101
|
Klinger M. A role for macromolecular crowding in off-target binding of therapeutic antibodies. Protein Eng Des Sel 2017; 30:489-494. [PMID: 28873984 DOI: 10.1093/protein/gzx035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/21/2017] [Indexed: 01/09/2023] Open
Abstract
The nonspecific binding of certain therapeutic antibodies to tissues or to soluble biomolecules can accelerate their clearance from the circulation and undermine their benefit to patients. This article proposes that tandem amino acid repeat sequences in antibody hypervariable segments, particularly the complementarity determining regions (CDRs), can enhance this off-target binding. This hypothesis is based on two sets of observations. First, in a limited number of cases, antibodies with clusters of amino acid repeats in their CDRs have significantly higher clearance rates in experimental animals than otherwise identical antibodies without the repeats. Second, tandem amino acid repeats are abundant in intracellular hub proteins where they appear to promote the promiscuous binding of these proteins to a wide variety of other molecules. These nonspecific hub protein interactions are highly favored by the intense macromolecular crowding that permeates the cytoplasm. A survey of the variable region sequences of 137 antibodies in various stages of development revealed that 26 have at least one CDR containing a cluster of three closely spaced amino acid repeats. If the overall hypothesis is valid, then it suggests strategies for site-directed mutagenesis to improve pharmacokinetic behavior and for the design of more reliable in vitro binding assays to predict off-target binding in vivo.
Collapse
Affiliation(s)
- Martin Klinger
- Hawk BioDiscovery, 7465 Highway 51, Sterrett, AL 35147, USA
| |
Collapse
|
102
|
Gill KL, Machavaram KK, Rose RH, Chetty M. Potential Sources of Inter-Subject Variability in Monoclonal Antibody Pharmacokinetics. Clin Pharmacokinet 2017; 55:789-805. [PMID: 26818483 DOI: 10.1007/s40262-015-0361-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Understanding inter-subject variability in drug pharmacokinetics and pharmacodynamics is important to ensure that all patients attain suitable drug exposure to achieve efficacy and avoid toxicity. Inter-subject variability in the pharmacokinetics of therapeutic monoclonal antibodies (mAbs) is generally moderate to high; however, the factors responsible for the high inter-subject variability have not been comprehensively reviewed. In this review, the extent of inter-subject variability for mAb pharmacokinetics is presented and potential factors contributing to this variability are explored and summarised. Disease status, age, sex, ethnicity, body size, genetic polymorphisms, concomitant medication, co-morbidities, immune status and multiple other patient-specific details have been considered. The inter-subject variability for mAb pharmacokinetics most likely depends on the complex interplay of multiple factors. However, studies aimed at investigating the reasons for the inter-subject variability are sparse. Population pharmacokinetic models and physiologically based pharmacokinetic models are useful tools to identify important covariates, aiding in the understanding of factors contributing to inter-subject variability. Further understanding of inter-subject variability in pharmacokinetics should aid in development of dosing regimens that are more appropriate.
Collapse
Affiliation(s)
- Katherine L Gill
- Simcyp (a Certara Company), Blades Enterprise Centre, John Street, Sheffield, S2 4SU, UK
| | - Krishna K Machavaram
- Simcyp (a Certara Company), Blades Enterprise Centre, John Street, Sheffield, S2 4SU, UK
| | - Rachel H Rose
- Simcyp (a Certara Company), Blades Enterprise Centre, John Street, Sheffield, S2 4SU, UK
| | - Manoranjenni Chetty
- Simcyp (a Certara Company), Blades Enterprise Centre, John Street, Sheffield, S2 4SU, UK.
| |
Collapse
|
103
|
Enam SF, Krieger JR, Saxena T, Watts BE, Olingy CE, Botchwey EA, Bellamkonda RV. Enrichment of endogenous fractalkine and anti-inflammatory cells via aptamer-functionalized hydrogels. Biomaterials 2017; 142:52-61. [PMID: 28727998 DOI: 10.1016/j.biomaterials.2017.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/27/2017] [Accepted: 07/09/2017] [Indexed: 12/27/2022]
Abstract
Early recruitment of non-classical monocytes and their macrophage derivatives is associated with augmented tissue repair and improved integration of biomaterial constructs. A promising therapeutic approach to recruit these subpopulations is by elevating local concentrations of chemoattractants such as fractalkine (FKN, CX3CL1). However, delivering recombinant or purified proteins is not ideal due to their short half-lives, suboptimal efficacy, immunogenic potential, batch variabilities, and cost. Here we report an approach to enrich endogenous FKN, obviating the need for delivery of exogenous proteins. In this study, modified FKN-binding-aptamers are integrated with poly(ethylene glycol) diacrylate to form aptamer-functionalized hydrogels ("aptagels") that localize, dramatically enrich and passively release FKN in vitro for at least one week. Implantation in a mouse model of excisional skin injury demonstrates that aptagels enrich endogenous FKN and stimulate significant local increases in Ly6CloCX3CR1hi non-classical monocytes and CD206+ M2-like macrophages. The results demonstrate that orchestrators of inflammation can be manipulated without delivery of foreign proteins or cells and FKN-aptamer functionalized biomaterials may be a promising approach to recruit anti-inflammatory subpopulations to sites of injury. Aptagels are readily synthesized, highly customizable and could combine different aptamers to treat complex diseases in which regulation or enrichment of multiple proteins may be therapeutic.
Collapse
Affiliation(s)
- Syed Faaiz Enam
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jack R Krieger
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA 30332, USA
| | - Tarun Saxena
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Brian E Watts
- Duke Human Vaccine Institute, Duke University, Durham, NC 27708, USA
| | - Claire E Olingy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA 30332, USA
| | - Edward A Botchwey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA 30332, USA
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
104
|
Dostalek M, Prueksaritanont T, Kelley RF. Pharmacokinetic de-risking tools for selection of monoclonal antibody lead candidates. MAbs 2017; 9:756-766. [PMID: 28463063 DOI: 10.1080/19420862.2017.1323160] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Pharmacokinetic studies play an important role in all stages of drug discovery and development. Recent advancements in the tools for discovery and optimization of therapeutic proteins have created an abundance of candidates that may fulfill target product profile criteria. Implementing a set of in silico, small scale in vitro and in vivo tools can help to identify a clinical lead molecule with promising properties at the early stages of drug discovery, thus reducing the labor and cost in advancing multiple candidates toward clinical development. In this review, we describe tools that should be considered during drug discovery, and discuss approaches that could be included in the pharmacokinetic screening part of the lead candidate generation process to de-risk unexpected pharmacokinetic behaviors of Fc-based therapeutic proteins, with an emphasis on monoclonal antibodies.
Collapse
Affiliation(s)
- Miroslav Dostalek
- a Drug Metabolism and Pharmacokinetics, Global Nonclinical Development, Shire , Lexington , MA , USA
| | | | - Robert F Kelley
- c Department of Drug Delivery , Genentech Inc. , South San Francisco , CA , USA
| |
Collapse
|
105
|
Jain A, Barve A, Zhao Z, Jin W, Cheng K. Comparison of Avidin, Neutravidin, and Streptavidin as Nanocarriers for Efficient siRNA Delivery. Mol Pharm 2017; 14:1517-1527. [PMID: 28026957 PMCID: PMC6628714 DOI: 10.1021/acs.molpharmaceut.6b00933] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein-based drug delivery carrier has been one of the most employed modalities in biopharmaceuticals. In this study, we have compared avidin and its two analogues, neutravidin and streptavidin, as nanocarriers for the delivery of biotin-labeled siRNA with the help of biotinylated cholesterol (targeting ligand) and protamine (condensing agent). These proteins have similar binding affinity to biotin but substantial difference in their physical and chemical characteristics. Here, we have shown how these characteristics affect the size, cellular uptake, and activity of the avidin-based siRNA nanocomplex. In contrast to avidin and streptavidin nanocomplexes, neutravidin-based nanocomplex shows very low endosome entrapment and high cytoplasmic localization at extended times. High amount of the siRNA released in the cytoplasm by neutravidin-based nanocomplex at extended times (24 h) results in extensive and sustained PCBP2 gene silencing activity in HSC-T6 rat hepatic stellate cells. Neutravidin-based nanocomplex shows significantly low exocytosis in comparison to the streptavidin-based nanocomplex. Avidin-, neutravidin-, and streptavidin-based nanocomplexes are similar in size and had no significant cytotoxicity in transfected HSC-T6 cells or inflammatory cytokine induction in a whole blood assay. Compared to free siRNA, the neutravidin-based siRNA nanocomplex exhibits higher accumulation at 2 h in the liver of the rats with CCl4-induced liver fibrosis. Neutravidin has therefore been shown to be the most promising avidin analogue for the delivery of siRNA.
