral immunization contributed to the suppression of a neurotropic virus. In this study, intracerebral chemokine injection was used to investigate the usefulness of chemokines for controlling neurotropic viruses. Both CXCL12 and a cocktail chemokine (a mixture of CXCL9, 10, 12 and 13) attracted antigen-specific ASCs more strongly than CXCL9, 10 and 13 in an in vitro chemotaxis assay and in vivo intracerebral chemokine injection experiments. Mice pre-treated intracerebrally with CXCL12 and the cocktail chemokine showed an increased survival rate after intracerebral infection with rabies virus. These results suggest that intracerebral CXCL12 injection induces the migration of ASCs and suppresses the neuropathogenicity of rabies virus in the CNS.
Collapse
Affiliation(s)
- Hyunkyoung Lee
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Sapporo 060-0818, Japan
| | | | | | | | | |
Collapse
|
102
|
Gomme EA, Wirblich C, Addya S, Rall GF, Schnell MJ. Immune clearance of attenuated rabies virus results in neuronal survival with altered gene expression. PLoS Pathog 2012; 8:e1002971. [PMID: 23071441 PMCID: PMC3469654 DOI: 10.1371/journal.ppat.1002971] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 08/30/2012] [Indexed: 01/23/2023] Open
Abstract
Rabies virus (RABV) is a highly neurotropic pathogen that typically leads to mortality of infected animals and humans. The precise etiology of rabies neuropathogenesis is unknown, though it is hypothesized to be due either to neuronal death or dysfunction. Analysis of human brains post-mortem reveals surprisingly little tissue damage and neuropathology considering the dramatic clinical symptomology, supporting the neuronal dysfunction model. However, whether or not neurons survive infection and clearance and, provided they do, whether they are functionally restored to their pre-infection phenotype has not been determined in vivo for RABV, or any neurotropic virus. This is due, in part, to the absence of a permanent “mark” on once-infected cells that allow their identification long after viral clearance. Our approach to study the survival and integrity of RABV-infected neurons was to infect Cre reporter mice with recombinant RABV expressing Cre-recombinase (RABV-Cre) to switch neurons constitutively expressing tdTomato (red) to expression of a Cre-inducible EGFP (green), permanently marking neurons that had been infected in vivo. We used fluorescence microscopy and quantitative real-time PCR to measure the survival of neurons after viral clearance; we found that the vast majority of RABV-infected neurons survive both infection and immunological clearance. We were able to isolate these previously infected neurons by flow cytometry and assay their gene expression profiles compared to uninfected cells. We observed transcriptional changes in these “cured” neurons, predictive of decreased neurite growth and dysregulated microtubule dynamics. This suggests that viral clearance, though allowing for survival of neurons, may not restore them to their pre-infection functionality. Our data provide a proof-of-principle foundation to re-evaluate the etiology of human central nervous system diseases of unknown etiology: viruses may trigger permanent neuronal damage that can persist or progress in the absence of sustained viral antigen. Rabies is an ancient and fatal neurological disease of animals and humans, caused by infection of the central nervous system (CNS) with Rabies virus (RABV). It is estimated that nearly 55,000 human RABV fatalities occur each year, though this number is likely much higher due to unreported exposures or failure of diagnosis. No treatment has been identified to cure disease after onset of symptoms. Neurovirologists still do not know the cause of rabies' dramatic symptoms and fatality, though it is thought to be due to neuronal loss or dysfunction. Here, we use a novel approach to permanently and genetically tag infected cells so that they can be identified after the infection has been cleared. This allowed us to define neuronal survival time following infection, and to assess neuronal function through gene expression analysis. We found that RABV infection does not lead to loss of neurons, but rather induces a permanent change in gene expression that may be related to the ability of RABV to cause permanent CNS disease. Our study provides evidence that viral infection of the brain can initiate long-term changes that may have consequences for nervous system health, even after the virus has been cleared from the CNS.
Collapse
Affiliation(s)
- Emily A. Gomme
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Christoph Wirblich
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Sankar Addya
- Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Glenn F. Rall
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Matthias J. Schnell
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Jefferson Vaccine Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
103
|
Liao PH, Yang HH, Chou PT, Wang MH, Chu PC, Liu HL, Chen LK. Sufficient virus-neutralizing antibody in the central nerve system improves the survival of rabid rats. J Biomed Sci 2012; 19:61. [PMID: 22734518 PMCID: PMC3431253 DOI: 10.1186/1423-0127-19-61] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/13/2012] [Indexed: 02/07/2023] Open
Abstract
Background Rabies is known to be lethal in human. Treatment with passive immunity for the rabies is effective only when the patients have not shown the central nerve system (CNS) signs. The blood–brain barrier (BBB) is a complex functional barrier that may compromise the therapeutic development in neurological diseases. The goal of this study is to determine the change of BBB integrity and to assess the therapeutic possibility of enhancing BBB permeability combined with passive immunity in the late stage of rabies virus infection. Methods The integrity of BBB permeability in rats was measured by quantitative ELISA for total IgG and albumin levels in the cerebrospinal fluid (CSF) and by exogenously applying Evans blue as a tracer. Western blotting of occludin and ZO-1, two tight junction proteins, was used to assess the molecular change of BBB structure. The breakdown of BBB with hypertonic arabinose, recombinant tumor necrosis factor-alpha (rTNF-γ), and focused ultrasound (FUS) were used to compare the extent of BBB disruption with rabies virus infection. Specific humoral immunity was analyzed by immunofluorescent assay and rapid fluorescent focus inhibition test. Virus-neutralizing monoclonal antibody (mAb) 8-10E was administered to rats with hypertonic breakdown of BBB as a passive immunotherapy to prevent the death from rabies. Results The BBB permeability was altered on day 7 post-infection. Increased BBB permeability induced by rabies virus infection was observed primarily in the cerebellum and spinal cord. Occludin was significantly decreased in both the cerebral cortex and cerebellum. The rabies virus-specific antibody was not strongly elicited even in the presence of clinical signs. Disruption of BBB had no direct association with the lethal outcome of rabies. Passive immunotherapy with virus-neutralizing mAb 8-10E with the hypertonic breakdown of BBB prolonged the survival of rabies virus-infected rats. Conclusions We demonstrated that the BBB permeability was altered in a rat model with rabies virus inoculation. Delivery of neutralizing mAb to the infected site in brain combined with effective breakdown of BBB could be an aggressive but feasible therapeutic mode in rabies when the CNS infection has been established.
Collapse
Affiliation(s)
- Pi-Hung Liao
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | | | | | | | | | | | | |
Collapse
|
104
|
Morimoto K, Horio J, Satoh H, Sue L, Beach T, Arita S, Tooyama I, Konishi Y. Expression profiles of cytokines in the brains of Alzheimer's disease (AD) patients compared to the brains of non-demented patients with and without increasing AD pathology. J Alzheimers Dis 2012; 25:59-76. [PMID: 21368376 DOI: 10.3233/jad-2011-101815] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Neuroinflammation is involved in the pathology of Alzheimer's disease (AD). Our major focus was to clarify whether neuroinflammation plays an important role in AD pathogenesis, particularly prior to the manifestation of overt dementia. We analyzed cytokine expression profiles of the brain, with focus on non-demented patients with increasing AD pathology, referred to as high pathology control (HPC) patients, who provide an intermediate subset between AD and normal control subjects, referred to as low pathology control (LPC) patients. With real-time PCR techniques, we found significant differences in interleukin (IL)-1β, 10, 13, 18, and 33, tumor necrosis factor-α (TNFα) converting enzyme (TACE), and transforming growth factor β1 (TGFβ1) mRNA expression ratios between HPC and AD patients, while no significant differences in the expression ratios of any cytokine tested here were observed between LPC and HPC patients. The cytokine mRNA expression ratios were determined as follows: first, cytokine mRNA levels were normalized to mRNA levels of a housekeeping gene, peptidyl-prolyl isomerase A (PPIA), which showed the most stable expression among ten housekeeping genes tested here; then, the normalized data of cytokine levels in the temporal cortex were divided by those in the cerebellum, which is resistant to AD pathology. Subsequently, the expression ratios of the temporal cortex to cerebellum were compared among LPC, HPC, and AD patient groups. Our results indicate that cytokines are more mobilized and implicated in the later AD stage when a significant cognitive decline occurs and develops than in the developmental course of AD pathology prior to the manifestation of overt dementia.
Collapse
Affiliation(s)
- Kaori Morimoto
- Faculty of Medicine, Graduate School of Medical Sciences, Tottori University, Yonago, Japan
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Contribution of a single host genetic locus to mouse adenovirus type 1 infection and encephalitis. mBio 2012; 3:mBio.00131-12. [PMID: 22647790 PMCID: PMC3372963 DOI: 10.1128/mbio.00131-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Susceptibility to mouse adenovirus type 1 (MAV-1) is mouse strain dependent; susceptible mice die from hemorrhagic encephalomyelitis. The MAV-1 susceptibility quantitative trait locus Msq1 accounts for ~40% of the phenotypic (brain viral load) variance that occurs between resistant BALB/c and susceptible SJL mice after MAV-1 infection. Using an interval-specific congenic mouse strain (C.SJL-Msq1SJL), in which the SJL-derived allele Msq1SJL is present in a BALB/c background, we demonstrate that Msq1SJL controls the development of high brain viral titers in response to MAV-1 infection, yet does not account for the total extent of brain pathology or mortality in SJL mice. C.SJL-Msq1SJL mice had disruption of the blood-brain barrier and increased brain water content after MAV-1 infection, but these effects occurred later and were not as severe, respectively, as those noted in infected SJL mice. As expected, BALB/c mice showed minimal pathology in these assays. Infection of SJL- and C.SJL-Msq1SJL-derived primary mouse brain endothelial cells resulted in loss of barrier properties, whereas BALB/c-derived cells retained their barrier properties despite being equally capable of supporting MAV-1 infection. Finally, we provide evidence that organ pathology and inflammatory cell recruitment to the brain following MAV-1 infection were both influenced by Msq1. These results validate Msq1 as an important host factor in MAV-1 infection and refine the major role of the locus in development of MAV-1 encephalitis. They further suggest that additional host factors or gene interactions are involved in the mechanism of pathogenesis in MAV-1-infected SJL mice. A successful viral infection requires both host and viral factors; identification of host components involved in viral replication and pathogenesis is important for development of therapeutic interventions. A genetic locus (Msq1) controlling mouse adenovirus type 1 (MAV-1) brain infection was previously identified. Genes in Msq1 belong to the same family of genes associated with susceptibility to other encephalitic viruses, HIV-1 and West Nile virus. We constructed an interval-specific congenic mouse strain to examine the contribution of Msq1 to MAV-1 susceptibility and brain morbidity. We compared infected resistant, susceptible, and congenic mice regarding known MAV-1 disease manifestations in the brain (survival, viral loads, blood-brain barrier disruption, edema, mouse brain endothelial cell barrier properties, pathology, and inflammatory cell recruitment) to determine the extent to which Msq1 influences MAV-1 infection outcome. Our results showed that Msq1 is a critical host genetic factor that controls many aspects of MAV-1 infection.
