101
|
Torres-Quesada O, Doerrier C, Strich S, Gnaiger E, Stefan E. Physiological Cell Culture Media Tune Mitochondrial Bioenergetics and Drug Sensitivity in Cancer Cell Models. Cancers (Basel) 2022; 14:cancers14163917. [PMID: 36010911 PMCID: PMC9405899 DOI: 10.3390/cancers14163917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Cell biologists trust in standard media for analyzing cellular functions and for the specification of target-oriented drug efficacies in cell culture settings. Here, we present a general applicable workflow for the constant monitoring of bioenergetic states of cells grown in 2D cell models to accompany tailored drug discovery efforts. Using in-depth high-resolution respirometry analyses (HRR) of mitochondrial function, we unveiled that the human-plasma-like media (HPLM) altered cellular energetic states. In a systematic HRR setup for drug profiling experiments, we revealed an unexpected side effect of an FDA-approved cancer drug on mitochondrial function, exclusively in HPLM. Thus, we believe that both the recordings of bioenergetic states and the use of more physiological media would improve and reshape cell-based drug discovery ventures. Abstract Two-dimensional cell cultures are established models in research for studying and perturbing cell-type specific functions. However, many limitations apply to the cell growth in a monolayer using standard cell culture media. Although they have been used for decades, their formulations do not mimic the composition of the human cell environment. In this study, we analyzed the impact of a newly formulated human plasma-like media (HPLM) on cell proliferation, mitochondrial bioenergetics, and alterations of drug efficacies using three distinct cancer cell lines. Using high-resolution respirometry, we observed that cells grown in HPLM displayed significantly altered mitochondrial bioenergetic profiles, particularly related to mitochondrial density and mild uncoupling of respiration. Furthermore, in contrast to standard media, the growth of cells in HPLM unveiled mitochondrial dysfunction upon exposure to the FDA-approved kinase inhibitor sunitinib. This seemingly context-dependent side effect of this drug highlights that the selection of the cell culture medium influences the assessment of cancer drug sensitivities. Thus, we suggest to prioritize media with a more physiological composition for analyzing bioenergetic profiles and to take it into account for assigning drug efficacies in the cell culture model of choice.
Collapse
Affiliation(s)
- Omar Torres-Quesada
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020 Innsbruck, Austria
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
- Correspondence: (O.T.-Q.); (E.S.)
| | | | - Sophie Strich
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020 Innsbruck, Austria
| | - Erich Gnaiger
- Oroboros Instruments, Schoepfstrasse 18, 6020 Innsbruck, Austria
| | - Eduard Stefan
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020 Innsbruck, Austria
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
- Correspondence: (O.T.-Q.); (E.S.)
| |
Collapse
|
102
|
Agnoletto C, Volinia S. Mitochondria dysfunction in circulating tumor cells. Front Oncol 2022; 12:947479. [PMID: 35992829 PMCID: PMC9386562 DOI: 10.3389/fonc.2022.947479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 12/16/2022] Open
Abstract
Circulating tumor cells (CTCs) represent a subset of heterogeneous cells, which, once released from a tumor site, have the potential to give rise to metastasis in secondary sites. Recent research focused on the attempt to detect and characterize these rare cells in the circulation, and advancements in defining their molecular profile have been reported in diverse tumor species, with potential implications for clinical applications. Of note, metabolic alterations, involving mitochondria, have been implicated in the metastatic process, as key determinants in the transition of tumor cells to a mesenchymal or stemness-like phenotype, in drug resistance, and in induction of apoptosis. This review aimed to briefly analyse the most recent knowledge relative to mitochondria dysfunction in CTCs, and to envision implications of altered mitochondria in CTCs for a potential utility in clinics.
Collapse
Affiliation(s)
- Chiara Agnoletto
- Rete Oncologica Veneta (ROV), Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Stefano Volinia
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Biological and Chemical Research Centre (CNBCh UW), University of Warsaw, Warsaw, Poland
- Center of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
103
|
Smith ALM, Whitehall JC, Greaves LC. Mitochondrial
DNA
mutations in aging and cancer. Mol Oncol 2022; 16:3276-3294. [PMID: 35842901 PMCID: PMC9490137 DOI: 10.1002/1878-0261.13291] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/18/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Advancing age is a major risk factor for malignant transformation and the development of cancer. As such, over 50% of neoplasms occur in individuals over the age of 70. The pathologies of both ageing and cancer have been characterized by respective groups of molecular hallmarks, and while some features are divergent between the two pathologies, several are shared. Perturbed mitochondrial function is one such common hallmark, and this observation therefore suggests that mitochondrial alterations may be of significance in age‐related cancer development. There is now considerable evidence documenting the accumulation of somatic mitochondrial DNA (mtDNA) mutations in ageing human postmitotic and replicative tissues. Similarly, mutations of the mitochondrial genome have been reported in human cancers for decades. The plethora of functions in which mitochondria partake, such as oxidative phosphorylation, redox balance, apoptosis and numerous biosynthetic pathways, manifests a variety of ways in which alterations in mtDNA may contribute to tumour growth. However, the specific mechanisms by which mtDNA mutations contribute to tumour progression remain elusive and often contradictory. This review aims to consolidate current knowledge and describe future direction within the field.
Collapse
Affiliation(s)
- Anna LM Smith
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University Newcastle Upon Tyne NE2 4HH UK
| | - Julia C Whitehall
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University Newcastle Upon Tyne NE2 4HH UK
| | - Laura C Greaves
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University Newcastle Upon Tyne NE2 4HH UK
| |
Collapse
|
104
|
Zhang L, Hobeika CS, Khabibullin D, Yu D, Filippakis H, Alchoueiry M, Tang Y, Lam HC, Tsvetkov P, Georgiou G, Lamb C, Stone E, Puigserver P, Priolo C, Henske EP. Hypersensitivity to ferroptosis in chromophobe RCC is mediated by a glutathione metabolic dependency and cystine import via solute carrier family 7 member 11. Proc Natl Acad Sci U S A 2022; 119:e2122840119. [PMID: 35867762 PMCID: PMC9651629 DOI: 10.1073/pnas.2122840119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/14/2022] [Indexed: 01/11/2023] Open
Abstract
Chromophobe (Ch) renal cell carcinoma (RCC) arises from the intercalated cell in the distal nephron. There are no proven treatments for metastatic ChRCC. A distinguishing characteristic of ChRCC is strikingly high levels of reduced (GSH) and oxidized (GSSG) glutathione. Here, we demonstrate that ChRCC-derived cells exhibit higher sensitivity to ferroptotic inducers compared with clear-cell RCC. ChRCC-derived cells are critically dependent on cystine via the cystine/glutamate antiporter xCT to maintain high levels of glutathione, making them sensitive to inhibitors of cystine uptake and cyst(e)inase. Gamma-glutamyl transferase 1 (GGT1), a key enzyme in glutathione homeostasis, is markedly suppressed in ChRCC relative to normal kidney. Importantly, GGT1 overexpression inhibits the proliferation of ChRCC cells in vitro and in vivo, suppresses cystine uptake, and decreases levels of GSH and GSSG. Collectively, these data identify ferroptosis as a metabolic vulnerability in ChRCC, providing a potential avenue for targeted therapy for these distinctive tumors.
Collapse
Affiliation(s)
- Long Zhang
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Charbel S. Hobeika
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Damir Khabibullin
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Deyang Yu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Broad Institute of MIT and Harvard, Cambridge, MA 02139
| | - Harilaos Filippakis
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Michel Alchoueiry
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Yan Tang
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Hilaire C. Lam
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | | | - George Georgiou
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Candice Lamb
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Everett Stone
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Broad Institute of MIT and Harvard, Cambridge, MA 02139
| | - Carmen Priolo
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Elizabeth P. Henske
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
105
|
Zhang Z, Yang D, Zhou B, Luan Y, Yao Q, Liu Y, Yang S, Jia J, Xu Y, Bie X, Wang Y, Li Z, Li A, Zheng H, He Y. Decrease of MtDNA copy number affects mitochondrial function and involves in the pathological consequences of ischaemic stroke. J Cell Mol Med 2022; 26:4157-4168. [PMID: 35791521 PMCID: PMC9344826 DOI: 10.1111/jcmm.17262] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 11/28/2022] Open
Abstract
The mtDNA copy number can affect the function of mitochondria and play an important role in the development of diseases. However, there are few studies on the mechanism of mtDNA copy number variation and its effects in IS. The specific mechanism of mtDNA copy number variation is still unclear. In this study, mtDNA copy number of 101 IS patients and 101 normal controls were detected by qRT‐PCR, the effect of D‐loop variation on mtDNA copy number of IS patients was explored. Then, a TFAM gene KD‐OE PC12 cell model was constructed to explore the effect of mtDNA copy number variation on mitochondrial function. The results showed that the mtDNA copy number level of the IS group was significantly lower than that of the normal control group (p < 0.05). The relative expression of TFAM gene mRNA in the cells of the OGD/R treatment group was significantly lower than that of the control group (p < 0.05). In addition, after TFAM gene knockdown and over‐expression plasmids were transfected into HEK 293T cells, mtDNA copy number and ATP production level of Sh‐TFAM transfection group was significantly decreased (p < 0.05), while mtDNA copy number and ATP production level of OE‐TFAM transfected group were significantly higher than that of blank control group and OE‐ctrl negative control group (p < 0.01). Our study demonstrated that mitochondrial D‐loop mutation and TFAM gene dysfunction can cause the decrease of mtDNA copy number, thus affecting the mitochondrial metabolism and function of nerve cells, participating in the pathological damage mechanism of IS.
Collapse
Affiliation(s)
- Zhaojing Zhang
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongzhi Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Baixue Zhou
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yingying Luan
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qihui Yao
- Department of Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yang Liu
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shangdong Yang
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Jia
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Xu
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaoshuai Bie
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuanli Wang
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhihao Li
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Aifan Li
- Department of Neurology, The First People's Hospital of Zhengzhou, Zhengzhou, China
| | - Hong Zheng
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying He
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
106
|
Vali-Pour M, Park S, Espinosa-Carrasco J, Ortiz-Martínez D, Lehner B, Supek F. The impact of rare germline variants on human somatic mutation processes. Nat Commun 2022; 13:3724. [PMID: 35764656 PMCID: PMC9240060 DOI: 10.1038/s41467-022-31483-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/17/2022] [Indexed: 02/07/2023] Open
Abstract
Somatic mutations are an inevitable component of ageing and the most important cause of cancer. The rates and types of somatic mutation vary across individuals, but relatively few inherited influences on mutation processes are known. We perform a gene-based rare variant association study with diverse mutational processes, using human cancer genomes from over 11,000 individuals of European ancestry. By combining burden and variance tests, we identify 207 associations involving 15 somatic mutational phenotypes and 42 genes that replicated in an independent data set at a false discovery rate of 1%. We associate rare inherited deleterious variants in genes such as MSH3, EXO1, SETD2, and MTOR with two phenotypically different forms of DNA mismatch repair deficiency, and variants in genes such as EXO1, PAXIP1, RIF1, and WRN with deficiency in homologous recombination repair. In addition, we identify associations with other mutational processes, such as APEX1 with APOBEC-signature mutagenesis. Many of the genes interact with each other and with known mutator genes within cellular sub-networks. Considered collectively, damaging variants in the identified genes are prevalent in the population. We suggest that rare germline variation in diverse genes commonly impacts mutational processes in somatic cells.
Collapse
Affiliation(s)
- Mischan Vali-Pour
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Solip Park
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Jose Espinosa-Carrasco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Daniel Ortiz-Martínez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Fran Supek
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
107
|
Bao S, Wang X, Li M, Gao Z, Zheng D, Shen D, Liu L. Potential of Mitochondrial Ribosomal Genes as Cancer Biomarkers Demonstrated by Bioinformatics Results. Front Oncol 2022; 12:835549. [PMID: 35719986 PMCID: PMC9204274 DOI: 10.3389/fonc.2022.835549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
Next-generation sequencing and bioinformatics analyses have clearly revealed the roles of mitochondrial ribosomal genes in cancer development. Mitochondrial ribosomes are composed of three RNA components encoded by mitochondrial DNA and 82 specific protein components encoded by nuclear DNA. They synthesize mitochondrial inner membrane oxidative phosphorylation (OXPHOS)-related proteins and participate in various biological activities via the regulation of energy metabolism and apoptosis. Mitochondrial ribosomal genes are strongly associated with clinical features such as prognosis and foci metastasis in patients with cancer. Accordingly, mitochondrial ribosomes have become an important focus of cancer research. We review recent advances in bioinformatics research that have explored the link between mitochondrial ribosomes and cancer, with a focus on the potential of mitochondrial ribosomal genes as biomarkers in cancer.