Collapse
Affiliation(s)
- Akshay Jain
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Ashutosh Barve
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Zhen Zhao
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Wei Jin
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Kun Cheng
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
106
|
Bang YJ, Giaccone G, Im SA, Oh DY, Bauer TM, Nordstrom JL, Li H, Chichili GR, Moore PA, Hong S, Stewart SJ, Baughman JE, Lechleider RJ, Burris HA. First-in-human phase 1 study of margetuximab (MGAH22), an Fc-modified chimeric monoclonal antibody, in patients with HER2-positive advanced solid tumors. Ann Oncol 2017; 28:855-861. [PMID: 28119295 PMCID: PMC6246722 DOI: 10.1093/annonc/mdx002] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Margetuximab is an anti-HER2 antibody that binds with elevated affinity to both the lower and higher affinity forms of CD16A, an Fc-receptor important for antibody dependent cell-mediated cytotoxicity (ADCC) against tumor cells. A Phase 1 study was initiated to evaluate the toxicity profile, maximum tolerated dose (MTD), pharmacokinetics, and antitumor activity of margetuximab in patients with HER2-overexpressing carcinomas. PATIENTS AND METHODS Patients with HER2-positive breast or gastric cancer, or other carcinomas that overexpress HER2, for whom no standard therapy was available, were treated with margetuximab by intravenous infusion at doses of 0.1-6.0 mg/kg for 3 of every 4 weeks (Regimen A) or once every 3 weeks (10-18 mg/kg) (Regimen B). RESULTS Sixty-six patients received margetuximab (34 patients for Regimen A and 32 patients for Regimen B). The MTD was not reached for either regimen. Treatment was well-tolerated, with mostly Grade 1 and 2 toxicities consisting of constitutional symptoms such as pyrexia, nausea, anemia, diarrhea, and fatigue. Among 60 response-evaluable patients, confirmed partial responses and stable disease were observed in 7 (12%) and 30 (50%) patients, respectively; 26 (70%) of these patients had received prior HER2-targeted therapy. Tumor reductions were observed in over half (18/23, 78%) of response-evaluable patients with breast cancer including durable (>30 weeks) responders. Ex vivo analyses of patient peripheral blood mononuclear cell samples confirmed the ability of margetuximab to support enhanced ADCC compared with trastuzumab. CONCLUSIONS Margetuximab was well-tolerated and has promising single-agent activity. Further development efforts of margetuximab as single agent and in combination with other therapeutic agents are ongoing. TRIAL REGISTRATION ID NCT01148849.
Collapse
Affiliation(s)
- Y. J. Bang
- Department of Internal Medicine, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - G. Giaccone
- Department of Medical Oncology, National Cancer Institute, Bethesda
| | - S. A. Im
- Department of Internal Medicine, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - D. Y. Oh
- Department of Internal Medicine, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - T. M. Bauer
- Department of Drug Development, Sarah Cannon Research Institute and Tennessee Oncology, Nashville
| | | | - H. Li
- MacroGenics, Inc, Rockville, and South San Francisco, USA
| | - G. R. Chichili
- MacroGenics, Inc, Rockville, and South San Francisco, USA
| | - P. A. Moore
- MacroGenics, Inc, Rockville, and South San Francisco, USA
| | - S. Hong
- MacroGenics, Inc, Rockville, and South San Francisco, USA
| | - S. J. Stewart
- MacroGenics, Inc, Rockville, and South San Francisco, USA
| | - J. E. Baughman
- MacroGenics, Inc, Rockville, and South San Francisco, USA
| | | | - H. A. Burris
- Department of Drug Development, Sarah Cannon Research Institute and Tennessee Oncology, Nashville
| |
Collapse
|
107
|
Lee J, Perikamana SKM, Ahmad T, Lee MS, Yang HS, Kim DG, Kim K, Kwon B, Shin H. Controlled Retention of BMP-2-Derived Peptide on Nanofibers Based on Mussel-Inspired Adhesion for Bone Formation. Tissue Eng Part A 2017; 23:323-334. [DOI: 10.1089/ten.tea.2016.0363] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jinkyu Lee
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Republic of Korea
| | - Sajeesh Kumar Madhurakkat Perikamana
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Republic of Korea
| | - Taufiq Ahmad
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Republic of Korea
| | - Min Suk Lee
- Department of Nanobio Medical Science, Dankook University, Chonan, Republic of Korea
| | - Hee Seok Yang
- Department of Nanobio Medical Science, Dankook University, Chonan, Republic of Korea
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Kyobum Kim
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Bosun Kwon
- Wooridul Life Sciences & WINNOVA Research Institute, Seoul, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
108
|
Boll B, Bessa J, Folzer E, Ríos Quiroz A, Schmidt R, Bulau P, Finkler C, Mahler HC, Huwyler J, Iglesias A, Koulov AV. Extensive Chemical Modifications in the Primary Protein Structure of IgG1 Subvisible Particles Are Necessary for Breaking Immune Tolerance. Mol Pharm 2017; 14:1292-1299. [PMID: 28206769 DOI: 10.1021/acs.molpharmaceut.6b00816] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A current concern with the use of therapeutic proteins is the likely presence of aggregates and submicrometer, subvisible, and visible particles. It has been proposed that aggregates and particles may lead to unwanted increases in the immune response with a possible impact on safety or efficacy. The aim of this study was thus to evaluate the ability of subvisible particles of a therapeutic antibody to break immune tolerance in an IgG1 transgenic mouse model and to understand the particle attributes that might play a role in this process. We investigated the immunogenic properties of subvisible particles (unfractionated, mixed populations, and well-defined particle size fractions) using a transgenic mouse model expressing a mini-repertoire of human IgG1 (hIgG1 tg). Immunization with proteinaceous subvisible particles generated by artificial stress conditions demonstrated that only subvisible particles bearing very extensive chemical modifications within the primary amino acid structure could break immune tolerance in the hIgG1 transgenic mouse model. Protein particles exhibiting low levels of chemical modification were not immunogenic in this model.
Collapse
Affiliation(s)
- Björn Boll
- Analytical Development & Quality Control, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd. , Basel, Switzerland.,Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel , Basel, Switzerland
| | - Juliana Bessa
- Roche Pharmaceutical Research and Early Development , Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - Emilien Folzer
- Analytical Development & Quality Control, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd. , Basel, Switzerland.,Pharmaceutical Development & Supplies, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd. , Basel, Switzerland.,Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel , Basel, Switzerland
| | - Anacelia Ríos Quiroz
- Analytical Development & Quality Control, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd. , Basel, Switzerland.,Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel , Basel, Switzerland
| | - Roland Schmidt
- Pharmaceutical Development & Supplies, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd. , Basel, Switzerland
| | - Patrick Bulau
- Analytical Development & Quality Control, Pharma Technical Development Biologics Europe, Roche Diagnostics GmbH , Penzberg, Germany
| | - Christof Finkler
- Analytical Development & Quality Control, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd. , Basel, Switzerland
| | - Hanns-Christian Mahler
- Pharmaceutical Development & Supplies, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd. , Basel, Switzerland
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel , Basel, Switzerland
| | - Antonio Iglesias
- Roche Pharmaceutical Research and Early Development , Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - Atanas V Koulov
- Analytical Development & Quality Control, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd. , Basel, Switzerland
| |
Collapse
|
109
|
Epitope-dependent mechanisms of CD27 neutralization revealed by X-ray crystallography. Mol Immunol 2017; 83:92-99. [DOI: 10.1016/j.molimm.2017.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 11/18/2022]
|
110
|
Mallick P, Taneja G, Moorthy B, Ghose R. Regulation of drug-metabolizing enzymes in infectious and inflammatory disease: implications for biologics-small molecule drug interactions. Expert Opin Drug Metab Toxicol 2017; 13:605-616. [PMID: 28537216 DOI: 10.1080/17425255.2017.1292251] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Drug-metabolizing enzymes (DMEs) are primarily down-regulated during infectious and inflammatory diseases, leading to disruption in the metabolism of small molecule drugs (smds), which are increasingly being prescribed therapeutically in combination with biologics for a number of chronic diseases. The biologics may exert pro- or anti-inflammatory effect, which may in turn affect the expression/activity of DMEs. Thus, patients with infectious/inflammatory diseases undergoing biologic/smd treatment can have complex changes in DMEs due to combined effects of the disease and treatment. Areas covered: We will discuss clinical biologics-SMD interaction and regulation of DMEs during infection and inflammatory diseases. Mechanistic studies will be discussed and consequences on biologic-small molecule combination therapy on disease outcome due to changes in drug metabolism will be highlighted. Expert opinion: The involvement of immunomodulatory mediators in biologic-SMDs is well known. Regulatory guidelines recommend appropriate in vitro or in vivo assessments for possible interactions. The role of cytokines in biologic-SMDs has been documented. However, the mechanisms of drug-drug interactions is much more complex, and is probably multi-factorial. Studies aimed at understanding the mechanism by which biologics effect the DMEs during inflammation/infection are clinically important.
