101
|
Tigchelaar F, Groen H, Westgren M, Huinink KD, Cremers T, van den Berg PP. A new microdialysis probe for continuous lactate measurement during fetal monitoring: Proof of concept in an animal model. Acta Obstet Gynecol Scand 2020; 99:1411-1416. [PMID: 32274792 PMCID: PMC7540415 DOI: 10.1111/aogs.13865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Cardiotocography (CTG) is currently the most commonly used method for intrapartum fetal monitoring during labor. However, a high false-positive rate of fetal acidosis indicated by CTG leads to an increase in obstetric interventions. We developed a microdialysis probe that is integrated into a fetal scalp electrode allowing continuous measurement of lactate subcutaneously, thus giving instant information about the oxygenation status of the fetus. Our aim was to establish proof of concept in an animal model using a microdialysis probe to monitor lactate subcutaneously. MATERIAL AND METHODS We performed an in vivo study in adult male wild-type Wistar rats. We modified electrodes used for CTG monitoring in human fetuses to incorporate a microdialysis membrane. Optimum flow rates for microdialysis were determined in vitro. For the in vivo experiment, a microdialysis probe was inserted into the skin on the back of the animal. De-oxygenation and acidosis were induced by lowering the inspiratory oxygen pressure. Oxygenation and heart rate were monitored. A jugular vein cannula was inserted to draw blood samples for analysis of lactate, pH, pco2 , and saturation. Lactate levels in dialysate were compared with plasma lactate levels. RESULTS Baseline blood lactate levels were around 1 mmol/L. Upon de-oxygenation, oxygen saturation fell to below 40% for 1 h and blood lactate levels increased 2.5-fold. Correlation of dialysate lactate levels with plasma lactate levels was 0.89 resulting in an R2 of .78 in the corresponding linear regression. CONCLUSIONS In this animal model, lactate levels in subcutaneous fluid collected by microdialysis closely reflected blood lactate levels upon transient de-oxygenation, indicating that our device is suitable for subcutaneous measurement of lactate. Microdialysis probe technology allows the measurement of multiple compounds in the dialysate, such as glucose, albumin, or inflammatory mediators, so this technique may offer the unique possibility to shed light on fetal physiology during the intrapartum period.
Collapse
Affiliation(s)
- Froukje Tigchelaar
- Faculty of Medical SciencesUniversity of GroningenGroningenthe Netherlands
| | - Henk Groen
- Department of EpidemiologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | | | | | - Thomas Cremers
- CAN Holding B.V.Groningenthe Netherlands
- Department of Pharmaceutical AnalysisFaculty of Science and EngineeringUniversity of GroningenGroningenthe Netherlands
| | - Paul P. van den Berg
- Department of Obstetrics & GynecologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
102
|
Connexin Hemichannel Mimetic Peptide Attenuates Cortical Interneuron Loss and Perineuronal Net Disruption Following Cerebral Ischemia in Near-Term Fetal Sheep. Int J Mol Sci 2020; 21:ijms21186475. [PMID: 32899855 PMCID: PMC7554896 DOI: 10.3390/ijms21186475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
Perinatal hypoxia-ischemia is associated with disruption of cortical gamma-aminobutyric acid (GABA)ergic interneurons and their surrounding perineuronal nets, which may contribute to persisting neurological deficits. Blockade of connexin43 hemichannels using a mimetic peptide can alleviate seizures and injury after hypoxia-ischemia. In this study, we tested the hypothesis that connexin43 hemichannel blockade improves the integrity of cortical interneurons and perineuronal nets. Term-equivalent fetal sheep received 30 min of bilateral carotid artery occlusion, recovery for 90 min, followed by a 25-h intracerebroventricular infusion of vehicle or a mimetic peptide that blocks connexin hemichannels or by a sham ischemia + vehicle infusion. Brain tissues were stained for interneuronal markers or perineuronal nets. Cerebral ischemia was associated with loss of cortical interneurons and perineuronal nets. The mimetic peptide infusion reduced loss of glutamic acid decarboxylase-, calretinin-, and parvalbumin-expressing interneurons and perineuronal nets. The interneuron and perineuronal net densities were negatively correlated with total seizure burden after ischemia. These data suggest that the opening of connexin43 hemichannels after perinatal hypoxia-ischemia causes loss of cortical interneurons and perineuronal nets and that this exacerbates seizures. Connexin43 hemichannel blockade may be an effective strategy to attenuate seizures and may improve long-term neurological outcomes after perinatal hypoxia-ischemia.
Collapse
|
103
|
Kuiper MJ, Meiners LC, Chandler ES, Brandsma R, Bos AF, Horst HT, Sival DA, Brouwer O, Elema A, Heineman K, Hitzert M, vd Hoeven J, Lunsing R. Dyskinesia Impairment Scale scores in Dutch pre-school children after neonatal therapeutic hypothermia. Eur J Paediatr Neurol 2020; 28:70-76. [PMID: 32950367 DOI: 10.1016/j.ejpn.2020.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/18/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Neonatal therapeutic hypothermia (TH) can ameliorate or prevent the development of dyskinetic cerebral palsy (CP) after hypoxic-ischemic encephalopathy (HIE). The Dyskinesia Impairment Scale (DIS) was recently launched to quantify dyskinetic (dystonic and choreatic) motor features in patients with CP. In TH treated children, who are at risk of developing dyskinetic CP, we aimed to determine DIS-scores at pre-school age. METHOD In 21 Dutch pre-school children (3-6 years of age) who had received TH according to the Dutch-Flemish treatment protocol, we determined DIS-scores. We associated DIS-scores with 1. age-matched control values (Kuiper et al., 2018) [1], and 2. previously reported DIS-score range in dyskinetic CP (Monbaliu E et al., 2015). RESULTS The motor phenotype was determined as: normal (n = 18/21), mildly impaired (reduced coordination (n = 2/21)) and abnormal (dyskinetic CP; n = 1/21). In absence of CP (n = 20/21), DIS-scores were lower (more favorable) than in dyskinetic CP, without any overlapping group scores (mean difference: 71 points; p < .05). However, the obtained DIS-scores were still higher than previously reported in healthy age-matched controls (mean difference: 14 points; p < .05). There was an association between DIS-scores and retrospective neonatal MRI (basal ganglia and thalamus injury on diffusion weighted imaging (DWI)) and (a)EEG parameters (p < .05). CONCLUSION In the vast majority (95%) of Dutch TH-HIE treated pre-school children, the phenotypic motor outcome was favorable. However, DIS-scores were moderately increased compared with healthy age-matched controls. Future studies may elucidate the significance of moderately increased DIS-scores should to further extent.
Collapse
Affiliation(s)
- M J Kuiper
- Department of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - L C Meiners
- Department of Radiology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - E S Chandler
- Department of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - R Brandsma
- Department of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - A F Bos
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Hj Ter Horst
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, the Netherlands
| | - D A Sival
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Mulugeta T, Sebsibe G, Fenta FA, Sibhat M. Risk Factors of Perinatal Asphyxia Among Newborns Delivered at Public Hospitals in Addis Ababa, Ethiopia: Case-Control Study. PEDIATRIC HEALTH MEDICINE AND THERAPEUTICS 2020; 11:297-306. [PMID: 32922119 PMCID: PMC7457880 DOI: 10.2147/phmt.s260788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/09/2020] [Indexed: 12/22/2022]
Abstract
Background Perinatal asphyxia determines the newborn’s future health status and viability with risk factors yet to be completely understood. It measures the status of the healthcare delivery of an organization including antenatal, intranatal, and postnatal care. In Ethiopia, 31.6% of neonatal mortality was attributed to perinatal asphyxia. This study aimed to assess the risk factors of perinatal asphyxia. Methods An unmatched case–control study was conducted on 213 (71 cases selected using lottery method and 142 controls systematically) subjects in Addis Ababa from November 1, 2018 to June 30, 2019. Data were collected using a structured questionnaire through face-to-face interviews, entered to Epi data version 4.4, and exported to SPSS version 25 for analysis. Logistic regression was used for analysis. Variables with p< 0.25 in bivariate analysis were taken to multivariable analysis. Statistical significance was declared at P<0.05 and findings were presented using texts and tables. Results A total of 210 newborns (70 cases and 140 controls) and their mothers were included with an overall response rate of 98.5%. Antepartum hemorrhage [AOR=7.17; 95% CI 1.73–29.72], low birth weight [AOR=2.87; 95% CI 1.01–8.13], preterm birth [AOR=3.4; 95% CI 1.04–11.16], caesarean section delivery [AOR=2.75; 95% CI 1.01–7.42], instrumental delivery [AOR=4.88; 95% CI 1.35–17.61], fetal distress [AOR=4.77; 95% CI 1.52–14.92] and meconium-stained amniotic fluid [AOR=9.02; 95% CI 2.96–30.24] were significantly associated with perinatal asphyxia. Hence, efforts ought to go to improve the quality of antenatal and intra-natal services.
Collapse
Affiliation(s)
- Tewodros Mulugeta
- Department of Nursing, College of Health Science and Medicine, Dilla University, Dilla, Ethiopia
| | - Girum Sebsibe
- School of Nursing and Midwifery, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Fikirtemariam Abebe Fenta
- School of Nursing and Midwifery, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Migbar Sibhat
- Department of Nursing, College of Health Science and Medicine, Dilla University, Dilla, Ethiopia
| |
Collapse
|
105
|
Minor neurological signs and behavioural function at age 2 years in neonatal hypoxic ischaemic encephalopathy (HIE). Eur J Paediatr Neurol 2020; 27:78-85. [PMID: 32327390 DOI: 10.1016/j.ejpn.2020.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/15/2020] [Accepted: 04/07/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Neurodevelopmental follow-up in Neonatal Hypoxic Ischaemic Encephalopathy (HIE) typically focusses on major neuromotor (cerebral palsy, CP) and severe cognitive impairment. Outcomes in those without major neuromotor impairment are less well explored. OBJECTIVES To examine behavioural, cognitive and neurological outcomes after neonatal HIE, in a clinical cohort of children without CP, at age 2 years. METHODS Clinical routine outcome data from children admitted to a tertiary centre with neonatal HIE for hypothermia treatment between 05/08/09-30/05/2016. Children were assessed for neuromotor status - particularly minor neurological signs (MNS), with Bayley Scales of Infant and Toddler Development III (Bayley III) or Ages and Stages Questionnaire-3 (ASQ), Child Behavior Checklist 1.5-5 (CBCL), Quantitative Checklist for Autism in Toddlers (Q-CHAT). RESULTS Of 107 children, 75.5% had normal neurology, 12.1% CP, 12.1% MNS. Children with CP were excluded from analyses. For those without CP, Bayley-III scores were in the average range for the majority; mild cognitive delay observed in 5%, 4.2% language, 1.3% motor development; severe delay in 1.3% for cognitive, 4.2% for language. More than in the normative population scored in clinical ranges for CBCL externalising, sleep, and other problems. No significant difference was seen for Q-CHAT. Children with MNS were significantly more likely to have impaired Bayley-III scores, parent-reported internalising, sleep, and other problems. CONCLUSIONS In this clinical cohort, the majority of children had favourable outcome at 2 years. However, children with MNS were at risk for cognitive and behavioural difficulties and will benefit from enhanced clinical follow-up and support.
Collapse
|
106
|
Pospelov AS, Puskarjov M, Kaila K, Voipio J. Endogenous brain-sparing responses in brain pH and PO 2 in a rodent model of birth asphyxia. Acta Physiol (Oxf) 2020; 229:e13467. [PMID: 32174009 DOI: 10.1111/apha.13467] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
AIM To study brain-sparing physiological responses in a rodent model of birth asphyxia which reproduces the asphyxia-defining systemic hypoxia and hypercapnia. METHODS Steady or intermittent asphyxia was induced for 15-45 minutes in anaesthetized 6- and 11-days old rats and neonatal guinea pigs using gases containing 5% or 9% O2 plus 20% CO2 (in N2 ). Hypoxia and hypercapnia were induced with low O2 and high CO2 respectively. Oxygen partial pressure (PO2 ) and pH were measured with microsensors within the brain and subcutaneous ("body") tissue. Blood lactate was measured after asphyxia. RESULTS Brain and body PO2 fell to apparent zero with little recovery during 5% O2 asphyxia and 5% or 9% O2 hypoxia, and increased more than twofold during 20% CO2 hypercapnia. Unlike body PO2 , brain PO2 recovered rapidly to control after a transient fall (rat), or was slightly higher than control (guinea pig) during 9% O2 asphyxia. Asphyxia (5% O2 ) induced a respiratory acidosis paralleled by a progressive metabolic (lact)acidosis that was much smaller within than outside the brain. Hypoxia (5% O2 ) produced a brain-confined alkalosis. Hypercapnia outlasting asphyxia suppressed pH recovery and prolonged the post-asphyxia PO2 overshoot. All pH changes were accompanied by consistent shifts in the blood-brain barrier potential. CONCLUSION Regardless of brain maturation stage, hypercapnia can restore brain PO2 and protect the brain against metabolic acidosis despite compromised oxygen availability during asphyxia. This effect extends to the recovery phase if normocapnia is restored slowly, and it is absent during hypoxia, demonstrating that exposure to hypoxia does not mimic asphyxia.