Collapse
Affiliation(s)
- Shunchao Bao
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| | - Xinyu Wang
- Department of Breast Surgery, Second Hospital of Jilin University, Changchun, China
| | - Mo Li
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| | - Zhao Gao
- Nuclear Medicine Department, Second Hospital of Jilin University, Changchun, China
| | - Dongdong Zheng
- Department of Cardiovascular Surgery, Second Hospital of Jilin University, Changchun, China
| | - Dihan Shen
- Medical Research Center, Second Hospital of Jilin University, Changchun, China
| | - Linlin Liu
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
108
|
Zhang Y, Cheng J, Zhong C, Xia Q, Li Y, Chen P, Fan X, Mao Q, Lin H, Hong D. ESR1 Regulates the Obesity- and Metabolism-Differential Gene MMAA to Inhibit the Occurrence and Development of Hepatocellular Carcinoma. Front Oncol 2022; 12:899969. [PMID: 35795061 PMCID: PMC9252523 DOI: 10.3389/fonc.2022.899969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Obesity is often regarded as a factor that promotes tumorigenesis, but the role of obesity in promoting hepatocellular carcinoma (HCC) is still controversial. We compared the trend change of 14 obesity-related genes in the formation and development of HCC in normal, adjacent, and HCC tissues. Mendelian randomization (MR) analysis was used to verify the relationship between obesity and HCC occurrence. Metabolism of cobalamin-associated A (MMAA) was discovered as an obesity- and metabolism-differential gene, and its function in HCC was tested in vitro and in vivo. Finally, we explored how obese female patients with an originally high expression of female estrogen receptor (ESR1) directly upregulated MMAA to interfere with the progression of HCC. Fourteen obesity-related genes were downregulated in adjacent and tumoral tissues compared with normal liver tissues, which indicated that obesity may be inversely related to the occurrence of HCC and was consistent with the results of MR analysis. We also discovered that MMAA is a metabolic gene closely related to the occurrence and development of HCC by mining the TCGA database, and it functioned an anti-tumor-promoting role in HCC by damaging the mitochondrial function and preserving the redox balance. We further verified that obese females with a high expression of ESR1 can regulate MMAA to protect HCC from progression. This study elucidates that obesity might be a protective factor for female HCC patients, as they originally highly expressed ESR1, which could upregulate MMAA to suppress tumor growth and participate in metabolic reprogramming.
Collapse
Affiliation(s)
- Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaxi Cheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cheng Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiming Xia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peng Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Qijiang Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Qijiang Mao, ; Hui Lin, ; Defei Hong,
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Qijiang Mao, ; Hui Lin, ; Defei Hong,
| | - Defei Hong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Qijiang Mao, ; Hui Lin, ; Defei Hong,
| |
Collapse
|
109
|
Ji X, Guo W, Gu X, Guo S, Zhou K, Su L, Yuan Q, Liu Y, Guo X, Huang Q, Xing J. Mutational profiling of mtDNA control region reveals tumor-specific evolutionary selection involved in mitochondrial dysfunction. EBioMedicine 2022; 80:104058. [PMID: 35594659 PMCID: PMC9121266 DOI: 10.1016/j.ebiom.2022.104058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022] Open
Abstract
Background Mitochondrial DNA (mtDNA) mutations alter mitochondrial function in oxidative metabolism and play an important role in tumorigenesis. A series of studies have demonstrated that the mtDNA control region (mtCTR), which is essential for mtDNA replication and transcription, represents a mutational hotspot in human tumors. However, a comprehensive pan-cancer evolutionary pattern analysis of mtCTR mutations is urgently needed. Methods We generated a comprehensive combined dataset containing 10026 mtDNA somatic mutations from 4664 patients, covering 20 tumor types based on public and private next-generation sequencing data. Findings Our results demonstrated a significantly higher and much more variable mutation rate in mtCTR than in the coding region across different tumor types. Moreover, our data showed a remarkable distributional bias of tumor somatic mutations between the hypervariable segment (HVS) and non-HVS, with a significantly higher mutation density and average mutation sites in HVS. Importantly, the tumor-specific mutational pattern between mtCTR HVS and non-HVS was identified, which was classified into three evolutionary selection types (relaxed, moderate, and strict constraint types). Analysis of substitution patterns revealed that the prevalence of CH > TH in non-HVS greatly contributed to the mutational selection pattern of mtCTR across different tumor types. Furthermore, we found that the mutational pattern of mtCTR in the four tumor types was clearly associated with mitochondrial biogenesis, mitochondrial oxidative metabolism, and the overall survival of patients. Interpretation Our results suggest that somatic mutations in mtCTR may be shaped by tumor-specific selective pressure and are involved in tumorigenesis. Fundings National Natural Science Foundation of China [grants 82020108023, 81830070, 81872302], and Autonomous Project of State Key Laboratory of Cancer Biology, China [grants CBSKL2019ZZ06, CBSKL2019ZZ27].
Collapse
|
110
|
Mitochondrial health quality control: measurements and interpretation in the framework of predictive, preventive, and personalized medicine. EPMA J 2022; 13:177-193. [PMID: 35578648 PMCID: PMC9096339 DOI: 10.1007/s13167-022-00281-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022]
Abstract
Mitochondria are the “gatekeeper” in a wide range of cellular functions, signaling events, cell homeostasis, proliferation, and apoptosis. Consequently, mitochondrial injury is linked to systemic effects compromising multi-organ functionality. Although mitochondrial stress is common for many pathomechanisms, individual outcomes differ significantly comprising a spectrum of associated pathologies and their severity grade. Consequently, a highly ambitious task in the paradigm shift from reactive to predictive, preventive, and personalized medicine (PPPM/3PM) is to distinguish between individual disease predisposition and progression under circumstances, resulting in compromised mitochondrial health followed by mitigating measures tailored to the individualized patient profile. For the successful implementation of PPPM concepts, robust parameters are essential to quantify mitochondrial health sustainability. The current article analyses added value of Mitochondrial Health Index (MHI) and Bioenergetic Health Index (BHI) as potential systems to quantify mitochondrial health relevant for the disease development and its severity grade. Based on the pathomechanisms related to the compromised mitochondrial health and in the context of primary, secondary, and tertiary care, a broad spectrum of conditions can significantly benefit from robust quantification systems using MHI/BHI as a prototype to be further improved. Following health conditions can benefit from that: planned pregnancies (improved outcomes for mother and offspring health), suboptimal health conditions with reversible health damage, suboptimal life-style patterns and metabolic syndrome(s) predisposition, multi-factorial stress conditions, genotoxic environment, ischemic stroke of unclear aetiology, phenotypic predisposition to aggressive cancer subtypes, pathologies associated with premature aging and neuro/degeneration, acute infectious diseases such as COVID-19 pandemics, among others.
Collapse
|
111
|
Suzuki T, Kishikawa T, Sato T, Takeda N, Sugiura Y, Seimiya T, Sekiba K, Ohno M, Iwata T, Ishibashi R, Otsuka M, Koike K. Mutant KRAS drives metabolic reprogramming and autophagic flux in premalignant pancreatic cells. Cancer Gene Ther 2022; 29:505-518. [PMID: 33833413 PMCID: PMC9113932 DOI: 10.1038/s41417-021-00326-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Mutational activation of the KRAS gene occurs in almost all pancreatic ductal adenocarcinoma (PDAC) and is the earliest molecular event in their carcinogenesis. Evidence has accumulated of the metabolic reprogramming in PDAC, such as amino acid homeostasis and autophagic flux. However, the biological effects of KRAS mutation on metabolic reprogramming at the earlier stages of PDAC carcinogenesis are unclear. Here we report dynamic metabolic reprogramming in immortalized human non-cancerous pancreatic ductal epithelial cells, in which a KRAS mutation was induced by gene-editing, which may mimic early pancreatic carcinogenesis. Similar to the cases of PDAC, KRAS gene mutation increased the dependency on glucose and glutamine for maintaining the intracellular redox balance. In addition, the intracellular levels of amino acids were significantly decreased because of active protein synthesis, and the cells required greater autophagic flux to maintain their viability. The lysosomal inhibitor chloroquine significantly inhibited cell proliferation. Therefore, metabolic reprogramming is an early event in carcinogenesis initiated by KRAS gene mutation, suggesting a rationale for the development of nutritional interventions that suppress or delay the development of PDAC.
Collapse
Affiliation(s)
- Tatsunori Suzuki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Takahiro Kishikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Tatsuyuki Sato
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Takahiro Seimiya
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Kazuma Sekiba
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Motoko Ohno
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Takuma Iwata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Rei Ishibashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| |
Collapse
|
112
|
Aurrière J, Goudenege D, Baechler SA, Huang SYN, Gueguen N, Desquiret-Dumas V, Chabrun F, Perrot R, Chevrollier A, Charif M, Baris OR, Pommier Y, Lenaers G, Khiati S. Cancer/Testis Antigen 55 is required for cancer cell proliferation and mitochondrial DNA maintenance. Mitochondrion 2022; 64:19-26. [PMID: 35189384 PMCID: PMC9057655 DOI: 10.1016/j.mito.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/13/2022]
Abstract
Cancer/Testis Antigens (CTAs) represent a group of proteins whose expression under physiological conditions is restricted to testis but activated in many human cancers. Also, it was observed that co-expression of multiple CTAs worsens the patient prognosis. Five CTAs were reported acting in mitochondria and we recently reported 147 transcripts encoded by 67 CTAs encoding for proteins potentially targeted to mitochondria. Among them, we identified the two isoforms encoded by CT55 for whom the function is poorly understood. First, we found that patients with tumors expressing wild-type CT55 are associated with poor survival. Moreover, CT55 silencing decreases dramatically cell proliferation. Second, to investigate the role of CT55 on mitochondria, we first show that CT55 is localized to both mitochondria and endoplasmic reticulum (ER) due to the presence of an ambiguous N-terminal targeting signal. Then, we show that CT55 silencing decreases mtDNA copy number and delays mtDNA recovery after an acute depletion. Moreover, demethylation of CT55 promotor increases its expression, which in turn increases mtDNA copy number. Finally, we measured the mtDNA copy number in NCI-60 cell lines and screened for genes whose expression is strongly correlated to mtDNA amount. We identified CT55 as the second highest correlated hit. Also, we show that compared to siRNA scrambled control (siCtrl) treatment, CT55 specific siRNA (siCT55) treatment down-regulates aerobic respiration, indicating that CT55 sustains mitochondrial respiration. Altogether, these data show for first time that CT55 acts on mtDNA copy number, modulates mitochondrial activity to sustain cancer cell proliferation.
Collapse
Affiliation(s)
- Jade Aurrière
- MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers University, Angers, France
| | - David Goudenege
- MitoLab Team, Institut MitoVasc, CNRS UMR6015, INSERM U1083, Angers University, Angers, France; Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Simone A Baechler
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Shar-Yin N Huang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Naig Gueguen
- MitoLab Team, Institut MitoVasc, CNRS UMR6015, INSERM U1083, Angers University, Angers, France; Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Valerie Desquiret-Dumas
- MitoLab Team, Institut MitoVasc, CNRS UMR6015, INSERM U1083, Angers University, Angers, France; Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Floris Chabrun
- MitoLab Team, Institut MitoVasc, CNRS UMR6015, INSERM U1083, Angers University, Angers, France; Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Rodolphe Perrot
- SCIAM, Institut de Biologie en Sante, Angers University, Angers 49933, France
| | - Arnaud Chevrollier
- MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers University, Angers, France
| | - Majida Charif
- MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers University, Angers, France
| | - Olivier R Baris
- MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers University, Angers, France
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Guy Lenaers
- MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers University, Angers, France
| | - Salim Khiati
- MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers University, Angers, France.
| |
Collapse
|
113
|
Batchu S, Patel K, Yu S, Mohamed AT, Karsy M. Single cell transcriptomics reveals unique metabolic profiles of ependymoma subgroups. Gene X 2022; 820:146278. [PMID: 35143938 DOI: 10.1016/j.gene.2022.146278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/15/2022] [Accepted: 02/03/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Ependymomas are biologically diverse tumors with five major genomic subgroups. However, intratumor heterogeneity continues to be poorly understood. The present study characterized the metabolic landscapes of ependymoma subgroups at the single-cell level. METHODS Expression profiles from 11,200 ependymoma single cells derived from the five major subgroups and 7,200 ependymoma-derived non-neoplastic cells were computationally analyzed using a robust workflow to elucidate relative differences in metabolic pathway activities. RESULTS Dimensionality reduction using metabolic expression profiles exhibited clustering corresponding to each tumor subgroup, but non-neoplastic cells exhibited no discernable differences between subgroups. From the 80 metabolic pathways examined, over 75 pathways had significantly different activity scores between ependymoma subgroups. Further analysis of metabolic heterogeneity suggests that mitochondrial oxidative phosphorylation accounts for considerable metabolic variation within tumor subgroups and non-neoplastic cells of the same cell type. Drug metabolism pathways, specifically those involving cytochromes P450, were also found to be major contributors to heterogeneity. CONCLUSIONS Ependymoma subgroups display distinct metabolic differences as evaluated through gene expression profiles with certain pathways contributing greatly to intra-subgroup variation. These results may account for variation in tumor metabolism, treatment response, and potential targeting approaches that disrupt metabolic signalling.