Collapse
|
106
|
Spindler KR, Hsu TH. Viral disruption of the blood-brain barrier. Trends Microbiol 2012; 20:282-90. [PMID: 22564250 DOI: 10.1016/j.tim.2012.03.009] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/16/2012] [Accepted: 03/27/2012] [Indexed: 12/25/2022]
Abstract
The blood-brain barrier (BBB) provides significant protection against microbial invasion of the brain. However, the BBB is not impenetrable, and mechanisms by which viruses breach it are becoming clearer. In vivo and in vitro model systems are enabling identification of host and viral factors contributing to breakdown of the unique BBB tight junctions. Key mechanisms of tight junction damage from inside and outside cells are disruption of the actin cytoskeleton and matrix metalloproteinase activity, respectively. Viral proteins acting in BBB disruption are described for HIV-1, currently the most studied encephalitic virus; other viruses are also discussed.
Collapse
Affiliation(s)
- Katherine R Spindler
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA.
| | | |
Collapse
|
107
|
Welte T, Aronson J, Gong B, Rachamallu A, Mendell N, Tesh R, Paessler S, Born WK, O'Brien RL, Wang T. Vγ4+ T cells regulate host immune response to West Nile virus infection. ACTA ACUST UNITED AC 2012; 63:183-92. [PMID: 22077221 DOI: 10.1111/j.1574-695x.2011.00840.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Vγ4(+) cells, a subpopulation of peripheral γδ T cells, are involved in West Nile virus (WNV) pathogenesis, but the underlying mechanism remains unclear. In this study, we found that WNV-infected Vγ4(+) cell-depleted mice had lower viremia and a reduced inflammatory response in the brain. The Vγ4(+) cells produced IL-17 during WNV infection, but blocking IL-17 signaling did not affect host susceptibility to WNV encephalitis. We also noted that there was an enhanced magnitude of protective splenic Vγ1(+) cell expansion in Vγ4(+) cell-depleted mice compared to that in controls during WNV infection. In addition, Vγ4(+) cells of WNV-infected mice had a higher potential for producing TGF-β. The γδ T cells of WNV-infected Vγ4(+) cell-depleted mice had a higher proliferation rate than those of WNV-infected controls upon ex vivo stimulation with anti-CD3, and this difference was diminished in the presence of TGF-β inhibitor. Finally, Vγ4(+) cells of infected mice contributed directly and indirectly to the higher level of IL-10, which is known to play a negative role in immunity against WNV infection. In summary, Vγ4(+) cells suppress Vγ1(+) cell expansion via TGF-β and increase IL-10 level during WNV infection, which together may lead to higher viremia and enhanced brain inflammation.
Collapse
Affiliation(s)
- Thomas Welte
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Postexposure treatment with the live-attenuated rabies virus (RV) vaccine TriGAS triggers the clearance of wild-type RV from the Central Nervous System (CNS) through the rapid induction of genes relevant to adaptive immunity in CNS tissues. J Virol 2012; 86:3200-10. [PMID: 22238315 DOI: 10.1128/jvi.06699-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Postexposure treatment (PET) of wild-type rabies virus (RV)-infected mice with a live-attenuated triple-glycoprotein RV variant (TriGAS) promotes survival but does not prevent the pathogenic RV from invading and replicating in the brain. Successful PET is associated with the induction of a robust virus-neutralizing antibody response and clearance of the wild-type RV from brain tissues. Comparison of the transcriptomes of normal mouse brain with those of wild-type-RV-infected mice that had received either mock or TriGAS PET treatment revealed that many of the host genes activated in the mock-treated mice represent type I interferon (IFN) response genes. This indicates that RV infection induces an early type I IFN response that is unable to control the infection. In contrast, most of the activated genes in the brain of the RV-infected, TriGAS-treated mouse play a role in adaptive immunity, including the regulation of T cell activation, T cell differentiation, and the regulation of lymphocyte and mononuclear cell proliferation. These findings were confirmed by quantitative PCR (qPCR) array studies, which showed that 3 genes in particular, encoding chemokine ligand 3 (Ccl3), natural killer cell activator 2 (interleukin 12B [IL-12B]), and granzyme A (GzmA), were activated earlier and to a greater extent in the brains of RV-infected mice treated with TriGAS than in the brains of mock-treated mice. The activation of these genes, known to play key roles in the regulation of lymphocyte and mononuclear cell proliferation, is likely an important part of the mechanism by which TriGAS mediates its PET activity.
Collapse
|
109
|
Seidel GA, Giovannetti T, Libon DJ. Cerebrovascular disease and cognition in older adults. Curr Top Behav Neurosci 2012; 10:213-241. [PMID: 21773915 DOI: 10.1007/7854_2011_140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The well-established association between advanced age, cerebrovascular pathology, and cognitive decline is receiving greater attention as the population attains new levels of longevity. This chapter will provide an overview of vascular anatomy and age-related cerebrovascular disorders and diseases, including stroke and degenerative dementia. The cognitive and functional sequellae of these cerebrovascular disorders will also be described in detail. Throughout this review, we will emphasize topics that have been relatively underrepresented in the literature, including age-related diseases of the cerebral small vessels, nuanced characterization of cognitive impairment associated with insidious small-vessel vascular dementia, and the real-life functional consequences of cerebrovascular changes in older adults.
Collapse
Affiliation(s)
- Gregory A Seidel
- Department of Psychology, Temple University, Philadelphia, PA, USA,
| | | | | |
Collapse
|
110
|
Schnell G, Joseph S, Spudich S, Price RW, Swanstrom R. HIV-1 replication in the central nervous system occurs in two distinct cell types. PLoS Pathog 2011; 7:e1002286. [PMID: 22007152 PMCID: PMC3188520 DOI: 10.1371/journal.ppat.1002286] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 08/11/2011] [Indexed: 12/22/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) can lead to the development of HIV-1-associated dementia (HAD). We examined the virological characteristics of HIV-1 in the cerebrospinal fluid (CSF) of HAD subjects to explore the association between independent viral replication in the CNS and the development of overt dementia. We found that genetically compartmentalized CCR5-tropic (R5) T cell-tropic and macrophage-tropic HIV-1 populations were independently detected in the CSF of subjects diagnosed with HIV-1-associated dementia. Macrophage-tropic HIV-1 populations were genetically diverse, representing established CNS infections, while R5 T cell-tropic HIV-1 populations were clonally amplified and associated with pleocytosis. R5 T cell-tropic viruses required high levels of surface CD4 to enter cells, and their presence was correlated with rapid decay of virus in the CSF with therapy initiation (similar to virus in the blood that is replicating in activated T cells). Macrophage-tropic viruses could enter cells with low levels of CD4, and their presence was correlated with slow decay of virus in the CSF, demonstrating a separate long-lived cell as the source of the virus. These studies demonstrate two distinct virological states inferred from the CSF virus in subjects diagnosed with HAD. Finally, macrophage-tropic viruses were largely restricted to the CNS/CSF compartment and not the blood, and in one case we were able to identify the macrophage-tropic lineage as a minor variant nearly two years before its expansion in the CNS. These results suggest that HIV-1 variants in CSF can provide information about viral replication and evolution in the CNS, events that are likely to play an important role in HIV-associated neurocognitive disorders. Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) can lead to the development of a severe neurological disease termed HIV-1-associated dementia (HAD). Individuals diagnosed with HAD commonly have genetically distinct HIV-1 variants in their cerebrospinal fluid (CSF) that are not detected in the blood virus population, suggesting that independent viral replication is occurring in the CNS of HIV-1-infected subjects with severe neurological disease. We examined HIV-1 variants in the blood plasma and CSF of HAD subjects to determine the viral characteristics associated with the development of dementia during HIV-1 infection. We found that genetically distinct HIV-1 variants in the CSF of HAD subjects were either R5 T cell-tropic or macrophage-tropic. The R5 T cell-tropic viruses required high levels of the cellular surface receptor CD4 to enter cells, while macrophage-tropic viruses could enter cells with low levels of CD4, suggesting that HIV-1 can replicate in at least two cell types within the CNS during the course of dementia. Finally, macrophage-tropic viruses were detected in the CSF but poorly represented in the blood virus population. Our results suggest that HIV-1 variants in the CSF can provide information about independent viral replication in the CNS during the course of HIV-1 infection.
Collapse
Affiliation(s)
- Gretja Schnell
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina, United States of America
| | | | | | | | | |
Collapse
|
111
|
Abstract
Rabies virus (RABV) is a strictly neurotropic virus that slowly propagates in the nervous system (NS) of the infected host from the site of entry (usually due to a bite) up to the site of exit (salivary glands). Successful achievement of the virus cycle relies on the preservation of the neuronal network. Once RABV has entered the NS, its progression is not interrupted either by destruction of the infected neurons or by the immune response, which are major host mechanisms for combating viral infection. RABV has developed two main mechanisms to escape the host defenses: (1) its ability to kill protective migrating T cells and (2) its ability to sneak into the NS without triggering apoptosis of the infected neurons and preserving the integrity of neurites.
Collapse
Affiliation(s)
- Monique Lafon
- Unité de Neuroimmunologie Virale, Département de Virologie, Institut Pasteur, Paris, France
| |
Collapse
|
112
|
Abstract
Rabies, a neurological disease associated with replication in central nervous system (CNS) tissues of any of a number of rabies viruses endemic in nature, is generally fatal. Prophylactic medical intervention is immune mediated and directed at preventing the spread of the virus from a peripheral site of exposure to the CNS. While individuals rarely develop immune responses capable of clearing the virus from CNS tissues, a variety of laboratory-attenuated rabies viruses are readily cleared from the CNS tissues in animal models. By comparing immune responses to wild-type and attenuated rabies viruses in these models, we have discovered that the latter induce processes required for immune effector infiltration into CNS tissues that are absent from lethal infections. Predominant among these are activities of cells of the neurovascular unit (NVU) that promote an interaction with circulating immune cells. In the absence of this interaction, the specialized barrier function of the NVU remains intact and circulating virus-specific immune effectors are largely excluded from infected CNS tissues. Studies of mixed infections with wild-type and attenuated rabies viruses reveal that wild-type rabies viruses fail to trigger, rather than inhibit, the interactions between immune cells and the NVU required for virus clearance from the CNS. These studies provide insights into how immune effectors with the capacity to clear the virus may be delivered into CNS tissues to contain a wild-type rabies virus infection. However, to apply immunotherapeutic strategies beyond the initial stages of CNS infection, further insights into the fate of the infected cells during virus clearance are needed.
