101
|
Suter MA, Anders AM, Aagaard KM. Maternal smoking as a model for environmental epigenetic changes affecting birthweight and fetal programming. Mol Hum Reprod 2012; 19:1-6. [PMID: 23139402 DOI: 10.1093/molehr/gas050] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Although the association between maternal smoking and low birthweight infants has been well established, the mechanisms behind reduced fetal growth are still being elucidated. While many infants are exposed to tobacco smoke in utero, not all are born growth restricted or small for gestational age. Many hypotheses have emerged to explain the differential response to in utero maternal tobacco smoke exposure (MTSE). Studies have shown that both maternal and fetal genotypes may contribute to the discrepant outcomes. However, the contribution of epigenetic changes cannot be ignored. In this review we address two important questions regarding the effect of MTSE on the fetal epigenome. First, does exposure to maternal tobacco smoke in utero alter the fetal epigenome? Secondly, could these alterations be associated with the reduced fetal growth observed with MTSE?
Collapse
Affiliation(s)
- Melissa A Suter
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine, 1 Baylor Plaza, Jones 314, Houston, TX 77030, USA
| | | | | |
Collapse
|
102
|
Prenatal and Perinatal Environmental Influences on the Human Fetal and Placental Epigenome. Clin Pharmacol Ther 2012; 92:716-26. [DOI: 10.1038/clpt.2012.141] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
103
|
Boekelheide K, Blumberg B, Chapin RE, Cote I, Graziano JH, Janesick A, Lane R, Lillycrop K, Myatt L, States JC, Thayer KA, Waalkes MP, Rogers JM. Predicting later-life outcomes of early-life exposures. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1353-61. [PMID: 22672778 PMCID: PMC3491941 DOI: 10.1289/ehp.1204934] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 06/06/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND In utero exposure of the fetus to a stressor can lead to disease in later life. Epigenetic mechanisms are likely mediators of later-life expression of early-life events. OBJECTIVES We examined the current state of understanding of later-life diseases resulting from early-life exposures in order to identify in utero and postnatal indicators of later-life diseases, develop an agenda for future research, and consider the risk assessment implications of this emerging knowledge. METHODS This review was developed based on our participation in a National Research Council workshop titled "Use of in Utero and Postnatal Indicators to Predict Health Outcomes Later in Life: State of the Science and Research Recommendations." We used a case study approach to highlight the later-life consequences of early-life malnutrition and arsenic exposure. DISCUSSION The environmental sensitivity of the epigenome is viewed as an adaptive mechanism by which the developing organism adjusts its metabolic and homeostatic systems to suit the anticipated extrauterine environment. Inappropriate adaptation may produce a mismatch resulting in subsequent increased susceptibility to disease. A nutritional mismatch between the prenatal and postnatal environments, or early-life obesogen exposure, may explain at least some of the recent rapid increases in the rates of obesity, type 2 diabetes, and cardiovascular diseases. Early-life arsenic exposure is also associated with later-life diseases, including cardiovascular disease and cancer. CONCLUSIONS With mounting evidence connecting early-life exposures and later-life disease, new strategies are needed to incorporate this emerging knowledge into health protective practices.