Collapse
Affiliation(s)
| | - Karan Patel
- Cooper Medical School, Camden, NJ, United States
| | - Siyuan Yu
- Cooper Medical School, Camden, NJ, United States
| | | | - Michael Karsy
- Thomas Jefferson University Hospital, Department of Neurosurgery, Philadelphia, PA, United States
| |
Collapse
|
114
|
Zhu W, Feng D, Shi X, Wei Q, Yang L. The Potential Role of Mitochondrial Acetaldehyde Dehydrogenase 2 in Urological Cancers From the Perspective of Ferroptosis and Cellular Senescence. Front Cell Dev Biol 2022; 10:850145. [PMID: 35517510 PMCID: PMC9065557 DOI: 10.3389/fcell.2022.850145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
Overproduction of reactive oxygen species (ROS) and superlative lipid peroxidation promote tumorigenesis, and mitochondrial aldehyde dehydrogenase 2 (ALDH2) is associated with the detoxification of ROS-mediated lipid peroxidation-generated reactive aldehydes such as 4-hydroxy-2-nonenal (4-HNE), malondialdehyde, and acrolein due to tobacco smoking. ALDH2 has been demonstrated to be highly associated with the prognosis and chemoradiotherapy sensitivity of many types of cancer, including leukemia, lung cancer, head and neck cancer, esophageal cancer, hepatocellular cancer, pancreatic cancer, and ovarian cancer. In this study, we explored the possible relationship between ALDH2 and urological cancers from the aspects of ferroptosis, epigenetic alterations, proteostasis, mitochondrial dysfunction, and cellular senescence.
Collapse
Affiliation(s)
| | | | | | - Qiang Wei
- *Correspondence: Qiang Wei, ; Lu Yang,
| | - Lu Yang
- *Correspondence: Qiang Wei, ; Lu Yang,
| |
Collapse
|
115
|
Chen Q, Yu M, Tian Z, Cui Y, Deng D, Rong T, Liu Z, Song M, Li Z, Ma X, Lu H. Exogenous Glutathione Protects IPEC-J2 Cells against Oxidative Stress through a Mitochondrial Mechanism. Molecules 2022; 27:molecules27082416. [PMID: 35458611 PMCID: PMC9028222 DOI: 10.3390/molecules27082416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
The accumulation of reactive oxygen species (ROS) triggers oxidative stress in cells by oxidizing and modifying various cellular components, preventing them from performing their inherent functions, ultimately leading to apoptosis and autophagy. Glutathione (GSH) is a ubiquitous intracellular peptide with multiple functions. In this study, a hydrogen peroxide (H2O2)-induced oxidative damage model in IPEC-J2 cells was used to investigate the cellular protection mechanism of exogenous GSH against oxidative stress. The results showed that GSH supplement improved the cell viability reduced by H2O2-induced oxidative damage model in IPEC-J2 cells in a dose-dependent manner. Moreover, supplement with GSH also attenuated the H2O2-induced MMP loss, and effectively decreased the H2O2-induced mitochondrial dysfunction by increasing the content of mtDNA and upregulating the expression TFAM. Exogenous GSH treatment significantly decreased the ROS and MDA levels, improved SOD activity in H2O2-treated cells and reduced H2O2-induced early apoptosis in IPEC-J2 cells. This study showed that exogenous GSH can protect IPEC-J2 cells against apoptosis induced by oxidative stress through mitochondrial mechanisms.
Collapse
Affiliation(s)
- Qiuyu Chen
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
- State Key Laboratory of Livestockand Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.Y.); (Z.T.); (Y.C.); (D.D.); (T.R.); (Z.L.); (M.S.); (Z.L.)
| | - Miao Yu
- State Key Laboratory of Livestockand Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.Y.); (Z.T.); (Y.C.); (D.D.); (T.R.); (Z.L.); (M.S.); (Z.L.)
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, China
| | - Zhimei Tian
- State Key Laboratory of Livestockand Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.Y.); (Z.T.); (Y.C.); (D.D.); (T.R.); (Z.L.); (M.S.); (Z.L.)
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, China
| | - Yiyan Cui
- State Key Laboratory of Livestockand Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.Y.); (Z.T.); (Y.C.); (D.D.); (T.R.); (Z.L.); (M.S.); (Z.L.)
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, China
| | - Dun Deng
- State Key Laboratory of Livestockand Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.Y.); (Z.T.); (Y.C.); (D.D.); (T.R.); (Z.L.); (M.S.); (Z.L.)
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, China
| | - Ting Rong
- State Key Laboratory of Livestockand Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.Y.); (Z.T.); (Y.C.); (D.D.); (T.R.); (Z.L.); (M.S.); (Z.L.)
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, China
- Qingyuan Longfa Pig Breeding Co., Ltd., Yingde 511500, China
| | - Zhichang Liu
- State Key Laboratory of Livestockand Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.Y.); (Z.T.); (Y.C.); (D.D.); (T.R.); (Z.L.); (M.S.); (Z.L.)
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, China
| | - Min Song
- State Key Laboratory of Livestockand Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.Y.); (Z.T.); (Y.C.); (D.D.); (T.R.); (Z.L.); (M.S.); (Z.L.)
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, China
| | - Zhenming Li
- State Key Laboratory of Livestockand Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.Y.); (Z.T.); (Y.C.); (D.D.); (T.R.); (Z.L.); (M.S.); (Z.L.)
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, China
- Qingyuan Longfa Pig Breeding Co., Ltd., Yingde 511500, China
| | - Xianyong Ma
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
- State Key Laboratory of Livestockand Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.Y.); (Z.T.); (Y.C.); (D.D.); (T.R.); (Z.L.); (M.S.); (Z.L.)
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, China
- Correspondence: (X.M.); (H.L.)
| | - Huijie Lu
- State Key Laboratory of Livestockand Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.Y.); (Z.T.); (Y.C.); (D.D.); (T.R.); (Z.L.); (M.S.); (Z.L.)
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, China
- Correspondence: (X.M.); (H.L.)
| |
Collapse
|
116
|
Ghilardi C, Moreira-Barbosa C, Brunelli L, Ostano P, Panini N, Lupi M, Anastasia A, Fiordaliso F, Salio M, Formenti L, Russo M, Arrigoni E, Chiaradonna F, Chiorino G, Draetta G, Marszalek JR, Vellano CP, Pastorelli R, Bani M, Decio A, Giavazzi R. PGC1α/β Expression Predicts Therapeutic Response to Oxidative Phosphorylation Inhibition in Ovarian Cancer. Cancer Res 2022; 82:1423-1434. [PMID: 35131872 PMCID: PMC9359716 DOI: 10.1158/0008-5472.can-21-1223] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/11/2021] [Accepted: 02/02/2022] [Indexed: 01/07/2023]
Abstract
Ovarian cancer is the deadliest gynecologic cancer, and novel therapeutic options are crucial to improve overall survival. Here we provide evidence that impairment of oxidative phosphorylation (OXPHOS) can help control ovarian cancer progression, and this benefit correlates with expression of the two mitochondrial master regulators PGC1α and PGC1β. In orthotopic patient-derived ovarian cancer xenografts (OC-PDX), concomitant high expression of PGC1α and PGC1β (PGC1α/β) fostered a unique transcriptional signature, leading to increased mitochondrial abundance, enhanced tricarboxylic acid cycling, and elevated cellular respiration that ultimately conferred vulnerability to OXPHOS inhibition. Treatment with the respiratory chain complex I inhibitor IACS-010759 caused mitochondrial swelling and ATP depletion that consequently delayed malignant progression and prolonged the lifespan of high PGC1α/β-expressing OC-PDX-bearing mice. Conversely, low PGC1α/β OC-PDXs were not affected by IACS-010759, thus pinpointing a selective antitumor effect of OXPHOS inhibition. The clinical relevance of these findings was substantiated by analysis of ovarian cancer patient datasets, which showed that 25% of all cases displayed high PGC1α/β expression along with an activated mitochondrial gene program. This study endorses the use of OXPHOS inhibitors to manage ovarian cancer and identifies the high expression of both PGC1α and β as biomarkers to refine the selection of patients likely to benefit most from this therapy. SIGNIFICANCE OXPHOS inhibition in ovarian cancer can exploit the metabolic vulnerabilities conferred by high PGC1α/β expression and offers an effective approach to manage patients on the basis of PGC1α/β expression.
Collapse
Affiliation(s)
- Carmen Ghilardi
- Laboratory of Cancer Metastasis Therapeutics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Corresponding Author: Carmen Ghilardi, Department of Oncology, Laboratory of Cancer Metastasis Therapeutics; Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy. Phone: 39-02-39014226; Fax: 39-02-39014734; E-mail:
| | - Catarina Moreira-Barbosa
- Laboratory of Cancer Metastasis Therapeutics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Laura Brunelli
- Laboratory of Mass Spectrometry, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Paola Ostano
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia Valenta, Biella, Italy
| | - Nicolò Panini
- Laboratory of Anticancer Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Monica Lupi
- Laboratory of Anticancer Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alessia Anastasia
- Laboratory of Cancer Metastasis Therapeutics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Fabio Fiordaliso
- Laboratory of Cardiovascular Clinical Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Monica Salio
- Laboratory of Cardiovascular Clinical Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Laura Formenti
- Laboratory of Cancer Metastasis Therapeutics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Massimo Russo
- Laboratory of Cancer Metastasis Therapeutics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Edoardo Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | - Giovanna Chiorino
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia Valenta, Biella, Italy
| | - Giulio Draetta
- Institute for Applied Cancer Science, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, Texas.,TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph R. Marszalek
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher P. Vellano
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roberta Pastorelli
- Laboratory of Mass Spectrometry, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - MariaRosa Bani
- Laboratory of Cancer Metastasis Therapeutics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alessandra Decio
- Laboratory of Cancer Metastasis Therapeutics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Raffaella Giavazzi
- Laboratory of Cancer Metastasis Therapeutics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
117
|
Herst PM, Carson GM, Eccles DA, Berridge MV. Bioenergetic and Metabolic Adaptation in Tumor Progression and Metastasis. Front Oncol 2022; 12:857686. [PMID: 35372069 PMCID: PMC8968714 DOI: 10.3389/fonc.2022.857686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
The ability of cancer cells to adjust their metabolism in response to environmental changes is a well-recognized hallmark of cancer. Diverse cancer and non-cancer cells within tumors compete for metabolic resources. Metabolic demands change frequently during tumor initiation, progression and metastasis, challenging our quest to better understand tumor biology and develop novel therapeutics. Vascularization, physical constraints, immune responses and genetic instability promote tumor evolution resulting in immune evasion, opportunities to breach basement membrane barriers and spread through the circulation and lymphatics. In addition, the unfolded protein response linked to the ubiquitin proteasome system is a key player in addressing stoichiometric imbalances between nuclear and mitochondrially-encoded protein subunits of respiratory complexes, and nuclear-encoded mitochondrial ribosomal protein subunits. While progressive genetic changes, some of which affect metabolic adaptability, contribute to tumorigenesis and metastasis through clonal expansion, epigenetic changes are also important and more dynamic in nature. Understanding the role of stromal and immune cells in the tumor microenvironment in remodeling cancer cell energy metabolism has become an increasingly important area of research. In this perspective, we discuss the adaptations made by cancer cells to balance mitochondrial and glycolytic energy metabolism. We discuss how hypoxia and nutrient limitations affect reductive and oxidative stress through changes in mitochondrial electron transport activity. We propose that integrated responses to cellular stress in cancer cells are central to metabolic flexibility in general and bioenergetic adaptability in particular and are paramount in tumor progression and metastasis.
Collapse
Affiliation(s)
- Patries M. Herst
- Department of Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Radiation Therapy, University of Otago, Wellington, New Zealand
| | - Georgia M. Carson
- Department of Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - David A. Eccles
- Department of Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Michael V. Berridge
- Department of Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
118
|
Chemotherapy Resistance: Role of Mitochondrial and Autophagic Components. Cancers (Basel) 2022; 14:cancers14061462. [PMID: 35326612 PMCID: PMC8945922 DOI: 10.3390/cancers14061462] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chemotherapy resistance is a common occurrence during cancer treatment that cancer researchers are attempting to understand and overcome. Mitochondria are a crucial intracellular signaling core that are becoming important determinants of numerous aspects of cancer genesis and progression, such as metabolic reprogramming, metastatic capability, and chemotherapeutic resistance. Mitophagy, or selective autophagy of mitochondria, can influence both the efficacy of tumor chemotherapy and the degree of drug resistance. Regardless of the fact that mitochondria are well-known for coordinating ATP synthesis from cellular respiration in cellular bioenergetics, little is known its mitophagy regulation in chemoresistance. Recent advancements in mitochondrial research, mitophagy regulatory mechanisms, and their implications for our understanding of chemotherapy resistance are discussed in this review. Abstract Cancer chemotherapy resistance is one of the most critical obstacles in cancer therapy. One of the well-known mechanisms of chemotherapy resistance is the change in the mitochondrial death pathways which occur when cells are under stressful situations, such as chemotherapy. Mitophagy, or mitochondrial selective autophagy, is critical for cell quality control because it can efficiently break down, remove, and recycle defective or damaged mitochondria. As cancer cells use mitophagy to rapidly sweep away damaged mitochondria in order to mediate their own drug resistance, it influences the efficacy of tumor chemotherapy as well as the degree of drug resistance. Yet despite the importance of mitochondria and mitophagy in chemotherapy resistance, little is known about the precise mechanisms involved. As a consequence, identifying potential therapeutic targets by analyzing the signal pathways that govern mitophagy has become a vital research goal. In this paper, we review recent advances in mitochondrial research, mitophagy control mechanisms, and their implications for our understanding of chemotherapy resistance.