Collapse
Affiliation(s)
- D Craig Hooper
- Center for Neurovirology, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
113
|
Abstract
Chemokines are a family of structurally related proteins that are expressed by almost all types of nucleated cells and mediate leukocyte activation and/or chemotactic activities. The role of chemokines in rabies pathogenesis and protection has only recently been investigated. Expression of chemokines is induced by infection with laboratory-adapted, but not street, rabies viruses (RABVs), and it has been hypothesized that expression of chemokines is one of the mechanisms by which RABV is attenuated. To further define the role of chemokines in rabies pathogenesis and protection, chemokine genes such as MIP-1α, RANTES, IP-10, and macrophage-derived chemokine (MDC) have been cloned into RABV genome. It has been found that recombinant RABVs expressing RANTES or IP-10 induce high and persistent expression of these chemokines, resulting in massive infiltration of inflammatory cells into the central nervous system (CNS) and development of diseases and death in the mouse model. However, recombinant RABVs expressing MIP-1α, MDC, as well as GM-CSF further attenuate RABV by inducing a transient expression of chemokines, infiltration of inflammatory cells, enhancement of blood-brain barrier (BBB) permeability. Yet, these recombinant RABVs show increased adaptive immune responses by recruiting/activating dendritic cells, T and B cells in the periphery as well as in the CNS. Further, direct administration of these recombinant RABVs into the CNS can prevent mice from developing rabies days after infection with street RABV. All these studies together suggest that chemokines are both protective and pathogenic in RABV infections. Those with protective roles could be exploited for development of future RABV vaccines or therapeutic agents.
Collapse
Affiliation(s)
- Xuefeng Niu
- Department of Pathology, University of Georgia, Athens, Georgia, USA
| | | | | |
Collapse
|
114
|
Li J, Faber M, Dietzschold B, Hooper DC. The role of toll-like receptors in the induction of immune responses during rabies virus infection. Adv Virus Res 2011; 79:115-26. [PMID: 21601045 DOI: 10.1016/b978-0-12-387040-7.00007-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The host response to infection generally begins with interactions between pathogen-associated molecular patterns common to a variety of infectious agents and reciprocal pattern-recognition receptors (PRRs) expressed by cells of the innate immune system. The innate responses triggered by these interactions contribute to the early, innate control of infection as well as the induction of pathogen-specific adaptive immunity. The outcome of infection with wild-type rabies virus is particularly dependent upon the rapid induction of innate and adaptive immune mechanisms that can prevent the virus from reaching central nervous system (CNS) tissues, where it can evade immune clearance. However, laboratory strains that reach the CNS can be cleared, and this has evidently occurred in individuals with rabies. Therefore, PRRs may be active in the periphery and the CNS during rabies virus infection, possibly depending upon the nature of the infecting virus. To investigate these possibilities, we first examined the outcome of infection with attenuated rabies virus in mice lacking MyD88, an adaptor protein that is used to activate the transcription factor NF-κB by a number of PRRs including all of the Toll-like receptors (TLRs) except for TLR3. Finding that attenuated rabies virus mediates lethal disease in the absence of MyD88, we then examined the effects of the deletion of receptors using MyD88 including TLRs 2, 4, 7, and 9 as well as IL-1-receptor 1, and IFN-αβR on infection. Only mice lacking TLR7 exhibited a phenotype, with mortality intermediate between MyD88(-/-) and control mice with deficits in both the development of peripheral immunity and rabies virus clearance from the CNS.
Collapse
Affiliation(s)
- Jianwei Li
- Center for Neurovirology, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
115
|
Abstract
Chemokines are a family of structurally related proteins that are expressed by almost all types of nucleated cells and mediate leukocyte activation and/or chemotactic activities. The role of chemokines in rabies pathogenesis and protection has only recently been investigated. Expression of chemokines is induced by infection with laboratory-adapted, but not street, rabies viruses (RABVs), and it has been hypothesized that expression of chemokines is one of the mechanisms by which RABV is attenuated. To further define the role of chemokines in rabies pathogenesis and protection, chemokine genes such as MIP-1α, RANTES, IP-10, and macrophage-derived chemokine (MDC) have been cloned into RABV genome. It has been found that recombinant RABVs expressing RANTES or IP-10 induce high and persistent expression of these chemokines, resulting in massive infiltration of inflammatory cells into the central nervous system (CNS) and development of diseases and death in the mouse model. However, recombinant RABVs expressing MIP-1α, MDC, as well as GM-CSF further attenuate RABV by inducing a transient expression of chemokines, infiltration of inflammatory cells, enhancement of blood-brain barrier (BBB) permeability. Yet, these recombinant RABVs show increased adaptive immune responses by recruiting/activating dendritic cells, T and B cells in the periphery as well as in the CNS. Further, direct administration of these recombinant RABVs into the CNS can prevent mice from developing rabies days after infection with street RABV. All these studies together suggest that chemokines are both protective and pathogenic in RABV infections. Those with protective roles could be exploited for development of future RABV vaccines or therapeutic agents.
Collapse
Affiliation(s)
- Xuefeng Niu
- Department of Pathology, University of Georgia, Athens, Georgia, USA
| | | | | |
Collapse
|
116
|
Růžek D, Salát J, Singh SK, Kopecký J. Breakdown of the blood-brain barrier during tick-borne encephalitis in mice is not dependent on CD8+ T-cells. PLoS One 2011; 6:e20472. [PMID: 21629771 PMCID: PMC3100324 DOI: 10.1371/journal.pone.0020472] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/26/2011] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis (TBE) virus causes severe encephalitis with serious sequelae in humans. The disease is characterized by fever and debilitating encephalitis that can progress to chronic illness or fatal infection. In this study, changes in permeability of the blood-brain barrier (BBB) in two susceptible animal models (BALB/c, and C57Bl/6 mice) infected with TBE virus were investigated at various days after infection by measuring fluorescence in brain homogenates after intraperitoneal injection of sodium fluorescein, a compound that is normally excluded from the central nervous system. We demonstrate here that TBE virus infection, in addition to causing fatal encephalitis in mice, induces considerable breakdown of the BBB. The permeability of the BBB increased at later stages of TBE infection when high virus load was present in the brain (i.e., BBB breakdown was not necessary for TBE virus entry into the brain), and at the onset of the first severe clinical symptoms of the disease, which included neurological signs associated with sharp declines in body weight and temperature. The increased BBB permeability was in association with dramatic upregulation of proinflammatory cytokine/chemokine mRNA expression in the brain. Breakdown of the BBB was also observed in mice deficient in CD8+ T-cells, indicating that these cells are not necessary for the increase in BBB permeability that occurs during TBE. These novel findings are highly relevant to the development of future therapies designed to control this important human infectious disease.
Collapse
Affiliation(s)
- Daniel Růžek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| | | | | | | |
Collapse
|
117
|
Abstract
The neurotropic rabies virus (RABV) has developed several evasive strategies, including immunoevasion, to successfully infect the nervous system (NS) and trigger a fatal encephalomyelitis. Here we show that expression of LGP2, a protein known as either a positive or negative regulator of the RIG-I-mediated innate immune response, is restricted in the NS. We used a new transgenic mouse model (LGP2 TG) overexpressing LGP2 to impair the innate immune response to RABV and thus revealed the role of the RIG-I-mediated innate immune response in RABV pathogenesis. After infection, LGP2 TG mice exhibited reduced expression of inflammatory/chemoattractive molecules, beta interferon (IFN-β), and IFN-stimulated genes in their NS compared to wild-type (WT) mice, demonstrating the inhibitory function of LGP2 in the innate immune response to RABV. Surprisingly, LGP2 TG mice showed more viral clearance in the brain and lower morbidity than WT mice, indicating that the host innate immune response, paradoxically, favors RABV neuroinvasiveness and morbidity. LGP2 TG mice exhibited similar neutralizing antibodies and microglia activation to those of WT mice but showed a reduction of infiltrating CD4(+) T cells and less disappearance of infiltrating CD8(+) T cells. This occurred concomitantly with reduced neural expression of the IFN-inducible protein B7-H1, an immunoevasive protein involved in the elimination of infiltrated CD8(+) T cells. Our study shows that the host innate immune response favors the infiltration of T cells and, at the same time, promotes CD8(+) T cell elimination. Thus, to a certain extent, RABV exploits the innate immune response to develop its immunoevasive strategy.
Collapse
|
118
|
Hooper DC, Roy A, Kean RB, Phares TW, Barkhouse DA. Therapeutic immune clearance of rabies virus from the CNS. Future Virol 2011; 6:387-397. [PMID: 21686076 DOI: 10.2217/fvl.10.88] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The long-held concept that rabies infection is lethal in humans once the causative rabies virus has reached the CNS has been called into question by the recent survival of a number of patients with clinical rabies. Studies in animal models provide insight into why survival from a rabies virus infection that has spread to the CNS is possible and the immune mechanisms involved. In the CNS, both innate mechanisms capable of inhibiting virus replication and the activity of infiltrating rabies virus-specific T and B cells with the capacity to clear the virus are required. Deficiencies in the induction of either aspect of rabies immunity can lead to lethal consequences but may be overcome by novel approaches to active and passive immunization.
Collapse
Affiliation(s)
- D Craig Hooper
- Center for Neurovirology, Department of Cancer Biology, Thomas Jefferson University, 233 S. 10th Street, PA 19107, USA
| | | | | | | | | |
Collapse
|
119
|
Abstract
Rabies remains a global public health threat that kills more than 55,000 people per year. Rabies disproportionately affects children and, therefore, is ranked the seventh most important infectious disease due to years lost. Prevention of human rabies is accomplished by controlling rabies in domestic and wild animals, including the use of vaccination programs. The usefulness of human rabies vaccines is hampered by high cost, complicated vaccination regimens and lack of compliance, especially in areas of Africa and Asia where human rabies infections are endemic. A single-dose vaccine would greatly benefit efforts to combat this global health threat. However, a single-dose vaccine based on current inactivated vaccines does not appear feasible and other approaches are needed. Technology has advanced since modern human rabies vaccines were developed over 40 years ago. In addition, our understanding of immunological principles that influence the outcome of vaccination has increased. This article describes the current status of inactivated rabies virus vaccines and recent developments arising from the use of reverse genetics technologies designed to develop replication-deficient or single-cycle live rabies virus-based vectors for use as a single-dose rabies vaccine for humans.