Collapse
Affiliation(s)
- Alexey S. Pospelov
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences University of Helsinki Helsinki Finland
| | - Martin Puskarjov
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences University of Helsinki Helsinki Finland
| | - Kai Kaila
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences University of Helsinki Helsinki Finland
- Neuroscience Center (HiLIFE) University of Helsinki Helsinki Finland
| | - Juha Voipio
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences University of Helsinki Helsinki Finland
| |
Collapse
|
107
|
Ravichandran L, Allen VM, Allen AC, Vincer M, Baskett TF, Woolcott CG. Incidence, Intrapartum Risk Factors, and Prognosis of Neonatal Hypoxic-Ischemic Encephalopathy Among Infants Born at 35 Weeks Gestation or More. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2020; 42:1489-1497. [PMID: 33039315 DOI: 10.1016/j.jogc.2020.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Neonatal hypoxic-ischemic encephalopathy (HIE) is associated with neonatal mortality, acute neurological injury, and long-term neurodevelopmental disabilities; however, the association between intrapartum factors and HIE remains unclear. METHODS This population-based cohort study used linked obstetrical and newborn data derived from the Nova Scotia Atlee Perinatal Database (NSAPD, 1988-2015) and the AC Allen Perinatal Follow-Up Program Database (2006-2015) for all pregnancies with live, non-anomalous newborns ≥35 weeks gestation, not delivered by pre-labour cesarean section. Temporal trends in HIE incidence were described, and logistic regression estimated odds ratios (OR) with 95% confidence intervals (CI) for the association of intrapartum factors with HIE. RESULTS The NSAPD identified 227 HIE cases in the population of 226 711 deliveries from 1988 to 2015. Women with clinical chorioamnionitis in labour (OR 8.0; 95% CI 3.9-16), emergency cesarean delivery (OR 10; 95% CI 7.6-14), shoulder dystocia (OR 3.5; 95% CI 2.1-5.7), placental abruption (OR 18; 95% CI 11-29), and cord prolapse (OR 30; 95% CI 15-61) were more likely to have newborns with HIE. Two-thirds of newborns with HIE had an abnormal intrapartum fetal heart rate tracing. The mortality rate among infants with HIE was 27% by 3 years of age. Neurodevelopmental outcomes in the surviving infants were normal in 43% and showed severe developmental delay in 40%. CONCLUSION Overall, the rate of HIE was low in infants born at ≥35 weeks gestation. The identification of associated intrapartum factors should promote increased surveillance in these clinical situations and emphasize the importance of careful management to optimize newborn outcomes.
Collapse
Affiliation(s)
| | - Victoria M Allen
- Department of Obstetrics & Gynaecology, Dalhousie University, Halifax, NS.
| | - Alexander C Allen
- Department of Obstetrics & Gynaecology, Dalhousie University, Halifax, NS; Department of Pediatrics, Dalhousie University, Halifax, NS
| | - Michael Vincer
- Department of Obstetrics & Gynaecology, Dalhousie University, Halifax, NS; Department of Pediatrics, Dalhousie University, Halifax, NS
| | - Thomas F Baskett
- Department of Obstetrics & Gynaecology, Dalhousie University, Halifax, NS
| | - Christy G Woolcott
- Department of Obstetrics & Gynaecology, Dalhousie University, Halifax, NS; Department of Pediatrics, Dalhousie University, Halifax, NS
| |
Collapse
|
108
|
Alemu AY, Belay GM, Berhanu M, Minuye B. Determinants of neonatal mortality at neonatal intensive care unit in Northeast Ethiopia: unmatched case-control study. Trop Med Health 2020; 48:40. [PMID: 32514229 PMCID: PMC7268585 DOI: 10.1186/s41182-020-00232-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/25/2020] [Indexed: 11/14/2022] Open
Abstract
Background Globally, in 2016, about 38% and 3% of all neonatal death were recorded in sub-Saharan Africa and Ethiopia, respectively. In the same year, 47 neonates out of 1000 live births were not surviving in the first 28 days of age in the Amhara region, Ethiopia. Despite the highest burden of neonatal death in the region, specific or the proximate determinants of neonatal death in the neonatal intensive care unit were not well identified. Objective This study aimed to identify the determinants of neonatal mortality at neonatal intensive care unit in Dessie Referral Hospital, Northeast Ethiopia. Methods An institution-based unmatched case-control study was conducted on neonates admitted to the neonatal intensive care unit of Dessie Referral Hospital, from January 1, 2016, to December 30, 2017. A total of 390 charts (130 cases and 260 controls) were selected by simple random sampling technique. The data were abstracted from the facility-based data abstraction form. A binary logistic regression analysis was fitted to identify the determinants of neonatal mortality. Results Pregnancy-induced hypertension (AOR = 4.57; 95% CI 1.45–14.43), prolonged rupture of membrane (AOR = 2.04; 95% CI 1.13–3.68), very low birth weight (AOR = 7.00; 95% CI 2.10–23.35), and low birth weight (AOR = 2.12; 95% CI 1.10–4.20) were identified factors. Moreover, respiratory distress syndrome (AOR = 3.61; 95% CI 1.10–12.04), perinatal asphyxia (AOR = 2.27; 95% CI 1.18–4.39), meconium aspiration syndrome (AOR = 2.35; 95% CI 1.12–4.97), and infection (AOR = 2.26; 95% CI 1.34–3.82) were also significantly associated with neonatal death. Conclusions Pregnancy-induced hypertension, prolonged rupture of membrane, low birth weight, respiratory distress syndrome, perinatal asphyxia, meconium aspiration syndrome, and infections were the major determinants of neonatal mortality. Therefore, special attention will be given to small and sick babies. Moreover, early anticipation of complications and management of mothers who had pregnancy-induced hypertension and prolonged rupture of the membrane would save neonates.
Collapse
Affiliation(s)
- Abebaw Yeshambel Alemu
- Department of Nursing, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Getaneh Mulualem Belay
- Department of Pediatric and Child Health Nursing, School of Nursing, College of Medicine and Health Sciences, University of Gondar, P.O.Box:196, Gondar, Ethiopia
| | - Mengistu Berhanu
- Department of Pediatric and Child Health Nursing, School of Nursing, College of Medicine and Health Sciences, University of Gondar, P.O.Box:196, Gondar, Ethiopia
| | - Biniam Minuye
- Department of Nursing, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
109
|
The neuroprotective action of 3,3'-diindolylmethane against ischemia involves an inhibition of apoptosis and autophagy that depends on HDAC and AhR/CYP1A1 but not ERα/CYP19A1 signaling. Apoptosis 2020; 24:435-452. [PMID: 30778709 PMCID: PMC6522467 DOI: 10.1007/s10495-019-01522-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There are no studies examining the effects of 3,3′-diindolylmethane (DIM) in neuronal cells subjected to ischemia. Little is also known about the roles of apoptosis and autophagy as well as AhR and ERα signaling and HDACs in DIM action. We demonstrated for the first time the strong neuroprotective capacity of DIM in mouse primary hippocampal cell cultures exposed to ischemia at early and later stages of neuronal development. The protective effects of DIM were mediated via inhibition of ischemia-induced apoptosis and autophagy that was accompanied by a decrease in AhR/CYP1A1 signaling and an increase in HDAC activity. DIM decreased the levels of pro-apoptotic factors, i.e., Fas, Caspase-3, and p38 mitogen-activated protein kinase (MAPK). DIM also reduced the protein levels of autophagy-related Beclin-1 (BECN1) and microtubule-associated proteins 1A/1B light chain (LC3), partially reversed the ischemia-induced decrease in Nucleoporin 62 (NUP62) and inhibited autophagosome formation. In addition, DIM completely reversed the ischemia-induced decrease in histone deacetylase (HDAC) activity in hippocampal neurons. Although DIM inhibited AhR/CYP1A1 signaling, it did not influence the protein expression levels of ERα and ERα-regulated CYP19A1 which are known to be controlled by AhR. This study demonstrated for the first time, that the neuroprotective action of 3,3′-diindolylmethane against ischemia involves an inhibition of apoptosis and autophagy and depends on AhR/CYP1A1 signaling and HDAC activity, thus creating the possibility of developing new therapeutic strategies that target neuronal degeneration at specific molecular levels.
Collapse
|
110
|
Le K, Wu S, Chibaatar E, Ali AI, Guo Y. Alarmin HMGB1 Plays a Detrimental Role in Hippocampal Dysfunction Caused by Hypoxia-Ischemia Insult in Neonatal Mice: Evidence from the Application of the HMGB1 Inhibitor Glycyrrhizin. ACS Chem Neurosci 2020; 11:979-993. [PMID: 32073822 DOI: 10.1021/acschemneuro.0c00084] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hippocampal dysfunction related to cognitive impairment and emotional disorders in young children and adolescents caused by neonatal hypoxic-ischemic brain injury (HIBI) has attracted increasing attention in recent years. Crosstalk between the nervous and immune systems organized by hypoxia-ischemia (HI) insult may contribute to hippocampal dysfunction after HIBI. Extracellular HMGB1 functions as a damage-associated molecular pattern to instigate and amplify inflammatory responses, but whether this molecule is correlated with hippocampal dysfunction after HIBI is largely unknown. Therefore, this study examined hippocampal function after HMGB1 inhibition in an experimental HIBI model to verify the hypothesis that HMGB1 is a key mediator of hippocampal neuropathology in neonatal HIBI. By administering different doses of the HMGB1-specific inhibitor glycyrrhizin (GLY), we first found that GLY reversed the HI insult-induced loss of neurons and myelin in the hippocampal region and neurobehavioral impairments, partially in a dose-dependent manner, and based on this, we determined the optimal drug concentration to be 50 mg/kg. Subsequent analysis found that this neuroprotective effect was achieved through the inhibition of HMGB1 expression and nucleocytoplasmic translocation, a reduction in the abnormal expression of proteins associated with the downstream signaling pathway of HMGB1, a decrease in the inflammatory response, the suppression of increases in microglia/astrocytes, and the inhibition of hippocampal cell apoptosis. Collectively, our discoveries contribute to the rising appreciation of the role of HMGB1 in the neuropathology of hippocampal dysfunction and related behavioral outcomes following HIBI.
Collapse
Affiliation(s)
- Kai Le
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Shanshan Wu
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Enkhmurun Chibaatar
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Abdoulaye Idriss Ali
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Yijing Guo
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China
| |
Collapse
|
111
|
Abbasi H, Gunn AJ, Bennet L, Unsworth CP. Latent Phase Identification of High-Frequency Micro-Scale Gamma Spike Transients in the Hypoxic Ischemic EEG of Preterm Fetal Sheep Using Spectral Analysis and Fuzzy Classifiers. SENSORS 2020; 20:s20051424. [PMID: 32150987 PMCID: PMC7085637 DOI: 10.3390/s20051424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
Premature babies are at high risk of serious neurodevelopmental disabilities, which in many cases are related to perinatal hypoxic–ischemic encephalopathy (HIE). Studies of neuroprotection in animal models consistently suggest that treatment must be started as early as possible in the first 6 h after hypoxia–ischemia (HI), the so-called latent phase before secondary deterioration, to improve outcomes. We have shown in preterm sheep that EEG biomarkers of injury, in the form of high-frequency micro-scale spike transients, develop and evolve in this critical latent phase after severe asphyxia. Real-time automatic identification of such events is important for the early and accurate detection of HI injury, so that the right treatment can be implemented at the right time. We have previously reported successful strategies for accurate identification of EEG patterns after HI. In this study, we report an alternative high-performance approach based on the fusion of spectral Fourier analysis and Type-I fuzzy classifiers (FFT-Type-I-FLC). We assessed its performance in over 2520 min of latent phase EEG recordings from seven asphyxiated in utero preterm fetal sheep exposed to a range of different occlusion periods. The FFT-Type-I-FLC classifier demonstrated 98.9 ± 1.0% accuracy for identification of high-frequency spike transients in the gamma frequency band (namely 80–120 Hz) post-HI. The spectral-based approach (FFT-Type-I-FLC classifier) has similar accuracy to our previous reverse biorthogonal wavelets rbio2.8 basis function and type-1 fuzzy classifier (rbio-WT-Type-1-FLC), providing competitive performance (within the margin of error: 0.89%), but it is computationally simpler and would be readily adapted to identify other potentially relevant EEG waveforms.
Collapse
Affiliation(s)
- Hamid Abbasi
- Department of Engineering Science, Faculty of Engineering, University of Auckland, Auckland 1142, New Zealand;
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.)
- Correspondence:
| | - Alistair J. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.)