Collapse
|
119
|
Guitton R, Dölle C, Alves G, Ole-Bjørn T, Nido GS, Tzoulis C. Ultra-deep whole genome bisulfite sequencing reveals a single methylation hotspot in human brain mitochondrial DNA. Epigenetics 2022; 17:906-921. [PMID: 35253628 PMCID: PMC9423827 DOI: 10.1080/15592294.2022.2045754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
While DNA methylation is established as a major regulator of gene expression in the nucleus, the existence of mitochondrial DNA (mtDNA) methylation remains controversial. Here, we characterized the mtDNA methylation landscape in the prefrontal cortex of neurological healthy individuals (n=26) and patients with Parkinson’s disease (n=27), using a combination of whole-genome bisulphite sequencing (WGBS) and bisulphite-independent methods. Accurate mtDNA mapping from WGBS data required alignment to an mtDNA reference only, to avoid misalignment to nuclear mitochondrial pseudogenes. Once correctly aligned, WGBS data provided ultra-deep mtDNA coverage (16,723 ± 7,711) and revealed overall very low levels of cytosine methylation. The highest methylation levels (5.49 ± 0.97%) were found on CpG position m.545, located in the heavy-strand promoter 1 region. The m.545 methylation was validated using a combination of methylation-sensitive DNA digestion and quantitative PCR analysis. We detected no association between mtDNA methylation profile and Parkinson’s disease. Interestingly, m.545 methylation correlated with the levels of mtDNA transcripts, suggesting a putative role in regulating mtDNA gene expression. In addition, we propose a robust framework for methylation analysis of mtDNA from WGBS data, which is less prone to false-positive findings due to misalignment of nuclear mitochondrial pseudogene sequences.
Collapse
Affiliation(s)
- Romain Guitton
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Christian Dölle
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Guido Alves
- The Norwegian Centre for Movement Disorders and Department of Neurology, Stavanger University Hospital, Stavanger, Norway.,Department of Mathematics and Natural Sciences, University of Stavanger, University of Bergen, Stavanger, Norway
| | - Tysnes Ole-Bjørn
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Gonzalo S Nido
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Charalampos Tzoulis
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
120
|
Lee YG, Park DH, Chae YC. Role of Mitochondrial Stress Response in Cancer Progression. Cells 2022; 11:cells11050771. [PMID: 35269393 PMCID: PMC8909674 DOI: 10.3390/cells11050771] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are subcellular organelles that are a hub for key biological processes, such as bioenergetic, biosynthetic, and signaling functions. Mitochondria are implicated in all oncogenic processes, from malignant transformation to metastasis and resistance to chemotherapeutics. The harsh tumor environment constantly exposes cancer cells to cytotoxic stressors, such as nutrient starvation, low oxygen, and oxidative stress. Excessive or prolonged exposure to these stressors can cause irreversible mitochondrial damage, leading to cell death. To survive hostile microenvironments that perturb mitochondrial function, cancer cells activate a stress response to maintain mitochondrial protein and genome integrity. This adaptive mechanism, which is closely linked to mitochondrial function, enables rapid adjustment and survival in harsh environmental conditions encountered during tumor dissemination, thereby promoting cancer progression. In this review, we describe how the mitochondria stress response contributes to the acquisition of typical malignant traits and highlight the potential of targeting the mitochondrial stress response as an anti-cancer therapeutic strategy.
Collapse
Affiliation(s)
- Yu Geon Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (Y.G.L.); (D.H.P.)
- Korea Food Research Institute, Wanju 55365, Korea
| | - Do Hong Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (Y.G.L.); (D.H.P.)
| | - Young Chan Chae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (Y.G.L.); (D.H.P.)
- Correspondence: ; Tel.: +82-52-217-2524 or +82-52-217-2638
| |
Collapse
|
121
|
Kogiso M, Qi L, Du Y, Braun FK, Zhang H, Huang LF, Guo L, Huang Y, Teo WY, Lindsay H, Zhao S, Injac SG, Liu Z, Mehta V, Tran D, Li F, Baxter PA, Su JM, Perlaky L, Parsons DW, Chintagumpala M, Adesina A, Song Y, Li XN. Synergistic anti-tumor efficacy of mutant isocitrate dehydrogenase 1 inhibitor SYC-435 with standard therapy in patient-derived xenograft mouse models of glioma. Transl Oncol 2022; 18:101368. [PMID: 35182954 PMCID: PMC8857594 DOI: 10.1016/j.tranon.2022.101368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 11/05/2022] Open
Abstract
A novel pair of orthotopic PDX models of glioma bearing IDH1-R132H/R132C mutations. New mutant IDH1i (SY-435) with standard therapy led to strong therapeutic efficacy. H3K4/K9 methylation/mtDNA-encoded molecules mediate anti-tumor activity of SYC-435. Discovered MYO1F, CTC1 and BCL9 as novel genes that mediated SYC-435 resistance.
Clinical outcomes in patients with WHO grade II/III astrocytoma, oligodendroglioma or secondary glioblastoma remain poor. Isocitrate dehydrogenase 1 (IDH1) is mutated in > 70% of these tumors, making it an attractive therapeutic target. To determine the efficacy of our newly developed mutant IDH1 inhibitor, SYC-435 (1-hydroxypyridin-2-one), we treated orthotopic glioma xenograft model (IC-BT142AOA) carrying R132H mutation and our newly established orthotopic patient-derived xenograft (PDX) model of recurrent anaplastic oligoastrocytoma (IC-V0914AOA) bearing R132C mutation. In addition to suppressing IDH1 mutant cell proliferation in vitro, SYC-435 (15 mg/kg, daily x 28 days) synergistically prolonged animal survival times with standard therapies (Temozolomide + fractionated radiation) mediated by reduction of H3K4/H3K9 methylation and expression of mitochondrial DNA (mtDNA)-encoded molecules. Furthermore, RNA-seq of the remnant tumors identified genes (MYO1F, CTC1 and BCL9) and pathways (base excision repair, TCA cycle II, sirtuin signaling, protein kinase A, eukaryotic initiation factor 2 and α-adrenergic signaling) as mediators of therapy resistance. Our data demonstrated the efficacy SYC-435 in targeting IDH1 mutant gliomas when combined with standard therapy and identified a novel set of genes that should be prioritized for future studies to overcome SYC-435 resistance.
Collapse
Affiliation(s)
- Mari Kogiso
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Lin Qi
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Simpson Querrey Biomedical Research Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yuchen Du
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Simpson Querrey Biomedical Research Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Frank K Braun
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Huiyuan Zhang
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - L Frank Huang
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Lei Guo
- Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX 77030, USA
| | - Yulun Huang
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neurosurgery, Brain and Nerve Research Laboratory, the First Affiliated Hospital, Soochow University Medical School, Suzhou, Jiangsu 215007, China
| | - Wan-Yee Teo
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA; Cancer and Stem Cell Biology Program, Duke-NUS Medical School, National Cancer Center, KK Women's and Children's Hospital, Humphrey Oei Institute of Cancer Research, Institute of Molecular and Cell Biology, A*STAR, 169610, Singapore
| | - Holly Lindsay
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Sibo Zhao
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Sarah G Injac
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Zhen Liu
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vidya Mehta
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diep Tran
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feng Li
- Department of Pathology, Alkek Center for Drug Discovery, Advanced Technology Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patricia A Baxter
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jack M Su
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Laszlo Perlaky
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - D Williams Parsons
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Murali Chintagumpala
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Adekunle Adesina
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongcheng Song
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiao-Nan Li
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Simpson Querrey Biomedical Research Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
122
|
Almeida J, Pérez-Figueroa A, Alves JM, Valecha M, Prado-López S, Alvariño P, Cameselle-Teijeiro JM, Chantada D, Fonseca MM, Posada D. Single-cell mtDNA heteroplasmy in colorectal cancer. Genomics 2022; 114:110315. [PMID: 35181467 DOI: 10.1016/j.ygeno.2022.110315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022]
Abstract
Human mitochondria can be genetically distinct within the same individual, a phenomenon known as heteroplasmy. In cancer, this phenomenon seems exacerbated, and most mitochondrial mutations seem to be heteroplasmic. How this genetic variation is arranged within and among normal and tumor cells is not well understood. To address this question, here we sequenced single-cell mitochondrial genomes from multiple normal and tumoral locations in four colorectal cancer patients. Our results suggest that single cells, both normal and tumoral, can carry various mitochondrial haplotypes. Remarkably, this intra-cell heteroplasmy can arise before tumor development and be maintained afterward in specific tumoral cell subpopulations. At least in the colorectal patients studied here, the somatic mutations in the single-cells do not seem to have a prominent role in tumorigenesis.
Collapse
Affiliation(s)
- João Almeida
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal
| | - Andrés Pérez-Figueroa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal; CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - João M Alves
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - Monica Valecha
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - Sonia Prado-López
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - Pilar Alvariño
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - José Manuel Cameselle-Teijeiro
- Department of Pathology, Clinical University Hospital, Galician Healthcare Service (SERGAS), Santiago de Compostela, Spain; Medical Faculty, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Débora Chantada
- Department of Pathology, Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Miguel M Fonseca
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal
| | - David Posada
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
123
|
AlGabbani Q. Mutations in TP53 and PIK3CA genes in hepatocellular carcinoma patients are associated with chronic Schistosomiasis. Saudi J Biol Sci 2022; 29:848-853. [PMID: 35197752 PMCID: PMC8847977 DOI: 10.1016/j.sjbs.2021.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/29/2021] [Accepted: 10/05/2021] [Indexed: 11/12/2022] Open
Abstract
The purpose of this study was to evaluate the genetic variation of the PIK3CA gene and the histopathological changes in liver tissue of patients with chronic Schistosomiasis to predict hepatocellular carcinoma. In this retrospective, the study samples were taken from 20 patients, divided into chronic schistosomiasis infected group of people (S) and chronic schistosomiasis uninfected group of people (C). The liver tissue biopsy samples for histological examinations were obtained only from chronic Schistosomiasis patients (n = 9). The blood samples were obtained from groups S and C for the mutational analysis of the PIK3CA and TP53 genes. The results suggest that the patients diagnosed with chronic Schistosomiasis were 9 (55%), and healthy patients without Schistosomiasis were 11 (45%). Histological results found that proliferation of fibrosis was observed in the hepatocytes of schistosomiasis patients. A total of 8 mutations (5 male, 3 female) were detected in PIK3CA and TP53 genes. Including 1634 A > G substitution mutations in PIK3CA, which was the only mutation found in males and females among the 8 mutations, accounting 22.22%. PIK3CA gene mutations were found more predominant in male groups as compared to other TP53 gene mutations. In conclusion, this study found that patients with chronic Schistosomiasis are at risk of PIK3CA gene mutations, eventually leading to hepatocytes fibrosis and liver cancer.