Collapse
Affiliation(s)
- Pankajini Mallick
- a Department of Pharmacological and Pharmaceutical Sciences , University of Houston , Houston , TX , USA
| | - Guncha Taneja
- a Department of Pharmacological and Pharmaceutical Sciences , University of Houston , Houston , TX , USA
| | - Bhagavatula Moorthy
- b Department of Pediatrics , Baylor College of Medicine , Houston , TX , USA
| | - Romi Ghose
- a Department of Pharmacological and Pharmaceutical Sciences , University of Houston , Houston , TX , USA
| |
Collapse
|
111
|
Low muscle mass at initiation of anti-TNF therapy for inflammatory bowel disease is associated with early treatment failure: a retrospective analysis. Eur J Clin Nutr 2017; 71:773-777. [PMID: 28225051 DOI: 10.1038/ejcn.2017.10] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/28/2016] [Accepted: 01/02/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND/OBJECTIVES Delayed treatment failure occurs in a significant proportion of inflammatory bowel disease (IBD) patients treated with tumor necrosis factor-alpha (TNF) antagonists. Identification of predictors of loss of response (LOR) may help to optimize therapy. We sought to determine whether body composition parameters at the commencement of anti-TNF therapy were associated with earlier treatment failure. SUBJECTS/METHODS A retrospective cohort study was performed on 68 patients who had undergone cross-sectional abdominal imaging coincident with the commencement of anti-TNF drugs. Analysis of the images at the third lumbar vertebra was performed using standard techniques to determine cross-sectional areas of skeletal muscle (SM), visceral adipose tissue, subcutaneous adipose tissue and intermuscular adipose tissue. Treatment failure was defined as: post-induction hospital admission or surgery for IBD, escalation of TNF dose or immunosuppressants for clinical LOR, emergence of a new fistula or Crohn's Disease Activity Index (CDAI) >150. RESULTS Two-thirds of patients had myopenia. Patients with less than gender-specific median SM area had a median time to failure of 520 (s.d. 135) days compared to 1100 (s.d. 151) days for those with more than median SM area (P=0.036). No difference was found in disease duration, inflammatory markers or CDAI between quartiles of SM area. No relation between outcomes and measures of adipose tissue, weight or body mass index was observed. CONCLUSIONS Identifying low muscle mass at anti-TNF induction as a risk factor for treatment failure may contribute to a more tailored approach to IBD therapy.
Collapse
|
112
|
McGowan JWD, Bidwell GL. The Use of Ex Vivo Whole-organ Imaging and Quantitative Tissue Histology to Determine the Bio-distribution of Fluorescently Labeled Molecules. J Vis Exp 2016. [PMID: 28060286 DOI: 10.3791/54987] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Fluorescent labeling is a well-established process for examining the fate of labeled molecules under a variety of experimental conditions both in vitro and in vivo. Fluorescent probes are particularly useful in determining the bio-distribution of administered large molecules, where the addition of a small-molecule fluorescent label is unlikely to affect the kinetics or bio-distribution of the compound. A variety of methods exist to examine bio-distribution that vary significantly in the amount of effort required and whether the resulting measurements are fully quantitative, but using multiple methods in conjunction can provide a rapid and effective system for analyzing bio-distributions. Ex vivo whole-organ imaging is a method that can be used to quickly compare the relative concentrations of fluorescent molecules within tissues and between multiple types of tissues or treatment groups. Using an imaging platform designed for live-animal or whole-organ imaging, fluorescence within intact tissues can be determined without further processing, saving time and labor while providing an accurate picture of the overall bio-distribution. This process is ideal in experiments attempting to determine the tissue specificity of a compound or for the comparison of multiple different compounds. Quantitative tissue histology on the other hand requires extensive further processing of tissues in order to create a quantitative measure of the labeled compounds. To accurately assess bio-distribution, all tissues of interest must be sliced, scanned, and analyzed relative to standard curves in order to make comparisons between tissues or groups. Quantitative tissue histology is the gold standard for determining absolute compound concentrations within tissues. Here, we describe how both methods can be used together effectively to assess the ability of different administration methods and compound modifications to target and deliver fluorescently labeled molecules to the central nervous system1.
Collapse
Affiliation(s)
| | - Gene L Bidwell
- Department of Neurology, The University of Mississippi Medical Center;
| |
Collapse
|
113
|
Wang X, McKay P, Yee LT, Dutina G, Hass PE, Nijem I, Allison D, Cowan KJ, Lin K, Quarmby V, Yang J. Impact of SPR biosensor assay configuration on antibody: Neonatal Fc receptor binding data. MAbs 2016; 9:319-332. [PMID: 28001487 DOI: 10.1080/19420862.2016.1261774] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Binding interactions with the neonatal Fc receptor (FcRn) are one determinant of pharmacokinetic properties of recombinant human monoclonal antibody (rhumAb) therapeutics, and a conserved binding motif in the crystallizable fragment (Fc) region of IgG molecules interacts with FcRn. Surface plasmon resonance (SPR) biosensor assays are often used to characterize interactions between FcRn and rhumAb therapeutics. In such assays, generally either the rhumAb (format 1) or the FcRn protein (format 2) is immobilized on a biosensor chip. However, because evidence suggests that, in some cases, the variable domains of a rhumAb may also affect FcRn binding, we evaluated the effect of SPR assay configuration on binding data. We sought to assess FcRn binding properties of 2 rhumAbs (rhumAb1 and rhumAb2) to FcRn proteins using these 2 biosensor assay formats. The two rhumAbs have greater than 99% sequence identity in the Fc domain but differ in their Fab regions. rhumAb2 contains a positively charged patch in the variable domain that is absent in rhumAb1. Our results showed that binding of rhumAb1 to FcRn was independent of biosensor assay configuration, while binding of rhumAb2 to FcRn was highly SPR assay configuration dependent. Further investigations revealed that the format dependency of rhumAb2-FcRn binding is linked to the basic residues that form a positively charged patch in the variable domain of rhumAb2. Our work highlights the importance of analyzing rhumAb-FcRn binding interactions using 2 alternate SPR biosensor assay configurations. This approach may also provide a simple way to identify the potential for non-Fc-driven FcRn binding interactions in otherwise typical IgGs.
Collapse
Affiliation(s)
- Xiangdan Wang
- a BioAnalytical Sciences, Genentech , South San Francisco , CA , USA
| | - Patrick McKay
- b Technical Development, Genentech , South San Francisco , CA , USA
| | - Liliana T Yee
- b Technical Development, Genentech , South San Francisco , CA , USA
| | - George Dutina
- c Department of Early Stage Cell Culture , Genentech , South San Francisco , CA , USA
| | - Philip E Hass
- d Protein Chemistry, Genentech , South San Francisco , CA , USA
| | - Ihsan Nijem
- a BioAnalytical Sciences, Genentech , South San Francisco , CA , USA
| | - David Allison
- e Clinical Pharmacology, Genentech , South San Francisco , CA , USA
| | - Kyra J Cowan
- a BioAnalytical Sciences, Genentech , South San Francisco , CA , USA
| | - Kevin Lin
- f Analytical Operations, Genentech , South San Francisco , CA , USA
| | - Valerie Quarmby
- a BioAnalytical Sciences, Genentech , South San Francisco , CA , USA
| | - Jihong Yang
- a BioAnalytical Sciences, Genentech , South San Francisco , CA , USA
| |
Collapse
|
114
|
Xu S, Kaltashov IA. Evaluation of Gallium as a Tracer of Exogenous Hemoglobin-Haptoglobin Complexes for Targeted Drug Delivery Applications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:2025-2032. [PMID: 27619921 DOI: 10.1007/s13361-016-1484-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
Haptoglobin (Hp) is a plasma glycoprotein that generates significant interest in the drug delivery community because of its potential for delivery of antiretroviral medicines with high selectivity to macrophages and monocytes, the latent reservoirs of human immunodeficiency virus. As is the case with other therapies that exploit transport networks for targeted drug delivery, the success of the design and optimization of Hp-based therapies will critically depend on the ability to accurately localize and quantitate Hp-drug conjugates on the varying and unpredictable background of endogenous proteins having identical structure. In this work, we introduce a new strategy for detecting and quantitating exogenous Hp and Hp-based drugs with high sensitivity in complex biological samples using gallium as a tracer of this protein and inductively coupled plasma mass spectrometry (ICP MS) as a method of detection. Metal label is introduced by reconstituting hemoglobin (Hb) with gallium(III)-protoporphyrin IX followed by its complexation with Hp. Formation of the Hp/Hb assembly and its stability are evaluated with native electrospray ionization mass spectrometry. Both stable isotopes of Ga give rise to an abundant signal in ICP MS of a human plasma sample spiked with the metal-labeled Hp/Hb complex. The metal label signal exceeds the spectral interferences' contributions by more than an order of magnitude even with the concentration of the exogenous protein below 10 nM, the level that is more than adequate for the planned pharmacokinetic studies of Hp-based therapeutics. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Shengsheng Xu
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
115
|
Translational pharmacokinetics and pharmacodynamics of monoclonal antibodies. DRUG DISCOVERY TODAY. TECHNOLOGIES 2016; 21-22:75-83. [PMID: 27978991 DOI: 10.1016/j.ddtec.2016.09.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 01/10/2023]
Abstract
Monoclonal antibodies (mAbs) are an important therapeutic class with complex pharmacology and interdependent pharmacokinetic (PK) and pharmacodynamics (PD) properties. Understanding the PK and PD of mAbs and their biological and mechanistic underpinnings are crucial in enabling their design and selection, designing appropriate efficacy and toxicity studies, translating PK/PD parameters to humans, and optimizing dose and regimen to maximize success in the clinic. Significant progress has been made in this field however many critical questions still remain. This article gives a brief overview of the PK and PD of mAbs, factors that influence them, and areas of ongoing inquiry. Current tools and translational approaches to predict the PK/PD of mAbs in humans are also discussed.
