101
|
Qiu S, Xiao C, Robertson RM. Pulsed Light Stimulation Increases Boundary Preference and Periodicity of Episodic Motor Activity in Drosophila melanogaster. PLoS One 2016; 11:e0163976. [PMID: 27684063 PMCID: PMC5042536 DOI: 10.1371/journal.pone.0163976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/16/2016] [Indexed: 12/20/2022] Open
Abstract
There is considerable interest in the therapeutic benefits of long-term sensory stimulation for improving cognitive abilities and motor performance of stroke patients. The rationale is that such stimulation would activate mechanisms of neural plasticity to promote enhanced coordination and associated circuit functions. Experimental approaches to characterize such mechanisms are needed. Drosophila melanogaster is one of the most attractive model organisms to investigate neural mechanisms responsible for stimulation-induced behaviors with its powerful accessibility to genetic analysis. In this study, the effect of chronic sensory stimulation (pulsed light stimulation) on motor activity in w1118 flies was investigated. Flies were exposed to a chronic pulsed light stimulation protocol prior to testing their performance in a standard locomotion assay. Flies responded to pulsed light stimulation with increased boundary preference and travel distance in a circular arena. In addition, pulsed light stimulation increased the power of extracellular electrical activity, leading to the enhancement of periodic electrical activity which was associated with a centrally-generated motor pattern (struggling behavior). In contrast, such periodic events were largely missing in w1118 flies without pulsed light treatment. These data suggest that the sensory stimulation induced a response in motor activity associated with the modifications of electrical activity in the central nervous system (CNS). Finally, without pulsed light treatment, the wild-type genetic background was associated with the occurrence of the periodic activity in wild-type Canton S (CS) flies, and w+ modulated the consistency of periodicity. We conclude that pulsed light stimulation modifies behavioral and electrophysiological activities in w1118 flies. These data provide a foundation for future research on the genetic mechanisms of neural plasticity underlying such behavioral modification.
Collapse
Affiliation(s)
- Shuang Qiu
- Department of Biology, Queen’s University, Kingston, Ontario, Canada, K7L 3N6
| | - Chengfeng Xiao
- Department of Biology, Queen’s University, Kingston, Ontario, Canada, K7L 3N6
- * E-mail: (CX); (RMR)
| | - R. Meldrum Robertson
- Department of Biology, Queen’s University, Kingston, Ontario, Canada, K7L 3N6
- * E-mail: (CX); (RMR)
| |
Collapse
|
102
|
Pfeffer SE, Wahl VL, Wittlinger M. How to find home backwards? Locomotion and inter-leg coordination during rearward walking of Cataglyphis fortis desert ants. J Exp Biol 2016; 219:2110-8. [DOI: 10.1242/jeb.137778] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/29/2016] [Indexed: 11/20/2022]
Abstract
ABSTRACT
For insects, flexibility in the performance of terrestrial locomotion is a vital part of facing the challenges of their often unpredictable environment. Arthropods such as scorpions and crustaceans can switch readily from forward to backward locomotion, but in insects this behaviour seems to be less common and, therefore, is only poorly understood. Here we present an example of spontaneous and persistent backward walking in Cataglyphis desert ants that allows us to investigate rearward locomotion within a natural context. When ants find a food item that is too large to be lifted up and to be carried in a normal forward-faced orientation, they will drag the load walking backwards to their home nest. A detailed examination of this behaviour reveals a surprising flexibility of the locomotor output. Compared with forward walks with regular tripod coordination, no main coordination pattern can be assigned to rearward walks. However, we often observed leg-pair-specific stepping patterns. The front legs frequently step with small stride lengths, while the middle and the hind legs are characterized by less numerous but larger strides. But still, these specializations show no rigidly fixed leg coupling, nor are they strictly embedded within a temporal context; therefore, they do not result in a repetitive coordination pattern. The individual legs act as separate units, most likely to better maintain stability during backward dragging.
Collapse
Affiliation(s)
- Sarah E. Pfeffer
- Institute of Neurobiology, University of Ulm, Ulm D-89069, Germany
| | - Verena L. Wahl
- Institute of Neurobiology, University of Ulm, Ulm D-89069, Germany
| | | |
Collapse
|
103
|
Affiliation(s)
- S.E. Roian Egnor
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147; ,
| | - Kristin Branson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147; ,
| |
Collapse
|
104
|
Isakov A, Buchanan SM, Sullivan B, Ramachandran A, Chapman JKS, Lu ES, Mahadevan L, de Bivort B. Recovery of locomotion after injury in Drosophila melanogaster depends on proprioception. ACTA ACUST UNITED AC 2016; 219:1760-71. [PMID: 26994176 DOI: 10.1242/jeb.133652] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/08/2016] [Indexed: 11/20/2022]
Abstract
Locomotion is necessary for survival in most animal species. However, injuries to the appendages mediating locomotion are common. We assess the recovery of walking in Drosophila melanogaster following leg amputation. Whereas flies pre-amputation explore open arenas in a symmetric fashion on average, foreleg amputation induces a strong turning bias away from the side of the amputation. However, we find that unbiased walking behavior returns over time in wild-type flies, while recovery is significantly impaired in proprioceptive mutants. To identify the biomechanical basis of this locomotor impairment and recovery, we then examine individual leg motion (gait) at a fine scale. A minimal mathematical model that links neurodynamics to body mechanics during walking shows that redistributing leg forces between the right and left side enables the observed recovery. Altogether, our study suggests that proprioceptive input from the intact limbs plays a crucial role in the behavioral plasticity associated with locomotor recovery after injury.