Collapse
Affiliation(s)
- Qwait AlGabbani
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
124
|
De Loma J, Krais AM, Lindh CH, Mamani J, Tirado N, Gardon J, Broberg K. Arsenic exposure and biomarkers for oxidative stress and telomere length in indigenous populations in Bolivia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113194. [PMID: 35051766 DOI: 10.1016/j.ecoenv.2022.113194] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Women living in the Bolivian Andes are environmentally exposed to arsenic, yet there is scarce information about arsenic-related effects in this region. Several biomarkers for telomere length and oxidative stress (mitochondrial DNA copy number, mtDNAcn; 8-Oxo-2'-deoxyguanosine, 8-oxo-dG; and 4-hydroxy nonenal mercapturic acid, 4-HNE-MA) have been previously linked to arsenic, and some of which are prospective biomarkers for cancer risk. OBJECTIVE AND HYPOTHESIS To evaluate associations between arsenic exposure and telomere length, mtDNAcn, 8-oxo-dG, and 4-HNE-MA in Bolivians. Arsenic exposure was hypothesized to be positively associated with all four toxicity biomarkers, particularly in individuals with a less efficient arsenic metabolism. METHODS The study encompassed 193 indigenous women. Arsenic exposure was assessed in urine as the sum of inorganic arsenic metabolite concentrations (U-As) measured by HPLC-HG-ICP-MS, and in whole blood as total arsenic (B-As) measured by ICP-MS. Efficiency of arsenic metabolism was evaluated by a polymorphism (rs3740393) in the main arsenic methylating gene AS3MT measured by TaqMan allelic discrimination, and by the relative fractions of urinary inorganic arsenic metabolites. Telomere length and mtDNAcn were determined in peripheral blood leukocytes by quantitative PCR, and urinary 8-oxo-dG and 4-HNE-MA by LC-MS/MS. RESULTS U-As and B-As were associated with longer telomeres and higher mtDNAcn, particularly in women with a less efficient arsenic metabolism. Urinary 8-oxo-dG and 4-HNE-MA were positively associated with U-As, but only 4-HNE-MA was associated with B-As. Arsenic metabolism efficiency did not have a clear effect on the concentrations of either of these biomarkers. CONCLUSION Bolivian women showed indications of arsenic toxicity, measured by four different biomarkers. Telomere length, mtDNAcn, and 4-HNE-MA were positively associated with both U-As and B-As. The association of arsenic exposure with telomere length and mtDNAcn was only present in Bolivian women with a less efficient metabolism. These findings call for additional efforts to evaluate and reduce arsenic exposure in Bolivia.
Collapse
Affiliation(s)
- Jessica De Loma
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Annette M Krais
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Christian H Lindh
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Josue Mamani
- Genetics Institute, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Noemi Tirado
- Genetics Institute, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Jacques Gardon
- Hydrosciences Montpellier, Université de Montpellier, Institut de Recherche pour le Développement, Centre National de la Recherche Scientifique, Montpellier, France
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
125
|
Xue D, Xu Y, Kyani A, Roy J, Dai L, Sun D, Neamati N. Discovery and Lead Optimization of Benzene-1,4-disulfonamides as Oxidative Phosphorylation Inhibitors. J Med Chem 2022; 65:343-368. [PMID: 34982568 DOI: 10.1021/acs.jmedchem.1c01509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inhibition of oxidative phosphorylation (OXPHOS) is a promising therapeutic strategy for select cancers that are dependent on aerobic metabolism. Here, we report the discovery, optimization, and structure-activity relationship (SAR) study of a series of novel OXPHOS inhibitors. The hit compound, benzene-1,4-disulfonamide 1, was discovered in a phenotypic screen selective for cytotoxicity in a galactose-containing medium. Our multi-parameter optimization campaign led to the discovery of 65 (DX3-235), showing nanomolar inhibition of complex I function and adenosine triphosphate (ATP) production in a galactose-containing medium resulting in significant cytotoxicity. Importantly, 64 (DX3-234), a close analogue of 65, is well tolerated in mice and shows significant single agent efficacy in a Pan02 syngeneic pancreatic cancer model, suggesting that highly potent and selective OXPHOS inhibitors can be useful for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Ding Xue
- Departments of Medicinal Chemistry, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Yibin Xu
- Departments of Medicinal Chemistry, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Armita Kyani
- Departments of Medicinal Chemistry, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Joyeeta Roy
- Departments of Medicinal Chemistry, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Lipeng Dai
- Departments of Medicinal Chemistry, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States.,Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Departments of Medicinal Chemistry, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States.,Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Departments of Medicinal Chemistry, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
126
|
Genetic Alterations in Mitochondrial DNA Are Complementary to Nuclear DNA Mutations in Pheochromocytomas. Cancers (Basel) 2022; 14:cancers14020269. [PMID: 35053433 PMCID: PMC8773562 DOI: 10.3390/cancers14020269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Mitochondrial DNA (mtDNA) alterations have been reported to play important roles in cancer development and metastasis. However, there is scarce information about pheochromocytomas and paragangliomas (PCCs/PGLs) formation. To determine the potential roles of mtDNA alterations in PCCs/PGLs, we analyzed a panel of 26 nuclear susceptibility genes and the entire mtDNA sequence of 77 human tumors, using NGS. We also performed an analysis of copy-number alterations, large mtDNA deletion, and gene/protein expression. Our results revealed that 53.2% of the tumors harbor a mutation in the susceptibility genes and 16.9% harbor complementary mitochondrial mutations. Large deletions and depletion of mtDNA were found in 26% and 87% of tumors, respectively, accompanied by a reduced expression of the mitochondrial biogenesis markers (PCG1α, NRF1, and TFAM). Furthermore, P62 and LC3a gene expression suggested increased mitophagy, which is linked to mitochondrial dysfunction. These finding suggest a complementarity and a potential contributing role in PCCs/PGLs tumorigenesis. Abstract Background: Somatic mutations, copy-number variations, and genome instability of mitochondrial DNA (mtDNA) have been reported in different types of cancers and are suggested to play important roles in cancer development and metastasis. However, there is scarce information about pheochromocytomas and paragangliomas (PCCs/PGLs) formation. Material: To determine the potential roles of mtDNA alterations in sporadic PCCs/PGLs, we analyzed a panel of 26 nuclear susceptibility genes and the entire mtDNA sequence of seventy-seven human tumors, using next-generation sequencing, and compared the results with normal adrenal medulla tissues. We also performed an analysis of copy-number alterations, large mtDNA deletion, and gene and protein expression. Results: Our results revealed that 53.2% of the tumors harbor a mutation in at least one of the targeted susceptibility genes, and 16.9% harbor complementary mitochondrial mutations. More than 50% of the mitochondrial mutations were novel and predicted pathogenic, affecting mitochondrial oxidative phosphorylation. Large deletions were found in 26% of tumors, and depletion of mtDNA occurred in more than 87% of PCCs/PGLs. The reduction of the mitochondrial number was accompanied by a reduced expression of the regulators that promote mitochondrial biogenesis (PCG1α, NRF1, and TFAM). Further, P62 and LC3a gene expression suggested increased mitophagy, which is linked to mitochondrial dysfunction. Conclusion: The pathogenic role of these finding remains to be shown, but we suggest a complementarity and a potential contributing role in PCCs/PGLs tumorigenesis.
Collapse
|
127
|
Mennuni M, Filograna R, Felser A, Bonekamp NA, Giavalisco P, Lytovchenko O, Larsson N. Metabolic resistance to the inhibition of mitochondrial transcription revealed by CRISPR-Cas9 screen. EMBO Rep 2022; 23:e53054. [PMID: 34779571 PMCID: PMC8728608 DOI: 10.15252/embr.202153054] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer cells depend on mitochondria to sustain their increased metabolic need and mitochondria therefore constitute possible targets for cancer treatment. We recently developed small-molecule inhibitors of mitochondrial transcription (IMTs) that selectively impair mitochondrial gene expression. IMTs have potent antitumor properties in vitro and in vivo, without affecting normal tissues. Because therapy-induced resistance is a major constraint to successful cancer therapy, we investigated mechanisms conferring resistance to IMTs. We employed a CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats)-(CRISP-associated protein 9) whole-genome screen to determine pathways conferring resistance to acute IMT1 treatment. Loss of genes belonging to von Hippel-Lindau (VHL) and mammalian target of rapamycin complex 1 (mTORC1) pathways caused resistance to acute IMT1 treatment and the relevance of these pathways was confirmed by chemical modulation. We also generated cells resistant to chronic IMT treatment to understand responses to persistent mitochondrial gene expression impairment. We report that IMT1-acquired resistance occurs through a compensatory increase of mitochondrial DNA (mtDNA) expression and cellular metabolites. We found that mitochondrial transcription factor A (TFAM) downregulation and inhibition of mitochondrial translation impaired survival of resistant cells. The identified susceptibility and resistance mechanisms to IMTs may be relevant for different types of mitochondria-targeted therapies.
Collapse
Affiliation(s)
- Mara Mennuni
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Roberta Filograna
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Andrea Felser
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
- University Institute of Clinical ChemistryBern University HospitalBernSwitzerland
| | - Nina A Bonekamp
- Mitochondrial Biology GroupMax Planck Institute for Biology of AgeingCologneGermany
- Department of NeuroanatomyMannheim Center for Translational Neuroscience (MCTN)Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Patrick Giavalisco
- Metabolomics Core FacilityMax Planck Institute for Biology of AgeingCologneGermany
| | - Oleksandr Lytovchenko
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Nils‐Göran Larsson
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| |
Collapse
|
128
|
Longchamps RJ, Yang SY, Castellani CA, Shi W, Lane J, Grove ML, Bartz TM, Sarnowski C, Liu C, Burrows K, Guyatt AL, Gaunt TR, Kacprowski T, Yang J, De Jager PL, Yu L, Bergman A, Xia R, Fornage M, Feitosa MF, Wojczynski MK, Kraja AT, Province MA, Amin N, Rivadeneira F, Tiemeier H, Uitterlinden AG, Broer L, Van Meurs JBJ, Van Duijn CM, Raffield LM, Lange L, Rich SS, Lemaitre RN, Goodarzi MO, Sitlani CM, Mak ACY, Bennett DA, Rodriguez S, Murabito JM, Lunetta KL, Sotoodehnia N, Atzmon G, Ye K, Barzilai N, Brody JA, Psaty BM, Taylor KD, Rotter JI, Boerwinkle E, Pankratz N, Arking DE. Genome-wide analysis of mitochondrial DNA copy number reveals loci implicated in nucleotide metabolism, platelet activation, and megakaryocyte proliferation. Hum Genet 2022; 141:127-146. [PMID: 34859289 PMCID: PMC8758627 DOI: 10.1007/s00439-021-02394-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
Mitochondrial DNA copy number (mtDNA-CN) measured from blood specimens is a minimally invasive marker of mitochondrial function that exhibits both inter-individual and intercellular variation. To identify genes involved in regulating mitochondrial function, we performed a genome-wide association study (GWAS) in 465,809 White individuals from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank (UKB). We identified 133 SNPs with statistically significant, independent effects associated with mtDNA-CN across 100 loci. A combination of fine-mapping, variant annotation, and co-localization analyses was used to prioritize genes within each of the 133 independent sites. Putative causal genes were enriched for known mitochondrial DNA depletion syndromes (p = 3.09 × 10-15) and the gene ontology (GO) terms for mtDNA metabolism (p = 1.43 × 10-8) and mtDNA replication (p = 1.2 × 10-7). A clustering approach leveraged pleiotropy between mtDNA-CN associated SNPs and 41 mtDNA-CN associated phenotypes to identify functional domains, revealing three distinct groups, including platelet activation, megakaryocyte proliferation, and mtDNA metabolism. Finally, using mitochondrial SNPs, we establish causal relationships between mitochondrial function and a variety of blood cell-related traits, kidney function, liver function and overall (p = 0.044) and non-cancer mortality (p = 6.56 × 10-4).