Collapse
Affiliation(s)
- Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Witzmann SR, Turner JD, Mériaux SB, Meijer OC, Muller CP. Epigenetic regulation of the glucocorticoid receptor promoter 1(7) in adult rats. Epigenetics 2012; 7:1290-301. [PMID: 23023726 DOI: 10.4161/epi.22363] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Regulation of glucocorticoid receptor (GR) levels is an important stress adaptation mechanism. Transcription factor Nfgi-a and environmentally induced Gr promoter 1 7 methylation have been implicated in fine-tuning the expression of Gr 1 7 transcripts. Here, we investigated Gr promoter 1 7 methylation and Gr 1 7 expression in adult rats exposed to either acute or chronic stress paradigms. A strong negative correlation was observed between the sum of promoter-wide methylation levels and Gr 1 7 transcript levels, independent of the stressor. Methylation of individual sites did not, however, correlate with transcript levels. This suggested that promoter 1 7 was directly regulated by promoter-wide DNA methylation. Although acute stress increased Ngfi-a expression in the hypothalamic paraventricular nucleus (PVN), Gr 1 7 transcript levels remained unaffected despite low methylation levels. Acute stress had little effect on these low methylation levels, except at four hippocampal CpGs. Chronic stress altered the corticosterone response to an acute stressor. In the adrenal and pituitary glands, but not in the brain, this was accompanied by an increase in methylation levels in orchestrated clusters rather than individual CpGs. PVN methylation levels, unaffected by acute or chronic stress, were significantly more variable within- than between-groups, suggesting that they were instated probably during the perinatal period and represent a pre-established trait. Thus, in addition to the known perinatal programming, the Gr 1 7 promoter is epigenetically regulated by chronic stress in adulthood, and retains promoter-wide tissue-specific plasticity. Differences in methylation susceptibility between the PVN in the perinatal period and the peripheral HPA axis tissues in adulthood may represent an important "trait" vs. "state" regulation of the Gr gene.
Collapse
Affiliation(s)
- Simone R Witzmann
- Institute of Immunology, Centre de Recherche Public de la Santé and National Public Health Laboratory, Luxembourg, Luxembourg
| | | | | | | | | |
Collapse
|
105
|
Adkins RM, Tylavsky FA, Krushkal J. Newborn umbilical cord blood DNA methylation and gene expression levels exhibit limited association with birth weight. Chem Biodivers 2012; 9:888-99. [PMID: 22589090 DOI: 10.1002/cbdv.201100395] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Most cases of fetal growth retardation are unexplained. These newborns are at high risk of serious illness or death in the neonatal period and exhibit significantly increased risk of specific chronic illnesses later in life. While there are several hypotheses to explain the well-established association between low birth weight and later risk of disease, the true etiology is unknown. To search for molecular patterns that may explain the biological basis for reduced fetal growth in a clinically normal cohort, and possibly provide clues for the lifelong increased risk of disease, we surveyed genome-wide DNA methylation and gene expression patterns in the umbilical cord blood of newborns born in Shelby County, TN. While we did not find genome-wide significant associations of birth weight with either leukocytic gene expression or DNA methylation, we did find suggestive associations in several genes with known effects on pre- or postnatal growth and health. As with previous molecular epidemiological studies of birth weight, we did not sample the most biologically relevant tissues in the newborn. However, our discovery of biologically plausible associations in a peripheral tissue suggests that further studies of tissues key to fetal growth regulation are warranted.
Collapse
Affiliation(s)
- Ronald M Adkins
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA.
| | | | | |
Collapse
|
106
|
Impact of cadmium exposure during pregnancy on hepatic glucocorticoid receptor methylation and expression in rat fetus. PLoS One 2012; 7:e44139. [PMID: 22957049 PMCID: PMC3434215 DOI: 10.1371/journal.pone.0044139] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/31/2012] [Indexed: 11/23/2022] Open
Abstract
Adverse fetal environment due to maternal undernutrition or exposure to environmental chemicals alters glucocorticoid (GC) metabolism increasing the risk of metabolic disorders in adulthood. In this study, we investigated the effects of maternal exposure to cadmium (Cd, 50 ppm) during pregnancy in the methylation of fetal hepatic glucocorticoid receptor promoter (GR) and the correlation with its expression and that of the DNA methyltransferases (DNMT1a and 3a). We also studied the expression of liver phosphoenolpyruvate carboxykinase (PEPCK) and acyl-CoA oxidase (AOX), two enzymes involved in the metabolism of carbohydrates and lipids respectively. The methylation of the rat GR gene exon 110 (GR110) in nucleotides -2536 to -2361 was analyzed by pyrosequencing. Quantitative real time PCR was used to assess hepatic GR, PEPCK and AOX mRNA, and their protein levels using Western blotting analysis. Differential methylation was noted across groups at all CpG sites in the GR exon 110 in a sex-dependent manner. In males, CpG were more methylated than the controls (185±21%, p<0.001) but only CpG sites 1,6,7 and 9 showed a significantly different extent of methylation. In addition, a lower expression of GR (mRNA and protein) was found. On the contrary, in females, CpG were less methylated than the controls (62±11%, p<0.05) and overexpressed, affecting PEPCK and AOX expression, which did not change in males. The GR methylation profile correlates with DNMT3a expression which may explain epigenetic sex-dependent changes on GR110 promoter induced by Cd treatment. In conclusion, Cd exposure during pregnancy affects fetal liver DNMT3a resulting in sex-dependent changes in methylation and expression of GR110. Although these effects do not seem to be directly involved in the low birth weight and height, they may have relevant implications for long-term health.