Collapse
Affiliation(s)
- Alexander Isakov
- Department of Physics, Harvard University, Cambridge, MA 02138, USA Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | | | - Brian Sullivan
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Akshitha Ramachandran
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Edward S Lu
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - L Mahadevan
- Department of Physics, Harvard University, Cambridge, MA 02138, USA Center for Brain Science, Harvard University, Cambridge, MA 02138, USA Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Benjamin de Bivort
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA Rowland Institute at Harvard, Cambridge, MA 02142, USA Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
105
|
Needham JA, Sharp JS. Watch your step! A frustrated total internal reflection approach to forensic footwear imaging. Sci Rep 2016; 6:21290. [PMID: 26880687 PMCID: PMC4754702 DOI: 10.1038/srep21290] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/21/2016] [Indexed: 02/07/2023] Open
Abstract
Forensic image retrieval and processing are vital tools in the fight against crime e.g. during fingerprint capture. However, despite recent advances in machine vision technology and image processing techniques (and contrary to the claims of popular fiction) forensic image retrieval is still widely being performed using outdated practices involving inkpads and paper. Ongoing changes in government policy, increasing crime rates and the reduction of forensic service budgets increasingly require that evidence be gathered and processed more rapidly and efficiently. A consequence of this is that new, low-cost imaging technologies are required to simultaneously increase the quality and throughput of the processing of evidence. This is particularly true in the burgeoning field of forensic footwear analysis, where images of shoe prints are being used to link individuals to crime scenes. Here we describe one such approach based upon frustrated total internal reflection imaging that can be used to acquire images of regions where shoes contact rigid surfaces.
Collapse
Affiliation(s)
- J A Needham
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - J S Sharp
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
106
|
Berendes V, Zill SN, Büschges A, Bockemühl T. Speed-dependent interplay between local pattern-generating activity and sensory signals during walking in Drosophila. J Exp Biol 2016; 219:3781-3793. [DOI: 10.1242/jeb.146720] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/14/2016] [Indexed: 12/16/2022]
Abstract
In insects, the coordinated motor output required for walking is based on the interaction between local pattern-generating networks providing basic rhythmicity and leg sensory signals which modulate this output on a cycle-to-cycle basis. How this interplay changes speed-dependently and thereby gives rise to the different coordination patterns observed at different speeds is understood insufficiently. Here, we used amputation to reduce sensory signals in single legs and decouple them mechanically during walking in Drosophila. This allowed for the dissociation between locally-generated motor output in the stump and coordinating influences from intact legs. Leg stumps were still rhythmically active during walking. While the oscillatory frequency in intact legs was dependent on walking speed, stumps showed a high and relatively constant oscillation frequency at all walking speeds. At low walking speeds we found no strict cycle-to-cycle coupling between stumps and intact legs. In contrast, at high walking speeds stump oscillations were strongly coupled to the movement of intact legs on a 1-to-1 basis. While during slow walking there was no preferred phase between stumps and intact legs, we nevertheless found a preferred time interval between touch-down or lift-off events in intact legs and levation or depression of stumps. Based on these findings, we hypothesize that, as in other insects, walking speed in Drosophila is predominantly controlled by indirect mechanisms and that direct modulation of basic pattern-generating circuits plays a subsidiary role. Furthermore, inter-leg coordination strength seems to be speed-dependent and greater coordination is evident at higher walking speeds.
Collapse
Affiliation(s)
- Volker Berendes
- Department of Animal Physiology, Zoological Institute, University of Cologne, 50674 Cologne, Germany
| | - Sasha N. Zill
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA
| | - Ansgar Büschges
- Department of Animal Physiology, Zoological Institute, University of Cologne, 50674 Cologne, Germany
| | - Till Bockemühl
- Department of Animal Physiology, Zoological Institute, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
107
|
Iliadi KG, Gluscencova OB, Boulianne GL. Psychomotor Behavior: A Practical Approach in Drosophila. Front Psychiatry 2016; 7:153. [PMID: 27630583 PMCID: PMC5005351 DOI: 10.3389/fpsyt.2016.00153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/19/2016] [Indexed: 11/13/2022] Open
Abstract
Psychomotor behaviors are governed by fine relationships between physical activity and cognitive functions. Disturbances in psychomotor development and performance are a hallmark of many mental illnesses and often appear as observable and measurable behaviors. Here, we describe a new method called an "equilibrist test," which can be used to quantify psychomotor learning and performance in Drosophila. We also show how this test can be used to quantify motor disturbances at relatively early stages in the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Konstantin G Iliadi
- Program in Developmental and Stem Cell Biology, The Hospital For Sick Children , Toronto, ON , Canada
| | - Oxana B Gluscencova
- Program in Developmental and Stem Cell Biology, The Hospital For Sick Children , Toronto, ON , Canada
| | - Gabrielle L Boulianne
- Program in Developmental and Stem Cell Biology, The Hospital For Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
108
|
Maesani A, Ramdya P, Cruchet S, Gustafson K, Benton R, Floreano D. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns. PLoS Comput Biol 2015; 11:e1004577. [PMID: 26600381 PMCID: PMC4657918 DOI: 10.1371/journal.pcbi.1004577] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/28/2015] [Indexed: 12/17/2022] Open
Abstract
The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs-locomotor bouts-matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior.