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.)
| | - Charles P. Unsworth
- Department of Engineering Science, Faculty of Engineering, University of Auckland, Auckland 1142, New Zealand;
| |
Collapse
|
112
|
Enweronu-Laryea CC, Nsiah-Boateng E, Andoh HD, Frimpong-Barfi A, Asenso-Boadi FM, Aikins M. Evaluating services for perinatal asphyxia and low birth weight at two hospitals in Ghana: a micro-costing analysis. Ghana Med J 2020; 53:256-266. [PMID: 32116336 PMCID: PMC7036444 DOI: 10.4314/gmj.v53i4.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Neonatal mortality has been decreasing slowly in Ghana despite investments in maternal-newborn services. Although community-based interventions are effective in reducing newborn deaths, hospital-based services provide better health outcomes. Objective To examine the process and cost of hospital-based services for perinatal asphyxia and low birth weight/preterm at a district and a regional level referral hospital in Ghana. Methods A cross-sectional study was conducted at 2 hospitals in Greater Accra Region during May-July 2016. Term infants with perinatal asphyxia and low birth weight/preterm infants referred for special care within 24hours after birth were eligible. Time-driven activity-based costing (TDABC) approach was used to examine the process and cost of all activities in the full cycle of care from admission until discharge or death. Costs were analysed from health provider's perspective. Results Sixty-two newborns (perinatal asphyxia 27, low-birth-weight/preterm 35) were enrolled. Cost of care was proportionately related to length-of-stay. Personnel costs constituted over 95% of direct costs, and all resources including personnel, equipment and supplies were overstretched. Conclusion TDABC analysis revealed gaps in the organization, process and financing of neonatal services that undermined the quality of care for hospitalized newborns. The study provides baseline cost data for future cost-effectiveness studies on neonatal services in Ghana. Funding Authors received no external funding for the study
Collapse
Affiliation(s)
| | - Eric Nsiah-Boateng
- School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Hilary D Andoh
- Greater Accra Regional Hospital, Ghana Health Service, Accra, Ghana
| | | | - Francis M Asenso-Boadi
- Departments of Economics, University of Cape Coast, Ghana.,Head Office, National Health Insurance Authority, Accra, Ghana
| | - Moses Aikins
- School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
113
|
Yuan X, Kang W, Song J, Guo J, Guo L, Zhang R, Liu S, Zhang Y, Liu D, Wang Y, Ding X, Dong H, Chen X, Cheng Y, Zhang X, Xu F, Zhu C. Prognostic value of amplitude-integrated EEG in neonates with high risk of neurological sequelae. Ann Clin Transl Neurol 2020; 7:210-218. [PMID: 32031755 PMCID: PMC7034499 DOI: 10.1002/acn3.50989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To determine the efficacy and the prognostic value of amplitude-integrated electroencephalography (aEEG) in term and near-term neonates with high risk of neurological sequelae. METHODS Infants of ≥35 weeks of gestation diagnosed with neonatal encephalopathy or with high risk of brain injury were included. All eligible infants underwent aEEG within 6 h after clinical assessment. The infants were followed up 12 months to evaluate neurological development. RESULTS A total of 250 infants were eligible, of which 85 had normal aEEG, 81 had mildly abnormal aEEG, and 84 had severely abnormal aEEG. Of these infants, 168 were diagnosed with different neonatal encephalopathies, 27 with congenital or metabolic diseases, and 55 with high risk of brain injury. In all, 22 infants died, 19 were lost to follow-up, and 209 completed the follow-up at 12 months, of which 62 were diagnosed with a neurological disability. Statistical analysis showed that severely abnormal aEEG predicted adverse neurological outcome with a sensitivity of 70.2%, a specificity of 87.1%, a positive predictive value of 75.6%, and a negative predictive value of 83.7%. INTERPRETATION aEEG can predict adverse outcomes in high-risk neonates and is a useful method for monitoring neonates with high risk of adverse neurological outcomes.
Collapse
Affiliation(s)
- Xiao Yuan
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052, China
| | - Wenqing Kang
- Neonatal Intensive Care Unit, Zhengzhou Key Laboratory of Newborn Disease Research, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Juan Song
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Guo
- Neonatal Intensive Care Unit, Zhengzhou Key Laboratory of Newborn Disease Research, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Lanlan Guo
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruili Zhang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052, China
| | - Shasha Liu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052, China
| | - Yaodong Zhang
- Neonatal Intensive Care Unit, Zhengzhou Key Laboratory of Newborn Disease Research, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Dapeng Liu
- Neonatal Intensive Care Unit, Zhengzhou Key Laboratory of Newborn Disease Research, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Yong Wang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052, China
| | - Xue Ding
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052, China
| | - Huimin Dong
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052, China
| | - Xi Chen
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052, China
| | - Yanchao Cheng
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052, China
| | - Falin Xu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, 40530, Sweden.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, 2995, Sweden
| |
Collapse
|
114
|
Abbasi H, Unsworth CP. Applications of advanced signal processing and machine learning in the neonatal hypoxic-ischemic electroencephalogram. Neural Regen Res 2020; 15:222-231. [PMID: 31552887 PMCID: PMC6905345 DOI: 10.4103/1673-5374.265542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/24/2019] [Indexed: 01/15/2023] Open
Abstract
Perinatal hypoxic-ischemic-encephalopathy significantly contributes to neonatal death and life-long disability such as cerebral palsy. Advances in signal processing and machine learning have provided the research community with an opportunity to develop automated real-time identification techniques to detect the signs of hypoxic-ischemic-encephalopathy in larger electroencephalography/amplitude-integrated electroencephalography data sets more easily. This review details the recent achievements, performed by a number of prominent research groups across the world, in the automatic identification and classification of hypoxic-ischemic epileptiform neonatal seizures using advanced signal processing and machine learning techniques. This review also addresses the clinical challenges that current automated techniques face in order to be fully utilized by clinicians, and highlights the importance of upgrading the current clinical bedside sampling frequencies to higher sampling rates in order to provide better hypoxic-ischemic biomarker detection frameworks. Additionally, the article highlights that current clinical automated epileptiform detection strategies for human neonates have been only concerned with seizure detection after the therapeutic latent phase of injury. Whereas recent animal studies have demonstrated that the latent phase of opportunity is critically important for early diagnosis of hypoxic-ischemic-encephalopathy electroencephalography biomarkers and although difficult, detection strategies could utilize biomarkers in the latent phase to also predict the onset of future seizures.
Collapse
Affiliation(s)
- Hamid Abbasi
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Charles P. Unsworth
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
115
|
Kang SK, Ammanuel S, Adler DA, Kadam SD. Rescue of PB-resistant neonatal seizures with single-dose of small-molecule TrkB antagonist show long-term benefits. Epilepsy Res 2020; 159:106249. [PMID: 31864171 PMCID: PMC6953748 DOI: 10.1016/j.eplepsyres.2019.106249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022]
Abstract
A recently characterized CD-1 mouse model of phenobarbital (PB)-resistant neonatal ischemic-seizures (i.e.; unilateral carotid ligation) was shown to be associated with age-dependent (P7 vs. P10) acute seizure severity and PB-efficacy (i.e.; PB-resistant vs. PB-responsive). ANA12, a novel small-molecule TrkB antagonist, rescued the PB-resistance at P7 in a dose-dependent manner and prevented the post-ischemic downregulation of KCC2, the chief Cl- extruder in neurons. The long-term consequences of this novel rescue-intervention with ANA12 + PB in P7 and P10 ligated pups was investigated and compared to the standard first-line protocol of PB-alone loading dose. The mice underwent neurobehavioral testing, 24 h video-EEG-EMG monitoring, and immunohistochemistry in ipsi- and contralateral cortices as adults following the neonatal interventions. ANA12 + PB rescued the emergence of hyperactivity in post-ischemic P7, but not in P10 pups as adults. ANA12 + PB administration at neither P7 nor P10 significantly altered 24 h macro-sleep architecture in adults when compared to PB-alone. Behavioral state-dependent gamma (35-50 Hz) power homeostasis showed the most significant between-group differences that were age-dependent. ANA12 + PB treatment, but not PB-alone, rescued the loss of gamma power homeostasis present in P7 ligate-control but absent in P10 ligate group, highlighting the age-dependence. In contrast, PB-alone treatment, but not ANA12+PB, significantly reduced the elevated delta-AUC observed in P10 ligate-controls, when PB is efficacious by itself. These results indicate that the rescue of acute PB-resistant neonatal seizures using a novel intervention positively modulates the long-term outcomes at P7 when the seizures are refractory.
Collapse
Affiliation(s)
- S K Kang
- Department of Neuroscience, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA
| | - S Ammanuel
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - D A Adler
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - S D Kadam
- Department of Neuroscience, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA; Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
116
|
Abbasi H, Unsworth CP. Electroencephalogram studies of hypoxic ischemia in fetal and neonatal animal models. Neural Regen Res 2020; 15:828-837. [PMID: 31719243 PMCID: PMC6990791 DOI: 10.4103/1673-5374.268892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alongside clinical achievements, experiments conducted on animal models (including primate or non-primate) have been effective in the understanding of various pathophysiological aspects of perinatal hypoxic/ischemic encephalopathy (HIE). Due to the reasonably fair degree of flexibility with experiments, most of the research around HIE in the literature has been largely concerned with the neurodevelopmental outcome or how the frequency and duration of HI seizures could relate to the severity of perinatal brain injury, following HI insult. This survey concentrates on how EEG experimental studies using asphyxiated animal models (in rodents, piglets, sheep and non-human primate monkeys) provide a unique opportunity to examine from the exact time of HI event to help gain insights into HIE where human studies become difficult.
Collapse
Affiliation(s)
- Hamid Abbasi
- Department of Engineering Science, the University of Auckland, Auckland, New Zealand
| | - Charles P Unsworth
- Department of Engineering Science, the University of Auckland, Auckland, New Zealand
| |
Collapse
|
117
|
Abdo RA, Halil HM, Kebede BA, Anshebo AA, Gejo NG. Prevalence and contributing factors of birth asphyxia among the neonates delivered at Nigist Eleni Mohammed memorial teaching hospital, Southern Ethiopia: a cross-sectional study. BMC Pregnancy Childbirth 2019; 19:536. [PMID: 31888542 PMCID: PMC6937931 DOI: 10.1186/s12884-019-2696-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Birth asphyxia is a major contributor to neonatal mortality worldwide. In Ethiopia, birth asphyxia remains a severe condition that leads to significant mortality and morbidity. This study aims to assess the prevalence and contributing factors of birth asphyxia among the neonates delivered at the Nigist Eleni Mohammed Memorial Teaching Hospital, Southern Ethiopia. METHODS This hospital-based cross-sectional study was carried out on 279 participants using the systematic sampling method during June 1-30, 2019. Data were collected using a pretested structured interviewer administered questionnaire, check list and chart review, which was used to retrieve medical information and mother's test results that could not be captured by the interview. Data were entered into EpiData (version 3.1) and analyzed using SPSS software (version 24). Multivariable regression analysis was used to identify the association between the independent variables and outcome variable with a 95% confidence interval (CI). RESULT The overall prevalence of birth asphyxia among newborns was found to be 15.1%. Factors that were significantly associated with birth asphyxia included mothers aged ≥35 (AOR = 6.4; 95% CI = 2.0-20.5), primigravida (AOR = 5.1; 95% CI =2.0-13.3), prolonged second stage of labor (AOR = 4.6; 95%CI =1.6-13.3), preterm birth (AOR = 4.7; 95% CI =1.5-14.1), meconium stained amniotic fluid (AOR = 7.5; 95% CI =2.5-21.4) and tight nuchal (AOR = 3.1; 95% CI =1.2-9.3). CONCLUSION Birth asphyxia is still prevalent in the study setting. The obtained findings indicated that the mothers aged ≥35, being primigravida, preterm birth, meconium stained amniotic fluid and tight nuchal were the factors associated with birth asphyxia. The results of this study show the need for better maternal care, creating awareness about contributing factors of birth asphyxia to the maternity health professionals, careful monitoring of labor, and identifying and taking proper measures that could help in reducing the occurrence of birth asphyxia.
Collapse
Affiliation(s)
- Ritbano Ahmed Abdo
- Department of Midwifery, College of Medicine and Health Sciences, Wachemo University, Hossana, Ethiopia.
| | - Hassen Mosa Halil
- Department of Midwifery, College of Medicine and Health Sciences, Wachemo University, Hossana, Ethiopia
| | - Biruk Assefa Kebede
- Department of Midwifery, College of Medicine and Health Sciences, Wachemo University, Hossana, Ethiopia
| | - Abebe Alemu Anshebo
- Department of Midwifery, College of Medicine and Health Sciences, Wachemo University, Hossana, Ethiopia
| | - Negeso Gebeyehu Gejo
- Department of Midwifery, College of Medicine and Health Sciences, Wachemo University, Hossana, Ethiopia
| |
Collapse
|
118
|
Haseli A, Ghiasi A, Hashemzadeh M. Do Breathing Techniques Enhance the Effect of Massage Therapy in Reducing the Length of Labor or not? a Randomized Clinical Trial. J Caring Sci 2019; 8:257-263. [PMID: 31915629 PMCID: PMC6942653 DOI: 10.15171/jcs.2019.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Introduction: Prolonged labor is a common birth complication that is associated with some negative maternal and fetal effects. The aims of this study were 1) to evaluate the effect of effleurage abdominal massage and 2) to assess the effects size of breathing techniques with massage on the length of labor. Methods: This study was a randomized trial with concealed allocation, assessor blinding for some outcomes and intent-to-treat analysis. Primiparous women (n=117) age 18-35 years who were randomly assigned to three groups; abdominal massage (n=37), abdominal massage with breathing technique (n=38) and control (n=42). Although it was randomized block design with the allocation ratio 1:1:1 but soon after the sample was withdrawn in labor, another was replaced. Experimental groups’ participants received a 30-min effleurage abdominal massage during the active and transitional phases of labor. Particular breathing techniques in each stage of labor were done. Data were analyzed using SPSS ver.13. Results: Duration of the active phase was 244.89(83.30) min in the massage, 254(68.55) min in massage with breathing and 312.07(67.17) min in control group, which was significantly different between the massage and control groups (P<0.001, Min Diff; -67.18), as well as massage with breathing and control groups (P=0.003, Min Diff; -9.63). The Scheffe test showed no significant difference between the two experimental groups. Conclusion: Effleurage abdominal massages decrease length of active phase on labor, but the learning of breathing techniques in labor couldn’t enhance this effect of massage, so it is likely that breathing exercises may be considered during pregnancy.