Collapse
|
107
|
Slaats GG, Reinius LE, Alm J, Kere J, Scheynius A, Joerink M. DNA methylation levels within the CD14 promoter region are lower in placentas of mothers living on a farm. Allergy 2012; 67:895-903. [PMID: 22564189 DOI: 10.1111/j.1398-9995.2012.02831.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Epigenetic regulation has been suggested to be a link between environmental intrauterine exposures and development of asthma and allergy. The placenta is an essential part of the intrauterine environment. We have previously found the innate immune receptor CD14 to be differentially expressed on the mRNA level in placentas in relation to lifestyle and parental allergen sensitization. We here hypothesized that the promoter region of CD14 may be subject to differential DNA methylation and therefore a link between intrauterine exposure and mRNA expression. METHODS Ninety-four placentas from the ALADDIN (Assessment of Lifestyle and Allergic Disease During Infancy) study were investigated. We used methylation-sensitive high-resolution melting (MS-HRM) analysis to semi-quantitatively analyze the DNA methylation of the promoter region of CD14 in 36 placentas known to have different CD14 mRNA expression. EpiTYPER was used to validate the MS-HRM data and to analyze an additional 58 placentas selected on mothers living on a farm or not. RESULTS MS-HRM analysis on 36 placenta samples revealed a relation between methylation of the CD14 promoter region with the level of CD14 mRNA expression. The MS-HRM and EpiTYPER data correlated highly significantly. EpiTYPER analysis of the additional 58 placentas demonstrated that DNA methylation in the CD14 promoter was significantly lower in placentas of mothers living on a farm compared with mothers not living on a farm. CONCLUSION Our data suggest that epigenetic regulation of CD14 in placenta might be involved in the protective effect of 'living on a farm', with regard to allergy development.
Collapse
Affiliation(s)
| | - Lovisa E. Reinius
- Department of Biosciences and Nutrition; Karolinska Institutet; Stockholm; Sweden
| | - Johan Alm
- Department of Clinical Science and Education; Karolinska Institutet, Södersjukhuset, Sachs' Children's Hospital; Stockholm; Sweden
| | | | - Annika Scheynius
- Department of Medicine Solna; Translational Immunology Unit, Karolinska Institutet; Stockholm; Sweden
| | - Maaike Joerink
- Department of Medicine Solna; Translational Immunology Unit, Karolinska Institutet; Stockholm; Sweden
| |
Collapse
|
108
|
Novakovic B, Galati JC, Chen A, Morley R, Craig JM, Saffery R. Maternal vitamin D predominates over genetic factors in determining neonatal circulating vitamin D concentrations. Am J Clin Nutr 2012; 96:188-95. [PMID: 22648713 DOI: 10.3945/ajcn.112.035683] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND There are multiple potential regulators of neonatal vitamin D status of environmental, genetic, and epigenetic origins. The relation between these factors and circulating neonatal vitamin D has yet to be fully characterized. OBJECTIVE The aim of this study was to examine the relative contribution of genetic factors, maternal circulating 25-hydroxyvitamin D [25(OH)D] concentrations, and the placental methylation level of the gene that encodes the primary catabolic enzyme of active vitamin D [25(OH)D-24-hydroxylase encoded by CYP24A1] to neonatal 25(OH)D concentrations. DESIGN We used the classical twin study design to determine the genetic contribution to neonatal 25(OH)D. A total of 86 twin pairs (32 monozygotic and 54 dizygotic twin pairs) were included in this study. Serum 25(OH)D was measured by using a 25(OH)D kit. CYP24A1 promoter DNA methylation was measured by means of matrix-assisted laser desorption time-of-flight mass spectrometry. RESULTS Maternal and neonatal 25(OH)D showed a strong association (R² = 0.19). Monozygotic and dizygotic within-pair serum 25(OH)D correlations were similar (R² = 0.71 and 0.67, respectively), which suggested no genetic effect. Placental CYP24A1 methylation did not show an association with maternal or neonatal 25(OH)D concentrations. CONCLUSIONS Our results suggest that maternal circulating 25(OH)D is the most significant regulator of neonatal circulating 25(OH)D concentrations, with underlying genetic factors playing a limited role. The placental methylation of the CYP24A1 promoter appears subject to a genetic influence, although no evidence of a relation between the methylation level of this gene and circulating maternal or neonatal 25(OH)D was apparent.