Collapse
Affiliation(s)
- R J Longchamps
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S Y Yang
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - C A Castellani
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - W Shi
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - M L Grove
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - T M Bartz
- Cardiovascular Health Research Unit, Departments of Medicine and Biostatistics, University of Washington, Seattle, WA, USA
| | - C Sarnowski
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - C Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - K Burrows
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - A L Guyatt
- Department of Health Sciences, University of Leicester, University Road, Leicester, UK
| | - T R Gaunt
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - T Kacprowski
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
- Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics, TU Braunschweig and Hannover Medical School, Brunswick, Germany
| | - J Yang
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - P L De Jager
- Center for Translational and Systems Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - L Yu
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - A Bergman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - R Xia
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - M Fornage
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, USA
| | - M F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - M K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - A T Kraja
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - M A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - N Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - F Rivadeneira
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - H Tiemeier
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Social and Behavioral Science, Harvard T.H. School of Public Health, Boston, USA
| | - A G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - L Broer
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - J B J Van Meurs
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - C M Van Duijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - L M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - L Lange
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - S S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - R N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - M O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - C M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - A C Y Mak
- Cardiovascular Research Institute and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - D A Bennett
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - S Rodriguez
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - J M Murabito
- Boston University School of Medicine, Boston University, Boston, MA, USA
| | - K L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - N Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, University of Washington, Seattle, WA, USA
| | - G Atzmon
- Department of Natural Science, University of Haifa, Haifa, Israel
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - K Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - N Barzilai
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - J A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - B M Psaty
- Cardiovascular Health Research Unit, Departments of Epidemiology, Medicine and Health Services, University of Washington, Seattle, WA, USA
| | - K D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - J I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - E Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Baylor College of Medicine, Human Genome Sequencing Center, Houston, TX, USA
| | - N Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - D E Arking
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
129
|
Wang P, Castellani CA, Yao J, Huan T, Bielak LF, Zhao W, Haessler J, Joehanes R, Sun X, Guo X, Longchamps RJ, Manson JE, Grove ML, Bressler J, Taylor KD, Lappalainen T, Kasela S, Van Den Berg DJ, Hou L, Reiner A, Liu Y, Boerwinkle E, Smith JA, Peyser PA, Fornage M, Rich SS, Rotter JI, Kooperberg C, Arking DE, Levy D, Liu C. Epigenome-wide association study of mitochondrial genome copy number. Hum Mol Genet 2021; 31:309-319. [PMID: 34415308 PMCID: PMC8742999 DOI: 10.1093/hmg/ddab240] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/27/2021] [Accepted: 08/11/2021] [Indexed: 01/03/2023] Open
Abstract
We conducted cohort- and race-specific epigenome-wide association analyses of mitochondrial deoxyribonucleic acid (mtDNA) copy number (mtDNA CN) measured in whole blood from participants of African and European origins in five cohorts (n = 6182, mean age = 57-67 years, 65% women). In the meta-analysis of all the participants, we discovered 21 mtDNA CN-associated DNA methylation sites (CpG) (P < 1 × 10-7), with a 0.7-3.0 standard deviation increase (3 CpGs) or decrease (18 CpGs) in mtDNA CN corresponding to a 1% increase in DNA methylation. Several significant CpGs have been reported to be associated with at least two risk factors (e.g. chronological age or smoking) for cardiovascular disease (CVD). Five genes [PR/SET domain 16, nuclear receptor subfamily 1 group H member 3 (NR1H3), DNA repair protein, DNA polymerase kappa and decaprenyl-diphosphate synthase subunit 2], which harbor nine significant CpGs, are known to be involved in mitochondrial biosynthesis and functions. For example, NR1H3 encodes a transcription factor that is differentially expressed during an adipose tissue transition. The methylation level of cg09548275 in NR1H3 was negatively associated with mtDNA CN (effect size = -1.71, P = 4 × 10-8) and was positively associated with the NR1H3 expression level (effect size = 0.43, P = 0.0003), which indicates that the methylation level in NR1H3 may underlie the relationship between mtDNA CN, the NR1H3 transcription factor and energy expenditure. In summary, the study results suggest that mtDNA CN variation in whole blood is associated with DNA methylation levels in genes that are involved in a wide range of mitochondrial activities. These findings will help reveal molecular mechanisms between mtDNA CN and CVD.
Collapse
Affiliation(s)
- Penglong Wang
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christina A Castellani
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 5C1, Canada
| | - Jie Yao
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Tianxiao Huan
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffrey Haessler
- Division of Public Health Science, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Roby Joehanes
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xianbang Sun
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
| | - Xiuqing Guo
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Ryan J Longchamps
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - JoAnn E Manson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jan Bressler
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kent D Taylor
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 5C1, Canada
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY 10013, USA
- Department of Systems Biology, Columbia University, New York, NY 10034, USA
| | - Silva Kasela
- New York Genome Center, New York, NY 10013, USA
- Department of Systems Biology, Columbia University, New York, NY 10034, USA
| | - David J Van Den Berg
- Department of Population and Public Health Sciences, Center for Genetic Epidemiology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Lifang Hou
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alexander Reiner
- Division of Public Health Science, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Yongmei Liu
- Department of Medicine, Divisions of Cardiology and Neurology, Duke University Medical Center, Durham, NC 27704, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Charles Kooperberg
- Division of Public Health Science, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Dan E Arking
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Framingham Heart Study, National Heart, Lung, and Blood Institute (NHLBI), Framingham, MA 01702, USA
| | - Chunyu Liu
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
- Framingham Heart Study, National Heart, Lung, and Blood Institute (NHLBI), Framingham, MA 01702, USA
| | | |
Collapse
|
130
|
Chen XC, Tang GX, Luo WH, Shao W, Dai J, Zeng ST, Huang ZS, Chen SB, Tan JH. Monitoring and Modulating mtDNA G-Quadruplex Dynamics Reveal Its Close Relationship to Cell Glycolysis. J Am Chem Soc 2021; 143:20779-20791. [PMID: 34865478 DOI: 10.1021/jacs.1c08860] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mitochondrial DNA G-quadruplex (mtDNA G4) is a potential regulatory element for the regulation of mitochondrial functions; however, its relevance and specific roles in diseases remain largely unknown. Here, we engineered a set of chemical probes, including MitoISCH, an mtDNA G4-specific fluorescent probe, together with MitoPDS, a mitochondria-targeted G4-stabilizing agent, to thoroughly investigate mtDNA G4s. Using MitoISCH to monitor previously intractable dynamics of mtDNA G4s, we surprisingly found that their formation was prevalent only in endothelial and cancer cells that rely on glycolysis for energy production. Consistent with this, promotion of mtDNA G4 folding by MitoPDS in turn caused glycolysis-related gene activation and glycolysis enhancement. Remarkably, this close relationship among mtDNA G4s, glycolysis, and cancer cells further allowed MitoISCH to accumulate in tumors and label them in vivo. Our work reveals an unprecedented link between mtDNA G4s and cell glycolysis, suggesting that mtDNA G4s may be a novel cancer biomarker and therapeutic target deserving further exploration.
Collapse
Affiliation(s)
- Xiu-Cai Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Gui-Xue Tang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wen-Hua Luo
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wen Shao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jing Dai
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shu-Tang Zeng
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jia-Heng Tan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
131
|
Renaudin X, Venkitaraman AR. A mitochondrial response to oxidative stress mediated by unscheduled RNA-DNA hybrids (R-loops). Mol Cell Oncol 2021; 8:2007028. [PMID: 35419470 PMCID: PMC8997250 DOI: 10.1080/23723556.2021.2007028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
How oxidative stress promotes aging-related human diseases like cancer and neurodegeneration remains unclear. Here, we discuss the origins and implications of an oxidative-stress response recently reported to destabilize the mitochondrial (mt) genome via unscheduled RNA/DNA hybrid (R-loop) accumulation, by impairing the recruitment of RNAseH1 to the regulatory regions of mtDNA.
Collapse
Affiliation(s)
- Xavier Renaudin
- CNRS UMR9019, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
| | - Ashok R. Venkitaraman
- The Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599 & Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
132
|
Perez MF, Sarkies P. Malignancy and NF-κB signalling strengthen coordination between expression of mitochondrial and nuclear-encoded oxidative phosphorylation genes. Genome Biol 2021; 22:328. [PMID: 34857014 PMCID: PMC8638269 DOI: 10.1186/s13059-021-02541-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mitochondria are ancient endosymbiotic organelles crucial to eukaryotic growth and metabolism. The mammalian mitochondrial genome encodes for 13 mitochondrial proteins, and the remaining mitochondrial proteins are encoded by the nuclear genome. Little is known about how coordination between the expression of the two sets of genes is achieved. RESULTS Correlation analysis of RNA-seq expression data from large publicly available datasets is a common method to leverage genetic diversity to infer gene co-expression modules. Here we use this method to investigate nuclear-mitochondrial gene expression coordination. We identify a pitfall in correlation analysis that results from the large variation in the proportion of transcripts from the mitochondrial genome in RNA-seq data. Commonly used normalisation techniques based on total read counts, such as FPKM or TPM, produce artefactual negative correlations between mitochondrial- and nuclear-encoded transcripts. This also results in artefactual correlations between pairs of nuclear-encoded genes, with important consequences for inferring co-expression modules beyond mitochondria. We show that these effects can be overcome by normalizing using the median-ratio normalisation (MRN) or trimmed mean of M values (TMM) methods. Using these normalisations, we find only weak and inconsistent correlations between mitochondrial and nuclear-encoded mitochondrial genes in the majority of healthy human tissues from the GTEx database. CONCLUSIONS We show that a subset of healthy tissues with high expression of NF-κB show significant coordination, suggesting a role for NF-κB in ensuring balanced expression between mitochondrial and nuclear genes. Contrastingly, most cancer types show robust coordination of nuclear and mitochondrial OXPHOS gene expression, identifying this as a feature of gene regulation in cancer.
Collapse
Affiliation(s)
- Marcos Francisco Perez
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| | - Peter Sarkies
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
133
|
Arnaiz E, Miar A, Dias Junior AG, Prasad N, Schulze U, Waithe D, Nathan JA, Rehwinkel J, Harris AL. Hypoxia Regulates Endogenous Double-Stranded RNA Production via Reduced Mitochondrial DNA Transcription. Front Oncol 2021; 11:779739. [PMID: 34900733 PMCID: PMC8651540 DOI: 10.3389/fonc.2021.779739] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022] Open
Abstract
Hypoxia is a common phenomenon in solid tumours strongly linked to the hallmarks of cancer. Hypoxia promotes local immunosuppression and downregulates type I interferon (IFN) expression and signalling, which contribute to the success of many cancer therapies. Double-stranded RNA (dsRNA), transiently generated during mitochondrial transcription, endogenously activates the type I IFN pathway. We report the effects of hypoxia on the generation of mitochondrial dsRNA (mtdsRNA) in breast cancer. We found a significant decrease in dsRNA production in different cell lines under hypoxia. This effect was HIF1α/2α-independent. mtdsRNA was responsible for induction of type I IFN and significantly decreased after hypoxia. Mitochondrially encoded gene expression was downregulated and mtdsRNA bound by the dsRNA-specific J2 antibody was decreased during hypoxia. These findings reveal a new mechanism of hypoxia-induced immunosuppression that could be targeted by hypoxia-activated therapies.
Collapse
Affiliation(s)
- Esther Arnaiz
- Department of Medical Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Cambridge Institute for Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| | - Ana Miar
- Department of Medical Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford, United Kingdom
| | - Antonio Gregorio Dias Junior
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Naveen Prasad
- Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford, United Kingdom
| | - Ulrike Schulze
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Dominic Waithe
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - James A. Nathan
- Cambridge Institute for Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Adrian L. Harris
- Department of Medical Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
134
|
Ge Q, Jia D, Cen D, Qi Y, Shi C, Li J, Sang L, Yang LJ, He J, Lin A, Chen S, Wang L. Micropeptide ASAP encoded by LINC00467 promotes colorectal cancer progression by directly modulating ATP synthase activity. J Clin Invest 2021; 131:152911. [PMID: 34591791 DOI: 10.1172/jci152911] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence has shown that open reading frames inside long noncoding RNAs (lncRNAs) could encode micropeptides. However, their roles in cellular energy metabolism and tumor progression remain largely unknown. Here, we identified a 94 amino acid-length micropeptide encoded by lncRNA LINC00467 in colorectal cancer. We also characterized its conservation across higher mammals, localization to mitochondria, and the concerted local functions. This peptide enhanced the ATP synthase construction by interacting with the subunits α and γ (ATP5A and ATP5C), increased ATP synthase activity and mitochondrial oxygen consumption rate, and thereby promoted colorectal cancer cell proliferation. Hence, this micropeptide was termed ATP synthase-associated peptide (ASAP). Furthermore, loss of ASAP suppressed patient-derived xenograft growth with attenuated ATP synthase activity and mitochondrial ATP production. Clinically, high expression of ASAP and LINC00467 predicted poor prognosis of colorectal cancer patients. Taken together, our findings revealed a colorectal cancer-associated micropeptide as a vital player in mitochondrial metabolism and provided a therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Qiwei Ge
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.,Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China.,MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Dingjiacheng Jia
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.,Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Dong Cen
- Department of General Surgery and
| | - Yadong Qi
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China.,Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Chengyu Shi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China.,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, China
| | - Junhong Li
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China.,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, China
| | - Lingjie Sang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China.,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, China
| | - Luo-Jia Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China.,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, China
| | - Jiamin He
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China.,Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China.,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Shujie Chen
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China.,Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Liangjing Wang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.,Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
135
|
Zhang X, Dong W, Zhang J, Liu W, Yin J, Shi D, Ma W. A Novel Mitochondrial-Related Nuclear Gene Signature Predicts Overall Survival of Lung Adenocarcinoma Patients. Front Cell Dev Biol 2021; 9:740487. [PMID: 34760888 PMCID: PMC8573348 DOI: 10.3389/fcell.2021.740487] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/28/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Lung cancer is the leading cause of cancer-related death worldwide, of which lung adenocarcinoma (LUAD) is one of the main histological subtypes. Mitochondria are vital for maintaining the physiological function, and their dysfunction has been found to be correlated with tumorigenesis and disease progression. Although, some mitochondrial-related genes have been found to correlate with the clinical outcomes of multiple tumors solely. The integrated relationship between nuclear mitochondrial genes (NMGs) and the prognosis of LUAD remains unclear. Methods: The list of NMGs, gene expression data, and related clinical information of LUAD were downloaded from public databases. Bioinformatics methods were used and obtained 18 prognostic related NMGs to construct a risk signature. Results: There were 18 NMGs (NDUFS2, ATP8A2, SCO1, COX14, COA6, RRM2B, TFAM, DARS2, GARS, YARS2, EFG1, GFM1, MRPL3, MRPL44, ISCU, CABC1, HSPD1, and ETHE1) identified by LASSO regression analysis. The mRNA expression of these 18 genes was positively correlated with their relative linear copy number alteration (CNA). Meanwhile, the established risk signature could effectively distinguish high- and low-risk patients, and its predictive capacity was validated in three independent gene expression omnibus (GEO) cohorts. Notably, a significantly lower prevalence of actionable EGFR alterations was presented in patients with high-risk NMGs signature but accompanied with a more inflame immune tumor microenvironment. Additionally, multicomponent Cox regression analysis showed that the model was stable when risk score, tumor stage, and lymph node stage were considered, and the 1-, 3-, and 5-year AUC were 0.74, 0.75, and 0.70, respectively. Conclusion: Together, this study established a signature based on NMGs that is a prognostic biomarker for LUAD patients and has the potential to be widely applied in future clinical settings.