Collapse
Affiliation(s)
- James P McGettigan
- Department of Microbiology and Immunology, Jefferson Vaccine Center, Jefferson Medical College of Thomas Jefferson University, 1020 Locust Street, JAH 466, Philadelphia, PA 19107, USA.
| |
Collapse
|
120
|
Factors supporting intrathecal humoral responses following viral encephalomyelitis. J Virol 2010; 85:2589-98. [PMID: 21191015 DOI: 10.1128/jvi.02260-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Central nervous system (CNS) infections and autoimmune inflammatory disorders are often associated with retention of antibody-secreting cells (ASC). Although beneficial or detrimental contributions of ASC to CNS diseases remain to be defined, virus-specific ASC are crucial in controlling persistent CNS infection following coronavirus-induced encephalomyelitis. This report characterizes expression kinetics of factors associated with ASC homing, differentiation, and survival in the spinal cord, the prominent site of coronavirus persistence. Infection induced a vast, gamma interferon (IFN-γ)-dependent, prolonged increase in chemokine (C-X-C motif) ligand 9 (CXCL9), CXCL10, and CXCL11 mRNA, supporting a role for chemokine (C-X-C motif) receptor 3 (CXCR3)-mediated ASC recruitment. Similarly, CD4 T cell-secreted interleukin-21, a critical regulator of both peripheral activated B cells and CD8 T cells, was sustained during viral persistence. The ASC survival factors B cell-activating factor of the tumor necrosis factor (TNF) family (BAFF) and a proliferating-inducing ligand (APRIL) were also significantly elevated in the infected CNS, albeit delayed relative to the chemokines. Unlike IFN-γ-dependent BAFF upregulation, APRIL induction was IFN-γ independent. Moreover, both APRIL and BAFF were predominantly localized to astrocytes. Last, the expression kinetics of the APRIL and BAFF receptors coincided with CNS accumulation of ASC. Therefore, the factors associated with ASC migration, differentiation, and survival are all induced during acute viral encephalomyelitis, prior to ASC accumulation in the CNS. Importantly, the CNS expression kinetics implicate rapid establishment, and subsequent maintenance, of an environment capable of supporting differentiation and survival of protective antiviral ASC, recruited as plasmablasts from lymphoid organs.
Collapse
|
121
|
Gorantla S, Makarov E, Finke-Dwyer J, Castanedo A, Holguin A, Gebhart CL, Gendelman HE, Poluektova L. Links between progressive HIV-1 infection of humanized mice and viral neuropathogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2938-49. [PMID: 21088215 DOI: 10.2353/ajpath.2010.100536] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Few rodent models of human immunodeficiency virus type one (HIV-1) infection can reflect the course of viral infection in humans. To this end, we investigated the relationships between progressive HIV-1 infection, immune compromise, and neuroinflammatory responses in NOD/scid-IL-2Rγ(c)(null) mice reconstituted with human hematopoietic CD34(+) stem cells. Human blood-borne macrophages repopulated the meninges and perivascular spaces of chimeric animals. Viral infection in lymphoid tissue led to the accelerated entry of human cells into the brain, marked neuroinflammation, and HIV-1 replication in human mononuclear phagocytes. A meningitis and less commonly an encephalitis followed cM-T807 antibody-mediated CD8(+) cell depletion. We conclude that HIV-1-infected NOD/scid-IL-2Rγ(c)(null) humanized mice can, at least in part, recapitulate lentiviral neuropathobiology. This model of neuroAIDS reflects the virological, immunological, and early disease-associated neuropathological components of human disease.
Collapse
Affiliation(s)
- Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Furr SR, Moerdyk-Schauwecker M, Grdzelishvili VZ, Marriott I. RIG-I mediates nonsegmented negative-sense RNA virus-induced inflammatory immune responses of primary human astrocytes. Glia 2010; 58:1620-9. [PMID: 20578054 PMCID: PMC2946392 DOI: 10.1002/glia.21034] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While astrocytes produce key inflammatory mediators following exposure to neurotropic nonsegmented negative-sense RNA viruses such as rabies virus and measles virus, the mechanisms by which resident central nervous system (CNS) cells perceive such viral challenges have not been defined. Recently, several cytosolic DExD/H box RNA helicases including retinoic acid-inducible gene I (RIG-I) have been described that function as intracellular sensors of replicative RNA viruses. Here, we demonstrate that primary human astrocytes constitutively express RIG-I and show that such expression is elevated following exposure to a model neurotropic RNA virus, vesicular stomatitis virus (VSV). Evidence for the functional nature of RIG-I expression in these cells comes from the observation that this molecule associates with its downstream effector molecule, interferon promoter stimulator-1, following VSV infection and from the finding that a specific ligand for RIG-I elicits astrocyte immune responses. Importantly, RIG-I knockdown significantly reduces inflammatory cytokine production by VSV-infected astrocytes and inhibits the production of soluble neurotoxic mediators by these cells. These findings directly implicate RIG-I in the initiation of inflammatory immune responses by human glial cells and provide a potential mechanism underlying the neuronal cell death associated with acute viral CNS infections.
Collapse
Affiliation(s)
- Samantha R. Furr
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223
| | | | | | - Ian Marriott
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223
| |
Collapse
|
123
|
Stamatovic SM, Keep RF, Andjelkovic AV. Brain endothelial cell-cell junctions: how to "open" the blood brain barrier. Curr Neuropharmacol 2010; 6:179-92. [PMID: 19506719 PMCID: PMC2687937 DOI: 10.2174/157015908785777210] [Citation(s) in RCA: 363] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 03/10/2008] [Accepted: 04/02/2008] [Indexed: 01/19/2023] Open
Abstract
The blood-brain barrier (BBB) is a highly specialized structural and biochemical barrier that regulates the entry of blood-borne molecules into brain, and preserves ionic homeostasis within the brain microenvironment. BBB properties are primarily determined by junctional complexes between the cerebral endothelial cells. These complexes are comprised of tight and adherens junctions. Such restrictive angioarchitecture at the BBB reduces paracellular diffusion, while minimal vesicle transport activity in brain endothelial cells limits transcellular transport. Under normal conditions, this largely prevents the extravasation of large and small solutes (unless specific transporters are present) and prevents migration of any type of blood-borne cell. However, this is changed in many pathological conditions. There, BBB disruption (“opening”) can lead to increased paracellular permeability, allowing entry of leukocytes into brain tissue, but also contributing to edema formation. In parallel, there are changes in the endothelial pinocytotic vesicular system resulting in the uptake and transfer of fluid and macromolecules into brain parenchyma. This review highlights the route and possible factors involved in BBB disruption in a variety of neuropathological disorders (e.g. CNS inflammation, Alzheimer’s disease, Parkinson’s disease, epilepsy). It also summarizes proposed signal transduction pathways that may be involved in BBB “opening”.
Collapse
|
124
|
Franka R, Wu X, Jackson FR, Velasco-Villa A, Palmer DP, Henderson H, Hayat W, Green DB, Blanton JD, Greenberg L, Rupprecht CE. Rabies virus pathogenesis in relationship to intervention with inactivated and attenuated rabies vaccines. Vaccine 2010; 27:7149-55. [PMID: 19925945 DOI: 10.1016/j.vaccine.2009.09.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 09/03/2009] [Indexed: 11/16/2022]
Abstract
Despite progress in vaccine development in the past century the mechanisms behind immune responses elicited by rabies biologics or via natural infection remain largely unknown. In this study, we compared protection elicited by standard, early, or delayed prophylaxis with a reduced number of vaccine doses using inactivated and live-attenuated vaccines. Two-month-old Syrian hamsters, 4-week-old ICR mice or adult rhesus macaques were inoculated with canine rabies virus variants. Thereafter, prophylaxis was initiated 6h, 1, 2, 3, 4, 5, 6 or 7 days post-exposure (p.e.). One or several doses of inactivated (HDCV), or reverse genetically attenuated (live), or gamma-irradiated (inactivated)-ERAG333 vaccines were administered intramuscularly. The dynamics of virus spread were measured over time in the rodent models. Rabies virus reached the spinal cord at day 4 and brain at day 6 p.e. All hamsters succumbed in groups in which live ERAG333 was delayed until days 5 and 6 p.e. However, 78%, 44%, 56% and 22% of hamsters survived when one dose of live ERAG333 was administered 6h, 1, 2, 3, and 4 days p.e., respectively. Similarly, 67% survived when inactivated ERAG333 was administered at 24h p.e. All hamsters succumbed when standard prophylaxis (the Essen regimen) was delayed until days 3-6, but 67% and 33% of hamsters survived when PEP began 1 or 2 days p.e., respectively. Macaques were protected by one dose of attenuated ERAG333 at 24h p.e. The highly attenuated (live) and inactivated ERAG333 vaccines elicited potent protective immune responses, even when prophylaxis initiation was delayed. When 2-5 doses of commercial vaccine and HRIG were administered according to the Essen scheme, 89-100% of the animals survived. Reduced vaccine schedules provided efficacious intervention, regardless of the total number of vaccine doses administered.
Collapse
Affiliation(s)
- Richard Franka
- Poxvirus and Rabies Branch, Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-borne and Enteric Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Zhao L, Toriumi H, Kuang Y, Chen H, Fu ZF. The roles of chemokines in rabies virus infection: overexpression may not always be beneficial. J Virol 2009; 83:11808-18. [PMID: 19740983 PMCID: PMC2772667 DOI: 10.1128/jvi.01346-09] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 08/31/2009] [Indexed: 12/24/2022] Open
Abstract
It was found previously that induction of innate immunity, particularly chemokines, is an important mechanism of rabies virus (RABV) attenuation. To evaluate the effect of overexpression of chemokines on RABV infection, chemokines macrophage inflammatory protein 1alpha (MIP-1alpha), RANTES, and IP-10 were individually cloned into the genome of attenuated RABV strain HEP-Flury. These recombinant RABVs were characterized in vitro for growth properties and expression of chemokines. It was found that all the recombinant viruses grew as well as the parent virus, and each of the viruses expressed the intended chemokine in a dose-dependent manner. When these viruses were evaluated for pathogenicity in the mouse model, it was found that overexpression of MIP-1alpha further decreased RABV pathogenicity by inducing a transient innate immune response. In contrast, overexpression of RANTES or IP-10 increased RABV pathogenicity by causing neurological diseases, which is due to persistent and high-level expression of chemokines, excessive infiltration and accumulation of inflammatory cells in the central nervous system, and severe enhancement of blood-brain barrier permeability. These studies indicate that overexpression of chemokines, although important in controlling virus infection, may not always be beneficial to the host.