Collapse
Affiliation(s)
- Boris Novakovic
- Cancer and Disease Epigenetics Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Australia
| | | | | | | | | | | |
Collapse
|
109
|
Abstract
Onset of obesity has been anticipated at earlier ages, and prevalence has dramatically increased worldwide over the past decades. Epidemic obesity is mainly attributable to modern lifestyle, but family studies prove the significant role of genes in the individual's predisposition to obesity. Advances in genotyping technologies have raised great hope and expectations that genetic testing will pave the way to personalized medicine and that complex traits such as obesity will be prevented even before birth. In the presence of the pressing offer of direct-to-consumer genetic testing services from private companies to estimate the individual's risk for complex phenotypes including obesity, the present review offers pediatricians an update of the state of the art on genomics obesity in childhood. Discrepancies with respect to genomics of adult obesity are discussed. After an appraisal of findings from genome-wide association studies in pediatric populations, the rare variant-common disease hypothesis, the theoretical soil for next-generation sequencing techniques, is discussed as opposite to the common disease-common variant hypothesis. Next-generation sequencing techniques are expected to fill the gap of "missing heritability" of obesity, identifying rare variants associated with the trait and clarifying the role of epigenetics in its heritability. Pediatric obesity emerges as a complex phenotype, modulated by unique gene-environment interactions that occur in periods of life and are "permissive" for the programming of adult obesity. With the advent of next-generation sequencing techniques and advances in the field of exposomics, sensitive and specific tools to predict the obesity risk as early as possible are the challenge for the next decade.
Collapse
Affiliation(s)
- Melania Manco
- FACN, Scientific Directorate, Bambino Gesù Pediatric Hospital, Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, Italy.
| | | |
Collapse
|
110
|
Abstract
PURPOSE OF REVIEW Disease states characterized by abnormal cellular function or proliferation frequently reflect aberrant genetic information. By revealing disease-specific DNA mutations, we gain insight into normal physiology, pathophysiology, potential therapeutic targets and are better equipped to evaluate an individual's disease risks. This review examines recent advances in our understanding of the genetic basis of adrenal cortical disease. RECENT FINDINGS Important advances made in the past year have included identification of KCNJ5 potassium channel mutations in the pathogenesis of both aldosterone-producing adenomas and familial hyperaldosteronism type III; characterization of phosphodiesterase 11A as a modifier of phenotype in Carney complex caused by protein kinase, cAMP-dependent, regulatory subunit, type-I mutations; the finding of 11β-hydroxysteroid dehydrogenase type I mutations as a novel mechanism for cortisone reductase deficiency; and demonstration of potential mortality benefit in pursuing comprehensive presymptomatic screening for patients with Li-Fraumeni syndrome, including possible reduction in risks associated with adrenocortical carcinoma. SUMMARY This research review provides a framework for the endocrinologist to maintain an up-to-date understanding of adrenal cortical disease genetics.