Collapse
Affiliation(s)
- Xiangwei Zhang
- Department of General Thoracic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Dong
- Department of General Thoracic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jishuai Zhang
- Department of General Thoracic, Feicheng Hospital Affiliated to Shandong First Medical University, Feicheng, China
| | - Wenqiang Liu
- Department of General Thoracic, Shenxian County People's Hospital of Shandong Provincial Group, Liaocheng, China
| | - Jingjing Yin
- Department of General Thoracic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Duozhi Shi
- Lifehealthcare Clinical Laboratories, Hangzhou, China
| | - Wei Ma
- Department of General Thoracic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
136
|
Chen Y, Zhang J, Zhang M, Song Y, Zhang Y, Fan S, Ren S, Fu L, Zhang N, Hui H, Shen X. Baicalein resensitizes tamoxifen-resistant breast cancer cells by reducing aerobic glycolysis and reversing mitochondrial dysfunction via inhibition of hypoxia-inducible factor-1α. Clin Transl Med 2021; 11:e577. [PMID: 34841716 PMCID: PMC8567056 DOI: 10.1002/ctm2.577] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022] Open
Abstract
Drug resistance is a major hurdle for the effectiveness of tamoxifen (TAM) to provide clinical benefit. Therefore, it is essential to identify a sensitizer that could be used to improve TAM efficacy in treating TAM-resistant breast cancer. Here, we investigated the ability of baicalein to reverse TAM resistance. We found that baicalein increased the efficacy of TAM in inhibiting proliferation and inducing apoptosis of TAM-resistant cells. It also enhanced the TAM-induced growth reduction of resistant cells from NOD/SCID mouse mammary fat pads, without causing obvious systemic toxicity. Analyses using the CellMiner tool and the Kaplan-Meier plotter database showed that HIF-1α expression was inversely correlated with TAM therapeutic response in NCI-60 cancer cells and breast cancer patients. HIF-1α expression was increased in TAM-resistant cells due to an increase in mRNA levels and reduced ubiquitin-mediated degradation. Baicalein reduced HIF-1α expression by promoting its interaction with PHD2 and pVHL, thus facilitating ubiquitin ligase-mediated proteasomal degradation and thereby suppressing the nuclear translocation, binding to the hypoxia-response element, and transcriptional activity of HIF-1α. As a result, baicalein downregulated aerobic glycolysis by restricting glucose uptake, lactate production, ATP generation, lactate/pyruvate ratio and expression of HIF-1α-targeted glycolytic genes, thereby enhancing the antiproliferative efficacy of TAM. Furthermore, baicalein interfered with HIF-1α inhibition of mitochondrial biosynthesis, which increased mitochondrial DNA content and mitochondrial numbers, restored the generation of reactive oxygen species in mitochondria, and thus enhanced the TAM-induced mitochondrial apoptotic pathway. The HIF-1α stabilizer dimethyloxallyl glycine prevented the baicalein-induced downregulation of glycolysis and mitochondrial biosynthesis and reduced the effects of baicalein on reversing TAM resistance. Our results indicate that baicalein is a promising candidate to help overcome TAM resistance by sensitizing resistant cells to TAM-induced growth inhibition and apoptosis. The mechanism underlying the effects of baicalein consists of inhibition of HIF-1α-mediated aerobic glycolysis and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yan Chen
- The State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuizhouChina
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou ProvinceSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
- The Union Key Laboratory of Guiyang City‐Guizhou Medical UniversitySchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
| | - Jingyu Zhang
- The State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuizhouChina
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou ProvinceSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
- The Union Key Laboratory of Guiyang City‐Guizhou Medical UniversitySchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
| | - Minqin Zhang
- The State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuizhouChina
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou ProvinceSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
- The Union Key Laboratory of Guiyang City‐Guizhou Medical UniversitySchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
| | - Yuxuan Song
- The State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuizhouChina
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou ProvinceSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
- The Union Key Laboratory of Guiyang City‐Guizhou Medical UniversitySchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
| | - Yue Zhang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou ProvinceSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
- The Key Laboratory of Optimal Utilization of Natural Medicine ResourcesSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
| | - Shuangqin Fan
- The State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuizhouChina
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou ProvinceSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
- The Key Laboratory of Optimal Utilization of Natural Medicine ResourcesSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
| | - Shuang Ren
- The State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuizhouChina
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou ProvinceSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
- The Union Key Laboratory of Guiyang City‐Guizhou Medical UniversitySchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
| | - Lingyun Fu
- The State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuizhouChina
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou ProvinceSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
- The Union Key Laboratory of Guiyang City‐Guizhou Medical UniversitySchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
| | - Nenling Zhang
- The State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuizhouChina
- The Key Laboratory of Optimal Utilization of Natural Medicine ResourcesSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
| | - Hui Hui
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionChina Pharmaceutical UniversityNanjingChina
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuizhouChina
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou ProvinceSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
- The Union Key Laboratory of Guiyang City‐Guizhou Medical UniversitySchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
- The Key Laboratory of Optimal Utilization of Natural Medicine ResourcesSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuizhouChina
| |
Collapse
|
137
|
Allkanjari K, Baldock RA. Beyond base excision repair: an evolving picture of mitochondrial DNA repair. Biosci Rep 2021; 41:BSR20211320. [PMID: 34608928 PMCID: PMC8527207 DOI: 10.1042/bsr20211320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are highly specialised organelles required for key cellular processes including ATP production through cellular respiration and controlling cell death via apoptosis. Unlike other organelles, mitochondria contain their own DNA genome which encodes both protein and RNA required for cellular respiration. Each cell may contain hundreds to thousands of copies of the mitochondrial genome, which is essential for normal cellular function - deviation of mitochondrial DNA (mtDNA) copy number is associated with cellular ageing and disease. Furthermore, mtDNA lesions can arise from both endogenous or exogenous sources and must either be tolerated or corrected to preserve mitochondrial function. Importantly, replication of damaged mtDNA can lead to stalling and introduction of mutations or genetic loss, mitochondria have adapted mechanisms to repair damaged DNA. These mechanisms rely on nuclear-encoded DNA repair proteins that are translocated into the mitochondria. Despite the presence of many known nuclear DNA repair proteins being found in the mitochondrial proteome, it remains to be established which DNA repair mechanisms are functional in mammalian mitochondria. Here, we summarise the existing and emerging research, alongside examining proteomic evidence, demonstrating that mtDNA damage can be repaired using Base Excision Repair (BER), Homologous Recombination (HR) and Microhomology-mediated End Joining (MMEJ). Critically, these repair mechanisms do not operate in isolation and evidence for interplay between pathways and repair associated with replication is discussed. Importantly, characterising non-canonical functions of key proteins and understanding the bespoke pathways used to tolerate, repair or bypass DNA damage will be fundamental in fully understanding the causes of mitochondrial genome mutations and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Kathrin Allkanjari
- Formerly: Solent University Southampton, East Park Terrace, Southampton, SO14 0YN, UK
| | - Robert A. Baldock
- School of Natural and Social Sciences, University of Gloucestershire, Francis Close Hall, Swindon Road, Cheltenham GL50 4AZ, UK
| |
Collapse
|
138
|
Giaccherini M, Gentiluomo M, Fornili M, Lucenteforte E, Baglietto L, Campa D. Association between telomere length and mitochondrial copy number and cancer risk in humans: A meta-analysis on more than 300,000 individuals. Crit Rev Oncol Hematol 2021; 167:103510. [PMID: 34695574 DOI: 10.1016/j.critrevonc.2021.103510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
In the last decades the association of leukocyte telomere length (LTL) and mitochondrial copy number (mtDNAcn) with cancer risk has been the focus of many reports, however the relation is not yet completely understood. A meta-analysis of 112 studies including 64,184 cancer cases and 278,641 controls that analysed LTL and mtDNAcn in relation to cancer risk has been conducted to further our understanding of the topic. Stratified analyses for tumor type were also performed. Overall, no association was observed for all cancer combined neither for LTL nor mtDNAcn. Significant associations were detected for these biomarkers and specific cancer type; however, a large degree of heterogeneity was present, even within the same tumor type. Alternatives approaches based on polymorphic variants, such as polygenic risk scores and mendelian randomization, could be adopted to unravel the causal correlation of telomere length and mitochondrial copy number with cancer risk.
Collapse
Affiliation(s)
| | | | - Marco Fornili
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Ersilia Lucenteforte
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Laura Baglietto
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Daniele Campa
- Department of Biology, University of Pisa, 56126, Pisa, Italy.
| |
Collapse
|
139
|
Jiang X, Xia Y, Meng H, Liu Y, Cui J, Huang H, Yin G, Shi B. Identification of a Nuclear Mitochondrial-Related Multi-Genes Signature to Predict the Prognosis of Bladder Cancer. Front Oncol 2021; 11:746029. [PMID: 34692528 PMCID: PMC8528313 DOI: 10.3389/fonc.2021.746029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Bladder cancer (BC) is one of the most prevalent urinary cancers, and its management is still a problem causing recurrence and progression, elevating mortality. MATERIALS AND METHODS We aimed at the nuclear mitochondria-related genes (MTRGs), collected from the MITOMAP: A Human Mitochondrial Genome Database. Meanwhile, the expression profiles and clinical information of BC were downloaded from the Cancer Genome Atlas (TCGA) as a training group. The univariate, multivariate, and the least absolute shrinkage and selection operator (LASSO) Cox regression analyses were used to construct a nuclear mitochondrial-related multi-genes signature and the prognostic nomogram. RESULTS A total of 17 nuclear MTRGs were identified to be correlated with the overall survival (OS) of BC patients, and a nuclear MTRGs signature based on 16 genes expression was further determined by the LASSO Cox regression analysis. Based on a nuclear MTRGs scoring system, BC patients from the TCGA cohort were divided into high- and low- nuclear MTRGs score groups. Patients with a high nuclear MTRGs score exhibited a significantly poorer outcome (median OS: 92.90 vs 20.20 months, p<0.0001). The nuclear MTRGs signature was further verified in three independent datasets, namely, GSE13507, GSE31684, and GSE32548, from the Gene Expression Omnibus (GEO). The BC patients with a high nuclear MTRGs score had significantly worse survival (median OS in GSE13507: 31.52 vs 98.00 months, p<0.05; GSE31684: 32.85 months vs unreached, p<0.05; GSE32548: unreached vs unreached, p<0.05). Furthermore, muscle-invasive bladder cancer (MIBC) patients had a significantly higher nuclear MTRGs score (p<0.05) than non-muscle-invasive bladder cancer (NMIBC) patients. The integrated signature outperformed each involved MTRG. In addition, a nuclear MTRGs-based nomogram was constructed as a novel prediction prognosis model, whose AUC values for OS at 1, 3, 5 years were 0.76, 0.75, and 0.75, respectively, showing the prognostic nomogram had good and stable predicting ability. Enrichment analyses of the hallmark gene set and KEGG pathway revealed that the E2F targets, G2M checkpoint pathways, and cell cycle had influences on the survival of BC patients. Furthermore, the analysis of tumor microenvironment indicated more CD8+ T cells and higher immune score in patients with high nuclear MTRGs score, which might confer sensitivity to immune checkpoint inhibitors. CONCLUSIONS Not only could the signature and prognostic nomogram predict the prognosis of BC, but it also had potential therapeutic guidance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji’nan, China
| |
Collapse
|
140
|
Zhou G, Li Y, Li S, Liu H, Xu F, Lai X, Zhang Q, Xu J, Wan S. Circulating Cell-Free mtDNA Content as a Non-invasive Prognostic Biomarker in HCC Patients Receiving TACE and Traditional Chinese Medicine. Front Genet 2021; 12:719451. [PMID: 34603382 PMCID: PMC8481798 DOI: 10.3389/fgene.2021.719451] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for 70-85% of liver cancer, and about 85% of HCC are hepatitis B virus-related (HBV-HCC) in China. Transarterial chemoembolization (TACE) combined with traditional Chinese medicine (TCM) has been reported as an effective treatment. Potential biomarkers to stratify patients who may benefit from this treatment are needed. In this study, we aimed to evaluate whether circulating cell-free mitochondrial DNA (ccf-mtDNA) content was associated with the outcome of HCC patients, especially of those who received the combination treatment of TACE and TCM. Univariate and multivariate Cox analyses were conducted to evaluate the association between ccf-mtDNA content and the overall survival of HBV-HCC patients. Kaplan-Meier analysis was used to compare the survival differences between patients with low and high ccf-mtDNA content. In a hospital-based cohort with 141 HBV-HCC patients, there was no statistically significant association between the ccf-mtDNA content and the overall survival of HBV-HCC patients in the univariate analysis, but a borderline significant association was found in the multivariate analyses. In a subcohort of 50 HBV-HCC patients who received TACE and TCM treatment, high ccfDNA content conferred an increased death risk with a hazard ratio of 4.01 (95% confidence interval: 1.25-12.84, p = 0.019) in the multivariate analysis. Kaplan-Meier survival analysis also showed that patients with high ccf-mtDNA content had unfavorable survival (log rank p = 0.097). Our findings suggest that ccf-mtDNA content is a potential non-invasive prognostic biomarker in HCC patients receiving TACE and TCM treatment.