Collapse
|
116
|
Shetty KA, Kosloski MP, Mager DE, Balu-Iyer SV. Factor VIII associated with lipidic nanoparticles retains efficacy in the presence of anti-factor VIII antibodies in hemophilia A mice. Biopharm Drug Dispos 2016; 37:409-420. [PMID: 27418232 DOI: 10.1002/bdd.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/07/2016] [Accepted: 07/04/2016] [Indexed: 11/09/2022]
Abstract
The development of inhibitory antibodies against factor VIII (FVIII) is a major challenge in hemophilia A (HA) therapy. Such antibodies develop in nearly 30% of patients receiving replacement FVIII, abrogating therapeutic efficacy. This work evaluated whether B-domain deleted FVIII encapsulated in phosphatidylinositol containing lipid nanoparticles (PI-BDD FVIII) could serve as an efficacious FVIII replacement therapy in the presence of inhibitors. The HA mice were given clinically relevant doses of FVIII to develop inhibitors. The efficacy of free and PI-BDD FVIII was studied in inhibitor-positive HA mice using a tail clip assay. Mathematical modeling of these data was conducted to evaluate the hypothesis that lipid association sterically shields the protein from inhibitor binding. The immunization protocol resulted in a mean inhibitory titer level of 198 ± 52 BU/ml. Free BDD FVIII was ineffective at controlling blood loss in inhibitor-positive HA mice as early as 2 h post dose. In contrast, PI-BDD FVIII treated animals retained partial hemostatic efficacy as long as 18 h post dose. Mathematical modeling supports the hypotheses that a greater fraction of lipid-associated FVIII remains unbound to inhibitors and that PI-BDD FVIII has lower binding affinity to inhibitors than does the free protein. In addition, the modeling approaches extend current efforts to model the impact of immunogenicity on PK and the therapeutically meaningful endpoint of efficacy, thereby addressing an important knowledge gap, particularly in the FVIII scientific literature. Clinical translation of these findings could result in a significant improvement in the quality of care of inhibitor-positive HA patients. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Krithika A Shetty
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Matthew P Kosloski
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
117
|
Bowman CJ, Chapin RE. Goldilocks’ Determination of What New In Vivo Data are “Just Right” for Different Common Drug Development Scenarios, Part 1. ACTA ACUST UNITED AC 2016; 107:185-194. [DOI: 10.1002/bdrb.21184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 12/28/2022]
Affiliation(s)
| | - Robert E Chapin
- Developmental and Reproductive Toxicology CoE; Pfizer, Inc; Groton CT USA
| |
Collapse
|
118
|
Maestri E, Marmiroli M, Marmiroli N. Bioactive peptides in plant-derived foodstuffs. J Proteomics 2016; 147:140-155. [DOI: 10.1016/j.jprot.2016.03.048] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/14/2016] [Accepted: 03/29/2016] [Indexed: 01/07/2023]
|
119
|
Bercu JP, Morinello EJ, Sehner C, Shipp BK, Weideman PA. Point of departure (PoD) selection for the derivation of acceptable daily exposures (ADEs) for active pharmaceutical ingredients (APIs). Regul Toxicol Pharmacol 2016; 79 Suppl 1:S48-56. [DOI: 10.1016/j.yrtph.2016.05.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/19/2016] [Indexed: 01/02/2023]
|
120
|
Optimizing novel implant formulations for the prolonged release of biopharmaceuticals using in vitro and in vivo imaging techniques. J Control Release 2016; 235:352-364. [DOI: 10.1016/j.jconrel.2016.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 11/23/2022]
|
121
|
Kaplan G, Lee F, Onda M, Kolyvas E, Bhardwaj G, Baker D, Pastan I. Protection of the Furin Cleavage Site in Low-Toxicity Immunotoxins Based on Pseudomonas Exotoxin A. Toxins (Basel) 2016; 8:E217. [PMID: 27463727 PMCID: PMC4999843 DOI: 10.3390/toxins8080217] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/13/2016] [Accepted: 06/29/2016] [Indexed: 12/13/2022] Open
Abstract
Recombinant immunotoxins (RITs) are fusions of an Fv-based targeting moiety and a toxin. Pseudomonas exotoxin A (PE) has been used to make several immunotoxins that have been evaluated in clinical trials. Immunogenicity of the bacterial toxin and off-target toxicity have limited the efficacy of these immunotoxins. To address these issues, we have previously made RITs in which the Fv is connected to domain III (PE24) by a furin cleavage site (FCS), thereby removing unneeded sequences of domain II. However, the PE24 containing RITs do not contain the naturally occurring disulfide bond around the furin cleavage sequence, because it was removed when domain II was deleted. This could potentially allow PE24 containing immunotoxins to be cleaved and inactivated before internalization by cell surface furin or other proteases in the blood stream or tumor microenvironment. Here, we describe five new RITs in which a disulfide bond is engineered to protect the FCS. The most active of these, SS1-Fab-DS3-PE24, shows a longer serum half-life than an RIT without the disulfide bond and has the same anti-tumor activity, despite being less cytotoxic in vitro. These results have significance for the production of de-immunized, low toxicity, PE24-based immunotoxins with a longer serum half-life.
Collapse
Affiliation(s)
- Gilad Kaplan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Fred Lee
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Masanori Onda
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Emily Kolyvas
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Gaurav Bhardwaj
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
122
|
An HIV gp120-CD4 Immunogen Does Not Elicit Autoimmune Antibody Responses in Cynomolgus Macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:618-27. [PMID: 27193040 PMCID: PMC4933776 DOI: 10.1128/cvi.00115-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/11/2016] [Indexed: 01/14/2023]
Abstract
A promising concept for human immunodeficiency virus (HIV) vaccines focuses immunity on the highly conserved transition state structures and epitopes that appear when the HIV glycoprotein gp120 binds to its receptor, CD4. We are developing chimeric antigens (full-length single chain, or FLSC) in which gp120 and CD4 sequences are flexibly linked to allow stable intrachain complex formation between the two moieties (A. DeVico et al., Proc Natl Acad Sci U S A 104:17477-17482, 2007, doi:10.1073/pnas.0707399104; T. R. Fouts et al., J Virol 74:11427-11436, 2000, doi:10.1128/JVI.74.24.11427-11436.2000). Proof of concept studies with nonhuman primates show that FLSC elicited heterologous protection against simian-human immunodeficiency virus (SHIV)/simian immunodeficiency virus (SIV) (T. R. Fouts et al., Proc Natl Acad Sci U S A 112:E992-E999, 2016, doi:10.1073/pnas.1423669112), which correlated with antibodies against transition state gp120 epitopes. Nevertheless, advancement of any vaccine that comprises gp120-CD4 complexes must consider whether the CD4 component breaks tolerance and becomes immunogenic in the autologous host. To address this, we performed an immunotoxicology study with cynomolgus macaques vaccinated with either FLSC or a rhesus variant of FLSC containing macaque CD4 sequences (rhFLSC). Enzyme-linked immunosorbent assay (ELISA) binding titers, primary CD3(+) T cell staining, and temporal trends in T cell subset frequencies served to assess whether anti-CD4 autoantibody responses were elicited by vaccination. We find that immunization with multiple high doses of rhFLSC did not elicit detectable antibody titers despite robust responses to rhFLSC. In accordance with these findings, immunized animals had no changes in circulating CD4(+) T cell counts or evidence of autoantibody reactivity with cell surface CD4 on primary naive macaque T cells. Collectively, these studies show that antigens using CD4 sequences to stabilize transition state gp120 structures are unlikely to elicit autoimmune antibody responses, supporting the advancement of gp120-CD4 complex-based antigens, such as FLSC, into clinical testing.
Collapse
|
123
|
Zhang L, Navaratna T, Thurber GM. A Helix-Stabilizing Linker Improves Subcutaneous Bioavailability of a Helical Peptide Independent of Linker Lipophilicity. Bioconjug Chem 2016; 27:1663-72. [PMID: 27327034 DOI: 10.1021/acs.bioconjchem.6b00209] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stabilized peptides address several limitations to peptide-based imaging agents and therapeutics such as poor stability and low affinity due to conformational flexibility. There is also active research in developing these compounds for intracellular drug targeting, and significant efforts have been invested to determine the effects of helix stabilization on intracellular delivery. However, much less is known about the impact on other pharmacokinetic parameters such as plasma clearance and bioavailability. We investigated the effect of different fluorescent helix-stabilizing linkers with varying lipophilicity on subcutaneous (sc) bioavailability using the glucagon-like peptide-1 (GLP-1) receptor ligand exendin as a model system. The stabilized peptides showed significantly higher protease resistance and increased bioavailability independent of linker hydrophilicity, and all subcutaneously delivered conjugates were able to successfully target the islets of Langerhans with high specificity. The lipophilic peptide variants had slower absorption and plasma clearance than their respective hydrophilic conjugates, and the absolute bioavailability was also lower likely due to the longer residence times in the skin. Their ease and efficiency make double-click helix stabilization chemistries a useful tool for increasing the bioavailability of peptide therapeutics, many of which suffer from rapid in vivo protease degradation. Helix stabilization using linkers of varying lipophilicity can further control sc absorption and clearance rates to customize plasma pharmacokinetics.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Chemical Engineering, and ‡Department of Biomedical Engineering University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Tejas Navaratna
- Department of Chemical Engineering, and ‡Department of Biomedical Engineering University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Greg M Thurber
- Department of Chemical Engineering, and ‡Department of Biomedical Engineering University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
124
|
Immunogenicity of Biotherapeutics: Causes and Association with Posttranslational Modifications. J Immunol Res 2016; 2016:1298473. [PMID: 27437405 PMCID: PMC4942633 DOI: 10.1155/2016/1298473] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/09/2016] [Accepted: 06/12/2016] [Indexed: 12/21/2022] Open
Abstract
Today, potential immunogenicity can be better evaluated during the drug development process, and we have rational approaches to manage the clinical consequences of immunogenicity. The focus of the scientific community should be on developing sensitive diagnostics that can predict immunogenicity-mediated adverse events in the small fraction of subjects that develop clinically relevant anti-drug antibodies. Here, we discuss the causes of immunogenicity which could be product-related (inherent property of the product or might be picked up during the manufacturing process), patient-related (genetic profile or eating habits), or linked to the route of administration. We describe various posttranslational modifications (PTMs) and how they may influence immunogenicity. Over the last three decades, we have significantly improved our understanding about the types of PTMs of biotherapeutic proteins and their association with immunogenicity. It is also now clear that all PTMs do not lead to clinical immunogenicity. We also discuss the mechanisms of immunogenicity (which include T cell-dependent and T cell-independent responses) and immunological tolerance. We further elaborate on the management of immunogenicity in preclinical and clinical setting and the unique challenges raised by biosimilars, which may have different immunogenic potential from their parent biotherapeutics.