Collapse
Affiliation(s)
- Adi Bar-Lev
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
111
|
Bouchard L, Hivert MF, Guay SP, St-Pierre J, Perron P, Brisson D. Placental adiponectin gene DNA methylation levels are associated with mothers' blood glucose concentration. Diabetes 2012; 61:1272-80. [PMID: 22396200 PMCID: PMC3331769 DOI: 10.2337/db11-1160] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Growing evidence suggests that epigenetic profile changes occurring during fetal development in response to in utero environment variations could be one of the mechanisms involved in the early determinants of adult chronic diseases. In this study, we tested whether maternal glycemic status is associated with the adiponectin gene (ADIPOQ) DNA methylation profile in placenta tissue, in maternal circulating blood cells, and in cord blood cells. We found that lower DNA methylation levels in the promoter of ADIPOQ on the fetal side of the placenta were correlated with higher maternal glucose levels during the second trimester of pregnancy (2-h glucose after the oral glucose tolerance test; r(s) ≤ -0.21, P < 0.05). Lower DNA methylation levels on the maternal side of the placenta were associated with higher insulin resistance index (homeostasis model assessment of insulin resistance) during the second and third trimesters of pregnancy (r(s) ≤ -0.27, P < 0.05). Finally, lower DNA methylation levels were associated with higher maternal circulating adiponectin levels throughout pregnancy (r(s) ≤ -0.26, P < 0.05). In conclusion, the ADIPOQ DNA methylation profile was associated with maternal glucose status and with maternal circulating adiponectin concentration. Because adiponectin is suspected to have insulin-sensitizing proprieties, these epigenetic adaptations have the potential to induce sustained glucose metabolism changes in the mother and offspring later in life.
Collapse
Affiliation(s)
- Luigi Bouchard
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
112
|
Marsit CJ, Lambertini L, Maccani MA, Koestler DC, Houseman EA, Padbury JF, Lester BM, Chen J. Placenta-imprinted gene expression association of infant neurobehavior. J Pediatr 2012; 160:854-860.e2. [PMID: 22153677 PMCID: PMC3311768 DOI: 10.1016/j.jpeds.2011.10.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 09/28/2011] [Accepted: 10/19/2011] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To identify links between altered gene imprinting in the placenta and infant neurobehavioral profiles. STUDY DESIGN Quantitative reverse-transcription polymerase chain reaction was used to examine the expression of 22 imprinted candidate genes in a series of 106 term human primary placenta tissues. The expression pattern uncovered was associated with Neonatal Intensive Care Unit Network Neurobehavioral Scales summary scores in the corresponding infants. Clustering of the expression data was used to define distinct classes of expression. RESULTS Significant associations were identified between classes of expression and the Neonatal Intensive Care Unit Network Neurobehavioral Scales quality of movement (P = .02) and handling (P = .006) scores. Multivariate regression demonstrated an independent effect of imprinted gene expression profile on these neurobehavioral scores after controlling for confounders. CONCLUSION These results suggest that alterations in imprinted gene expression in the placenta are associated with infant neurodevelopmental outcomes, and suggest a role for the placenta and genomic imprinting in the placenta beyond intrauterine growth regulation.
Collapse
Affiliation(s)
- Carmen J Marsit
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH, USA.