Collapse
Affiliation(s)
- Andrea Maesani
- Institute of Microengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pavan Ramdya
- Institute of Microengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Steeve Cruchet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Kyle Gustafson
- The Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Dario Floreano
- Institute of Microengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
109
|
Berman GJ, Choi DM, Bialek W, Shaevitz JW. Mapping the stereotyped behaviour of freely moving fruit flies. J R Soc Interface 2015; 11:rsif.2014.0672. [PMID: 25142523 PMCID: PMC4233753 DOI: 10.1098/rsif.2014.0672] [Citation(s) in RCA: 301] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A frequent assumption in behavioural science is that most of an animal's activities can be described in terms of a small set of stereotyped motifs. Here, we introduce a method for mapping an animal's actions, relying only upon the underlying structure of postural movement data to organize and classify behaviours. Applying this method to the ground-based behaviour of the fruit fly, Drosophila melanogaster, we find that flies perform stereotyped actions roughly 50% of the time, discovering over 100 distinguishable, stereotyped behavioural states. These include multiple modes of locomotion and grooming. We use the resulting measurements as the basis for identifying subtle sex-specific behavioural differences and revealing the low-dimensional nature of animal motions.
Collapse
Affiliation(s)
- Gordon J Berman
- Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Daniel M Choi
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - William Bialek
- Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Joshua W Shaevitz
- Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
110
|
Fedotov SA, Bragina JV, Besedina NG, Danilenkova LV, Kamysheva EA, Panova AA, Kamyshev NG. The effect of neurospecific knockdown of candidate genes for locomotor behavior and sound production in Drosophila melanogaster. Fly (Austin) 2015; 8:176-87. [PMID: 25494872 PMCID: PMC4594543 DOI: 10.4161/19336934.2014.983389] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Molecular mechanisms underlying the functioning of central pattern generators (CPGs) are poorly understood. Investigations using genetic approaches in the model organism Drosophila may help to identify unknown molecular players participating in the formation or control of motor patterns. Here we report Drosophila genes as candidates for involvement in the neural mechanisms responsible for motor functions, such as locomotion and courtship song. Twenty-two Drosophila lines, used for gene identification, were isolated from a previously created collection of 1064 lines, each carrying a P element insertion in one of the autosomes. The lines displayed extreme deviations in locomotor and/or courtship song parameters compared with the whole collection. The behavioral consequences of CNS-specific RNAi-mediated knockdowns for 10 identified genes were estimated. The most prominent changes in the courtship song interpulse interval (IPI) were seen in flies with Sps2 or CG15630 knockdown. Glia-specific knockdown of these genes produced no effect on the IPI. Estrogen-induced knockdown of CG15630 in adults reduced the IPI. The product of the CNS-specific gene, CG15630 (a predicted cell surface receptor), is likely to be directly involved in the functioning of the CPG generating the pulse song pattern. Future studies should ascertain its functional role in the neurons that constitute the song CPG. Other genes (Sps2, CG34460), whose CNS-specific knockdown resulted in IPI reduction, are also worthy of detailed examination.
Collapse
Affiliation(s)
- Sergey A Fedotov
- a I.P. Pavlov Institute of Physiology of the Russian Academy of Sciences ; Saint Petersburg ; Russia
| | | | | | | | | | | | | |
Collapse
|
111
|
Locomotion Induced by Spatial Restriction in Adult Drosophila. PLoS One 2015; 10:e0135825. [PMID: 26351842 PMCID: PMC4564261 DOI: 10.1371/journal.pone.0135825] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/27/2015] [Indexed: 11/19/2022] Open
Abstract
Drosophila adults display an unwillingness to enter confined spaces but the behaviors induced by spatial restriction in Drosophila are largely unknown. We developed a protocol for high-throughput analysis of locomotion and characterized features of locomotion in a restricted space. We observed intense and persistent locomotion of flies in small circular arenas (diameter 1.27 cm), whereas locomotion was greatly reduced in large circular arenas (diameter 3.81 cm). The increased locomotion induced by spatial restriction was seen in male flies but not female flies, indicating sexual dimorphism of the response to spatial restriction. In large arenas, male flies increased locomotion in arenas previously occupied by male but not female individuals. In small arenas, such pre-conditioning had no effect on male flies, which showed intense and persistent locomotion similar to that seen in fresh arenas. During locomotion with spatial restriction, wildtype Canton-S males traveled slower and with less variation in speed than the mutant w1118 carrying a null allele of white gene. In addition, wildtype flies showed a stronger preference for the boundary than the mutant in small arenas. Genetic analysis with a series of crosses revealed that the white gene was not associated with the phenotype of boundary preference in wildtype flies.