Collapse
Affiliation(s)
- Arezoo Haseli
- Department of Nursing, Ilam University of Medical Sciences, Ilam, Iran.,Student Research Committee, School of Nursing and Midwifery, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ashraf Ghiasi
- Student Research Committee, School of Nursing and Midwifery, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mozhgan Hashemzadeh
- Student Research Committee, School of Nursing and Midwifery, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
119
|
van Hoogdalem EJ, Peeters-Scholte CMPCD, Leufkens PWTJ, Hartstra J, van Lier JJ, de Leede LGJ. First-in-Human Study of the Safety, Tolerability, Pharmacokinetics and - Preliminary Dynamics of Neuroprotectant 2-Iminobiotin in Healthy Subjects. ACTA ACUST UNITED AC 2019; 15:152-163. [PMID: 31625480 PMCID: PMC7579265 DOI: 10.2174/1574884714666191017111109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/02/2023]
Abstract
Background 2-iminobiotin (2-IB) is an investigational neuroprotective agent in development for the reduction of brain cell injury after cerebral hypoxia-ischemia. Objective The present first-in-human study evaluated the safety, tolerability, pharmacokinetics (PK) and -dynamics (PD) of 2-IB in healthy male subjects, intravenously infused with or without Captisol® as a solubilizing agent. Methods This randomized, double-blind, placebo-controlled, dose-escalation study was executed in 2 groups of 9 healthy male subjects. A single dose of 2-IB 0.6 mg/kg or placebo was infused over periods between 15 min and 4 h, and repeated doses escalating from 0.6 mg/kg to 12 mg/kg, or placebo were infused every 4 h for 6 administrations in total. Results Single and multiple doses of 2-IB up to 6 doses of 6 mg/kg with and without Captisol® were safe and well-tolerated in healthy male subjects. 2-IB proved to be a high-clearance drug with a volume of distribution slightly exceeding total body water volume, and with linear PK that appeared not to be affected by the presence of Captisol®. Conclusion Sulfobutyletherbeta-cyclodextrin (SBECD) in Captisol® had a low-clearance profile with a small volume of distribution, with time-independent PK. Preliminary PD characterization of repeated iv dosing of 2-IB in an acute peripheral hypoxic ischemia model in healthy subjects did not reveal any notable effects of 2-IB, noting that this model was not selected to guide efficacy in the currently pursued indication of cerebral hypoxia-ischemia.
Collapse
Affiliation(s)
| | | | | | - Jan Hartstra
- Early Development Services, PRA Health Sciences, Groningen, Netherlands
| | - Jan J van Lier
- Early Development Services, PRA Health Sciences, Groningen, Netherlands
| | | |
Collapse
|
120
|
Albrecht M, Zitta K, Groenendaal F, van Bel F, Peeters-Scholte C. Neuroprotective strategies following perinatal hypoxia-ischemia: Taking aim at NOS. Free Radic Biol Med 2019; 142:123-131. [PMID: 30818057 DOI: 10.1016/j.freeradbiomed.2019.02.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/07/2019] [Accepted: 02/19/2019] [Indexed: 12/13/2022]
Abstract
Perinatal asphyxia is characterized by oxygen deprivation and lack of perfusion in the perinatal period, leading to hypoxic-ischemic encephalopathy and sequelae such as cerebral palsy, mental retardation, cerebral visual impairment, epilepsy and learning disabilities. On cellular level PA is associated with a decrease in oxygen and glucose leading to ATP depletion and a compromised mitochondrial function. Upon reoxygenation and reperfusion, the renewed availability of oxygen gives rise to not only restoration of cell function, but also to the activation of multiple detrimental biochemical pathways, leading to secondary energy failure and ultimately, cell death. The formation of reactive oxygen species, nitric oxide and peroxynitrite plays a central role in the development of subsequent neurological damage. In this review we give insight into the pathophysiology of perinatal asphyxia, discuss its clinical relevance and summarize current neuroprotective strategies related to therapeutic hypothermia, ischemic postconditioning and pharmacological interventions. The review will also focus on the possible neuroprotective actions and molecular mechanisms of the selective neuronal and inducible nitric oxide synthase inhibitor 2-iminobiotin that may represent a novel therapeutic agent for the treatment of hypoxic-ischemic encephalopathy, both in combination with therapeutic hypothermia in middle- and high-income countries, as well as stand-alone treatment in low-income countries.
Collapse
Affiliation(s)
- Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Frank van Bel
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Cacha Peeters-Scholte
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands; Neurophyxia BV, 's Hertogenbosch, the Netherlands.
| |
Collapse
|
121
|
C1 Esterase Inhibitor Reduces BBB Leakage and Apoptosis in the Hypoxic Developing Mouse Brain. Neuromolecular Med 2019; 22:31-44. [DOI: 10.1007/s12017-019-08560-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
|
122
|
Andersen M, Andelius TCK, Pedersen MV, Kyng KJ, Henriksen TB. Severity of hypoxic ischemic encephalopathy and heart rate variability in neonates: a systematic review. BMC Pediatr 2019; 19:242. [PMID: 31324176 PMCID: PMC6639904 DOI: 10.1186/s12887-019-1603-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/27/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several studies have investigated heart rate variability (HRV) as a biomarker for acute brain injury in hypoxic ischemic encephalopathy (HIE). However, the current evidence is heterogeneous and needs further reviewing to direct future studies. We aimed to systematically review whether HIE severity is associated with HRV. METHODS This systematic review was conducted according to the preferred reporting items for systematic review and meta analyses (PRISMA). We included studies comparing neonates with severe or moderate HIE with neonates with mild or no HIE with respect to different HRV measures within 7 days of birth. Article selection and quality assessment was independently performed by two reviewers. Risk of bias and strength of evidence was evaluated by the Newcastle-Ottawa scale (NOS) and the Grading of Recommendations Assessment, Development and Evaluation (GRADE). RESULTS We screened 1187 studies. From these, four observational studies with 248 neonates were included. For all HRV measures, the strength of evidence was very low. Neonates with severe or moderate HIE showed a reduction in most HRV measures compared to neonates with mild or no HIE with a greater reduction in those with severe HIE. CONCLUSIONS Moderate and severe HIE was associated with a reduction in most HRV measures. Accordingly, HRV is a potential biomarker for HIE severity during the first week of life. However, the uncertainty calls for more studies.
Collapse
Affiliation(s)
- Mads Andersen
- Department of Pediatrics, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Ted C. K. Andelius
- Department of Pediatrics, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Mette V. Pedersen
- Department of Pediatrics, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Kasper J. Kyng
- Department of Pediatrics, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Tine B. Henriksen
- Department of Pediatrics, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
| |
Collapse
|
123
|
Knox-Concepcion KR, Figueroa JD, Hartman RE, Li Y, Zhang L. Repression of the Glucocorticoid Receptor Increases Hypoxic-Ischemic Brain Injury in the Male Neonatal Rat. Int J Mol Sci 2019; 20:ijms20143493. [PMID: 31315247 PMCID: PMC6678481 DOI: 10.3390/ijms20143493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) resulting from asphyxia is the most common cause of neonatal brain damage and results in significant neurological sequelae, including cerebral palsy. The current therapeutic interventions are extremely limited in improving neonatal outcomes. The present study tests the hypothesis that the suppression of endogenous glucocorticoid receptors (GRs) in the brain increases hypoxic-ischemic (HI) induced neonatal brain injury and worsens neurobehavioral outcomes through the promotion of increased inflammation. A mild HI treatment of P9 rat pups with ligation of the right common carotid artery followed by the treatment of 8% O2 for 60 min produced more significant brain injury with larger infarct size in female than male pups. Intracerebroventricular injection of GR siRNAs significantly reduced GR protein and mRNA abundance in the neonatal brain. Knockdown of endogenous brain GRs significantly increased brain infarct size after HI injury in male, but not female, rat pups. Moreover, GR repression resulted in a significant increase in inflammatory cytokines TNF-α and IL-10 at 6 h after HI injury in male pups. Male pups treated with GR siRNAs showed a significantly worsened reflex response and exhibited significant gait disturbances. The present study demonstrates that endogenous brain GRs play an important role in protecting the neonatal brain from HI induced injury in male pups, and suggests a potential role of glucocorticoids in sex differential treatment of HIE in the neonate.
Collapse
Affiliation(s)
- Katherine R Knox-Concepcion
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Johnny D Figueroa
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Richard E Hartman
- Department of Psychology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yong Li
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
124
|
Lespay-Rebolledo C, Tapia-Bustos A, Bustamante D, Morales P, Herrera-Marschitz M. The Long-Term Impairment in Redox Homeostasis Observed in the Hippocampus of Rats Subjected to Global Perinatal Asphyxia (PA) Implies Changes in Glutathione-Dependent Antioxidant Enzymes and TIGAR-Dependent Shift Towards the Pentose Phosphate Pathways: Effect of Nicotinamide. Neurotox Res 2019; 36:472-490. [PMID: 31187430 DOI: 10.1007/s12640-019-00064-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022]
Abstract
We have recently reported that global perinatal asphyxia (PA) induces a regionally sustained increase in oxidized glutathione (GSSG) levels and GSSG/GSH ratio, a decrease in tissue-reducing capacity, a decrease in catalase activity, and an increase in apoptotic caspase-3-dependent cell death in rat neonatal brain up to 14 postnatal days, indicating a long-term impairment in redox homeostasis. In the present study, we evaluated whether the increase in GSSG/GSH ratio observed in hippocampus involves changes in glutathione reductase (GR) and glutathione peroxidase (GPx) activity, the enzymes reducing glutathione disulfide (GSSG) and hydroperoxides, respectively, as well as catalase, the enzyme protecting against peroxidation. The study also evaluated whether there is a shift in the metabolism towards the penthose phosphate pathway (PPP), by measuring TIGAR, the TP53-inducible glycolysis and apoptosis regulator, associated with delayed cell death, further monitoring calpain activity, involved in bax-dependent cell death, and XRCC1, a scaffolding protein interacting with genome sentinel proteins. Global PA was induced by immersing fetus-containing uterine horns removed by a cesarean section from on term rat dams into a water bath at 37 °C for 21 min. Asphyxia-exposed and sibling cesarean-delivered fetuses were manually resuscitated and nurtured by surrogate dams. Animals were euthanized at postnatal (P) days 1 or 14, dissecting samples from hippocampus to be assayed for glutathione, GR, GPx (all by spectrophotometry), catalase (Western blots and ELISA), TIGAR (Western blots), calpain (fluorescence), and XRCC1 (Western blots). One hour after delivery, asphyxia-exposed and control neonates were injected with either 100 μl saline or 0.8 mmol/kg nicotinamide, i.p., shown to protect from the short- and long-term consequences of PA. It was found that global PA produced (i) a sustained increase of GSSG levels and GSSG/GSH ratio at P1 and P14; (ii) a decrease of GR, GPx, and catalase activity at P1 and P14; (iii) a decrease at P1, followed by an increase at P14 of TIGAR levels; (iv) an increase of calpain activity at P14; and (v) an increase of XRCC1 levels, but only at P1. (vi) Nicotinamide prevented the effect of PA on GSSG levels and GSSG/GSH ratio, and on GR, GPx, and catalase activity, also on increased TIGAR levels and calpain activity observed at P14. The present study demonstrates that the long-term impaired redox homeostasis observed in the hippocampus of rats subjected to global PA implies changes in GR, GPx, and catalase, and a shift towards PPP, as indicated by an increase of TIGAR levels at P14.
Collapse
Affiliation(s)
- C Lespay-Rebolledo
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia, 1027, Santiago, Chile
| | - A Tapia-Bustos
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia, 1027, Santiago, Chile
| | - D Bustamante
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia, 1027, Santiago, Chile
| | - P Morales
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia, 1027, Santiago, Chile. .,Department of Neuroscience, Medical Faculty, University of Chile, Av. Independencia, 1027, Santiago, Chile.
| | - M Herrera-Marschitz
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia, 1027, Santiago, Chile.
| |
Collapse
|
125
|
Penny TR, Sutherland AE, Mihelakis JG, Paton MCB, Pham Y, Lee J, Jones NM, Jenkin G, Fahey MC, Miller SL, McDonald CA. Human Umbilical Cord Therapy Improves Long-Term Behavioral Outcomes Following Neonatal Hypoxic Ischemic Brain Injury. Front Physiol 2019; 10:283. [PMID: 30967791 PMCID: PMC6440382 DOI: 10.3389/fphys.2019.00283] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/04/2019] [Indexed: 01/16/2023] Open
Abstract
Background: Hypoxic ischemic (HI) insult in term babies at labor or birth can cause long-term neurodevelopmental disorders, including cerebral palsy (CP). The current standard treatment for term infants with hypoxic ischemic encephalopathy (HIE) is hypothermia. Because hypothermia is only partially effective, novel therapies are required to improve outcomes further. Human umbilical cord blood cells (UCB) are a rich source of stem and progenitor cells making them a potential treatment for neonatal HI brain injury. Recent clinical trials have shown that UCB therapy is a safe and efficacious treatment for confirmed cerebral palsy. In this study, we assessed whether early administration of UCB to the neonate could improve long-term behavioral outcomes and promote brain repair following neonatal HI brain injury. Methods: HI brain injury was induced in postnatal day (PND) 7 rat pups via permanent ligation of the left carotid artery, followed by a 90 min hypoxic challenge. UCB was administered intraperitoneally on PND 8. Behavioral tests, including negative geotaxis, forelimb preference and open field test, were performed on PND 14, 30, and 50, following brains were collected for assessment of neuropathology. Results: Neonatal HI resulted in decreased brain weight, cerebral tissue loss and apoptosis in the somatosensory cortex, as well as compromised behavioral outcomes. UCB administration following HI improved short and long-term behavioral outcomes but did not reduce long-term histological evidence of brain injury compared to HI alone. In addition, UCB following HI increased microglia activation in the somatosensory cortex compared to HI alone. Conclusion: Administration of a single dose of UCB cells 24 h after HI injury improves behavior, however, a single dose of cells does not modulate pathological evidence of long-term brain injury.