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Cianfarani S, Agostoni C, Bedogni G, Berni Canani R, Brambilla P, Nobili V, Pietrobelli A. Effect of intrauterine growth retardation on liver and long-term metabolic risk. Int J Obes (Lond) 2012; 36:1270-7. [PMID: 22531091 DOI: 10.1038/ijo.2012.54] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intrauterine growth retardation predisposes toward long-term morbidity from type 2 diabetes and cardiovascular disease. To explain this association, the concept of programming was introduced to indicate a process whereby a stimulus or insult at a critical period of development has lasting or lifelong consequences on key endocrine and metabolic pathways. Subtle changes in cell composition of tissues, induced by suboptimal conditions in utero, can influence postnatal physiological functions. There is increasing evidence, suggesting that liver may represent one of the candidate organs targeted by programming, undergoing structural, functional and epigenetic changes following exposure to an unfavorable intrauterine environment. The aim of this review is to provide insights into the molecular mechanisms underlying liver programming that contribute to increase the cardiometabolic risk in subjects with intrauterine growth restriction.
Collapse
Affiliation(s)
- S Cianfarani
- Molecular Endocrinology Unit-DPUO, Bambino Gesù Children's Hospital - 'Rina Balducci' Center of Pediatric Endocrinology, Tor Vergata University, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
114
|
Marsit CJ, Maccani MA, Padbury JF, Lester BM. Placental 11-beta hydroxysteroid dehydrogenase methylation is associated with newborn growth and a measure of neurobehavioral outcome. PLoS One 2012; 7:e33794. [PMID: 22432047 PMCID: PMC3303854 DOI: 10.1371/journal.pone.0033794] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/17/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND There is growing evidence that the intrauterine environment can impact the neurodevelopment of the fetus through alterations in the functional epigenome of the placenta. In the placenta, the HSD11B2 gene encoding the 11-beta hydroxysteroid dehydrogenase enzyme, which is responsible for the inactivation of maternal cortisol, is regulated by DNA methylation, and has been shown to be susceptible to stressors from the maternal environment. METHODOLOGY/PRINCIPAL FINDINGS We examined the association between DNA methylation of the HSD11B2 promoter region in the placenta of 185 healthy newborn infants and infant and maternal characteristics, as well as the association between this epigenetic variability and newborn neurobehavioral outcome assessed with the NICU Network Neurobehavioral Scales. Controlling for confounders, HSD11B2 methylation extent is greatest in infants with the lowest birthweights (P = 0.04), and this increasing methylation was associated with reduced scores of quality of movement (P = 0.04). CONCLUSIONS/SIGNIFICANCE These results suggest that factors in the intrauterine environment which contribute to birth outcome may be associated with placental methylation of the HSD11B2 gene and that this epigenetic alteration is in turn associated with a prospectively predictive early neurobehavioral outcome, suggesting in some part a mechanism for the developmental origins of infant neurological health.
Collapse
Affiliation(s)
- Carmen J Marsit
- Department of Pharmacology, Dartmouth Medical School, Hanover, New Hampshire, United States of America.
| | | | | | | |
Collapse
|
115
|
Wilhelm-Benartzi CS, Houseman EA, Maccani MA, Poage GM, Koestler DC, Langevin SM, Gagne LA, Banister CE, Padbury JF, Marsit CJ. In utero exposures, infant growth, and DNA methylation of repetitive elements and developmentally related genes in human placenta. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:296-302. [PMID: 22005006 PMCID: PMC3279448 DOI: 10.1289/ehp.1103927] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 10/17/2011] [Indexed: 05/22/2023]
Abstract
BACKGROUND Fetal programming describes the theory linking environmental conditions during embryonic and fetal development with risk of diseases later in life. Environmental insults in utero may lead to changes in epigenetic mechanisms potentially affecting fetal development. OBJECTIVES We examined associations between in utero exposures, infant growth, and methylation of repetitive elements and gene-associated DNA in human term placenta tissue samples. METHODS Placental tissues and associated demographic and clinical data were obtained from subjects delivering at Women and Infants Hospital in Providence, Rhode Island (USA). Methylation levels of long interspersed nuclear element-1 (LINE-1) and the Alu element AluYb8 were determined in 380 placental samples from term deliveries using bisulfite pyrosequencing. Genomewide DNA methylation profiles were obtained in a subset of 184 samples using the Illumina Infinium HumanMethylation27 BeadArray. Multiple linear regression, model-based clustering methods, and gene set enrichment analysis examined the association between birth weight percentile, demographic variables, and repetitive element methylation and gene-associated CpG locus methylation. RESULTS LINE-1 and AluYb8 methylation levels were found to be significantly positively associated with birth weight percentile (p = 0.01 and p < 0.0001, respectively) and were found to differ significantly among infants exposed to tobacco smoke and alcohol. Increased placental AluYb8 methylation was positively associated with average methylation among CpG loci found in polycomb group target genes; developmentally related transcription factor binding sites were overrepresented for differentially methylated loci associated with both elements. CONCLUSIONS Our results suggest that repetitive element methylation markers, most notably AluYb8 methylation, may be susceptible to epigenetic alterations resulting from the intrauterine environment and play a critical role in mediating placenta function, and may ultimately inform on the developmental basis of health and disease.