Collapse
|
112
|
Insect motor control: methodological advances, descending control and inter-leg coordination on the move. Curr Opin Neurobiol 2015; 33:8-15. [DOI: 10.1016/j.conb.2014.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 11/20/2022]
|
113
|
Abstract
Background Qualitative and quantitative measurements of motor performance are essential for characterizing perturbations of motor systems. Although several methods exist for analyzing specific motor tasks, few behavioral assays are readily available to researchers that provide a complete set of kinematic parameters in rodents. Results Here we present MouseWalker, an integrated hardware and software system that provides a comprehensive and quantitative description of kinematic features in freely walking rodents. Footprints are visualized with high spatial and temporal resolution by a non-invasive optical touch sensor coupled to high-speed imaging. A freely available and open-source software package tracks footprints and body features to generate a comprehensive description of many locomotion features, including static parameters such as footprint position and stance patterns and dynamic parameters, such as step and swing cycle duration, and inter-leg coordination. Using this method, we describe walking by wild-type mice including several previously undescribed parameters. For example, we demonstrate that footprint touchdown occurs instantaneously by the entire paw with no obvious rostral–caudal or lateral–medial bias. Conclusions The readily available MouseWalker system and the large set of readouts it generates greatly increases the currently available toolkit for the analysis of wild type and aberrant locomotion in rodents. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0154-0) contains supplementary material, which is available to authorized users.
Collapse
|
114
|
Coordination and fine motor control depend on Drosophila TRPγ. Nat Commun 2015; 6:7288. [PMID: 26028119 DOI: 10.1038/ncomms8288] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 04/26/2015] [Indexed: 12/31/2022] Open
Abstract
Motor coordination is broadly divided into gross and fine motor control, both of which depend on proprioceptive organs. However, the channels that function specifically in fine motor control are unknown. Here we show that mutations in trpγ disrupt fine motor control while leaving gross motor proficiency intact. The mutants are unable to coordinate precise leg movements during walking, and are ineffective in traversing large gaps due to an inability in making subtle postural adaptations that are requisite for this task. TRPγ is expressed in proprioceptive organs, and is required in both neurons and glia for gap crossing. We expressed TRPγ in vitro, and found that its activity is promoted by membrane stretch. A mutation eliminating the Na(+)/Ca(2+) exchanger suppresses the gap-crossing phenotype of trpγ flies. Our findings indicate that TRPγ contributes to fine motor control through mechanical activation in proprioceptive organs, thereby promoting Ca(2+) influx, which is required for function.
Collapse
|
115
|
Savall J, Ho ETW, Huang C, Maxey JR, Schnitzer MJ. Dexterous robotic manipulation of alert adult Drosophila for high-content experimentation. Nat Methods 2015; 12:657-660. [PMID: 26005812 PMCID: PMC4490062 DOI: 10.1038/nmeth.3410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/18/2015] [Indexed: 12/03/2022]
Abstract
We present a robot that enables high-content studies of alert adult Drosophila by combining operations including gentle picking, translations and rotations, characterizations of fly phenotypes and behaviors, micro-dissection or release. To illustrate, we assessed fly morphology, tracked odor-evoked locomotion, sorted flies by sex, and dissected the cuticle to image neural activity. The robot's tireless capacity for precise manipulations enables a scalable platform for screening flies’ complex attributes and behavioral patterns.
Collapse
Affiliation(s)
- Joan Savall
- James H. Clark Center, Stanford University, Stanford, California, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, California, USA.,CNC Program, Stanford University, Stanford, California, USA
| | - Eric Tatt Wei Ho
- James H. Clark Center, Stanford University, Stanford, California, USA.,Centre for Intelligent Signal and Imaging Research, Universiti Teknologi Petronas, Perak, Malaysia
| | - Cheng Huang
- James H. Clark Center, Stanford University, Stanford, California, USA
| | - Jessica R Maxey
- James H. Clark Center, Stanford University, Stanford, California, USA.,CNC Program, Stanford University, Stanford, California, USA
| | - Mark J Schnitzer
- James H. Clark Center, Stanford University, Stanford, California, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, California, USA.,CNC Program, Stanford University, Stanford, California, USA
| |
Collapse
|
116
|
Enriquez J, Venkatasubramanian L, Baek M, Peterson M, Aghayeva U, Mann RS. Specification of individual adult motor neuron morphologies by combinatorial transcription factor codes. Neuron 2015; 86:955-970. [PMID: 25959734 DOI: 10.1016/j.neuron.2015.04.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 03/12/2015] [Accepted: 04/04/2015] [Indexed: 11/27/2022]
Abstract
How the highly stereotyped morphologies of individual neurons are genetically specified is not well understood. We identify six transcription factors (TFs) expressed in a combinatorial manner in seven post-mitotic adult leg motor neurons (MNs) that are derived from a single neuroblast in Drosophila. Unlike TFs expressed in mitotically active neuroblasts, these TFs do not regulate each other's expression. Removing the activity of a single TF resulted in specific morphological defects, including muscle targeting and dendritic arborization, and in a highly specific walking defect in adult flies. In contrast, when the expression of multiple TFs was modified, nearly complete transformations in MN morphologies were generated. These results show that the morphological characteristics of a single neuron are dictated by a combinatorial code of morphology TFs (mTFs). mTFs function at a previously unidentified regulatory tier downstream of factors acting in the NB but independently of factors that act in terminally differentiated neurons.