Collapse
|
125
|
Abstract
Antibody drug conjugates (ADCs) have emerged as a viable option in targeted delivery of highly potent cytotoxic drugs in treatment of solid tumors. At the time of writing, only two ADCs have received regulatory approval with >40 others in clinical development. The first generation ADCs suffered from a lack of specificity in amino acid site-conjugations, yielding statistically heterogeneous stoichiometric ratios of drug molecules per antibody molecule. For the second generation ADCs, however, site-specific amino acid conjugation using enzymatic ligation, introduction of unnatural amino acids, and site-specific protein engineering hold promise to alleviate some of the current technical limitations. The rapid progress in technology platforms and antibody engineering has introduced novel linkers, site-specific conjugation chemistry, and new payload candidates that could possibly be exploited in the context of ADCs. A search using the Clinical Trial Database registry ( www.clinicaltrials.gov ), using the keyword 'antibody drug conjugate', yielded ~270 hits. The main focus of this article is to present a brief overview of the recent developments and current challenges related to ADC development.
Collapse
|
126
|
Gould J, Callis CM, Dolan DG, Stanard B, Weideman PA. Special endpoint and product specific considerations in pharmaceutical acceptable daily exposure derivation. Regul Toxicol Pharmacol 2016; 79 Suppl 1:S79-93. [PMID: 27233924 DOI: 10.1016/j.yrtph.2016.05.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/19/2016] [Indexed: 12/12/2022]
Abstract
Recently, a guideline has been published by the European Medicines Agency (EMA) on setting safe limits, permitted daily exposures (PDE) [also called acceptable daily exposures (ADE)], for medicines manufactured in multi-product facilities. The ADE provides a safe exposure limit for inadvertent exposure of a drug due to cross-contamination in manufacturing. The ADE determination encompasses a standard risk assessment, requiring an understanding of the toxicological and pharmacological effects, the mechanism of action, drug compound class, and the dose-response as well as the pharmacokinetic properties of the compound. While the ADE concept has broad application in pharmaceutical safety there are also nuances and specific challenges associated with some toxicological endpoints or drug product categories. In this manuscript we discuss considerations for setting ADEs when the following specific adverse health endpoints may constitute the critical effect: genotoxicity, developmental and reproductive toxicity (DART), and immune system modulation (immunostimulation or immunosuppression), and for specific drug classes, including antibody drug conjugates (ADCs), emerging medicinal therapeutic compounds, and compounds with limited datasets. These are challenging toxicological scenarios that require a careful evaluation of all of the available information in order to establish a health-based safe level.
Collapse
|
127
|
Bublil EM, Majtan T, Park I, Carrillo RS, Hůlková H, Krijt J, Kožich V, Kraus JP. Enzyme replacement with PEGylated cystathionine β-synthase ameliorates homocystinuria in murine model. J Clin Invest 2016; 126:2372-84. [PMID: 27183385 DOI: 10.1172/jci85396] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/22/2016] [Indexed: 01/16/2023] Open
Abstract
Homocystinuria, which typically results from cystathionine β-synthase (CBS) deficiency, is the most common defect of sulfur amino acid metabolism. CBS condenses homocysteine and serine to cystathionine that is then converted to cysteine. Individuals with homocystinuria have markedly elevated plasma levels of homocysteine and methionine and reduced concentrations of cystathionine and cysteine. Clinical disease manifestations include thromboembolism and neuropsychiatric, ocular, and skeletal complications. Here, we have shown that administration of PEGylated CBS into the circulation of homocystinuria model mice alters the extra- and intracellular equilibrium of sulfur amino acids, resulting in a decrease of approximately 75% in plasma total homocysteine (tHcy) and normalization of cysteine concentrations. Moreover, the decrease in homocysteine and the normalization of cysteine in PEGylated CBS-treated model mice were accompanied by improvement of histopathological liver symptoms and increased survival. Together, these data suggest that CBS enzyme replacement therapy (ERT) is a promising approach for the treatment of homocystinuria and that ERT for metabolic diseases may not necessitate introduction of the deficient enzyme into its natural intracellular compartment.
Collapse
|
128
|
Wang L, Qiang W, Cheng Z. Allometric Scaling of Therapeutic Monoclonal Antibodies Using Antigen Concentration as a Correction Factor: Application to the Human Clearance Prediction. J Pharm Sci 2016; 105:1335-40. [DOI: 10.1016/j.xphs.2015.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/20/2015] [Accepted: 12/21/2015] [Indexed: 12/22/2022]
|
129
|
Wang L, Ji S, Li M, Cheng Z. A novel pharmacokinetic model based on the complex elimination of monoclonal antibodies for bevacizumab pharmacokinetic study in rabbits. Int Immunopharmacol 2016; 31:39-44. [DOI: 10.1016/j.intimp.2015.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/28/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
|
130
|
Jin L, Zhou QT, Chan HK, Larson IC, Pennington MW, Morales RAV, Boyd BJ, Norton RS, Nicolazzo JA. Pulmonary Delivery of the Kv1.3-Blocking Peptide HsTX1[R14A] for the Treatment of Autoimmune Diseases. J Pharm Sci 2016; 105:650-656. [PMID: 26869426 DOI: 10.1016/j.xphs.2015.10.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/16/2015] [Indexed: 11/25/2022]
Abstract
HsTX1[R14A] is a potent and selective Kv1.3 channel blocker peptide with the potential to treat autoimmune diseases. Given the typically poor oral bioavailability of peptides, we evaluated pulmonary administration of HsTX1[R14A] in rats as an alternative route for systemic delivery. Plasma concentrations of HsTX1[R14A] were measured by liquid chromatography coupled with tandem mass spectrometry in rats receiving intratracheal administration of HsTX1[R14A] in solution (1-4 mg/kg) or a mannitol-based powder (1 mg/kg) and compared with plasma concentrations after intravenous administration (2 mg/kg). HsTX1[R14A] stability in rat plasma and lung tissue was also determined. HsTX1[R14A] was more stable in plasma than in lung homogenate, with more than 90% of the HsTX1[R14A] remaining intact after 5 h, compared with 40.5% remaining in lung homogenate. The terminal elimination half-life, total clearance, and volume of distribution of HsTX1[R14A] after intravenous administration were 79.6 ± 6.5 min, 8.3 ± 0.6 mL/min/kg, and 949.8 ± 71.0 mL/kg, respectively (mean ± SD). After intratracheal administration, HsTX1[R14A] in solution and dry powder was absorbed to a similar degree, with absolute bioavailability values of 39.2 ± 5.2% and 44.5 ± 12.5%, respectively. This study demonstrated that pulmonary administration is a promising alternative for systemically delivering HsTX1[R14A] for treating autoimmune diseases.
Collapse
Affiliation(s)
- Liang Jin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Qi Tony Zhou
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Ian C Larson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | - Rodrigo A V Morales
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
131
|
Tibbitts J, Canter D, Graff R, Smith A, Khawli LA. Key factors influencing ADME properties of therapeutic proteins: A need for ADME characterization in drug discovery and development. MAbs 2015; 8:229-45. [PMID: 26636901 PMCID: PMC4966629 DOI: 10.1080/19420862.2015.1115937] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Protein therapeutics represent a diverse array of biologics including antibodies, fusion proteins, and therapeutic replacement enzymes. Since their inception, they have revolutionized the treatment of a wide range of diseases including respiratory, vascular, autoimmune, inflammatory, infectious, and neurodegenerative diseases, as well as cancer. While in vivo pharmacokinetic, pharmacodynamic, and efficacy studies are routinely carried out for protein therapeutics, studies that identify key factors governing their absorption, distribution, metabolism, and excretion (ADME) properties have not been fully investigated. Thorough characterization and in-depth study of their ADME properties are critical in order to support drug discovery and development processes for the production of safer and more effective biotherapeutics. In this review, we discuss the main factors affecting the ADME characteristics of these large macromolecular therapies. We also give an overview of the current tools, technologies, and approaches available to investigate key factors that influence the ADME of recombinant biotherapeutic drugs, and demonstrate how ADME studies will facilitate their future development.