Collapse
Affiliation(s)
- Tayla R Penny
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Jamie G Mihelakis
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Madison C B Paton
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Joohyung Lee
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Nicole M Jones
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Clayton, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Courtney A McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| |
Collapse
|
126
|
The complexity of physicians' understanding and management of prognostic uncertainty in neonatal hypoxic-ischemic encephalopathy. J Perinatol 2019; 39:278-285. [PMID: 30568164 DOI: 10.1038/s41372-018-0296-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Prognosis of Hypoxic-Ischemic Encephalopathy (HIE) remains challenging and uncertain. This paper investigates how physicians understand and address the ethical challenges of prognostic uncertainty in the case of neonatal HIE, contextualized within the social science literature. STUDY DESIGN Semi-structured interviews were conducted with 12 Canadian neurologists and neonatologists, addressing their perspectives and clinical experiences concerning neonatal HIE prognostication. Interviews were analyzed using thematic content analysis. RESULTS Participants unanimously recognized uncertainty in their prognostication. They identified several sources contributing to uncertainty in HIE prognostication, including etiology and underlying pathophysiologic mechanisms, statistical limitations, variable clinical data, the dynamic process of neurodevelopment, or the impact of hypothermia treatment. Unlike in some other literature, some physicians in this study talked about ways to render uncertainty explicit rather than hide it. CONCLUSION Results from this study support the call for recognition of the ubiquitous uncertainty surrounding this act in medical education and training.
Collapse
|
127
|
Manueldas S, Benterud T, Rueegg CS, Garberg HT, Huun MU, Pankratov L, Åsegg-Atneosen M, Solberg R, Escobar J, Saugstad OD, Baumbusch LO. Temporal patterns of circulating cell-free DNA (cfDNA) in a newborn piglet model of perinatal asphyxia. PLoS One 2018; 13:e0206601. [PMID: 30475817 PMCID: PMC6261042 DOI: 10.1371/journal.pone.0206601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 10/16/2018] [Indexed: 12/18/2022] Open
Abstract
Perinatal asphyxia is a severe medical condition resulting from oxygen deficiency (hypoxia) at the time of birth, causing worldwide approximately 680,000 newborn deaths every year. Better prediction of severity of damages including early biomarkers is highly demanded. Elevated levels of circulating cell-free DNA (cfDNA) in blood have been reported for a range of different diseases and conditions, including cancer and prematurity. The objective of this study was to validate methods for assessing cfDNA in blood and cerebrospinal fluid (CSF) and to explore temporal variations in a piglet model of neonatal hypoxia-reoxygenation. Different cfDNA extraction methods in combination with cfDNA detection systems were tested, including a fluorescent assay using SYBR Gold and a qRT-PCR-based technique. Newborn piglets (n = 55) were exposed to hypoxia-reoxygenation, hypoxia-reoxygenation and hypothermia, or were part of the sham-operated control group. Blood was sampled at baseline and at post-intervention, further at 30, 270, and 570 minutes after the end of hypoxia. Applying the fluorescent method, cfDNA concentration in piglets exposed to hypoxia (n = 32) increased from 36.8±27.6 ng/ml prior to hypoxia to a peak level of 61.5±54.9 ng/ml after the intervention and deceased to 32.3±19.1 ng/ml at 570 minutes of reoxygenation, whereas the group of sham-operated control animals (n = 11) revealed a balanced cfDNA profile. Animals exposed to hypoxia and additionally treated with hypothermia (n = 12) expressed a cfDNA concentration of 54.4±16.9 ng/ml at baseline, 39.2±26.9 ng/ml at the end of hypoxia, and of 41.1±34.2 ng/ml at 570 minutes post-intervention. Concentrations of cfDNA in the CSF of piglets exposed to hypoxia revealed at post-intervention higher levels in comparison to the controls. However, these observations were only tendencies and not significant. In a first methodological proof-of-principle study exploring cfDNA using a piglet model of hypoxia-reoxygenation variations in the temporal patterns suggest that cfDNA might be an early indicator for damages caused by perinatal asphyxia.
Collapse
Affiliation(s)
- Sophia Manueldas
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Torkil Benterud
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,University of Oslo, Oslo, Norway
| | - Corina Silvia Rueegg
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Håvard Tetlie Garberg
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,University of Oslo, Oslo, Norway
| | - Marianne Ullestad Huun
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,University of Oslo, Oslo, Norway
| | - Leonid Pankratov
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,University of Oslo, Oslo, Norway
| | - Monica Åsegg-Atneosen
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,University of Oslo, Oslo, Norway
| | - Rønnaug Solberg
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Pediatrics, Vestfold Hospital Trust, Tønsberg, Norway
| | - Javier Escobar
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ola Didrik Saugstad
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,University of Oslo, Oslo, Norway
| | - Lars Oliver Baumbusch
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
128
|
Enweronu-Laryea CC, Andoh HD, Frimpong-Barfi A, Asenso-Boadi FM. Parental costs for in-patient neonatal services for perinatal asphyxia and low birth weight in Ghana. PLoS One 2018; 13:e0204410. [PMID: 30312312 PMCID: PMC6185862 DOI: 10.1371/journal.pone.0204410] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/07/2018] [Indexed: 01/25/2023] Open
Abstract
The major causes of newborn deaths in sub-Saharan Africa are well-known and countries are gradually implementing evidence-based interventions and strategies to reduce these deaths. Facility-based care provides the best outcome for sick and or small babies; however, little is known about the cost and burden of hospital-based neonatal services on parents in West Africa, the sub-region with the highest global neonatal death burden. To estimate the actual costs borne by parents of newborns hospitalised with birth-associated brain injury (perinatal asphyxia) and preterm/low birth weight, this study examined economic costs using micro-costing bottom-up approach in two referral hospitals operating under the nationwide social health insurance scheme in an urban setting in Ghana. We prospectively assessed the process of care and parental economic costs for 25 out of 159 cases of perinatal asphyxia and 33 out of 337 cases of preterm/low birth weight admitted to hospital on the day of birth over a 3 month period. Results showed that medical-related costs accounted for 66.1% (IQR 49% - 81%) of out-of-pocket payments irrespective of health insurance status. On average, families spent 8.1% and 9.1% of their annual income on acute care for preterm/LBW and perinatal asphyxia respectively. The mean out-of-pocket expenditure for preterm/LBW was $147.6 (median $101.8) and for perinatal asphyxia was $132.3 (median $124). The study revealed important gaps in the financing and organization of health service delivery that may impact the quality of care for hospitalised newborns. It also provides information for reviewing complementary health financing options for newborn services and further economic evaluations.
Collapse
Affiliation(s)
| | - Hilary D. Andoh
- Greater Accra Regional Hospital, Ghana Health Service, Accra, Ghana
| | | | - Francis M. Asenso-Boadi
- Department of Economics, University of Cape Coast, Cape Coast, Ghana
- Head Office, National Health Insurance Authority, Accra, Ghana
| |
Collapse
|
129
|
Figueira RL, Gonçalves FL, Prado AR, Ribeiro MC, Costa KM, Silva OCE, Sbragia L. Ventilation-induced changes correlate to pulmonary vascular response and VEGF, VEGFR-1/2, and eNOS expression in the rat model of postnatal hypoxia. ACTA ACUST UNITED AC 2018; 51:e7169. [PMID: 30304094 PMCID: PMC6180352 DOI: 10.1590/1414-431x20187169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/24/2018] [Indexed: 11/22/2022]
Abstract
Neonatal asphyxia occurs due to reduction in oxygen supply to vital organs in the newborn. Rapid restoration of oxygen to the lungs after a long period of asphyxia can cause lung injury and decline of respiratory function, which result from the activity of molecules that induce vascular changes in the lung such as nitric oxide (NO) and vascular endothelial growth factors (VEGF). In this study, we evaluated the pulmonary and vascular morphometry of rats submitted to the model of neonatal asphyxia and mechanical ventilation, their expression of pulmonary VEGF, VEGF receptors (VEGFR-1/VEGFR-2), and endothelial NO synthase (eNOS). Neonate Sprague-Dawley rats (CEUA #043/2011) were divided into four groups (n=8 each): control (C), control submitted to ventilation (CV), hypoxia (H), and hypoxia submitted to ventilation (HV). The fetuses were harvested at 21.5 days of gestation. The morphometric variables measured were body weight (BW), total lung weight (TLW), left lung weight (LLW), and TLW/BW ratio. Pulmonary vascular measurements, VEGFR-1, VEGFR-2, VEGF, and eNOS immunohistochemistry were performed. The morphometric analysis showed decreased TLW and TLW/BW ratio in HV compared to C and H (P<0.005). Immunohistochemistry showed increased VEGFR-2/VEGF and decreased VEGFR-1 expression in H (P<0.05) and lower eNOS expression in H and HV. Median wall thickness was increased in H, and the expression of VEGFR-1, VEGFR-2, VEGF, and eNOS was altered, especially in neonates undergoing H and HV. These data suggested the occurrence of arteriolar wall changes mediated by NO and VEGF signaling in neonatal hypoxia.
Collapse
Affiliation(s)
- R L Figueira
- Laboratório de Cirurgia Fetal e Neonatal, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - F L Gonçalves
- Laboratório de Cirurgia Fetal e Neonatal, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - A R Prado
- Laboratório de Cirurgia Fetal e Neonatal, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - M C Ribeiro
- Laboratório de Cirurgia Fetal e Neonatal, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - K M Costa
- Laboratório de Cirurgia Fetal e Neonatal, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - O Castro E Silva
- Laboratório de Transplante de Fígado, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - L Sbragia
- Laboratório de Cirurgia Fetal e Neonatal, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
130
|
Determinants of birth asphyxia among live birth newborns in University of Gondar referral hospital, northwest Ethiopia: A case-control study. PLoS One 2018; 13:e0203763. [PMID: 30192884 PMCID: PMC6128623 DOI: 10.1371/journal.pone.0203763] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 08/27/2018] [Indexed: 11/19/2022] Open
Abstract
Background Birth asphyxia, which accounts for 31.6% of all neonatal deaths, is one of the leading causes of such mortality in Ethiopia. Early recognition and management of its contributing factors would modify the problem. Thus, this study aimed to identify the determinants of birth asphyxia among live births at the University of Gondar Referral Hospital, northwest Ethiopia. Methods A hospital-based unmatched case-control study was conducted from April to July 2017.Cases were newborn babies with an APGAR score of < 7at 5 minutes of birth; controls were newborn babies with an APGAR score of ≥7 at 5 minutes of birth. Every other asphyxiated baby was selected as a case and every 6th non-asphyxiated baby as a control. A pretested structured questionnaire was used to collect data on maternal sociodemographic characteristics. A pretested structured checklist was used to retrieve data on ante-partum, intra-partum, and neonatal factors of both cases and controls. Data were entered using Epi Info 7 and analyzed using SPSS 20. The bivariate logistic regression analysis was used to identify the relation of each independent variable to the outcome variable. Variables with p values of up to 0.2 in the bivariate analysis were considered for the multiple logistic regression analysis. An adjusted odds ratio (AOR) with a 95% CI and p-value of <0.05 was used to identify significant variables associated with birth asphyxia. Results In this study, prolonged labor (AOR = 2.75, 95% CI: 1.18, 6.94), cesarean section delivery (AOR = 3.58, 95% CI: 1.13, 11.31), meconium stained amniotic fluid (AOR = 7.69, 95% CI: 2.99, 17.70), fetal distress (AOR = 5.74, 95% CI: 1.53, 21.55), and low birth weight (AOR = 7.72, 95% CI: 1.88, 31.68) were factors which significantly increased the odds of birth asphyxia. Conclusion Prolonged labor, cesarean section (CS) delivery, meconium stained amniotic fluid (AF), fetal distress, and low birth weight were the determinants of birth asphyxia. Thus, efforts should be made to improve the quality of intra-partum care services in order to prevent prolonged labor and fetal complications, and to identify and make a strict follow up on mothers with meconium stained amniotic fluid.
Collapse
|
131
|
EEG in hypothermia in term neonates with HIE. Neurophysiol Clin 2018. [DOI: 10.1016/j.neucli.2018.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
132
|
von Ehr J, Wiebking N, Kundu S, von Kaisenberg C, Hillemanns P, Soergel P. Foetal Morbidity Depending on the Day and Time of Delivery. Geburtshilfe Frauenheilkd 2018; 78:791-797. [PMID: 30158717 PMCID: PMC6109716 DOI: 10.1055/a-0637-9400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/22/2018] [Accepted: 06/03/2018] [Indexed: 01/19/2023] Open
Abstract
Introduction It is known that perinatal mortality is increased with births at night and at the weekend. The aim of the study was to investigate whether there is also an association between the time of delivery (weekday, night, weekend) and perinatal morbidity. Material and Methods All births at Hannover Medical College between 2000 and 2014 were included in a retrospective data analysis. Multiple births, primary sections, severe foetal malformations and intrauterine deaths were not included. A 5-minute Apgar score ≤ 5 and cord arterial pH < 7.10 were defined as perinatal morbidity. Besides the time of delivery, different variables that are regarded as risk factors for increased perinatal morbidity were studied. Univariate logistical regression analysis was performed, followed by multivariate analysis. Results 18 394 deliveries were included in the study. Pathological prepartum Doppler, medical induction of labour and delivery at night and/or at the weekend significantly increased the probability of an Apgar score ≤ 5 after 5 minutes. The probability that a child will have cord arterial pH < 7.1 post partum is significantly increased with a BMI > 25 before pregnancy, primiparity, medical induction of labour, peripartum administration of oxytocic agents, when the delivery took place at night and weekend combined, but also when the delivery took place at night or at the weekend/on a public holiday. Multivariate regression analysis showed that a time of delivery at night and/or at the weekend or on a public holiday is not a prognostic factor for a 5-minute Apgar score ≤ 5 (p = 0.2377) but is a prognostic factor for cord arterial pH < 7.1 (p = 0.0252). Conclusion The time of delivery at night or at the weekend/on a public holiday increases the risk for cord arterial pH < 7.1 by ~ 30% compared with delivery on a weekday. However, the time of delivery at night or at the weekend/on a public holiday does not increase the risk for the baby of having a 5-minute Apgar score ≤ 5.