Collapse
Affiliation(s)
- Charlotte S Wilhelm-Benartzi
- Department of Epidemiology, Center for Environmental Health and Technology, Brown University, Providence, Rhode Island, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Koukoura O, Sifakis S, Spandidos DA. DNA methylation in the human placenta and fetal growth (review). Mol Med Rep 2012; 5:883-9. [PMID: 22294146 PMCID: PMC3493070 DOI: 10.3892/mmr.2012.763] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 01/24/2012] [Indexed: 12/03/2022] Open
Abstract
Throughout in utero development, the placenta plays a key role in controlling growth and development. The placenta acts not only as a gatekeeper of nutrient and waste exchange between mother and developing fetus, but also as a regulator of the intrauterine environment. Its functions can be influenced by the environment encountered throughout pregnancy, thereby altering the appropriate genetic programming needed to allow for appropriate fetal growth. Epigenetic alterations related to environmental exposures have been linked to aberrant fetal growth. DNA methylation, which is the best known DNA epigenetic modification, may provide an attractive mechanism linking environmental cues to placental pathology, with consequences for fetal growth and adult life. Alteration of the methylation patterns of genes expressed in the placenta has recently been found to modify gene expression and subsequently impair function of the placenta. Although there is strong evidence to demonstrate that the environment can affect the pattern of DNA methylation of the placenta during fetal development, a direct association between environmental conditions, methylation alterations and gene expression is difficult to confirm. DNA methylation in the placenta has mainly been investigated in the context of imprinted and non-imprinted genes transcription. Several environmental factors have also been assessed in regard to their association with changes to the epigenetic motives of embryonic and extraembryonic tissues and their impact on pregnancy outcome. In this review, we briefly present the available evidence regarding the role of DNA methylation patterns of the placenta on aberrant fetal growth.
Collapse
Affiliation(s)
- Ourania Koukoura
- Department of Obstetrics and Gynecology, University Hospital of Larissa, Thessaly, Greece
| | | | | |
Collapse
|
117
|
Non AL, Binder AM, Barault L, Rancourt RC, Kubzansky LD, Michels KB. DNA methylation of stress-related genes and LINE-1 repetitive elements across the healthy human placenta. Placenta 2012; 33:183-7. [PMID: 22222044 DOI: 10.1016/j.placenta.2011.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/12/2011] [Accepted: 12/16/2011] [Indexed: 10/14/2022]
Abstract
OBJECTIVES DNA methylation is known to play a critical role in regulating development of placental morphology and physiology. The methylation of genes mediated by glucocorticoid hormones may be particularly vulnerable to intrauterine stress in the placenta. However little is known about DNA methylation of stress-related genes within a healthy placenta, and particularly whether methylation occurs uniformly across different regions of the placenta, which is a critical question for researchers seeking to analyze methylation patterns. We examined DNA methylation across four regions of the placenta to evaluate methylation levels of stress-related genes within a healthy placenta, and to evaluate whether methylation patterns vary by sampling location. STUDY DESIGN We evaluated levels of DNA methylation of three stress-related genes: NR3C1, BDNF, and 11B-HSD2 and of the repetitive element, LINE-1, in four different sample locations of 20 healthy placentas. MAIN OUTCOME MEASURES Pyrosequencing was used to quantify levels of methylation at CpG sites within the promoter regions of each of the three stress-related genes, and global methylation of LINE-1. RESULTS Very low levels of methylation were found across all three stress-related genes; no gene showed a median methylation level greater than 4.20% across placental regions. Variation in methylation between placental regions for stress-related genes and for LINE-1 was minimal. CONCLUSIONS Our data suggest that these frequently studied stress-related genes have low levels of methylation in healthy placenta tissue. Minimal variation between sites suggests that sampling location does not affect DNA methylation analyses of these genes or of LINE-1 repetitive elements.