Collapse
|
132
|
Bioanalytical approaches to assess the proteolytic stability of therapeutic fusion proteins. Bioanalysis 2015; 7:3035-51. [DOI: 10.4155/bio.15.217] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Therapeutic fusion proteins (TFPs) are designed to improve the therapeutic profile of an endogenous protein or protein fragment with a limited dose frequency providing the desired pharmacological activity in vivo. Fusion of a therapeutic protein to a half-life extension or targeting domain can improve the disposition of the molecule or introduce a novel mechanism of action. Prolonged exposure and altered biodistribution of an endogenous protein through fusion technology increases the potential for local protein unfolding during circulation increasing the chance for partial proteolysis of the therapeutic domain. Characterizing the proteolytic liabilities of a TFP can guide engineering efforts to inhibit or hinder partial proteolysis. This review focuses on considerations and techniques for evaluating the stability of a TFP both in vivo and in vitro.
Collapse
|
133
|
Ng CM. Incorporation of FcRn-mediated disposition model to describe the population pharmacokinetics of therapeutic monoclonal IgG antibody in clinical patients. Biopharm Drug Dispos 2015; 37:107-19. [PMID: 26581439 DOI: 10.1002/bdd.1997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/18/2015] [Accepted: 10/30/2015] [Indexed: 11/10/2022]
Abstract
PURPOSE The two-compartment linear model used to describe the population pharmacokinetics (PK) of many therapeutic monoclonal antibodies (TMAbs) offered little biological insight to antibody disposition in humans. The purpose of this study is to develop a semi-mechanistic FcRn-mediated IgG disposition model to describe the population PK of TMAbs in clinical patients. METHODS A standard two-compartment linear PK model from a previously published population PK model of pertuzumab was used to simulate intensive PK data of 100 subjects for model development. Two different semi-mechanistic FcRn-mediated IgG disposition models were developed and First Order Conditional Estimation (FOCE) with the interaction method in NONMEM was used to obtain the final model estimates. The performances of these models were then compared with the two-compartment linear PK model used to simulate the data for model development. RESULTS A semi-mechanistic FcRn-mediated IgG disposition model consisting of a peripheral tissue compartment and FcRn-containing endosomes in the central compartment best describes the simulated pertuzumab population PK data. This developed semi-mechanistic population PK model had the same number of model parameters, produced very similar concentration-time profiles but provided additional biological insight to the FcRn-mediated IgG disposition in human subjects compared with the standard linear two-compartment linear PK model. CONCLUSION This first reported semi-mechanistic model may serve as an important model framework for developing future population PK models of TMAbs in clinical patients.
Collapse
Affiliation(s)
- Chee M Ng
- Clinical Pharmacology and Therapeutics, Children's Hospital of Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
134
|
Fisher TL, Reilly CA, Winter LA, Pandina T, Jonason A, Scrivens M, Balch L, Bussler H, Torno S, Seils J, Mueller L, Huang H, Klimatcheva E, Howell A, Kirk R, Evans E, Paris M, Leonard JE, Smith ES, Zauderer M. Generation and preclinical characterization of an antibody specific for SEMA4D. MAbs 2015; 8:150-62. [PMID: 26431358 PMCID: PMC4966508 DOI: 10.1080/19420862.2015.1102813] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Semaphorin 4D (SEMA4D or CD100) is a member of the semaphorin family of proteins and an important mediator of the movement and differentiation of multiple cell types, including those of the immune, vascular, and nervous systems. Blocking the binding of SEMA4D to its receptors can result in physiologic changes that may have implications in cancer, autoimmune, and neurological disease. To study the effects of blocking SEMA4D, we generated, in SEMA4D-deficient mice, a panel of SEMA4D-specific hybridomas that react with murine, primate, and human SEMA4D. Utilizing the complementarity-determining regions from one of these hybridomas (mAb 67-2), we generated VX15/2503, a humanized IgG4 monoclonal antibody that is currently in clinical development for the potential treatment of various malignancies and neurodegenerative disorders, including multiple sclerosis and Huntington's disease. This work describes the generation and characterization of VX15/2503, including in vitro functional testing, epitope mapping, and an in vivo demonstration of efficacy in an animal model of rheumatoid arthritis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - He Huang
- a Vaccinex; Inc. ; Rochester , NY 14620
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Kovalainen M, Mönkäre J, Riikonen J, Pesonen U, Vlasova M, Salonen J, Lehto VP, Järvinen K, Herzig KH. Novel delivery systems for improving the clinical use of peptides. Pharmacol Rev 2015; 67:541-61. [PMID: 26023145 DOI: 10.1124/pr.113.008367] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Peptides have long been recognized as a promising group of therapeutic substances to treat various diseases. Delivery systems for peptides have been under development since the discovery of insulin for the treatment of diabetes. The challenge of using peptides as drugs arises from their poor bioavailability resulting from the low permeability of biological membranes and their instability. Currently, subcutaneous injection is clinically the most common administration route for peptides. This route is cost-effective and suitable for self-administration, and the development of appropriate dosing equipment has made performing the repeated injections relatively easy; however, only few clinical subcutaneous peptide delivery systems provide sustained peptide release. As a result, frequent injections are needed, which may cause discomfort and additional risks resulting from a poor administration technique. Controlled peptide delivery systems, able to provide required therapeutic plasma concentrations over an extended period, are needed to increase peptide safety and patient compliancy. In this review, we summarize the current peptidergic drugs, future developments, and parenteral peptide delivery systems. Special emphasis is given to porous silicon, a novel material in peptide delivery. Biodegradable and biocompatible porous silicon possesses some unique properties, such as the ability to carry exceptional high peptide payloads and to modify peptide release extensively. We have successfully developed porous silicon as a carrier material for improved parenteral peptide delivery. Nanotechnology, with its different delivery systems, will enable better use of peptides in several therapeutic applications in the near future.
Collapse
Affiliation(s)
- Miia Kovalainen
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| | - Juha Mönkäre
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| | - Joakim Riikonen
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| | - Ullamari Pesonen
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| | - Maria Vlasova
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| | - Jarno Salonen
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| | - Vesa-Pekka Lehto
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| | - Kristiina Järvinen
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| | - Karl-Heinz Herzig
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| |
Collapse
|
136
|
Bioanalytical approaches for characterizing catabolism of antibody–drug conjugates. Bioanalysis 2015; 7:1583-604. [DOI: 10.4155/bio.15.87] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The in vivo stability and catabolism of antibody–drug conjugates (ADCs) directly impact their PK, efficacy and safety, and metabolites of the cytotoxic or small molecule drug component of an ADC can further complicate these factors. This perspective highlights the importance of understanding ADC catabolism and the associated bioanalytical challenges. We evaluated different bioanalytical approaches to qualitatively and quantitatively characterize ADC catabolites. Here we review and discuss the rationale and experimental strategies used to design bioanalytical assays for characterization of ADC catabolism and supporting ADME studies during ADC clinical development. This review covers both large and small molecule approaches, and uses examples from Kadcyla® (T-DM1) and a THIOMAB™ antibody–drug conjugate to illustrate the process.
Collapse
|
137
|
Awwad S, Lockwood A, Brocchini S, Khaw PT. The PK-Eye: A Novel In Vitro Ocular Flow Model for Use in Preclinical Drug Development. J Pharm Sci 2015; 104:3330-42. [PMID: 26108574 DOI: 10.1002/jps.24480] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/08/2015] [Accepted: 04/08/2015] [Indexed: 01/09/2023]
Abstract
A 2-compartment in vitro eye flow model has been developed to estimate ocular drug clearance by the anterior aqueous outflow pathway. The model is designed to accelerate the development of longer-acting ophthalmic therapeutics. Dye studies show aqueous flow is necessary for a molecule injected into the vitreous cavity to clear from the model. The clearance times of proteins can be estimated by collecting the aqueous outflow, which was first conducted with bevacizumab using phosphate-buffered saline in the vitreous cavity. A simulated vitreous solution was then used and ranibizumab (0.5 mg) displayed a clearance time of 8.1 ± 3.1 days, which is comparable to that observed in humans. The model can estimate drug release from implants or the dissolution of suspensions as a first step in their clearance mechanism, which will be the rate-limiting step for the overall resident time of a candidate dosage form in the vitreous. A suspension of triamcinolone acetonide (Kenalog®) (4.0 mg) displayed clearance times spanning 26-28 days. These results indicate that the model can be used to determine in vitro-in vivo correlations in preclinical studies to develop long-lasting therapeutics to treat blinding diseases at the back of the eye.