Collapse
Affiliation(s)
- Julia von Ehr
- Klinik für Frauenheilkunde und Geburtshilfe, Medizinische Hochschule Hannover, Hannover, Germany
| | - Nina Wiebking
- Klinik für Frauenheilkunde und Geburtshilfe, Medizinische Hochschule Hannover, Hannover, Germany
| | - Sudip Kundu
- Klinik für Frauenheilkunde und Geburtshilfe, Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Peter Hillemanns
- Klinik für Frauenheilkunde und Geburtshilfe, Medizinische Hochschule Hannover, Hannover, Germany
| | - Philipp Soergel
- Klinik für Frauenheilkunde und Geburtshilfe, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
133
|
Parfenova H, Pourcyrous M, Fedinec AL, Liu J, Basuroy S, Leffler CW. Astrocyte-produced carbon monoxide and the carbon monoxide donor CORM-A1 protect against cerebrovascular dysfunction caused by prolonged neonatal asphyxia. Am J Physiol Heart Circ Physiol 2018; 315:H978-H988. [PMID: 30028198 DOI: 10.1152/ajpheart.00140.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neonatal asphyxia leads to cerebrovascular disease and neurological complications via a mechanism that may involve oxidative stress. Carbon monoxide (CO) is an antioxidant messenger produced via a heme oxygenase (HO)-catalyzed reaction. Cortical astrocytes are the major cells in the brain that express constitutive HO-2 isoform. We tested the hypothesis that CO, produced by astrocytes, has cerebroprotective properties during neonatal asphyxia. We developed a survival model of prolonged asphyxia in newborn pigs that combines insults of severe hypoxia, hypercapnia, and acidosis while avoiding extreme hypotension and cerebral blood flow reduction. During the 60-min asphyxia, CO production by brain and astrocytes was continuously elevated. Excessive formation of reactive oxygen species during asphyxia/reventilation was potentiated by the HO inhibitor tin protoporphyrin, suggesting that endogenous CO has antioxidant effects. Cerebral vascular outcomes tested 24 and 48 h after asphyxia demonstrated the sustained impairment of cerebral vascular responses to astrocyte- and endothelium-specific vasodilators. Postasphyxia cerebral vascular dysfunction was aggravated in newborn pigs pretreated with tin protoporphyrin to inhibit brain HO/CO. The CO donor CO-releasing molecule-A1 (CORM-A1) reduced brain oxidative stress during asphyxia/reventilation and prevented postasphyxia cerebrovascular dysfunction. The antioxidant and antiapoptotic effects of HO/CO and CORM-A1 were confirmed in primary cultures of astrocytes from the neonatal pig brain exposed to glutamate excitotoxicity. Overall, prolonged neonatal asphyxia leads to neurovascular injury via an oxidative stress-mediated mechanism that is counteracted by an astrocyte-based constitutive antioxidant HO/CO system. We propose that gaseous CO or CO donors can be used as novel approaches for prevention of neonatal brain injury caused by prolonged asphyxia. NEW & NOTEWORTHY Asphyxia in newborn infants may lead to lifelong neurological disabilities. Using the model of prolonged asphyxia in newborn piglets, we propose novel antioxidant therapy based on systemic administration of low doses of a carbon monoxide donor that prevent loss of cerebral blood flow regulation and may improve the neurological outcome of asphyxia.
Collapse
Affiliation(s)
- Helena Parfenova
- Departments of Physiology and Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Massroor Pourcyrous
- Departments of Physiology and Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Alex L Fedinec
- Departments of Physiology and Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Jianxiong Liu
- Departments of Physiology and Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Shyamali Basuroy
- Departments of Physiology and Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Charles W Leffler
- Departments of Physiology and Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
| |
Collapse
|
134
|
Dhillon SK, Lear CA, Galinsky R, Wassink G, Davidson JO, Juul S, Robertson NJ, Gunn AJ, Bennet L. The fetus at the tipping point: modifying the outcome of fetal asphyxia. J Physiol 2018; 596:5571-5592. [PMID: 29774532 DOI: 10.1113/jp274949] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
Abstract
Brain injury around birth is associated with nearly half of all cases of cerebral palsy. Although brain injury is multifactorial, particularly after preterm birth, acute hypoxia-ischaemia is a major contributor to injury. It is now well established that the severity of injury after hypoxia-ischaemia is determined by a dynamic balance between injurious and protective processes. In addition, mothers who are at risk of premature delivery have high rates of diabetes and antepartum infection/inflammation and are almost universally given treatments such as antenatal glucocorticoids and magnesium sulphate to reduce the risk of death and complications after preterm birth. We review evidence that these common factors affect responses to fetal asphyxia, often in unexpected ways. For example, glucocorticoid exposure dramatically increases delayed cell loss after acute hypoxia-ischaemia, largely through secondary hyperglycaemia. This critical new information is important to understand the effects of clinical treatments of women whose fetuses are at risk of perinatal asphyxia.
Collapse
Affiliation(s)
| | - Christopher A Lear
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- The Department of Physiology, University of Auckland, Auckland, New Zealand.,The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Guido Wassink
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Sandra Juul
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Alistair J Gunn
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
135
|
Nakajima J, Tsutsumi N, Nara S, Ishii H, Suganami Y, Sunohara D, Kawashima H. Correlations of Enzyme Levels at Birth in Stressed Neonates with Short-Term Outcomes. Fetal Pediatr Pathol 2018; 37:157-165. [PMID: 29737915 DOI: 10.1080/15513815.2018.1458928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Multi-organ injury causes leakage of several intracellular enzymes into the circulation. We evaluated the correlation between the serum-leaked intracellular enzyme levels at the beginning of treatment and the outcome in perinatally stressed neonates. MATERIALS AND METHODS We retrospectively studied neonates whose 1 minute Apgar score was < 7. We collected initial venous blood sample data, including aspartate transaminase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH), and creatine kinase (CK) levels, and correlated these with patient short-term outcomes. RESULTS Of 60 neonates, nine patients were treated with therapeutic hypothermia, and 32 needed mechanical ventilation. The therapeutic hypothermia group showed significantly larger base deficit, and higher lactate, AST, ALT, LDH, and CK (all p < 0.01). The duration of mechanical ventilation significantly correlated with AST, ALT, LDH, and CK levels (all p < 0.01). CONCLUSION Initial enzyme levels are useful for predicting the duration of mechanical ventilation in stressed neonates.
Collapse
Affiliation(s)
- Junya Nakajima
- a Tokyo Medical University , Department of Pediatrics , Nishi-shinjuku, Shinjuku-ku , Tokyo , Japan.,b Kameda Medical Center , Department of Neonatology , Higashi-cho, Kamogawa City , Chiba , Japan
| | - Norito Tsutsumi
- a Tokyo Medical University , Department of Pediatrics , Nishi-shinjuku, Shinjuku-ku , Tokyo , Japan
| | - Shonosuke Nara
- a Tokyo Medical University , Department of Pediatrics , Nishi-shinjuku, Shinjuku-ku , Tokyo , Japan
| | - Hiroki Ishii
- a Tokyo Medical University , Department of Pediatrics , Nishi-shinjuku, Shinjuku-ku , Tokyo , Japan
| | - Yusuke Suganami
- a Tokyo Medical University , Department of Pediatrics , Nishi-shinjuku, Shinjuku-ku , Tokyo , Japan
| | - Daisuke Sunohara
- a Tokyo Medical University , Department of Pediatrics , Nishi-shinjuku, Shinjuku-ku , Tokyo , Japan
| | - Hisashi Kawashima
- a Tokyo Medical University , Department of Pediatrics , Nishi-shinjuku, Shinjuku-ku , Tokyo , Japan
| |
Collapse
|
136
|
Ibrani D, Molacavage S. The Six-Hour Window: How the Community Hospital Nursery Can Optimize Outcomes of the Infant with Suspected Hypoxic-Ischemic Encephalopathy. Neonatal Netw 2018; 37:155-163. [PMID: 29789056 DOI: 10.1891/0730-0832.37.3.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Perinatal hypoxia is a devastating event before, during, or immediately after birth that deprives an infant's vital organs of oxygen. This injury at birth often requires a complex resuscitation and increases the newborn's risk of hypoxic-ischemic encephalopathy (HIE). The resuscitation team in a community hospital nursery may have less experience with complex resuscitation and post-resuscitation care of this infant than a NICU. This article provides the neonatal nurse in a Level I or Level II nursery with information about resuscitation and post-resuscitation care of an infant at risk of HIE while awaiting transport to a NICU for therapeutic cooling. The article describes the infant at risk for HIE, discusses pathophysiology and treatment of HIE, and lists essential components of post-resuscitation care while awaiting transport to an NICU, the importance of communication with the receiving NICU, and strategies for supporting the family.
Collapse
|
137
|
Trollmann R, Mühlberger T, Richter M, Boie G, Feigenspan A, Brackmann F, Jung S. Differential regulation of angiogenesis in the developing mouse brain in response to exogenous activation of the hypoxia-inducible transcription factor system. Brain Res 2018; 1688:91-102. [PMID: 29548688 DOI: 10.1016/j.brainres.2018.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 12/18/2022]
Abstract
Angiogenesis due to hypoxic-ischemic (HI) injury represents a crucial compensatory mechanism of the developing brain that is mainly regulated by hypoxia-inducible transcription factors (HIF). Pharmacological stimulation of HIF is suggested as a neuroprotective option, however, studies of its effects on vascular development are limited. We analyzed the influence of the prolyl-4-hydroxylase inhibitor (PHI), FG-4497, and erythropoietin (rhEPO) on post-hypoxic angiogenesis (angiogenic growth factors, vessel structures) in the developing mouse brain (P7) assessed after a regeneration period of 72 h. Exposure to systemic hypoxia (8% O2, 6 h) was followed by treatment (i.p.) with rhEPO (2500/5000 IU/kg) at 0, 24 and 48 h or FG-4497 (60/100 mg/kg) compared to controls. In response to FG-4497 treatment cortical and hippocampal vessel area and branching were significantly increased compared to controls. This was associated with elevated ANGPT-2 as well as decreased ANGPT-1 and TIE-2 mRNA levels. In response to rhEPO, mildly increased angiogenesis was associated with elevated ANGPT-2 but also TIE-2 mRNA levels in comparison to controls. In conclusion, present data demonstrate a differential regulation of the angiopoietin/TIE-2 system in response to PHI and rhEPO in the post-hypoxic developing brain pointing to potential functional consequences for vascular regeneration and vessel development.
Collapse
Affiliation(s)
- Regina Trollmann
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander University of Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany.
| | - Theresa Mühlberger
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander University of Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany.
| | - Mandy Richter
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander University of Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany.
| | - Gudrun Boie
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander University of Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany.
| | - Andreas Feigenspan
- Institute of Animal Physiology, Friedrich-Alexander University of Erlangen-Nürnberg, Staudtstrasse 5, 91058 Erlangen, Germany.
| | - Florian Brackmann
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander University of Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany.
| | - Susan Jung
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander University of Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany.
| |
Collapse
|
138
|
Herrera-Marschitz M, Perez-Lobos R, Lespay-Rebolledo C, Tapia-Bustos A, Casanova-Ortiz E, Morales P, Valdes JL, Bustamante D, Cassels BK. Targeting Sentinel Proteins and Extrasynaptic Glutamate Receptors: a Therapeutic Strategy for Preventing the Effects Elicited by Perinatal Asphyxia? Neurotox Res 2018; 33:461-473. [PMID: 28844085 PMCID: PMC5766721 DOI: 10.1007/s12640-017-9795-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 12/29/2022]
Abstract
Perinatal asphyxia (PA) is a relevant cause of death at the time of labour, and when survival is stabilised, associated with short- and long-term developmental disabilities, requiring inordinate care by health systems and families. Its prevalence is high (1 to 10/1000 live births) worldwide. At present, there are few therapeutic options, apart from hypothermia, that regrettably provides only limited protection if applied shortly after the insult.PA implies a primary and a secondary insult. The primary insult relates to the lack of oxygen, and the secondary one to the oxidative stress triggered by re-oxygenation, formation of reactive oxygen (ROS) and reactive nitrogen (RNS) species, and overactivation of glutamate receptors and mitochondrial deficiencies. PA induces overactivation of a number of sentinel proteins, including hypoxia-induced factor-1α (HIF-1α) and the genome-protecting poly(ADP-ribose) polymerase-1 (PARP-1). Upon activation, PARP-1 consumes high amounts of ATP at a time when this metabolite is scarce, worsening in turn the energy crisis elicited by asphyxia. The energy crisis also impairs ATP-dependent transport, including glutamate re-uptake by astroglia. Nicotinamide, a PARP-1 inhibitor, protects against the metabolic cascade elicited by the primary stage, avoiding NAD+ exhaustion and the energetic crisis. Upon re-oxygenation, however, oxidative stress leads to nuclear translocation of the NF-κB subunit p65, overexpression of the pro-inflammatory cytokines IL-1β and TNF-α, and glutamate-excitotoxicity, due to impairment of glial-glutamate transport, extracellular glutamate overflow, and overactivation of NMDA receptors, mainly of the extrasynaptic type. This leads to calcium influx, mitochondrial impairment, and inactivation of antioxidant enzymes, increasing further the activity of pro-oxidant enzymes, thereby making the surviving neonate vulnerable to recurrent metabolic insults whenever oxidative stress is involved. Here, we discuss evidence showing that (i) inhibition of PARP-1 overactivation by nicotinamide and (ii) inhibition of extrasynaptic NMDA receptor overactivation by memantine can prevent the short- and long-term consequences of PA. These hypotheses have been evaluated in a rat preclinical model of PA, aiming to identify the metabolic cascades responsible for the long-term consequences induced by the insult, also assessing postnatal vulnerability to recurrent oxidative insults. Thus, we present and discuss evidence demonstrating that PA induces long-term changes in metabolic pathways related to energy and oxidative stress, priming vulnerability of cells with both the neuronal and the glial phenotype. The effects induced by PA are region dependent, the substantia nigra being particularly prone to cell death. The issue of short- and long-term consequences of PA provides a framework for addressing a fundamental issue referred to plasticity of the CNS, since the perinatal insult triggers a domino-like sequence of events making the developing individual vulnerable to recurrent adverse conditions, decreasing his/her coping repertoire because of a relevant insult occurring at birth.