Collapse
Affiliation(s)
- Jonathan Enriquez
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, 701 W. 168(th) Street, New York, NY 10032, USA.
| | - Lalanti Venkatasubramanian
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, 701 W. 168(th) Street, New York, NY 10032, USA
| | - Myungin Baek
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, 701 W. 168(th) Street, New York, NY 10032, USA
| | - Meredith Peterson
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, 701 W. 168(th) Street, New York, NY 10032, USA
| | - Ulkar Aghayeva
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, 701 W. 168(th) Street, New York, NY 10032, USA
| | - Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, 701 W. 168(th) Street, New York, NY 10032, USA.
| |
Collapse
|
117
|
Arm coordination in octopus crawling involves unique motor control strategies. Curr Biol 2015; 25:1195-200. [PMID: 25891406 DOI: 10.1016/j.cub.2015.02.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/22/2015] [Accepted: 02/24/2015] [Indexed: 11/22/2022]
Abstract
To cope with the exceptional computational complexity that is involved in the control of its hyper-redundant arms [1], the octopus has adopted unique motor control strategies in which the central brain activates rather autonomous motor programs in the elaborated peripheral nervous system of the arms [2, 3]. How octopuses coordinate their eight long and flexible arms in locomotion is still unknown. Here, we present the first detailed kinematic analysis of octopus arm coordination in crawling. The results are surprising in several respects: (1) despite its bilaterally symmetrical body, the octopus can crawl in any direction relative to its body orientation; (2) body and crawling orientation are monotonically and independently controlled; and (3) contrasting known animal locomotion, octopus crawling lacks any apparent rhythmical patterns in limb coordination, suggesting a unique non-rhythmical output of the octopus central controller. We show that this uncommon maneuverability is derived from the radial symmetry of the arms around the body and the simple pushing-by-elongation mechanism by which the arms create the crawling thrust. These two together enable a mechanism whereby the central controller chooses in a moment-to-moment fashion which arms to recruit for pushing the body in an instantaneous direction. Our findings suggest that the soft molluscan body has affected in an embodied way [4, 5] the emergence of the adaptive motor behavior of the octopus.
Collapse
|
118
|
Walking and running in the desert ant Cataglyphis fortis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:645-56. [PMID: 25829304 PMCID: PMC4439428 DOI: 10.1007/s00359-015-0999-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 12/03/2022]
Abstract
Path integration, although inherently error-prone, is a common navigation strategy in animals, particularly where environmental orientation cues are rare. The desert ant Cataglyphis fortis is a prominent example, covering large distances on foraging excursions. The stride integrator is probably the major source of path integration errors. A detailed analysis of walking behaviour in Cataglyphis is thus of importance for assessing possible sources of errors and potential compensation strategies. Zollikofer (J Exp Biol 192:95–106, 1994a) demonstrated consistent use of the tripod gait in Cataglyphis, and suggested an unexpectedly constant stride length as a possible means of reducing navigation errors. Here, we extend these studies by more detailed analyses of walking behaviour across a large range of walking speeds. Stride length increases linearly and stride amplitude of the middle legs increases slightly linearly with walking speed. An initial decrease of swing phase duration is observed at lower velocities with increasing walking speed. Then it stays constant across the behaviourally relevant range of walking speeds. Walking speed is increased by shortening of the stance phase and of the stance phase overlap. At speeds larger than 370 mms−1, the stride frequency levels off, the duty factor falls below 0.5, and Cataglyphis transitions to running with aerial phases.
Collapse
|
119
|
Couzin-Fuchs E, Kiemel T, Gal O, Ayali A, Holmes P. Intersegmental coupling and recovery from perturbations in freely running cockroaches. J Exp Biol 2015; 218:285-97. [PMID: 25609786 PMCID: PMC4302167 DOI: 10.1242/jeb.112805] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/17/2014] [Indexed: 11/20/2022]
Abstract
Cockroaches are remarkably stable runners, exhibiting rapid recovery from external perturbations. To uncover the mechanisms behind this important behavioral trait, we recorded leg kinematics of freely running animals in both undisturbed and perturbed trials. Functional coupling underlying inter-leg coordination was monitored before and during localized perturbations, which were applied to single legs via magnetic impulses. The resulting transient effects on all legs and the recovery times to normal pre-perturbation kinematics were studied. We estimated coupling architecture and strength by fitting experimental data to a six-leg-unit phase oscillator model. Using maximum-likelihood techniques, we found that a network with nearest-neighbor inter-leg coupling best fitted the data and that, although coupling strengths vary among preparations, the overall inputs entering each leg are approximately balanced and consistent. Simulations of models with different coupling strengths encountering perturbations suggest that the coupling schemes estimated from our experiments allow animals relatively fast and uniform recoveries from perturbations.