Collapse
Affiliation(s)
- Ling Zhao
- Departments of Pathology, Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, State-Key Laboratory of Agricultural Microbiology, Department of Preventive Veterinary, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Harufusa Toriumi
- Departments of Pathology, Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, State-Key Laboratory of Agricultural Microbiology, Department of Preventive Veterinary, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Kuang
- Departments of Pathology, Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, State-Key Laboratory of Agricultural Microbiology, Department of Preventive Veterinary, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- Departments of Pathology, Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, State-Key Laboratory of Agricultural Microbiology, Department of Preventive Veterinary, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen F. Fu
- Departments of Pathology, Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, State-Key Laboratory of Agricultural Microbiology, Department of Preventive Veterinary, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
126
|
Hooper DC, Phares TW, Fabis MJ, Roy A. The production of antibody by invading B cells is required for the clearance of rabies virus from the central nervous system. PLoS Negl Trop Dis 2009; 3:e535. [PMID: 19806203 PMCID: PMC2754506 DOI: 10.1371/journal.pntd.0000535] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 09/24/2009] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The pathogenesis of rabies is associated with the inability to deliver immune effectors across the blood-brain barrier and to clear virulent rabies virus from CNS tissues. However, the mechanisms that facilitate immune effector entry into CNS tissues are induced by infection with attenuated rabies virus. METHODOLOGY/PRINCIPAL FINDINGS Infection of normal mice with attenuated rabies virus but not immunization with killed virus can promote the clearance of pathogenic rabies virus from the CNS. T cell activity in B cell-deficient mice can control the replication of attenuated virus in the CNS, but viral mRNA persists. Low levels of passively administered rabies virus-neutralizing antibody reach infected cells in the cerebellum of B cell-deficient mice but are not sufficient to mediate virus clearance. Production of rabies virus-specific antibody by B cells invading CNS tissues is required for this process, and a substantial proportion of the B cells that accumulate in the CNS of mice infected with attenuated rabies virus produce virus-specific antibodies. CONCLUSIONS/SIGNIFICANCE The mechanisms required for immune effectors to enter rabies virus-infected tissues are induced by infection with attenuated rabies virus but not by infection with pathogenic rabies viruses or immunization with killed virus. T cell activities can inhibit rabies virus replication, but the production of rabies virus-specific antibodies by infiltrating B cells, as opposed to the leakage of circulating antibody across the BBB, is critical to elimination of the virus. These findings suggest that a pathogenic rabies virus infection may be treatable after the virus has reached the CNS tissues, providing that the appropriate immune effectors can be targeted to the infected tissues.
Collapse
Affiliation(s)
- D Craig Hooper
- Center for Neurovirology, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | | | | | | |
Collapse
|
127
|
Luzi P, Abraham RM, Rafi MA, Curtis M, Hooper DC, Wenger DA. Effects of treatments on inflammatory and apoptotic markers in the CNS of mice with globoid cell leukodystrophy. Brain Res 2009; 1300:146-58. [PMID: 19748497 DOI: 10.1016/j.brainres.2009.09.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 09/01/2009] [Accepted: 09/04/2009] [Indexed: 10/20/2022]
Abstract
Globoid cell leukodystrophy (GLD) or Krabbe disease is a neurodegenerative disorder caused by the deficiency of the lysosomal enzyme galactocerebrosidase (GALC). GALC deficiency results in a progressive demyelination of the central and peripheral nervous systems. Inflammatory cells and increased levels of cytokines and chemokines are present in the CNS of GLD mice and may play a significant role in the pathogenesis of the disease. In this study we evaluate the effect of non-steroidal anti-inflammatory drugs, such as indomethacin and ibuprofen, and minocycline, a tetracycline analog with neuroprotective and anti-apoptotic properties, on the progression of the disease using a transgenic mouse model of GLD. Real-time quantitative PCR was used to analyze the expression of several markers of the immune/inflammatory response. IL-6, TNF-alpha, MIP-1beta, MCP-1, iNOS/NOS2, CD11b, CD68, CD4 and CD8 mRNA levels were measured in cortex, cerebellum and spinal cord of untreated and treated affected mice at different ages. In addition, the pharmacological treatments were compared to bone marrow transplantation (BMT). The pharmacological treatments significantly extended the life-span of the treated mice and reduced the levels of several of the immuno-related factors studied. However, BMT produced the most dramatic improvements. In BMT-treated mice, factors in the spinal cord were normalized faster than the cerebellum, with the exception of CD68. There was a decrease in the number of apoptotic cells in the cerebellum of mice receiving anti-inflammatory drugs and BMT. These studies indicate a possible role for combined therapy in the treatment of GLD.
Collapse
Affiliation(s)
- Paola Luzi
- Department of Neurology, Jefferson Medical College, 1020 Locust street, Room #394, Philadelphia, PA 19107, USA.
| | | | | | | | | | | |
Collapse
|
128
|
Rubin J, David D, Willoughby RE, Rupprecht CE, Garcia C, Guarda DC, Zohar Z, Stamler A. Applying the Milwaukee Protocol to treat canine rabies in Equatorial Guinea. ACTA ACUST UNITED AC 2009; 41:372-5. [DOI: 10.1080/00365540902798333] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
129
|
Effective preexposure and postexposure prophylaxis of rabies with a highly attenuated recombinant rabies virus. Proc Natl Acad Sci U S A 2009; 106:11300-5. [PMID: 19581599 DOI: 10.1073/pnas.0905640106] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rabies remains an important public health problem with more than 95% of all human rabies cases caused by exposure to rabid dogs in areas where effective, inexpensive vaccines are unavailable. Because of their ability to induce strong innate and adaptive immune responses capable of clearing the infection from the CNS after a single immunization, live-attenuated rabies virus (RV) vaccines could be particularly useful not only for the global eradication of canine rabies but also for late-stage rabies postexposure prophylaxis of humans. To overcome concerns regarding the safety of live-attenuated RV vaccines, we developed the highly attenuated triple RV G variant, SPBAANGAS-GAS-GAS. In contrast to most attenuated recombinant RVs generated thus far, SPBAANGAS-GAS-GAS is completely nonpathogenic after intracranial infection of mice that are either developmentally immunocompromised (e.g., 5-day-old mice) or have inherited deficits in immune function (e.g., antibody production or type I IFN signaling), as well as normal adult animals. In addition, SPBAANGAS-GAS-GAS induces immune mechanisms capable of containing a CNS infection with pathogenic RV, thereby preventing lethal rabies encephalopathy. The lack of pathogenicity together with excellent immunogenicity and the capacity to deliver immune effectors to CNS tissues makes SPBAANGAS-GAS-GAS a promising vaccine candidate for both the preexposure and postexposure prophylaxis of rabies.
Collapse
|
130
|
Mouse adenovirus type 1-induced breakdown of the blood-brain barrier. J Virol 2009; 83:9398-410. [PMID: 19570856 DOI: 10.1128/jvi.00954-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Infection with mouse adenovirus type 1 (MAV-1) results in fatal acute encephalomyelitis in susceptible mouse strains via infection of brain endothelial cells. Wild-type (wt) MAV-1 causes less brain inflammation than an early region 3 (E3) null virus in C57BL/6 mice. A mouse brain microvascular endothelial cell line infected with wt MAV-1 had higher expression of mRNAs for the proinflammatory chemokines CCL2 and CCL5 than mock- and E3 null virus-infected cells. Primary mouse brain endothelial cells infected with wt virus had elevated levels of CCL2 compared to mock- or E3 null virus-infected cells. Infection of C57BL/6 mice with wt MAV-1 or the E3 null virus caused a dose-dependent breakdown of the blood-brain barrier, primarily due to direct effects of virus infection rather than inflammation. The tight junction proteins claudin-5 and occludin showed reduced surface expression on primary mouse brain endothelial cells following infection with either wt MAV-1 or the E3 null virus. mRNAs and protein for claudin-5, occludin, and zona occludens 2 were also reduced in infected cells. MAV-1 infection caused a loss of transendothelial electrical resistance in primary mouse brain endothelial cells that was not dependent on E3 or on MAV-1-induced CCL2 expression. Taken together, these results demonstrate that MAV-1 infection caused breakdown of the blood-brain barrier accompanied by decreased surface expression of tight junction proteins. Furthermore, while the MAV-1-induced pathogenesis and inflammation were dependent on E3, MAV-1-induced breakdown of the blood-brain barrier and alteration of endothelial cell function were not dependent on E3 or CCL2.
Collapse
|
131
|
Sheridan PA, Beck MA. The dendritic and T cell responses to herpes simplex virus-1 are modulated by dietary vitamin E. Free Radic Biol Med 2009; 46:1581-8. [PMID: 19303435 PMCID: PMC2693096 DOI: 10.1016/j.freeradbiomed.2009.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 02/24/2009] [Accepted: 03/06/2009] [Indexed: 11/25/2022]
Abstract
Previous studies from our laboratory have shown that dietary alpha-tocopherol (vitamin E, or VE) is essential for regulating the cytokine and chemokine response in the brain to herpes simplex virus-1 (HSV-1) infection. The timing of T cell infiltration is critical to the resolution of central nervous system HSV-1 infections. Specifically, the appearance of "neuroprotective" CD8(+)IFN-gamma(+) T cells is crucial. During CNS infection, CD8(+) T cell priming and expansion in the draining lymph node, followed by recruitment and expansion, occurs in the spleen with subsequent accumulation in the brain. Weanling male BALB/cByJ mice were placed on VE-deficient (Def) or -adequate diets for 4 weeks followed by intranasal infection with HSV-1. VE-Def mice had fewer CD8(+)IFN-gamma(+) T cells trafficking to the brain despite increased CD8(+)IFN-gamma(+) T cells and activated dendritic cells in the periphery. VE-Def mice had increased T regulatory cells (Tregs) in the periphery and brain, and the increase in Tregs decreased CD8(+) T cell numbers in the brain. Our results demonstrate that adequate levels of VE are important for trafficking antigen-specific T cells to the brain, and dietary VE levels modulate T regulatory and dendritic cells in the periphery.