Collapse
Affiliation(s)
- Mario Herrera-Marschitz
- Programme of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Av. Independencia, PO Box 8389100, 1027 Santiago, Chile
| | - Ronald Perez-Lobos
- Programme of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Av. Independencia, PO Box 8389100, 1027 Santiago, Chile
- Escuela de Tecnologia Medica, Facultad de Medicina, Universidad Andres Bello, PO Box 8370146, Santiago, Chile
| | - Carolyne Lespay-Rebolledo
- Programme of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Av. Independencia, PO Box 8389100, 1027 Santiago, Chile
| | - Andrea Tapia-Bustos
- Programme of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Av. Independencia, PO Box 8389100, 1027 Santiago, Chile
| | - Emmanuel Casanova-Ortiz
- Programme of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Av. Independencia, PO Box 8389100, 1027 Santiago, Chile
| | - Paola Morales
- Programme of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Av. Independencia, PO Box 8389100, 1027 Santiago, Chile
- Faculty of Sciences, University of Chile, Santiago, Chile
| | | | - Diego Bustamante
- Programme of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Av. Independencia, PO Box 8389100, 1027 Santiago, Chile
| | - Bruce K. Cassels
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
139
|
Summanen M, Bäck S, Voipio J, Kaila K. Surge of Peripheral Arginine Vasopressin in a Rat Model of Birth Asphyxia. Front Cell Neurosci 2018; 12:2. [PMID: 29403357 PMCID: PMC5780440 DOI: 10.3389/fncel.2018.00002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/03/2018] [Indexed: 12/29/2022] Open
Abstract
Mammalian birth is accompanied by a period of obligatory asphyxia, which consists of hypoxia (drop in blood O2 levels) and hypercapnia (elevation of blood CO2 levels). Prolonged, complicated birth can extend the asphyxic period, leading to a pathophysiological situation, and in humans, to the diagnosis of clinical birth asphyxia, the main cause of hypoxic-ischemic encephalopathy (HIE). The neuroendocrine component of birth asphyxia, in particular the increase in circulating levels of arginine vasopressin (AVP), has been extensively studied in humans. Here we show for the first time that normal rat birth is also accompanied by an AVP surge, and that the fetal AVP surge is further enhanced in a model of birth asphyxia, based on exposing 6-day old rat pups to a gas mixture containing 4% O2 and 20% CO2 for 45 min. Instead of AVP, which is highly unstable with a short plasma half-life, we measured the levels of copeptin, the C-terminal part of prepro-AVP that is biochemically much more stable. In our animal model, the bulk of AVP/copeptin release occurred at the beginning of asphyxia (mean 7.8 nM after 15 min of asphyxia), but some release was still ongoing even 90 min after the end of the 45 min experimental asphyxia (mean 1.2 nM). Notably, the highest copeptin levels were measured after hypoxia alone (mean 14.1 nM at 45 min), whereas copeptin levels were low during hypercapnia alone (mean 2.7 nM at 45 min), indicating that the hypoxia component of asphyxia is responsible for the increase in AVP/copeptin release. Alternating the O2 level between 5 and 9% (CO2 at 20%) with 5 min intervals to mimic intermittent asphyxia during prolonged labor resulted in a slower but quantitatively similar rise in copeptin (peak of 8.3 nM at 30 min). Finally, we demonstrate that our rat model satisfies the standard acid-base criteria for birth asphyxia diagnosis, namely a drop in blood pH below 7.0 and the formation of a negative base excess exceeding -11.2 mmol/l. The mechanistic insights from our work validate the use of the present rodent model in preclinical work on birth asphyxia.
Collapse
Affiliation(s)
- Milla Summanen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Susanne Bäck
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Juha Voipio
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Kai Kaila
- Department of Biosciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center and HiLife, University of Helsinki, Helsinki, Finland
| |
Collapse
|
140
|
Kalteren WS, ter Horst HJ, den Heijer AE, de Vetten L, Kooi EM, Bos AF. Perinatal Anemia is Associated with Neonatal and Neurodevelopmental Outcomes in Infants with Moderate to Severe Perinatal Asphyxia. Neonatology 2018; 114:315-322. [PMID: 30025408 PMCID: PMC6390452 DOI: 10.1159/000490369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Perinatal anemia may cause perinatal asphyxia. Its pathophysiology and neurodevelopmental effects are theoretically different from other causes of perinatal asphyxia. OBJECTIVE The study aimed to determine whether perinatal anemia results in different short-term and long-term outcomes than other causes of perinatal asphyxia treated with therapeutic hypothermia. METHODS We retrospectively included infants with moderate to severe hypoxic-ischemic encephalopathy, born between May 2009 and October 2015. During follow-up, we assessed cognitive and motor development at 2-3 years of age, using the Bayley Scales of Infant and Toddler Development, third edition (BSID-III). Neurodevelopmental outcome (NDO) was classified as abnormal in case of cerebral palsy with Gross Motor Function Classification System ≥III and/or a BSID-III composite score < 85. Outcomes of infants with perinatal anemia (initial hemoglobin < 7 mmol/L) were compared to infants born with perinatal asphyxia due to other causes. RESULTS In total, 111 infants were included of whom 30 infants (27%) died during the neonatal period. Infants with anemia (n = 23) had a higher mortality risk, OR 3.33, 95% CI 1.27-8.72, p = 0.01. None of the surviving infants with anemia (n = 12) had an abnormal NDO, in contrast to 26/69 (38%) with neurodevelopmental impairments, particularly motor problems, in the non-anemic group, p < 0.01. CONCLUSIONS Perinatal anemia causing moderate to severe perinatal asphyxia is associated with a higher risk for neonatal mortality. All survivors with perinatal anemia, however, showed a normal NDO in contrast to children who were born asphyxiated due to other causes. The underlying pathophysiological mechanism for the favorable NDO in the perinatal anemia group needs further elucidation.
Collapse
Affiliation(s)
- Willemien S. Kalteren
- *Willemien S. Kalteren, BSc, Department of Pediatrics, Division of Neonatology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Hanzeplein 1, NL-9713 GZ Groningen (The Netherlands), E-Mail
| | | | | | | | | | | |
Collapse
|
141
|
Archambault J, Moreira A, McDaniel D, Winter L, Sun L, Hornsby P. Therapeutic potential of mesenchymal stromal cells for hypoxic ischemic encephalopathy: A systematic review and meta-analysis of preclinical studies. PLoS One 2017; 12:e0189895. [PMID: 29261798 PMCID: PMC5736208 DOI: 10.1371/journal.pone.0189895] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Neonatal hypoxic ischemic encephalopathy (HIE) is a devastating neurologic condition with high mortality rates and long-term complications for surviving infants. Mesenchymal stem/stromal cells (MSCs) have emerged as novel therapeutic agents with promising results in experimental studies of HIE. The purpose of this study is to (a) methodically review the current preclinical literature describing MSC therapy in animal models of HIE, (b) quantify the effect size in regards to functional neurologic outcome, and (c) identify research gaps/limitations that should be addressed prior to future preclinical and clinical studies. METHODS Adhering to the Systematic Review Protocol for Animal Intervention Studies, a systematic search of English articles was performed. Eligible studies were identified and data regarding study characteristics and outcome measures was extracted. After quality assessment, meta-analysis and meta-regression were performed to generate random effect size using standardized mean difference (SMD). Funnel plots and Egger's tests were utilized to evaluate for the presence of publication bias. RESULTS A total of 19 studies met inclusion in the current systematic review. Meta-analysis revealed that MSCs have a significant positive effect on neurobehavioral outcome following HIE injury. Sensorimotor function was improved by 2.25 SMD (95% CI; 2.04-2.46) in cylinder rearing and 2.97 SMD (95% CI; 2.56-3.38) in rotarod. Likewise, cognitive function was improved by 2.76 SMD (95% CI; 2.53-2.98) on the water maze and 2.97 SMD (95% CI; 2.58-3.35) in object recognition. Stratification demonstrated an increased effect size depending on various study characteristics. CONCLUSIONS Overall, these results suggest a promising role for MSCs in preclinical studies of HIE. MSC treatment demonstrates improved functional outcomes that are encouraging for future translational studies. While risk of bias and heterogeneity limited the strength of our meta-analysis, our results are consistent with those seen in this field of research.
Collapse
Affiliation(s)
- Jamie Archambault
- Department of Pediatrics, Division of Neonatology, University of Texas Health-San Antonio, San Antonio, Texas, United States of America
| | - Alvaro Moreira
- Department of Pediatrics, Division of Neonatology, University of Texas Health-San Antonio, San Antonio, Texas, United States of America
| | - Dawn McDaniel
- Department of Pediatrics, Division of Neonatology, University of Texas Health-San Antonio, San Antonio, Texas, United States of America
| | - Lauryn Winter
- Department of Pediatrics, Division of Neonatology, University of Texas Health-San Antonio, San Antonio, Texas, United States of America
| | - LuZhe Sun
- Department of Cell Systems and Anatomy, University of Texas Health-San Antonio, San Antonio, Texas, United States of America
| | - Peter Hornsby
- Department of Cellular and Integrative Physiology, Barshop Institute for Longevity and Aging Studies, University of Texas Health-San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
142
|
Vasopressin excites interneurons to suppress hippocampal network activity across a broad span of brain maturity at birth. Proc Natl Acad Sci U S A 2017; 114:E10819-E10828. [PMID: 29183979 PMCID: PMC5740624 DOI: 10.1073/pnas.1717337114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During birth in mammals, a pronounced surge of fetal peripheral stress hormones takes place to promote survival in the transition to the extrauterine environment. However, it is not known whether the hormonal signaling involves central pathways with direct protective effects on the perinatal brain. Here, we show that arginine vasopressin specifically activates interneurons to suppress spontaneous network events in the perinatal hippocampus. Experiments done on the altricial rat and precocial guinea pig neonate demonstrated that the effect of vasopressin is not dependent on the level of maturation (depolarizing vs. hyperpolarizing) of postsynaptic GABAA receptor actions. Thus, the fetal mammalian brain is equipped with an evolutionarily conserved mechanism well-suited to suppress energetically expensive correlated network events under conditions of reduced oxygen supply at birth.
Collapse
|
143
|
Lu F, Shao G, Wang Y, Guan S, Burlingame AL, Liu X, Liang X, Knox R, Ferriero DM, Jiang X. Hypoxia-ischemia modifies postsynaptic GluN2B-containing NMDA receptor complexes in the neonatal mouse brain. Exp Neurol 2017; 299:65-74. [PMID: 28993251 DOI: 10.1016/j.expneurol.2017.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/09/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023]
Abstract
The N-methyl-d-aspartate-type glutamate receptor (NMDAR)-associated multiprotein complexes are indispensable for synaptic plasticity and cognitive functions. While purification and proteomic analyses of these signaling complexes have been performed in adult rodent and human brain, much less is known about the protein composition of NMDAR complexes in the developing brain and their modifications by neonatal hypoxic-ischemic (HI) brain injury. In this study, the postsynaptic density proteins were prepared from postnatal day 9 naïve, sham-operated and HI-injured mouse cortex. The GluN2B-containing NMDAR complexes were purified by immunoprecipitation with a mouse GluN2B antibody and subjected to mass spectrometry analysis for determination of the GluN2B binding partners. A total of 71 proteins of different functional categories were identified from the naïve animals as native GluN2B-interacting partners in the developing mouse brain. Neonatal HI reshaped the postsynaptic GluN2B interactome by recruiting new proteins, including multiple kinases, into the complexes; and modifying the existing associations within 1h of reperfusion. The early responses of postsynaptic NMDAR complexes and their related signaling networks may contribute to molecular processes leading to cell survival or death, brain damage and/or neurological disorders in term infants with neonatal encephalopathy.