Collapse
Affiliation(s)
- Einat Couzin-Fuchs
- Department of Mechanical and Aerospace Engineering, Princeton University, NJ 08544, USA Department of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tim Kiemel
- Department of Kinesiology, University of Maryland, College Park, MD 20742, USA
| | - Omer Gal
- Department of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amir Ayali
- Department of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Philip Holmes
- Department of Mechanical and Aerospace Engineering, Princeton University, NJ 08544, USA Program in Applied and Computational Mathematics and Princeton Neuroscience Institute, Princeton University, NJ 08544, USA
| |
Collapse
|
120
|
Ayali A, Couzin-Fuchs E, David I, Gal O, Holmes P, Knebel D. Sensory feedback in cockroach locomotion: current knowledge and open questions. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:841-50. [DOI: 10.1007/s00359-014-0968-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
|
121
|
Chadha A, Cook B. The effect of stress on motor function in Drosophila. PLoS One 2014; 9:e112076. [PMID: 25375106 PMCID: PMC4222978 DOI: 10.1371/journal.pone.0112076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/13/2014] [Indexed: 01/20/2023] Open
Abstract
Exposure to unpredictable and uncontrollable conditions causes animals to perceive stress and change their behavior. It is unclear how the perception of stress modifies the motor components of behavior and which molecular pathways affect the behavioral change. In order to understand how stress affects motor function, we developed an experimental platform that quantifies walking motions in Drosophila. We found that stress induction using electrical shock results in backwards motions of the forelegs at the end of walking strides. These leg retrogressions persisted during repeated stimulation, although they habituated substantially. The motions also continued for several strides after the end of the shock, indicating that stress induces a behavioral aftereffect. Such aftereffect could also be induced by restricting the motion of the flies via wing suspension. Further, the long-term effects could be amplified by combining either immobilization or electric shock with additional stressors. Thus, retrogression is a lingering form of response to a broad range of stressful conditions, which cause the fly to search for a foothold when it faces extreme and unexpected challenges. Mutants in the cAMP signaling pathway enhanced the stress response, indicating that this pathway regulates the behavioral response to stress. Our findings identify the effect of stress on a specific motor component of behavior and define the role of cAMP signaling in this stress response.
Collapse
Affiliation(s)
- Abhishek Chadha
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California, United States of America
| | - Boaz Cook
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
122
|
Mendes CS, Rajendren SV, Bartos I, Márka S, Mann RS. Kinematic responses to changes in walking orientation and gravitational load in Drosophila melanogaster. PLoS One 2014; 9:e109204. [PMID: 25350743 PMCID: PMC4211655 DOI: 10.1371/journal.pone.0109204] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/10/2014] [Indexed: 11/19/2022] Open
Abstract
Walking behavior is context-dependent, resulting from the integration of internal and external influences by specialized motor and pre-motor centers. Neuronal programs must be sufficiently flexible to the locomotive challenges inherent in different environments. Although insect studies have contributed substantially to the identification of the components and rules that determine locomotion, we still lack an understanding of how multi-jointed walking insects respond to changes in walking orientation and direction and strength of the gravitational force. In order to answer these questions we measured with high temporal and spatial resolution the kinematic properties of untethered Drosophila during inverted and vertical walking. In addition, we also examined the kinematic responses to increases in gravitational load. We find that animals are capable of shifting their step, spatial and inter-leg parameters in order to cope with more challenging walking conditions. For example, flies walking in an inverted orientation decreased the duration of their swing phase leading to increased contact with the substrate and, as a result, greater stability. We also find that when flies carry additional weight, thereby increasing their gravitational load, some changes in step parameters vary over time, providing evidence for adaptation. However, above a threshold that is between 1 and 2 times their body weight flies display locomotion parameters that suggest they are no longer capable of walking in a coordinated manner. Finally, we find that functional chordotonal organs are required for flies to cope with additional weight, as animals deficient in these proprioceptors display increased sensitivity to load bearing as well as other locomotive defects.
Collapse
Affiliation(s)
- César S. Mendes
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Soumya V. Rajendren
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
- Neuroscience and Behavior at Barnard College, Columbia University, New York, New York, United States of America
| | - Imre Bartos
- Department of Physics, Columbia University, New York, New York, United States of America
| | - Szabolcs Márka
- Department of Physics, Columbia University, New York, New York, United States of America
| | - Richard S. Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| |
Collapse
|
123
|
Geurten BRH, Jähde P, Corthals K, Göpfert MC. Saccadic body turns in walking Drosophila. Front Behav Neurosci 2014; 8:365. [PMID: 25386124 PMCID: PMC4205811 DOI: 10.3389/fnbeh.2014.00365] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/02/2014] [Indexed: 02/01/2023] Open
Abstract
Drosophila melanogaster structures its optic flow during flight by interspersing translational movements with abrupt body rotations. Whether these “body saccades” are accompanied by steering movements of the head is a matter of debate. By tracking single flies moving freely in an arena, we now discovered that walking Drosophila also perform saccades. Movement analysis revealed that the flies separate rotational from translational movements by quickly turning their bodies by 15 degrees within a tenth of a second. Although walking flies moved their heads by up to 20 degrees about their bodies, their heads moved with the bodies during saccadic turns. This saccadic strategy contrasts with the head saccades reported for e.g., blowflies and honeybees, presumably reflecting optical constraints: modeling revealed that head saccades as described for these latter insects would hardly affect the retinal input in Drosophila because of the lower acuity of its compound eye. The absence of head saccades in Drosophila was associated with the absence of haltere oscillations, which seem to guide head movements in other flies. In addition to adding new twists to Drosophila walking behavior, our analysis shows that Drosophila does not turn its head relative to its body when turning during walking.