Collapse
Affiliation(s)
- A L Non
- Robert Wood Johnson Health and Society Scholar, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | | | |
Collapse
|
118
|
Michels KB, Harris HR, Barault L. Birthweight, maternal weight trajectories and global DNA methylation of LINE-1 repetitive elements. PLoS One 2011; 6:e25254. [PMID: 21980406 PMCID: PMC3182185 DOI: 10.1371/journal.pone.0025254] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/30/2011] [Indexed: 12/03/2022] Open
Abstract
Low birthweight, premature birth, intrauterine growth retardation, and maternal malnutrition have been related to an increased risk of cardiovascular disease, type 2 diabetes mellitus, obesity, and neuropsychiatric disorders later in life. Conversely, high birthweight has been linked to future risk of cancer. Global DNA methylation estimated by the methylation of repetitive sequences in the genome is an indicator of susceptibility to chronic diseases. We used data and biospecimens from an epigenetic birth cohort to explore the association between trajectories of fetal and maternal weight and LINE-1 methylation in 319 mother-child dyads. Newborns with low or high birthweight had significantly lower LINE-1 methylation levels in their cord blood compared to normal weight infants after adjusting for gestational age, sex of the child, maternal age at delivery, and maternal smoking during pregnancy (p = 0.007 and p = 0.036, respectively), but the magnitude of the difference was small. Infants born prematurely also had lower LINE-1 methylation levels in cord blood compared to term infants, and this difference, though small, was statistically significant (p = 0.004). We did not find important associations between maternal prepregnancy BMI or gestational weight gain and global methylation of the cord blood or fetal placental tissue. In conclusion, we found significant differences in cord blood LINE-1 methylation among newborns with low and high birthweight as well as among prematurely born infants. Future studies may elucidate whether chromosomal instabilities or other functional consequences of these changes contribute to the increased risk of chronic diseases among individuals with these characteristics.
Collapse
Affiliation(s)
- Karin B Michels
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | |
Collapse
|
119
|
Lester BM, Tronick E, Nestler E, Abel T, Kosofsky B, Kuzawa CW, Marsit CJ, Maze I, Meaney MJ, Monteggia LM, Reul JMHM, Skuse DH, Sweatt JD, Wood MA. Behavioral epigenetics. Ann N Y Acad Sci 2011; 1226:14-33. [PMID: 21615751 DOI: 10.1111/j.1749-6632.2011.06037.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sponsored by the New York Academy of Sciences, the Warren Alpert Medical School of Brown University and the University of Massachusetts Boston, "Behavioral Epigenetics" was held on October 29-30, 2010 at the University of Massachusetts Boston Campus Center, Boston, Massachusetts. This meeting featured speakers and panel discussions exploring the emerging field of behavioral epigenetics, from basic biochemical and cellular mechanisms to the epigenetic modulation of normative development, developmental disorders, and psychopathology. This report provides an overview of the research presented by leading scientists and lively discussion about the future of investigation at the behavioral epigenetic level.
Collapse
Affiliation(s)
- Barry M Lester
- Department of Psychiatry, Warren Alpert Medical School, Brown University, Women and Infants Hospital, Providence, Rhode Island 02908, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|