Collapse
Affiliation(s)
- Patricia A Sheridan
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
132
|
Konat GW, Borysiewicz E, Fil D, James I. Peripheral challenge with double-stranded RNA elicits global up-regulation of cytokine gene expression in the brain. J Neurosci Res 2009; 87:1381-8. [DOI: 10.1002/jnr.21958] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
133
|
Desai BS, Schneider JA, Li JL, Carvey PM, Hendey B. Evidence of angiogenic vessels in Alzheimer's disease. J Neural Transm (Vienna) 2009; 116:587-97. [PMID: 19370387 PMCID: PMC2753398 DOI: 10.1007/s00702-009-0226-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 03/25/2009] [Indexed: 10/20/2022]
Abstract
Alterations in the blood brain barrier and brain vasculature may be involved in neurodegeneration and neuroinflammation. We sought to determine if vascular remodeling characterized by angiogenic vessels or increased vascular density, occurred in pathologically confirmed Alzheimer's disease (AD) postmortem human brain tissues. We examined brains of deceased, older catholic clergy from the Religious Order Study, a longitudinal clinical-pathological study of aging and AD. The hippocampus, midfrontal cortex, substantia nigra, globus pallidus and locus ceruleus were examined for integrin alphavbeta3 immunoreactivity, a marker of angiogenesis, and vascular densities. Activated microglia cell counts were also performed. All areas except the globus pallidus exhibited elevated alphavbeta3 immunoreactivity in AD cases compared with controls. Only in the hippocampus did the ongoing angiogenesis result in increased vascular density compared with controls. Vascular density was correlated with Abeta load in the hippocampus and alphavbeta3 reactivity was correlated with neurofibrillary tangles in the midfrontal cortex and in the substantia nigra. These data indicate that ongoing angiogenesis is present in brain regions affected by AD pathology and may be related to tissue injury.
Collapse
Affiliation(s)
- Brinda S. Desai
- Department of Pharmacology, Rush University Medical Center, Cohn Research Building, 1735 W Harrison Suite 412, Chicago, IL 60612, USA
| | - Julie A. Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jia-Liang Li
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Paul M. Carvey
- Department of Pharmacology, Rush University Medical Center, Cohn Research Building, 1735 W Harrison Suite 412, Chicago, IL 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Bill Hendey
- Department of Pharmacology, Rush University Medical Center, Cohn Research Building, 1735 W Harrison Suite 412, Chicago, IL 60612, USA
| |
Collapse
|
134
|
Atochina-Vasserman EN, Gow AJ, Abramova H, Guo CJ, Tomer Y, Preston AM, Beck JM, Beers MF. Immune reconstitution during Pneumocystis lung infection: disruption of surfactant component expression and function by S-nitrosylation. THE JOURNAL OF IMMUNOLOGY 2009; 182:2277-87. [PMID: 19201882 DOI: 10.4049/jimmunol.0802775] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pneumocystis pneumonia (PCP), the most common opportunistic pulmonary infection associated with HIV infection, is marked by impaired gas exchange and significant hypoxemia. Immune reconstitution disease (IRD) represents a syndrome of paradoxical respiratory failure in patients with active or recently treated PCP subjected to immune reconstitution. To model IRD, C57BL/6 mice were selectively depleted of CD4(+) T cells using mAb GK1.5. Following inoculation with Pneumocystis murina cysts, infection was allowed to progress for 2 wk, GK1.5 was withdrawn, and mice were followed for another 2 or 4 wk. Flow cytometry of spleen cells demonstrated recovery of CD4(+) cells to >65% of nondepleted controls. Lung tissue and bronchoalveolar lavage fluid harvested from IRD mice were analyzed in tandem with samples from CD4-depleted mice that manifested progressive PCP for 6 wks. Despite significantly decreased pathogen burdens, IRD mice had persistent parenchymal lung inflammation, increased bronchoalveolar lavage fluid cellularity, markedly impaired surfactant biophysical function, and decreased amounts of surfactant phospholipid and surfactant protein (SP)-B. Paradoxically, IRD mice also had substantial increases in the lung collectin SP-D, including significant amounts of an S-nitrosylated form. By native PAGE, formation of S-nitrosylated SP-D in vivo resulted in disruption of SP-D multimers. Bronchoalveolar lavage fluid from IRD mice selectively enhanced macrophage chemotaxis in vitro, an effect that was blocked by ascorbate treatment. We conclude that while PCP impairs pulmonary function and produces abnormalities in surfactant components and biophysics, these responses are exacerbated by IRD. This worsening of pulmonary inflammation, in response to persistent Pneumocystis Ags, is mediated by recruitment of effector cells modulated by S-nitrosylated SP-D.
Collapse
Affiliation(s)
- Elena N Atochina-Vasserman
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Tao W, Wen F, Zhang H, Liu G. The signal transduction mediated by erythropoietin and proinflammatory cytokines in the JAK/STAT pathway in the children with cerebral palsy. Brain Dev 2009; 31:200-7. [PMID: 18715729 DOI: 10.1016/j.braindev.2008.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 06/22/2008] [Accepted: 06/23/2008] [Indexed: 11/29/2022]
Abstract
It is well established that erythropoietin (EPO) is a pleiotropic cytokine, which has a brain-derived neuroprotective effect in the central nervous system (CNS). Immune abnormality has a close relationship with cerebral palsy (CP), and may be even involved in the development of CP. There is evidence that the amount of EPO in CP children is lower than in normal children, but the levels of proinflammatory cytokines, such as interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha, are higher in the CP children. The signal transduction mediated by EPO that has a neuroprotective effect and mediated by proinflammatory cytokines that lead to brain damage shares the common JAK/STAT pathway. Under acute stress, the JAK/STAT pathway is occupied by massive proinflammatory cytokines, and the negative feedback inhibition factors like suppressor of cytokine signaling (SOCS) proteins are simultaneously activated, which exist in reciprocal inhibition to EPO in the JAK/STAT pathway. As a result, the signal transduction mediated by EPO is prevented or reduced, and the neuroprotective effect of EPO is eventually weakened. In this review, a novel approach to CP treatment through neurodevelopmental treatment (NDT) is put forward by analysis of the interrelationship of signal transduction mediated by EPO and proinflammatory cytokines in the JAK/STAT pathway and their roles in the development of CP, and some reasonable ideas for CP treatment are provided.
Collapse
Affiliation(s)
- Weiyuan Tao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | | | | | | |
Collapse
|
136
|
Replicon particles of Venezuelan equine encephalitis virus as a reductionist murine model for encephalitis. J Virol 2009; 83:4275-86. [PMID: 19225006 DOI: 10.1128/jvi.02383-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEE) replicon particles (VRP) were used to model the initial phase of VEE-induced encephalitis in the mouse brain. VRP can target and infect cells as VEE, but VRP do not propagate beyond the first infected cell due to the absence of the structural genes. Direct intracranial inoculation of VRP into mice induced acute encephalitis with signs similar to the neuronal phase of wild-type VEE infection and other models of virus-induced encephalitis. Using the previously established VRP-mRNP tagging system, a new method to distinguish the host responses in infected cells from those in uninfected bystander cell populations, we detected a robust and rapid innate immune response in the central nervous system (CNS) by infected neurons and uninfected bystander cells. Moreover, this innate immune response in the CNS compromised blood-brain barrier integrity, created an inflammatory response, and directed an adaptive immune response characterized by proliferation and activation of microglia cells and infiltration of inflammatory monocytes, in addition to CD4(+) and CD8(+) T lymphocytes. Taken together, these data suggest that a naïve CNS has an intrinsic potential to induce an innate immune response that could be crucial to the outcome of the infection by determining the composition and dynamics of the adaptive immune response. Furthermore, these results establish a model for neurotropic virus infection to identify host and viral factors that contribute to invasion of the brain, the mechanism(s) whereby the adaptive immune response can clear the infection, and the role of the host innate response in these processes.
Collapse
|
137
|
Roy A, Hooper DC. Immune evasion by rabies viruses through the maintenance of blood-brain barrier integrity. J Neurovirol 2008; 14:401-11. [PMID: 19016377 DOI: 10.1080/13550280802235924] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The attenuated rabies virus (RV) strain Challenge Virus Standard (CVS)-F3 and a highly pathogenic strain associated with the silver-haired bats (SHBRV) can both be cleared from the central nervous system (CNS) tissues by appropriate antiviral immune mechanisms if the effectors are provided access across the blood-brain barrier (BBB). In the case of SHBRV infection, antiviral immunity develops normally in the periphery but fails to open the BBB, generally resulting in a lethal outcome. To determine whether or not an absence in the CNS targeted immune response is associated with the infection with other pathogenic RV strains, we have assessed the development of immunity, BBB permeability, and immune cell infiltration into the CNS tissues of mice infected with a variety of RV strains, including the dog variants responsible for the majority of human rabies cases. We demonstrate that the lethal outcomes of infection with a variety of known pathogenic RV strains are indeed associated with the inability to deliver immune effectors across the BBB. Survival from infection with certain of these viruses is improved in mice prone to CNS inflammation. The results suggest that competition between the activity of the immune effectors reaching CNS tissues and the inherent pathological attributes of the virus dictates the outcome and that intervention to deliver RV-specific immune effectors into CNS tissues may have general therapeutic value in rabies.
Collapse
Affiliation(s)
- Anirban Roy
- Center for Neurovirology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107-6799, USA
| | | |
Collapse
|
138
|
Blood-brain barrier changes and cell invasion differ between therapeutic immune clearance of neurotrophic virus and CNS autoimmunity. Proc Natl Acad Sci U S A 2008; 105:15511-6. [PMID: 18829442 DOI: 10.1073/pnas.0807656105] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CNS tissues are protected from circulating cells and factors by the blood-brain barrier (BBB), a specialization of the neurovasculature. Outcomes of the loss of BBB integrity and cell infiltration into CNS tissues can differ vastly. For example, elevated BBB permeability is closely associated with the development of neurological disease in experimental allergic encephalomyelitis (EAE) but not during clearance of the attenuated rabies virus CVS-F3 from the CNS tissues. To probe whether differences in the nature of BBB permeability changes may contribute to the pathogenesis of acute neuroinflammatory disease, we compared the characteristics of BBB permeability changes in mice with EAE and in mice clearing CVS-F3. BBB permeability changes are largely restricted to the cerebellum and spinal cord in both models but differ in the extent of leakage of markers of different size and in the nature of cell accumulation in the CNS tissues. The accumulation in the CNS tissues of CD4 T cells expressing mRNAs specific for IFN-gamma and IL-17 is common to both, but iNOS-positive cells invade into the CNS parenchyma only in EAE. Mice that have been immunized with myelin basic protein (MBP) and infected exhibit the features of EAE. Treatment with the peroxynitrite-dependent radical scavenger urate inhibits the invasion of iNOS-positive cells into the CNS tissues and the development of clinical signs of EAE without preventing the loss of BBB integrity in immunized/infected animals. These findings indicate that BBB permeability changes can occur in the absence of neuropathology provided that cell invasion is restricted.