Collapse
Affiliation(s)
- Sahar Awwad
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom.,UCL School of Pharmacy, London, WC1N 1AX, United Kingdom
| | - Alastair Lockwood
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom.,UCL School of Pharmacy, London, WC1N 1AX, United Kingdom
| | - Steve Brocchini
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom.,UCL School of Pharmacy, London, WC1N 1AX, United Kingdom
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom
| |
Collapse
|
138
|
Thomas MR, de Groot R, Scully MA, Crawley JTB. Pathogenicity of Anti-ADAMTS13 Autoantibodies in Acquired Thrombotic Thrombocytopenic Purpura. EBioMedicine 2015; 2:942-52. [PMID: 26425702 PMCID: PMC4563118 DOI: 10.1016/j.ebiom.2015.06.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/09/2015] [Indexed: 11/27/2022] Open
Abstract
Background Acquired thrombotic thrombocytopenic purpura (TTP) is an autoimmune disease in which anti-ADAMTS13 autoantibodies cause severe enzyme deficiency. ADAMTS13 deficiency causes the loss of regulation of von Willebrand factor multimeric size and platelet-tethering function, which results in the formation of disseminated microvascular platelet microthrombi. Precisely how anti-ADAMTS13 autoantibodies, or antibody subsets, cause ADAMTS13 deficiency (ADAMTS13 activity generally < 10%) has not been formally investigated. Methods We analysed 92 acquired TTP episodes at presentation, through treatment and remission/relapse using epitope mapping and functional analyses to understand the pathogenic mechanisms of anti-ADAMTS13 IgG. Results 89/92 of TTP episodes had IgG recognising the ADAMTS13 N-terminal domains. The central spacer domain was the only N-terminal antigenic target detected. 38/92 TTP episodes had autoantibodies recognising the N-terminal domains alone; 54/92 TTP episodes also had antibodies against the ADAMTS13 C-terminal domains (TSP2–8 and/or CUB domains). Changes in autoantibody specificity were detected in 9/16 patients at relapse, suggesting a continued development of the disease. Functional analyses on IgG from 43 patients revealed inhibitory IgG were limited to anti-spacer domain antibodies. However, 15/43 patients had autoantibodies with no detectable inhibitory action and as many as 32/43 patients had autoantibodies with inhibitory function that was insufficient to account for the severe deficiency state, suggesting that in many patients there is an alternative pathogenic mechanism. We therefore analysed plasma ADAMTS13 antigen levels in 91 acquired TTP presentation samples. We demonstrated markedly reduced ADAMTS13 antigen levels in all presentation samples, median 6% normal (range 0–47%), with 84/91 patients having < 25% ADAMTS13 antigen. ADAMTS13 antigen in the lowest quartile at first presentation was associated with increased mortality (odds ratio 5.7). Conclusions Anti-spacer domain autoantibodies are the major inhibitory antibodies in acquired TTP. However, depletion of ADAMTS13 antigen (rather than enzyme inhibition) is a dominant pathogenic mechanism. ADAMTS13 antigen levels at presentation have prognostic significance. Taken together, our results provide new insights into the pathophysiology of acquired TTP. Anti-spacer domain autoantibodies are the major inhibitory antibodies in acquired TTP. Depletion of ADAMTS13 antigen (rather than enzyme inhibition) is the prevailing pathogenic mechanism in acquired TTP.
Collapse
Affiliation(s)
- Mari R Thomas
- Haemostasis Research Unit, University College London, 51 Chenies Mews, London WC1E 6HX, United Kingdom ; Centre for Haematology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Rens de Groot
- Centre for Haematology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Marie A Scully
- University College Hospital, London NW1 2BU, United Kingdom
| | - James T B Crawley
- Centre for Haematology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| |
Collapse
|
139
|
Young MA, Wald JA, Matthews JE, Scott R, Hodge RJ, Zhi H, Reinhardt RR. Clinical Pharmacology of Albiglutide, a GLP-1 Receptor Agonist. Postgrad Med 2015; 126:84-97. [DOI: 10.3810/pgm.2014.11.2836] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
140
|
Michaelis–Menten elimination kinetics of etanercept, rheumatoid arthritis biologics, after intravenous and subcutaneous administration in rats. Eur J Drug Metab Pharmacokinet 2015; 41:433-9. [DOI: 10.1007/s13318-015-0270-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/20/2015] [Indexed: 12/20/2022]
|
141
|
Chan LJ, Bulitta JB, Ascher DB, Haynes JM, McLeod VM, Porter CJH, Williams CC, Kaminskas LM. PEGylation does not significantly change the initial intravenous or subcutaneous pharmacokinetics or lymphatic exposure of trastuzumab in rats but increases plasma clearance after subcutaneous administration. Mol Pharm 2015; 12:794-809. [PMID: 25644368 DOI: 10.1021/mp5006189] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lymphatic system plays a major role in the metastatic dissemination of cancer and has an integral role in immunity. PEGylation enhances drainage and lymphatic uptake following subcutaneous (sc) administration of proteins and protein-like polymers, but the impact of PEGylation of very large proteins (such as antibodies) on subcutaneous and lymphatic pharmacokinetics is unknown. This study therefore aimed to evaluate the impact of PEGylation on the sc absorption and lymphatic disposition of the anti-HER2 antibody trastuzumab in rats. PEG-trastuzumab was generated via the conjugation of a single 40 kDa PEG-NHS ester to trastuzumab. PEG-trastuzumab showed a 5-fold reduction in HER2 binding affinity, however the in vitro growth inhibitory effects were preserved as a result of changes in cellular trafficking when compared to native trastuzumab. The lymphatic pharmacokinetics of PEG-trastuzumab was evaluated in thoracic lymph duct cannulated rats after iv and sc administration and compared to the pharmacokinetics of native trastuzumab. The iv pharmacokinetics and lymphatic exposure of PEG-trastuzumab was similar when compared to trastuzumab. After sc administration, initial plasma pharmacokinetics and lymphatic exposure were also similar between PEG-trastuzumab and trastuzumab, but the absolute bioavailability of PEG-trastuzumab was 100% when compared to 86.1% bioavailability for trastuzumab. In contrast to trastuzumab, PEG-trastuzumab showed accelerated plasma clearance beginning approximately 7 days after sc, but not iv, administration, presumably as a result of the generation of anti-PEG IgM. This work suggests that PEGylation does not significantly alter the lymphatic disposition of very large proteins, and further suggests that it is unlikely to benefit therapy with monoclonal antibodies.
Collapse
Affiliation(s)
- Linda J Chan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Abstract
The safety pharmacology testing for anticancer agents has historically differed for small molecule pharmaceutical drugs versus large-molecule biopharmaceuticals. For pharmaceutical drugs, dedicated safety pharmacology studies have been conducted according to the ICH M3 (R2), ICH 7A, and ICH S7B guidance documents. For biopharmaceuticals, safety pharmacology endpoints have been incorporated into the repeated-dose toxicology studies according to ICHS6 (R1). However, the introduction of the ICH S9 guidance document for the nonclinical evaluation for anticancer pharmaceuticals has allowed for a streamlined approach for both types of molecules to facilitate access of new potential therapeutics to cancer patients and to reduce the number of animal studies. Examples of the testing strategies that have previously been employed for some representative anticancer agents are provided, and their predictivity to adverse events noted in the clinic is discussed.
Collapse
Affiliation(s)
- Pauline L Martin
- Department of Biologics Toxicology, Janssen Research and Development, 1400 McKean Road, Spring House, PA, 19477, USA,
| |
Collapse
|
143
|
Lim HK, Cao Y, Qiu X, Silva J, Evans DC. A nonradioactive approach to investigate the metabolism of therapeutic peptides by tagging with 127i and using inductively-coupled plasma mass spectrometry analysis. Drug Metab Dispos 2015; 43:17-26. [PMID: 25315343 DOI: 10.1124/dmd.114.059774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The metabolic fate of adrenocorticotropic hormone (ACTH) fragment 4-10 (4-10) was evaluated following incorporation of a nonradioactive (127)I-tag and with selective detection of I(+) at m/z 127 by inductively coupled plasma mass spectrometry (ICP-MS). (127)I has all the advantages of radioactive (125)I as a metabolite tracer and, together with its detection in the femtogram range, has led to a successful metabolite profiling of (127)I-ACTH (4-10) in vitro. The observed metabolic stability of this peptide in tissue preparations from human was plasma > kidney S9 > liver microsomes > liver cytosol, liver S9. Metabolic turnover of (127)I-ACTH (4-10) was not NADPH-dependent and, together with inhibition by protease inhibitor cocktail and EDTA, is consistent with metabolism exclusively by proteases. Our preliminary studies using chemical inhibitors suggested the involvement of metalloprotease, serine peptidase, and aminopeptidase in (127)I-ACTH (4-10) metabolism. The liver is the primary site of metabolic clearance of (127)I-ACTH (4-10), with kidney S9 taking four times longer to produce a metabolite profile comparable to that produced by liver S9. A total of six metabolites retaining the (127)I-tag was detected by ICP-MS, and their structures were elucidated using a LTQ/Orbitrap. (127)I-ACTH (4-10) underwent both N- and C-terminal proteolysis to produce (127)I-Phe as the major metabolite. The (127)I-tag had minimal effect on the metabolic turnover and site of proteolysis of ACTH (4-10), which, together with ICP-MS providing essentially equimolar responses, suggests that the use of a (127)I-tag may have general utility as an alternative to radioiodination to investigate the metabolism of peptide therapeutics.