Collapse
Affiliation(s)
- Bart R H Geurten
- Department of Cellular Neurobiology, Georg-August University of Göttingen Göttingen, Germany
| | - Philipp Jähde
- Department of Cellular Neurobiology, Georg-August University of Göttingen Göttingen, Germany
| | - Kristina Corthals
- Department of Cellular Neurobiology, Georg-August University of Göttingen Göttingen, Germany
| | - Martin C Göpfert
- Department of Cellular Neurobiology, Georg-August University of Göttingen Göttingen, Germany
| |
Collapse
|
124
|
Chen AY, Wilburn P, Hao X, Tully T. Walking deficits and centrophobism in an α-synuclein fly model of Parkinson's disease. GENES BRAIN AND BEHAVIOR 2014; 13:812-20. [PMID: 25113870 PMCID: PMC4262005 DOI: 10.1111/gbb.12172] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 08/08/2014] [Accepted: 08/09/2014] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is a movement neurodegenerative disorder, characterized by bradykinesia, rigidity and tremor, constituting difficulties in walking and abnormal gait. Previous research shows that Drosophila expressing human α-synuclein A30P (A30P) develop deficits in geotaxis climbing; however, geotaxis climbing is a different movement modality from walking. Whether A30P flies would exhibit abnormal walking in a horizontal plane, a measure more relevant to PD, is not known. In this study, we characterized A30P fly walking using a high-speed camera and an automatic behavior tracking system. We found that old but not young A30P flies exhibited walking abnormalities, specifically decreased total moving distance, distance per movement, velocity, angular velocity and others, compared with old control flies. Those features match the definition of bradykinesia. Multivariate analysis further suggested a synergistic effect of aging and A30P, resulting in a distinct pattern of walking deficits, as seen in aged A30P flies. Psychiatric problems are common in PD patients with anxiety affecting 40–69% of patients. Central avoidance is one assessment of anxiety in various animal models. We found old but not young A30P flies exhibited increased centrophobism, suggesting possible elevated anxiety. Here, we report the first quantitative measures of walking qualities in a PD fly model and propose an alternative behavior paradigm for evaluating motor functions apart from climbing assay.
Collapse
Affiliation(s)
- A Y Chen
- Dart Neuroscience LLC, San Diego, CA; Cold Spring Harbor Laboratory, Cold Spring Harbor, Stony Brook, NY; Graduate Program in Neuroscience, SUNY Stony Brook, Stony Brook, NY
| | | | | | | |
Collapse
|
125
|
Kress D, Egelhaaf M. Gaze characteristics of freely walking blowflies Calliphora vicina in a goal-directed task. ACTA ACUST UNITED AC 2014; 217:3209-20. [PMID: 25013104 DOI: 10.1242/jeb.097436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In contrast to flying flies, walking flies experience relatively strong rotational gaze shifts, even during overall straight phases of locomotion. These gaze shifts are caused by the walking apparatus and modulated by the stride frequency. Accordingly, even during straight walking phases, the retinal image flow is composed of both translational and rotational optic flow, which might affect spatial vision, as well as fixation behavior. We addressed this issue for an orientation task where walking blowflies approached a black vertical bar. The visual stimulus was stationary, or either the bar or the background moved horizontally. The stride-coupled gaze shifts of flies walking toward the bar had similar amplitudes under all visual conditions tested. This finding indicates that these shifts are an inherent feature of walking, which are not even compensated during a visual goal fixation task. By contrast, approaching flies showed a frequent stop-and-go behavior that was affected by the stimulus conditions. As sustained image rotations may impair distance estimation during walking, we propose a hypothesis that explains how rotation-independent translatory image flow containing distance information can be determined. The algorithm proposed works without requiring differentiation at the behavioral level of the rotational and translational flow components. By contrast, disentangling both has been proposed to be necessary during flight. By comparing the retinal velocities of the edges of the goal, its rotational image motion component can be removed. Consequently, the expansion velocity of the goal and, thus, its proximity can be extracted, irrespective of distance-independent stride-coupled rotational image shifts.