Collapse
|
139
|
Wang S, Welte T, McGargill M, Town T, Thompson J, Anderson JF, Flavell RA, Fikrig E, Hedrick SM, Wang T. Drak2 contributes to West Nile virus entry into the brain and lethal encephalitis. THE JOURNAL OF IMMUNOLOGY 2008; 181:2084-91. [PMID: 18641347 DOI: 10.4049/jimmunol.181.3.2084] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Death-associated protein kinase-related apoptosis-inducing kinase-2 (Drak2), a member of the death-associated protein family of serine/threonine kinases, is specifically expressed in T and B cells. In the absence of Drak2, mice are resistant to experimental autoimmune encephalomyelitis due to a decrease in the number of cells infiltrating the CNS. In the present study, we investigated the role of Drak2 in West Nile virus (WNV)-induced encephalitis and found that Drak2(-/-) mice were also more resistant to lethal WNV infection than wild-type mice. Although Drak2(-/-) mice had an increase in the number of IFN-gamma-producing T cells in the spleen after infection, viral levels in the peripheral tissues were not significantly different between these two groups of mice. In contrast, there was a reduced viral load in the brains of Drak2(-/-) mice, which was accompanied by a decrease in the number of Drak2(-/-) CD4(+) and CD8(+) T cells in the brain following WNV infection. Moreover, we detected viral Ags in T cells isolated from the spleen or brain of WNV-infected mice. These results suggest that following a systemic infection, WNV might cross the blood brain barrier and enter the CNS by being carried by infected infiltrating T cells.
Collapse
Affiliation(s)
- Shuhui Wang
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Mechanisms and implications of adaptive immune responses after traumatic spinal cord injury. Neuroscience 2008; 158:1112-21. [PMID: 18674593 DOI: 10.1016/j.neuroscience.2008.07.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/26/2008] [Accepted: 07/01/2008] [Indexed: 12/12/2022]
Abstract
Traumatic spinal cord injury (SCI) in mammals causes widespread glial activation and recruitment to the CNS of innate (e.g. neutrophils, monocytes) and adaptive (e.g. T and B lymphocytes) immune cells. To date, most studies have sought to understand or manipulate the post-traumatic functions of astrocytes, microglia, neutrophils or monocytes. Significantly less is known about the consequences of SCI-induced lymphocyte activation. Yet, emerging data suggest that T and B cells are activated by SCI and play significant roles in shaping post-traumatic inflammation and downstream cascades of neurodegeneration and repair. Here, we provide neurobiologists with a timely review of the mechanisms and implications of SCI-induced lymphocyte activation, including a discussion of different experimental strategies that have been designed to manipulate lymphocyte function for therapeutic gain.
Collapse
|
141
|
Zhang B, Chan YK, Lu B, Diamond MS, Klein RS. CXCR3 mediates region-specific antiviral T cell trafficking within the central nervous system during West Nile virus encephalitis. THE JOURNAL OF IMMUNOLOGY 2008; 180:2641-9. [PMID: 18250476 DOI: 10.4049/jimmunol.180.4.2641] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Regional differences in inflammation during viral infections of the CNS suggest viruses differentially induce patterns of chemoattractant expression, depending on their cellular targets. Previous studies have shown that expression of the chemokine CXCL10 by West Nile virus (WNV)-infected neurons is essential for the recruitment of CD8 T cells for the purpose of viral clearance within the CNS. In the current study we used mice deficient for the CXCL10 receptor, CXCR3, to evaluate its role in leukocyte-mediated viral clearance of WNV infection within various CNS compartments. WNV-infected CXCR3-deficient mice exhibited significantly enhanced mortality compared with wild-type controls. Immunologic and virologic analyses revealed that CXCR3 was dispensable for control of viral infection in the periphery and in most CNS compartments but, surprisingly, was required for CD8 T cell-mediated antiviral responses specifically within the cerebellum. WNV-specific, CXCR3-expressing T cells preferentially migrated into the cerebellum, and WNV-infected cerebellar granule cell neurons expressed higher levels of CXCL10 compared with similarly infected cortical neurons. These results indicate that WNV differentially induces CXCL10 within neuronal populations and suggest a novel model for nonredundancy in chemokine-mediated inflammation among CNS compartments.
Collapse
Affiliation(s)
- Bo Zhang
- Division of Infectious Diseases, Children's Hospital of Boston, Boston, MA, USA
| | | | | | | | | |
Collapse
|
142
|
Spitsin S, Portocarrero C, Phares TW, Kean RB, Brimer CM, Koprowski H, Hooper DC. Early blood-brain barrier permeability in cerebella of PLSJL mice immunized with myelin basic protein. J Neuroimmunol 2008; 196:8-15. [PMID: 18406473 DOI: 10.1016/j.jneuroim.2008.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/29/2008] [Accepted: 02/04/2008] [Indexed: 11/26/2022]
Abstract
The blood-brain barrier (BBB) is dramatically but transiently compromised in the cerebella of myelin basic protein immunized mice at least 1 week prior to the development of the paralytic phase of experimental allergic encephalomyelitis (EAE). Treatment of mice with the peroxynitrite-dependent radical scavenger uric acid (UA) during the first week after immunization blocks the early increase in cerebellar BBB permeability and the subsequent development of clinical signs of EAE. These results indicate that the early loss of BBB integrity in the cerebellum is likely to be a necessary step in the development of paralytic EAE.
Collapse
Affiliation(s)
- Sergei Spitsin
- Thomas Jefferson University, 1020 Locust St., JAH room 470C, Philadelphia, PA 19107, United States.
| | | | | | | | | | | | | |
Collapse
|
143
|
Arjona A, Foellmer HG, Town T, Leng L, McDonald C, Wang T, Wong SJ, Montgomery RR, Fikrig E, Bucala R. Abrogation of macrophage migration inhibitory factor decreases West Nile virus lethality by limiting viral neuroinvasion. J Clin Invest 2007; 117:3059-66. [PMID: 17909632 PMCID: PMC1994625 DOI: 10.1172/jci32218] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 07/11/2007] [Indexed: 11/17/2022] Open
Abstract
The flavivirus West Nile virus (WNV) is an emerging pathogen that causes life-threatening encephalitis in susceptible individuals. We investigated the role of the proinflammatory cytokine macrophage migration inhibitory factor (MIF), which is an upstream mediator of innate immunity, in WNV immunopathogenesis. We found that patients suffering from acute WNV infection presented with increased MIF levels in plasma and in cerebrospinal fluid. MIF expression also was induced in WNV-infected mice. Remarkably, abrogation of MIF action by 3 distinct approaches (antibody blockade, small molecule pharmacologic inhibition, and genetic deletion) rendered mice more resistant to WNV lethality. Mif(-/-) mice showed a reduced viral load and inflammatory response in the brain when compared with wild-type mice. Our results also indicate that MIF favors viral neuroinvasion by compromising the integrity of the blood-brain barrier. In conclusion, the data obtained from this study provide direct evidence for the involvement of MIF in viral pathogenesis and suggest that pharmacotherapeutic approaches targeting MIF may hold promise for the treatment of WNV encephalitis.
Collapse
Affiliation(s)
- Alvaro Arjona
- Section of Rheumatology, Department of Internal Medicine, and
Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA.
Diagnostic Immunology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Harald G. Foellmer
- Section of Rheumatology, Department of Internal Medicine, and
Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA.
Diagnostic Immunology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Terrence Town
- Section of Rheumatology, Department of Internal Medicine, and
Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA.
Diagnostic Immunology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Lin Leng
- Section of Rheumatology, Department of Internal Medicine, and
Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA.
Diagnostic Immunology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Courtney McDonald
- Section of Rheumatology, Department of Internal Medicine, and
Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA.
Diagnostic Immunology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Tian Wang
- Section of Rheumatology, Department of Internal Medicine, and
Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA.
Diagnostic Immunology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Susan J. Wong
- Section of Rheumatology, Department of Internal Medicine, and
Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA.
Diagnostic Immunology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Ruth R. Montgomery
- Section of Rheumatology, Department of Internal Medicine, and
Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA.
Diagnostic Immunology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Erol Fikrig
- Section of Rheumatology, Department of Internal Medicine, and
Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA.
Diagnostic Immunology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Richard Bucala
- Section of Rheumatology, Department of Internal Medicine, and
Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA.
Diagnostic Immunology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| |
Collapse
|
144
|
Capuron L, Pagnoni G, Demetrashvili MF, Lawson DH, Fornwalt FB, Woolwine B, Berns GS, Nemeroff CB, Miller AH. Basal ganglia hypermetabolism and symptoms of fatigue during interferon-alpha therapy. Neuropsychopharmacology 2007; 32:2384-92. [PMID: 17327884 DOI: 10.1038/sj.npp.1301362] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Interferon (IFN)-alpha is a cytokine of the innate immune response that is well known for inducing behavioral alterations and has been used to study effects of cytokines on the nervous system. Limited data, however, are available on the sites of action of IFN-alpha within the brain and their relationship with specific IFN-alpha-induced symptoms. Using a longitudinal design, whole-brain metabolic activity as assessed by fluorine-18-labeled fluorodeoxyglucose uptake and positron emission tomography was examined before and 4 weeks after IFN-alpha administration in patients with malignant melanoma. Changes in metabolic activity in relevant brain regions were then correlated with IFN-alpha-induced behavioral changes. IFN-alpha administration was associated with widespread bilateral increases in glucose metabolism in subcortical regions including the basal ganglia and cerebellum. Decreases in dorsal prefrontal cortex glucose metabolism were also observed. Prominent IFN-alpha-induced behavioral changes included lassitude, inability to feel, and fatigue. Correlational analyses revealed that self-reported fatigue (specifically as assessed by the 'energy' subscale of the Visual Analog Scale of Fatigue) was associated with increased glucose metabolism in the left nucleus accumbens and putamen. These data indicate that IFN-alpha as well as other cytokines of the innate immune response may target basal ganglia nuclei, thereby contributing to fatigue-related symptoms in medically ill patients.