Collapse
Affiliation(s)
- Heng-Keang Lim
- Pharmacokinetics, Dynamics, and Metabolism, Janssen Research and Development, Spring House, Pennsylvania (H.-K.L., J.S., D.C.E.); Department of Chemistry, Brown University, Providence, Rhode Island (Y.C.); and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, Chicago, Illinois (X.Q.)
| | - Yuan Cao
- Pharmacokinetics, Dynamics, and Metabolism, Janssen Research and Development, Spring House, Pennsylvania (H.-K.L., J.S., D.C.E.); Department of Chemistry, Brown University, Providence, Rhode Island (Y.C.); and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, Chicago, Illinois (X.Q.)
| | - Xi Qiu
- Pharmacokinetics, Dynamics, and Metabolism, Janssen Research and Development, Spring House, Pennsylvania (H.-K.L., J.S., D.C.E.); Department of Chemistry, Brown University, Providence, Rhode Island (Y.C.); and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, Chicago, Illinois (X.Q.)
| | - Jose Silva
- Pharmacokinetics, Dynamics, and Metabolism, Janssen Research and Development, Spring House, Pennsylvania (H.-K.L., J.S., D.C.E.); Department of Chemistry, Brown University, Providence, Rhode Island (Y.C.); and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, Chicago, Illinois (X.Q.)
| | - David C Evans
- Pharmacokinetics, Dynamics, and Metabolism, Janssen Research and Development, Spring House, Pennsylvania (H.-K.L., J.S., D.C.E.); Department of Chemistry, Brown University, Providence, Rhode Island (Y.C.); and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, Chicago, Illinois (X.Q.)
| |
Collapse
|
144
|
Rao VA. Perspectives on Engineering Biobetter Therapeutic Proteins with Greater Stability in Inflammatory Environments. BIOBETTERS 2015. [DOI: 10.1007/978-1-4939-2543-8_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
145
|
Pierog P, Krishna M, Yamniuk A, Chauhan A, DeSilva B. Detection of drug specific circulating immune complexes from in vivo cynomolgus monkey serum samples. J Immunol Methods 2014; 416:124-36. [PMID: 25462536 DOI: 10.1016/j.jim.2014.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Administration of a biotherapeutic can result in the formation of anti-drug antibodies (ADAs). The resulting ADA can potentially form immune complexes (ICs) with the drug leading to altered pharmacokinetic (PK) profiles and/or adverse events. Furthermore the presence of such complexes may interfere with accurate PK assessment, and/or detection of ADA in immunogenicity assays. Here, we present two assays to detect the presence of drug-ADA immune complexes in cynomolgus monkeys. RESULTS Serum samples were analyzed for IC formation in vivo. 8/8 tested animals were positive for drug specific IC. Depending on the time point tested 4/8 or 7/8 animals tested positive for ADA during drug dosing. All 8 animals were confirmed positive for ADA during the washout phase, indicating drug interference in the bridging assay. Relative amount of IC over time was determined and its correlation with PK and ADA was then assessed. Multivariate data analysis demonstrates good correlation between signals obtained from the anti-drug and FcγRIIIa based capture assays, although due to its biological characteristic FcγRIIIa based assay captured only a subset of drug specific IC. In one animal IC remained in circulation even when the drug levels decreased below detection limit. CONCLUSION Results from this study indicate the presence of IC during administration of an immunogenic biotherapeutic. Potential application of these assays includes detection of ADA in an IC during high drug levels. The results on the kinetics of IC formation during ADA response can complement the understanding of PK and ADA profiles. Moreover, the presence of IC indicates possible ADA interference in standard PK assays and potential underestimation of total drug exposure in toxicology studies. In addition this study also highlights the need to understand downstream in vivo consequences of drug-ADA IC as no animals under investigation developed adverse events.
Collapse
Affiliation(s)
- Piotr Pierog
- Novartis Institutes for BioMedical Research, Inc., Cambridge, MA 02139, United States
| | - Murli Krishna
- Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States.
| | - Aaron Yamniuk
- Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Anil Chauhan
- Division of Adult and Pediatric Rheumatology, St. Louis University, St. Louis, MO 63104, United States
| | - Binodh DeSilva
- Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| |
Collapse
|
146
|
Schweizer D, Serno T, Goepferich A. Controlled release of therapeutic antibody formats. Eur J Pharm Biopharm 2014; 88:291-309. [DOI: 10.1016/j.ejpb.2014.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/30/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
|
147
|
Tjandrawinata RR, Trisina J, Rahayu P, Prasetya LA, Hanafiah A, Rachmawati H. Bioactive protein fraction DLBS1033 containing lumbrokinase isolated from Lumbricus rubellus: ex vivo, in vivo, and pharmaceutic studies. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:1585-93. [PMID: 25284988 PMCID: PMC4181543 DOI: 10.2147/dddt.s66007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
DLBS1033 is a bioactive protein fraction isolated from Lumbricus rubellus that tends to be unstable when exposed to the gastrointestinal environment. Accordingly, appropriate pharmaceutical development is needed to maximize absorption of the protein fraction in the gastrointestinal tract. In vitro, ex vivo, and in vivo stability assays were performed to study the stability of the bioactive protein fraction in gastric conditions. The bioactive protein fraction DLBS1033 was found to be unstable at low pH and in gastric fluid. The "enteric coating" formulation showed no leakage in gastric fluid-like medium and possessed a good release profile in simulated intestinal medium. DLBS1033 was absorbed through the small intestine in an intact protein form, confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) analysis. This result confirmed that an enteric coating formula using methacrylic acid copolymer could protect DLBS1033 from the acidic condition of the stomach by preventing the release of DLBS1033 in the stomach, while promoting its release when reaching the intestine. From the blood concentration-versus-time curve, (99m)Tc-DLBS1033 showed a circulation half-life of 70 minutes. This relatively long biological half-life supports its function as a thrombolytic protein. Thus, an enteric delivery system is considered the best approach for DLBS1033 as an oral thrombolytic agent.
Collapse
Affiliation(s)
| | - Jessica Trisina
- Dexa Laboratories of Biomolecular Sciences, Dexa Medica, Cikarang, Indonesia
| | - Puji Rahayu
- Dexa Laboratories of Biomolecular Sciences, Dexa Medica, Cikarang, Indonesia
| | | | | | - Heni Rachmawati
- School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| |
Collapse
|
148
|
Abstract
Biopharmaceuticals, produced by recombinant DNA technology, are generally more complicated to produce than small molecule drugs. As patents around the development and manufacturing of these biopharmaceuticals expire, biosimilars are being developed as comparable and more affordable alternatives to improve patient access and market competition. This commentary explains what a biosimilar is; it compares and contrasts biosimilar production with that of small molecule, generic, and other biological drugs; and it describes basic principles of the nonclinical development program for monoclonal antibody biosimilars.
Collapse
Affiliation(s)
- A M Ryan
- Drug Safety Research and Development, Pfizer Inc., Groton, CT, USA
| |
Collapse
|
149
|
Hosseininasab S, Pashaei‐Asl R, Khandaghi AA, Nasrabadi HT, Nejati‐Koshki K, Akbarzadeh A, Joo SW, Hanifehpour Y, Davaran S. Retracted: Synthesis, Characterization, andIn vitroStudies ofPLGA–PEGNanoparticles for Oral Insulin Delivery. Chem Biol Drug Des 2014; 84:307-15. [DOI: 10.1111/cbdd.12318] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 01/14/2014] [Accepted: 03/03/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Sara Hosseininasab
- Department of Medicinal Chemistry and Drug Applied Research Center Faculty of Pharmacy Tabriz University of Medical Sciences Tabriz 51368 Iran
| | - Roghiyeh Pashaei‐Asl
- Department of Medical Nanotechnology Faculty of Advanced Medical Science Tabriz University of Medical Sciences Tabriz Iran
| | | | - Hamid Tayefi Nasrabadi
- Department of Medical Nanotechnology Faculty of Advanced Medical Science Tabriz University of Medical Sciences Tabriz Iran
| | - Kazem Nejati‐Koshki
- Department of Medical Nanotechnology Faculty of Advanced Medical Science Tabriz University of Medical Sciences Tabriz Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology Faculty of Advanced Medical Science Tabriz University of Medical Sciences Tabriz Iran
- Drug Applied Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Sang Woo Joo
- WCU Nanoresearch Center School of Mechanical Engineering Yeungnam University Gyeongsan 712‐749 South Korea
| | - Younes Hanifehpour
- Department of Medical Nanotechnology Faculty of Advanced Medical Science Tabriz University of Medical Sciences Tabriz Iran
- WCU Nanoresearch Center School of Mechanical Engineering Yeungnam University Gyeongsan 712‐749 South Korea
| | - Soodabeh Davaran
- Drug Applied Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
150
|
Lon HK, Liu D, DuBois DC, Almon RR, Jusko WJ. Modeling pharmacokinetics/pharmacodynamics of abatacept and disease progression in collagen-induced arthritic rats: a population approach. J Pharmacokinet Pharmacodyn 2014; 40:701-12. [PMID: 24233383 DOI: 10.1007/s10928-013-9341-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/31/2013] [Indexed: 01/19/2023]
Abstract
The PK/PD of abatacept, a selective T cell co-stimulation modulator, was examined in rats with collagen-induced arthritis (CIA) using a nonlinear mixed effect modeling approach. Male Lewis rats underwent collagen induction to produce rheumatoid arthritis. Two single-dose groups received either 10 mg/kg intravenous (IV) or 20 mg/kg subcutaneous (SC) abatacept, and one multiple-dose group received one 20 mg/kg SC abatacept dose and four additional 10 mg/kg SC doses. Effects on disease progression (DIS) were measured by paw swelling. Plasma concentrations of abatacept were assayed by enzyme-linked immunosorbent assay. The PK/PD data were sequentially fitted using NONMEM VI. Goodness-of-fit was assessed by objective functions and visual inspection of diagnostic plots. The PK of abatacept followed a two-compartment model with linear elimination. For SC doses, short-term zero-order absorption was assumed with F = 59.2 %. The disease progression component was an indirect response model with a time-dependent change in paw edema production rate constant (k in ) that was inhibited by abatacept. Variation in the PK data could be explained by inter-individual variability in clearance and central compartment volume (V 1 ), while the large variability of the PD data may be the result of paw edema production (k in 0 ) and loss rate constant (k out ). Abatacept has modest effects on paw swelling in CIA rats. The PK/PD profiles were well described by the proposed model and allowed evaluation of inter-individual variability on drug- and DIS-related parameters.
Collapse
|