Collapse
Affiliation(s)
- Daniel Kress
- Department of Neurobiology and CITEC Center of Excellence Cognitive Interaction Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Martin Egelhaaf
- Department of Neurobiology and CITEC Center of Excellence Cognitive Interaction Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
126
|
Stern DL. Reported Drosophila courtship song rhythms are artifacts of data analysis. BMC Biol 2014; 12:38. [PMID: 24965095 PMCID: PMC4071150 DOI: 10.1186/1741-7007-12-38] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/20/2014] [Indexed: 12/27/2022] Open
Abstract
Background In a series of landmark papers, Kyriacou, Hall, and colleagues reported that the average inter-pulse interval of Drosophila melanogaster male courtship song varies rhythmically (KH cycles), that the period gene controls this rhythm, and that evolution of the period gene determines species differences in the rhythm’s frequency. Several groups failed to recover KH cycles, but this may have resulted from differences in recording chamber size. Results Here, using recording chambers of the same dimensions as used by Kyriacou and Hall, I found no compelling evidence for KH cycles at any frequency. By replicating the data analysis procedures employed by Kyriacou and Hall, I found that two factors - data binned into 10-second intervals and short recordings - imposed non-significant periodicity in the frequency range reported for KH cycles. Randomized data showed similar patterns. Conclusions All of the results related to KH cycles are likely to be artifacts of binning data from short songs. Reported genotypic differences in KH cycles cannot be explained by this artifact and may have resulted from the use of small sample sizes and/or from the exclusion of samples that did not exhibit song rhythms.
Collapse
Affiliation(s)
- David L Stern
- Janelia Farm Research Campus, Ashburn VA 20147, USA.
| |
Collapse
|
127
|
Mann RS. Neuroscience. The Michael Jackson fly. Science 2014; 344:48-9. [PMID: 24700848 DOI: 10.1126/science.1252431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
128
|
Abstract
Most land animals normally walk forward but switch to backward walking upon sensing an obstacle or danger in the path ahead. A change in walking direction is likely to be triggered by descending “command” neurons from the brain that act upon local motor circuits to alter the timing of leg muscle activation. Here we identify descending neurons for backward walking in Drosophila—the MDN neurons. MDN activity is required for flies to walk backward when they encounter an impassable barrier and is sufficient to trigger backward walking under conditions in which flies would otherwise walk forward. We also identify ascending neurons, MAN, that promote persistent backward walking, possibly by inhibiting forward walking. These findings provide an initial glimpse into the circuits and logic that control walking direction in Drosophila.
Collapse
Affiliation(s)
- Salil S Bidaye
- Research Institute of Molecular Pathology (IMP), Dr. Bohrgasse 7, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|
129
|
Abstract
Chemotaxis, the ability to direct movements according to chemical cues in the environment, is important for the survival of most organisms. In our original article, we combined a quantitative behavioral assay with genetic manipulations to dissect the neural substrate for chemotaxis. In this Extra View article, we offer a more chronological narration of the findings leading to our key conclusion that aversion engages specific motor-related circuits and kinematics. We speculate on the separation and crosstalk between aversion and attraction circuits in the brain and the ventral nerve cord, and the implication for valence encoding in the olfactory system.
Collapse
Affiliation(s)
- Xiaojing J Gao
- Howard Hughes Medical Institute and Department of Biology; Stanford University; Stanford, CA USA
| |
Collapse
|
130
|
Fly walk. Nat Methods 2013; 10:604-5. [DOI: 10.1038/nmeth.2545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
131
|
Calabrese RL. Fruit flies step out. eLife 2013; 2:e00450. [PMID: 23326643 PMCID: PMC3539330 DOI: 10.7554/elife.00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A method that can analyse the movements of Drosophila as they walk is a valuable addition to the tools available to neurobiologists, and has already led to insights into the interplay of central networks and sensory feedback in this model organism.
Collapse
Affiliation(s)
- Ronald L Calabrese
- is an eLife reviewing editor, and is in the Department of Neuroscience and Behavioral Biology , Emory University , Atlanta , United States
| |
Collapse
|
132
|
Kain J, Stokes C, Gaudry Q, Song X, Foley J, Wilson R, de Bivort B. Leg-tracking and automated behavioural classification in Drosophila. Nat Commun 2013; 4:1910. [PMID: 23715269 PMCID: PMC3674277 DOI: 10.1038/ncomms2908] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 04/18/2013] [Indexed: 02/05/2023] Open
Abstract
Much remains unknown about how the nervous system of an animal generates behaviour, and even less is known about the evolution of behaviour. How does evolution alter existing behaviours or invent novel ones? Progress in computational techniques and equipment will allow these broad, complex questions to be explored in great detail. Here we present a method for tracking each leg of a fruit fly behaving spontaneously upon a trackball, in real time. Legs were tracked with infrared-fluorescent dyes invisible to the fly, and compatible with two-photon microscopy and controlled visual stimuli. We developed machine-learning classifiers to identify instances of numerous behavioural features (for example, walking, turning and grooming), thus producing the highest-resolution ethological profiles for individual flies.
Collapse
Affiliation(s)
- Jamey Kain
- Rowland Institute, Harvard University, Cambridge, Massachusetts 02142, USA
| | - Chris Stokes
- Rowland Institute, Harvard University, Cambridge, Massachusetts 02142, USA
| | - Quentin Gaudry
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xiangzhi Song
- Rowland Institute, Harvard University, Cambridge, Massachusetts 02142, USA
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People’s Republic of China
| | - James Foley
- Rowland Institute, Harvard University, Cambridge, Massachusetts 02142, USA
| | - Rachel Wilson
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Benjamin de Bivort
- Rowland Institute, Harvard University, Cambridge, Massachusetts 02142, USA
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|