Collapse
Affiliation(s)
- Lucile Capuron
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Mejías M, Molina MC, Ferreira A. Assessment of the IgG index in dogs by indirect immunoenzimatic assays as diagnostic tool for inflammatory diseases of central nervous system. Res Vet Sci 2007; 84:335-40. [PMID: 17716699 DOI: 10.1016/j.rvsc.2007.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 06/19/2007] [Accepted: 06/25/2007] [Indexed: 11/20/2022]
Abstract
The IgG index measures the intrathecal immunoglobulin production and it is a useful tool for diagnosis of inflammatory diseases involving the central nervous system. This index is based on the precise quantification of albumin and IgG in canine cerebrospinal fluid and serum. Here, we report the development of an indirect competitive ELISAs for the detection of both antigens. Thirty-two dogs were included in this study, divided into three experimental groups. Group A was composed of 22 healthy animals, as determined by standard clinical examination. In group B, six animals, presented neurological pathologies associated with endogenous IgG production and, in group C four animals presented neurological diseases or symptoms not associated with intrathecal IgG production. Cerebrospinal fluid and serum samples were obtained from these animals. As expected, by using the indirect ELISAs proposed here, the IgG indexes obtained in healthy animals (A) were 0.371+/-0.252 (SD). In B and C, the values (3.002+/-1.897; 0.36+/-0.306, respectively), were in agreement with the pathologic conditions of the individuals in each group. Thus, the immunometric competition ELISA methods proposed here allow the discrimination of abnormal intrathecal IgG production, in a variety of inflammatory pathologic conditions of the central nervous system.
Collapse
Affiliation(s)
- M Mejías
- Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | | | | |
Collapse
|
146
|
Phares TW, Fabis MJ, Brimer CM, Kean RB, Hooper DC. A peroxynitrite-dependent pathway is responsible for blood-brain barrier permeability changes during a central nervous system inflammatory response: TNF-alpha is neither necessary nor sufficient. THE JOURNAL OF IMMUNOLOGY 2007; 178:7334-43. [PMID: 17513784 DOI: 10.4049/jimmunol.178.11.7334] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Elevated blood-brain barrier (BBB) permeability is associated with both the protective and pathological invasion of immune and inflammatory cells into CNS tissues. Although a variety of processes have been implicated in the changes at the BBB that result in the loss of integrity, there has been no consensus as to their induction. TNF-alpha has often been proposed to be responsible for increased BBB permeability but there is accumulating evidence that peroxynitrite (ONOO(-))-dependent radicals may be the direct trigger. We demonstrate here that enhanced BBB permeability in mice, whether associated with rabies virus (RV) clearance or CNS autoimmunity, is unaltered in the absence of TNF-alpha. Moreover, the induction of TNF-alpha expression in CNS tissues by RV infection has no impact on BBB integrity in the absence of T cells. CD4 T cells are required to enhance BBB permeability in response to the CNS infection whereas CD8 T cells and B cells are not. Like CNS autoimmunity, elevated BBB permeability in response to RV infection is evidently mediated by ONOO(-). However, as opposed to the invading cells producing ONOO(-) that have been implicated in the pathogenesis of CNS inflammation, during virus clearance ONOO(-) is produced without pathological sequelae by IFN-gamma-stimulated neurovascular endothelial cells.
Collapse
MESH Headings
- Animals
- Blood-Brain Barrier/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- CD4-Positive T-Lymphocytes/virology
- Cell Membrane Permeability/genetics
- Cell Membrane Permeability/immunology
- Cell Movement/genetics
- Cell Movement/immunology
- Cerebellum/immunology
- Cerebellum/pathology
- Cerebellum/virology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Encephalomyelitis, Autoimmune, Experimental/virology
- Female
- Lymphopenia/immunology
- Lymphopenia/pathology
- Lymphopenia/virology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Peroxynitrous Acid/physiology
- Rabies virus/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- T-Lymphocyte Subsets/virology
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/deficiency
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/physiology
- Tyrosine/analogs & derivatives
- Tyrosine/metabolism
- Viral Load
Collapse
Affiliation(s)
- Timothy W Phares
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
147
|
Roy A, Hooper DC. Lethal silver-haired bat rabies virus infection can be prevented by opening the blood-brain barrier. J Virol 2007; 81:7993-8. [PMID: 17507463 PMCID: PMC1951307 DOI: 10.1128/jvi.00710-07] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Silver-haired bat rabies virus (SHBRV) infection induces a strong virus-specific immune response in the periphery of the host, but death is common due to the failure to open the blood-brain barrier (BBB) and deliver immune effectors to central nervous system (CNS) tissues. Mice with an SJL background are less susceptible to lethal infection with rabies viruses. In addition, these animals are known to have reduced hypothalamus-pituitary-adrenal (HPA) axis activity and an elevated capacity to mediate CNS inflammatory responses. We show here that approximately one-half of PLSJL mice survive an SHBRV infection that is invariably lethal for 129/SvEv mice. This difference is associated with the elevated capacity of PLSJL mice to mediate BBB permeability changes in response to the infection. The induction of more extensive BBB permeability and CNS inflammation in these animals results in greater virus clearance and improved survival. On the other hand, treatment of SHBRV-infected PLSJL mice with the steroid hormone dehydroepiandrosterone reduced BBB permeability changes and caused greater mortality. We conclude that the infiltration of immune effectors across the BBB is critical to surviving a rabies virus infection and that HPA axis activity may influence this process.
Collapse
Affiliation(s)
- Anirban Roy
- Center for Neurovirology, Thomas Jefferson University, 1020 Locust St., JAH 454, Philadelphia, PA 19107-6799, USA
| | | |
Collapse
|
148
|
Fabis MJ, Scott GS, Kean RB, Koprowski H, Hooper DC. Loss of blood-brain barrier integrity in the spinal cord is common to experimental allergic encephalomyelitis in knockout mouse models. Proc Natl Acad Sci U S A 2007; 104:5656-61. [PMID: 17372191 PMCID: PMC1838442 DOI: 10.1073/pnas.0701252104] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Indexed: 11/18/2022] Open
Abstract
Experimental allergic encephalomyelitis (EAE) is an inflammatory demyelinating disease of the CNS that is used to model certain parameters of multiple sclerosis. To establish the relative contributions of T cell reactivity, the loss of blood-brain barrier (BBB) integrity, CNS inflammation, and lesion formation toward the pathogenesis of EAE, we assessed the incidence of EAE and these parameters in mice lacking NF-kappaB, TNF-alpha, IFN-alphabeta receptors, IFN-gamma receptors, and inducible nitric oxide synthase. Although increased myelin oligodendrocyte glycoprotein-specific T cell reactivity was generally associated with a more rapid onset or increased disease severity, the loss of BBB integrity and cell accumulation in spinal cord tissues was invariably associated with the development of neurological disease signs. Histological and real-time RT-PCR analyses revealed differences in the nature of immune/inflammatory cell accumulation in the spinal cord tissues of the different mouse strains. On the other hand, disease severity during the acute phase of EAE directly correlated with the extent of BBB permeability. Thus, the loss of BBB integrity seems to be a requisite event in the development of EAE and can occur in the absence of important inflammatory mediators.
Collapse
Affiliation(s)
- Marzena J. Fabis
- *Center for Neurovirology, Department of Cancer Biology
- Biotechnology Foundation Laboratories, and
| | - Gwen S. Scott
- *Center for Neurovirology, Department of Cancer Biology
| | - Rhonda B. Kean
- *Center for Neurovirology, Department of Cancer Biology
- Biotechnology Foundation Laboratories, and
| | - Hilary Koprowski
- *Center for Neurovirology, Department of Cancer Biology
- Biotechnology Foundation Laboratories, and
| | - D. Craig Hooper
- *Center for Neurovirology, Department of Cancer Biology
- Biotechnology Foundation Laboratories, and
- Department of Neurological Surgery, Thomas Jefferson University, 1020 Locust Street, JAH 454, Philadelphia, PA 19107-6799
| |
Collapse
|
149
|
Roy A, Phares TW, Koprowski H, Hooper DC. Failure to open the blood-brain barrier and deliver immune effectors to central nervous system tissues leads to the lethal outcome of silver-haired bat rabies virus infection. J Virol 2007; 81:1110-8. [PMID: 17108029 PMCID: PMC1797506 DOI: 10.1128/jvi.01964-06] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 11/08/2006] [Indexed: 02/07/2023] Open
Abstract
Rabies is a lethal disease caused by neurotropic viruses that are endemic in nature. When exposure to a potentially rabid animal is recognized, prompt administration of virus-neutralizing antibodies, together with active immunization, can prevent development of the disease. However, once the nonspecific clinical symptoms of rabies appear conventional postexposure treatment is unsuccessful. Over the last decade, rabies viruses associated with the silver-haired bat (SHBRV) have emerged as the leading cause of human deaths from rabies in the United States and Canada as a consequence of the fact that exposure to these viruses is often unnoticed. The need to treat SHBRV infection following the development of clinical rabies has lead us to investigate why the immune response to SHBRV fails to protect at a certain stage of infection. We have established that measurements of innate and adaptive immunity are indistinguishable between mice infected with the highly lethal SHBRV and mice infected with an attenuated laboratory rabies virus strain. While a fully functional immune response to SHBRV develops in the periphery of infected animals, the invasion of central nervous system (CNS) tissues by immune cells is reduced and, consequently, the virus is not cleared. Our data indicate that the specific deficit in the SHBRV-infected animal is an inability to enhance blood-brain barrier permeability in the cerebellum and deliver immune effectors to the CNS tissues. Conceivably, at the stage of infection where immune access to the infected CNS tissues is limited, either the provision or the development of antiviral immunity will be ineffective.
Collapse
Affiliation(s)
- Anirban Roy
- Center for Neurovirology, Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust St., JAH 454, Philadelphia, PA 19107-6799, USA
| | | | | | | |
Collapse
|
150
|
Hutton LC, Castillo-Melendez M, Walker DW. Uteroplacental Inflammation Results in Blood Brain Barrier Breakdown, Increased Activated Caspase 3 and Lipid Peroxidation in the Late Gestation Ovine Fetal Cerebellum. Dev Neurosci 2007; 29:341-54. [PMID: 17762202 DOI: 10.1159/000105475] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 12/08/2006] [Indexed: 01/26/2023] Open
Abstract
Maternal infection is associated with perinatal brain damage, but effects on the cerebellum are not known in detail. In this study, we examined the effects of placental inflammation induced by administering lipopolysaccharide into the uterine artery of pregnant sheep at 134-136 days gestation. The fetal brain was collected 72 h later and compared to brains collected from age-matched untreated fetuses. Placental lipopolysaccharide treatment had substantial effects on the fetal cerebellum, including increasing the number of cells undergoing apoptosis, widespread lipid peroxidation, and extravasation of plasma albumin, suggesting compromise of the cerebellar blood-brain barrier. These effects may account for some of the learning and motor deficits that emerge in neonates from pregnancies compromised by infection.
Collapse
Affiliation(s)
- Lisa C Hutton
- Fetal and Neonatal Research Group, Department of Physiology, Monash University-Clayton Campus, Melbourne, Australia.
| | | | | |
Collapse
|