Collapse
Affiliation(s)
- Fuxin Lu
- Department of Pediatrics, University of California San Francisco, CA, USA
| | - Guo Shao
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | - Yongqiang Wang
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Shenheng Guan
- Department of Pharmaceutical Chemistry, University of California San Francisco, CA, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, CA, USA
| | - Xuemei Liu
- Central Laboratory, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Liang
- Central Laboratory, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Renatta Knox
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Donna M Ferriero
- Department of Pediatrics, University of California San Francisco, CA, USA; Department of Neurology, University of California San Francisco, CA, USA
| | - Xiangning Jiang
- Department of Pediatrics, University of California San Francisco, CA, USA.
| |
Collapse
|
144
|
Kelen D, Andorka C, Szabó M, Alafuzoff A, Kaila K, Summanen M. Serum copeptin and neuron specific enolase are markers of neonatal distress and long-term neurodevelopmental outcome. PLoS One 2017; 12:e0184593. [PMID: 28931055 PMCID: PMC5607206 DOI: 10.1371/journal.pone.0184593] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/25/2017] [Indexed: 02/04/2023] Open
Abstract
The objective of this study was to evaluate the early changes in serial serum levels of copeptin and neuron-specific enolase (NSE) in neonates diagnosed with birth asphyxia, and to determine whether these biomarkers measured in the first 168 hours after birth are predictive of long-term neurodevelopmental outcome. Copeptin and NSE levels were measured from serum samples collected 6, 12, 24, 48, 72, and 168 hours after birth from 75 term neonates diagnosed with hypoxic-ischemic encephalopathy (HIE) and treated with therapeutic hypothermia for 72 hours. In addition, serum copeptin levels after birth were measured from 10 HIE diagnosed neonates, who were randomized to the normothermic arm of the TOBY cohort. All neonates underwent neurodevelopmental assessment using the Bayley Scales of Infant and Toddler Development-II at two years of age. Copeptin levels were highest at 6 hours after birth and steadily decreased, whereas the highest NSE levels were measured at 24 hours after birth. The biomarker levels correlated with blood-gas parameters (base excess, pH and lactate) at 6 and 12 hours after birth. Copeptin and NSE levels in the early postnatal period were significantly higher in neonates with poor outcome compared to those with favorable outcome at two years of age. Furthermore, in the TOBY cohort, copeptin levels were significantly lower in hypothermic compared to normothermic neonates. To conclude, copeptin and NSE measured in the early postnatal period are potential prognostic biomarkers of long-term neurodevelopmental outcome in term neonates diagnosed with HIE and treated with therapeutic hypothermia.
Collapse
Affiliation(s)
- Dorottya Kelen
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Csilla Andorka
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Miklós Szabó
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Aleksander Alafuzoff
- Department of Biosciences, University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Kai Kaila
- Department of Biosciences, University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Milla Summanen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
145
|
Ziemka-Nalecz M, Janowska J, Strojek L, Jaworska J, Zalewska T, Frontczak-Baniewicz M, Sypecka J. Impact of neonatal hypoxia-ischaemia on oligodendrocyte survival, maturation and myelinating potential. J Cell Mol Med 2017; 22:207-222. [PMID: 28782169 PMCID: PMC5742723 DOI: 10.1111/jcmm.13309] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/15/2017] [Indexed: 02/06/2023] Open
Abstract
Hypoxic-ischaemic episodes experienced at the perinatal period commonly lead to a development of neurological disabilities and cognitive impairments in neonates or later in childhood. Clinical symptoms often are associated with the observed alterations in white matter in the brains of diseased children, suggesting contribution of triggered oligodendrocyte/myelin pathology to the resulting disorders. To date, the processes initiated by perinatal asphyxia remain unclear, hampering the ability to develop preventions. To address the issue, the effects of temporal hypoxia-ischaemia on survival, proliferation and the myelinating potential of oligodendrocytes were evaluated ex vivo using cultures of hippocampal organotypic slices and in vivo in rat model of perinatal asphyxia. The potential engagement of gelatinases in oligodendrocyte maturation was assessed as well. The results pointed to a significant decrease in the number of oligodendrocyte progenitor cells (OPCs), which is compensated for to a certain extent by the increased rate of OPC proliferation. Oligodendrocyte maturation seemed however to be significantly altered. An ultrastructural examination of selected brain regions performed several weeks after the insult showed however that the process of developing central nervous system myelination proceeds efficiently resulting in enwrapping the majority of axons in compact myelin. The increased angiogenesis in response to neonatal hypoxic-ischaemic insult was also noticed. In conclusion, the study shows that hypoxic-ischaemic episodes experienced during the most active period of nervous system development might be efficiently compensated for by the oligodendroglial cell response triggered by the insult. The main obstacle seems to be the inflammatory process modulating the local microenvironment.
Collapse
Affiliation(s)
- Malgorzata Ziemka-Nalecz
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Justyna Janowska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Lukasz Strojek
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Jaworska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
146
|
Lakadia MJ, Abbasi H, Gunn AJ, Unsworth CP, Bennet L. Examining the effect of MgSO4 on sharp wave transient activity in the hypoxic-ischemic fetal sheep model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:908-911. [PMID: 28268471 DOI: 10.1109/embc.2016.7590848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) due to lack of oxygen is a debilitating disorder experienced by a significant number of preterm infants during birth. Studies show that the brain undergoes different phases of injury following hypoxic insult, but the first 6-8 hours (known as a latent phase) are the key to treatment efficacy. Cerebral hypothermia is one known treatment, and for it to be effective it must be started during the latent phase and continued for several days. In order to determine the effectiveness of treatment it is important to pinpoint the time of insult. Monitoring of sharp wave transient activity in the hypoxic-ischemic (HI) electroencephalogram (EEG) could be a predictor for time of hypoxic insult. Due to practicality, it is optimal if this monitoring is performed automatically. Further, MgSO4 is a drug given to an increasing number of women in labor, due to its neuroprotective properties. This drug may influence transient activity in the HI fetal sheep EEG, leading to further complications in predicting hypoxic insult. This paper explores the effect of MgSO4 on sharp wave transient activity in the EEG of a HI fetal sheep. Demonstrated in this paper is the usage of a Wavelet-Type-II Fuzzy classifier to detect sharp wave transients during the latent phase of a control group fetal sheep and an MgSO4-treated fetal sheep. This detection was performed with an average overall performance of 93.21%±5.49 over 660 minutes of latent phase, post occlusion. There were no significant differences in number of sharp wave transients in the early- and mid-latent phases of injury for both fetal sheep. However, in the late-latent phase the MgSO4-treated fetal sheep had significantly fewer sharp wave transients than the control fetal sheep.
Collapse
|
147
|
Toorell H, Zetterberg H, Blennow K, Sävman K, Hagberg H. Increase of neuronal injury markers Tau and neurofilament light proteins in umbilical blood after intrapartum asphyxia. J Matern Fetal Neonatal Med 2017. [PMID: 28629249 DOI: 10.1080/14767058.2017.1344964] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AIM Compare the levels of the brain injury biomarkers Tau and neurofilament light protein (NFL) in cases of asphyxia with those in controls. MATERIALS AND METHODS We analyzed the neuronal proteins Tau and NFL in umbilical blood of 10 cases of severe-moderate intrapartum asphyxia and in 18 control cases. RESULTS The levels of both Tau and neurofilament were significantly higher after asphyxia and it appeared to be a correlation between the levels of the biomarkers and the severity of the insult. DISCUSSION Future studies are warranted to support or refute the value of Tau/NFLin clinical practice. CONCLUSION Fetal asphyxia remains a clinical problem resulting in life-long neurological disabilities. We urgently need more accurate early predictive markers to direct the clinician when to provide neuroprotective therapy.
Collapse
Affiliation(s)
- Hanna Toorell
- a Perinatal Center, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital , Gothenburg , Sweden
| | - Henrik Zetterberg
- b Clinical Neurochemistry Laboratory , Mölndal , Sweden.,c Department of Psychiatry and Neurochemistry , Institute of Neuroscience and Physiology , Mölndal , Sweden.,d Department of Molecular Neuroscience , UCL Institute of Neurology, University College London , London , UK
| | - Kaj Blennow
- b Clinical Neurochemistry Laboratory , Mölndal , Sweden.,c Department of Psychiatry and Neurochemistry , Institute of Neuroscience and Physiology , Mölndal , Sweden
| | - Karin Sävman
- e Department of Pediatrics , Institute of Clinical Sciences, University of Gothenburg , Gothenburg , Sweden
| | - Henrik Hagberg
- a Perinatal Center, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital , Gothenburg , Sweden.,f Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering , King's College London, St. Thomas' Hospital , London , UK
| |
Collapse
|
148
|
Efstathiou N, Theodoridis G, Sarafidis K. Understanding neonatal hypoxic-ischemic encephalopathy with metabolomics. Hippokratia 2017; 21:115-123. [PMID: 30479472 PMCID: PMC6248003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE), a serious complication of perinatal asphyxia, is commonly associated with an unfavorable outcome. In-depth research is important not only for the interpretation of the underlying biological alternations but may also provide the basis for the development of novel diagnostic and therapeutic tools. The application of metabolomics in perinatal asphyxia/HIE is a relatively new approach. METHODS We performed a narrative, non-systematic review in the literature of metabolomic studies involving newborn animals and humans exposed to hypoxia-ischemia or developing perinatal asphyxia/HIE. RESULTS Fifteen animal studies, nine studies in human neonates, and two review articles were evaluated. Changes in the metabolomic profile of newborn animals exposed to hypoxia-ischemia and of asphyxiated neonates with HIE are presented in relation to the underlying pathophysiology. The clinical relevance of these findings is further discussed in a comprehensible to the bedside clinician manner. CONCLUSIONS Metabolomics may provide an explanation for the various metabolic alternations occurring in perinatal asphyxia/HIE, elucidate the biological background of the applied therapeutic interventions and promote the development of novel diagnostic-prognostic biomarkers of the disease. HIPPOKRATIA 2017, 21(3): 115-123.
Collapse
Affiliation(s)
- N Efstathiou
- 1 Department of Neonatology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - G Theodoridis
- School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - K Sarafidis
- 1 Department of Neonatology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
149
|
Goulding RM, Stevenson NJ, Murray DM, Livingstone V, Filan PM, Boylan GB. Heart rate variability in hypoxic ischemic encephalopathy during therapeutic hypothermia. Pediatr Res 2017; 81:609-615. [PMID: 27855152 DOI: 10.1038/pr.2016.245] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 09/12/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Therapeutic hypothermia (TH) aims to ameliorate further injury in infants with moderate and severe hypoxic ischemic encephalopathy (HIE). We aim to assess the effect of TH on heart rate variability (HRV) in infants with HIE. METHODS Multichannel video-electroencephalography (EEG) and electrocardiography were assessed at 6-72 h after birth in full-term infants with HIE, recruited prior to (pre-TH group) and following (TH group) the introduction of TH in our neonatal unit. HIE severity was graded using EEG. HRV features investigated include: mean NN interval (mean NN), standard deviation of NN interval (SDNN), triangular interpolation (TINN), high-frequency (HF), low-frequency (LF), very low-frequency (VLF), and LF/HF ratio. Linear mixed model comparisons were used. RESULTS 118 infants (pre-TH: n = 44, TH: n = 74) were assessed. The majority of HRV features decreased with increasing EEG grade. Infants with moderate HIE undergoing TH had significantly different HRV features compared with the pre-TH group (HF: P = 0.016, LF/HF ratio: P = 0.006). In the pre-TH group, LF/HF ratio was significantly different between moderate and severe HIE grades (P = 0.002). In the TH group, significant differences were observed between moderate and severe HIE grades for SDNN: P = 0.020, TINN: P = 0.005, VLF: P = 0.029, LF: P = 0.010, and HF: P = 0.006. CONCLUSION The HF component of HRV is increased in infants with moderate HIE undergoing TH.
Collapse
Affiliation(s)
- Robert M Goulding
- INFANT Centre, Neonatal Brain Research Group, University College Cork, Cork, Ireland.,Department of Pediatrics and Child Health, Cork University Maternity Hospital, Cork, Ireland
| | - Nathan J Stevenson
- INFANT Centre, Neonatal Brain Research Group, University College Cork, Cork, Ireland
| | - Deirdre M Murray
- INFANT Centre, Neonatal Brain Research Group, University College Cork, Cork, Ireland.,Department of Pediatrics and Child Health, Cork University Maternity Hospital, Cork, Ireland
| | - Vicki Livingstone
- INFANT Centre, Neonatal Brain Research Group, University College Cork, Cork, Ireland
| | - Peter M Filan
- Department of Pediatrics and Child Health, Cork University Maternity Hospital, Cork, Ireland
| | - Geraldine B Boylan
- INFANT Centre, Neonatal Brain Research Group, University College Cork, Cork, Ireland.,Department of Pediatrics and Child Health, Cork University Maternity Hospital, Cork, Ireland
| |
Collapse
|
150
|
Ramos E, Patiño P, Reiter RJ, Gil-Martín E, Marco-Contelles J, Parada E, de Los Rios C, Romero A, Egea J. Ischemic brain injury: New insights on the protective role of melatonin. Free Radic Biol Med 2017; 104:32-53. [PMID: 28065781 DOI: 10.1016/j.freeradbiomed.2017.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 12/15/2022]
Abstract
Stroke represents one of the most common causes of brain's vulnerability for many millions of people worldwide. The plethora of physiopathological events associated with brain ischemia are regulate through multiple signaling pathways leading to the activation of oxidative stress process, Ca2+ dyshomeostasis, mitochondrial dysfunction, proinflammatory mediators, excitotoxicity and/or programmed neuronal cell death. Understanding this cascade of molecular events is mandatory in order to develop new therapeutic strategies for stroke. In this review article, we have highlighted the pleiotropic effects of melatonin to counteract the multiple processes of the ischemic cascade. Additionally, experimental evidence supports its actions to ameliorate ischemic long-term behavioural and neuronal deficits, preserving the functional integrity of the blood-brain barrier, inducing neurogenesis and cell proliferation through receptor-dependent mechanism, as well as improving synaptic transmission. Consequently, the synthesis of melatonin derivatives designed as new multitarget-directed products has focused a great interest in this area. This latter has been reinforced by the low cost of melatonin and its reduced toxicity. Furthermore, its spectrum of usages seems to be wide and with the potential for improving human health. Nevertheless, the molecular and cellular mechanisms underlying melatonin´s actions need to be further exploration and accordingly, new clinical studies should be conducted in human patients with ischemic brain pathologies.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Paloma Patiño
- Paediatric Unit, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology. University of Texas Health Science Center at San Antonio, USA
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain
| | - José Marco-Contelles
- Medicinal Chemistry Laboratory, Institute of General Organic Chemistry (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Esther Parada
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Cristobal de Los Rios
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Alejandro Romero
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Egea
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain.
| |
Collapse
|