Collapse
Affiliation(s)
- Guanlin Zhou
- Institute of Hepatology, Department of Hepatology, The Affiliated Fifth People's Hospital of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Ying Li
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Shicheng Li
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Hongxia Liu
- Institute of Hepatology, Department of Hepatology, The Affiliated Fifth People's Hospital of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Fei Xu
- Institute of Hepatology, Department of Hepatology, The Affiliated Fifth People's Hospital of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Xiaohuan Lai
- Institute of Hepatology, Department of Hepatology, The Affiliated Fifth People's Hospital of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Qiong Zhang
- Department of Emergency Medicine, First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Jingxiang Xu
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Shaogui Wan
- Institute of Hepatology, Department of Hepatology, The Affiliated Fifth People's Hospital of Ganzhou, Gannan Medical University, Ganzhou, China.,Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
141
|
Lu L, Liu G, Lin C, Li K, He T, Zhang J, Luo Z, Cai K. Mitochondrial Metabolism Targeted Nanoplatform for Efficient Triple-Negative Breast Cancer Combination Therapy. Adv Healthc Mater 2021; 10:e2100978. [PMID: 34387391 DOI: 10.1002/adhm.202100978] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/02/2021] [Indexed: 12/17/2022]
Abstract
Tumor reprogram pathway of mitochondrial metabolism is an emerging approach for malignant tumor treatment, such as triple-negative breast cancer. In this study, a tumor/mitochondria cascaded targeting, adenosine-triphosphate (ATP) responsive nanocarrier of zeolitic imidazolate framework-90 (ZIF-90) for breast cancer combination therapy is reported. Atovaquone (AVO) and hemin are loaded into ZIF-90, then a peptide iRGD with tumor-targeting ability is modified on the ZIF-90 nanoplatform. Hemin can specifically degrade BTB and CNC homology1 (BACH1), resulting in the changes of mitochondrial metabolism, and AVO acts as the inhibitor of the electron transport chain (ETC). The degradation of BACH1 using hemin can effectively improve the anti-tumor efficiency of mitochondrial metabolism inhibitor AVO, by increasing dependency on mitochondrial respiration. This nanoplatform displays both tumor-targeting and mitochondria-targeting capacity with high level of ATP responsive drug release behavior. The specific characteristic of mitochondria-targeting ability of this nanoplatform can increase the accumulation of AVO in the mitochondria, and in turn, can effectively improve the inhibition of the ETC. Both in vitro and in vivo results reveal that this composite nanocarrier has excellent tumor inhibition ability with limited side effects. Accordingly, this study provides an attractive strategy in the mitochondrial metabolism for cancer targeted therapy.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Genhua Liu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Chuanchuan Lin
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Ke Li
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Tingting He
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Zhong Luo
- School of Life Science Chongqing University Chongqing 400044 P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| |
Collapse
|
142
|
Luna Yolba R, Visentin V, Hervé C, Chiche J, Ricci J, Méneyrol J, Paillasse MR, Alet N. EVT-701 is a novel selective and safe mitochondrial complex 1 inhibitor with potent anti-tumor activity in models of solid cancers. Pharmacol Res Perspect 2021; 9:e00854. [PMID: 34478236 PMCID: PMC8415080 DOI: 10.1002/prp2.854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/01/2022] Open
Abstract
Targeting the first protein complex of the mitochondrial electron transport chain (MC1) in cancer has become an attractive therapeutic approach in the recent years, given the metabolic vulnerabilities of cancer cells. The anticancer effect exerted by the pleiotropic drug metformin and the associated reduction in hypoxia-inducible factor 1α (HIF-1α) levels putatively mediated by MC1 inhibition led to the development of HIF-1α inhibitors, such as BAY87-2243, with a more specific MC1 targeting. However, the development of BAY87-2243 was stopped early in phase 1 due to dose-independent emesis and thus there is still no clinical proof of concept for the approach. Given the importance of mitochondrial metabolism during cancer progression, there is still a strong therapeutic need to develop specific and safe MC1 inhibitors. We recently reported the synthesis of compounds with a novel chemotype and potent action on HIF-1α degradation and MC1 inhibition. We describe here the selectivity, safety profile and anti-cancer activity in solid tumors of lead compound EVT-701. In addition, using murine models of lung cancer and of Non-Hodgkin's B cell lymphoma we demonstrated that EVT-701 reduced tumor growth and lymph node invasion when used as a single agent therapy. LKB1 deficiency in lung cancer was identified as a potential indicator of accrued sensitivity to EVT-701, allowing stratification and selection of patients in clinical trials. Altogether these results support further evaluation of EVT-701 alone or in combination in preclinical models and eventually in patients.
Collapse
Affiliation(s)
| | | | | | - Johanna Chiche
- C3MINSERMUniversité Côte d'Azur, Equipe labellisée Ligue Contre le CancerNiceFrance
| | - Jean‐Ehrland Ricci
- C3MINSERMUniversité Côte d'Azur, Equipe labellisée Ligue Contre le CancerNiceFrance
| | | | | | | |
Collapse
|
143
|
Emerging methods for and novel insights gained by absolute quantification of mitochondrial DNA copy number and its clinical applications. Pharmacol Ther 2021; 232:107995. [PMID: 34592204 DOI: 10.1016/j.pharmthera.2021.107995] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
The past thirty years have seen a surge in interest in pathophysiological roles of mitochondria, and the accurate quantification of mitochondrial DNA copy number (mCN) in cells and tissue samples is a fundamental aspect of assessing changes in mitochondrial health and biogenesis. Quantification of mCN between studies is surprisingly variable due to a combination of physiological variability and diverse protocols being used to measure this endpoint. The advent of novel methods to quantify nucleic acids like digital polymerase chain reaction (dPCR) and high throughput sequencing offer the ability to measure absolute values of mCN. We conducted an in-depth survey of articles published between 1969 -- 2020 to create an overview of mCN values, to assess consensus values of tissue-specific mCN, and to evaluate consistency between methods of assessing mCN. We identify best practices for methods used to assess mCN, and we address the impact of using specific loci on the mitochondrial genome to determine mCN. Current data suggest that clinical measurement of mCN can provide diagnostic and prognostic value in a range of diseases and health conditions, with emphasis on cancer and cardiovascular disease, and the advent of means to measure absolute mCN should improve future clinical applications of mCN measurements.
Collapse
|
144
|
Kowal K, Tkaczyk-Wlizło A, Pierzchała M, Gawor J, Ślaska B. Molecular differences in mitochondrial DNA genomes of dogs with malignant mammary tumours. Vet Comp Oncol 2021; 20:256-264. [PMID: 34554638 DOI: 10.1111/vco.12772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 07/01/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022]
Abstract
The aim of this study was to determine molecular defects in mitochondrial DNA (mtDNA) with the use of large-scale genome analysis in malignant canine mammary gland tumours and indicate whether these changes were linked with the carcinogenesis process. With the use of the NGS technology, we sequenced 27 samples of mtDNA isolated from blood and tumours obtained from 13 dogs with mammary gland tumours. The total number of mutations and polymorphisms in the analysed mitochondrial genomes was 557. We identified 383 single nucleotide polymorphisms (SNP), 32 indels (or length polymorphisms), 4 mutations, 137 heteroplasmic positions and 1 indel mutation. The highest variability (132 changes) was observed in the variable number of tandem repeats (VNTR) region. The heteroplasmy rate in VNTR varied among individuals and even between two tumours in one organism. Our previous study resulted in determination of a probable CpG island in this region, thus it is not excluded that these changes might alter mtDNA methylation. Only the ATP8 gene was not affected by any polymorphisms or mutations, whereas the COX1 gene had the highest number of polymorphisms from all protein-coding genes. One change m.13594G>A was detected in a region spanning two genes: ND5 and ND6, from which a deleterious effect was observed for the ND5 protein. Molecular changes were frequently observed in the TΨC loop, which is thought to interact with ribosomal RNA.
Collapse
Affiliation(s)
- Krzysztof Kowal
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Lublin, Poland
| | - Angelika Tkaczyk-Wlizło
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Lublin, Poland
| | - Mariusz Pierzchała
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Jan Gawor
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Brygida Ślaska
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
145
|
Mitochondrial DNA and MitomiR Variations in Pancreatic Cancer: Potential Diagnostic and Prognostic Biomarkers. Int J Mol Sci 2021; 22:ijms22189692. [PMID: 34575852 PMCID: PMC8470532 DOI: 10.3390/ijms22189692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is an aggressive disease with poor prognosis. Only about 15-20% of patients diagnosed with pancreatic cancer can undergo surgical resection, while the remaining 80% are diagnosed with locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). In these cases, chemotherapy and radiotherapy only confer marginal survival benefit. Recent progress has been made in understanding the pathobiology of pancreatic cancer, with a particular effort in discovering new diagnostic and prognostic biomarkers, novel therapeutic targets, and biomarkers that can predict response to chemo- and/or radiotherapy. Mitochondria have become a focus in pancreatic cancer research due to their roles as powerhouses of the cell, important subcellular biosynthetic factories, and crucial determinants of cell survival and response to chemotherapy. Changes in the mitochondrial genome (mtDNA) have been implicated in chemoresistance and metastatic progression in some cancer types. There is also growing evidence that changes in microRNAs that regulate the expression of mtDNA-encoded mitochondrial proteins (mitomiRs) or nuclear-encoded mitochondrial proteins (mitochondria-related miRs) could serve as diagnostic and prognostic cancer biomarkers. This review discusses the current knowledge on the clinical significance of changes of mtDNA, mitomiRs, and mitochondria-related miRs in pancreatic cancer and their potential role as predictors of cancer risk, as diagnostic and prognostic biomarkers, and as molecular targets for personalized cancer therapy.
Collapse
|
146
|
Zhang T, Joubert P, Ansari-Pour N, Zhao W, Hoang PH, Lokanga R, Moye AL, Rosenbaum J, Gonzalez-Perez A, Martínez-Jiménez F, Castro A, Muscarella LA, Hofman P, Consonni D, Pesatori AC, Kebede M, Li M, Gould Rothberg BE, Peneva I, Schabath MB, Poeta ML, Costantini M, Hirsch D, Heselmeyer-Haddad K, Hutchinson A, Olanich M, Lawrence SM, Lenz P, Duggan M, Bhawsar PMS, Sang J, Kim J, Mendoza L, Saini N, Klimczak LJ, Islam SMA, Otlu B, Khandekar A, Cole N, Stewart DR, Choi J, Brown KM, Caporaso NE, Wilson SH, Pommier Y, Lan Q, Rothman N, Almeida JS, Carter H, Ried T, Kim CF, Lopez-Bigas N, Garcia-Closas M, Shi J, Bossé Y, Zhu B, Gordenin DA, Alexandrov LB, Chanock SJ, Wedge DC, Landi MT. Genomic and evolutionary classification of lung cancer in never smokers. Nat Genet 2021; 53:1348-1359. [PMID: 34493867 PMCID: PMC8432745 DOI: 10.1038/s41588-021-00920-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/15/2021] [Indexed: 12/26/2022]
Abstract
Lung cancer in never smokers (LCINS) is a common cause of cancer mortality but its genomic landscape is poorly characterized. Here high-coverage whole-genome sequencing of 232 LCINS showed 3 subtypes defined by copy number aberrations. The dominant subtype (piano), which is rare in lung cancer in smokers, features somatic UBA1 mutations, germline AR variants and stem cell-like properties, including low mutational burden, high intratumor heterogeneity, long telomeres, frequent KRAS mutations and slow growth, as suggested by the occurrence of cancer drivers' progenitor cells many years before tumor diagnosis. The other subtypes are characterized by specific amplifications and EGFR mutations (mezzo-forte) and whole-genome doubling (forte). No strong tobacco smoking signatures were detected, even in cases with exposure to secondhand tobacco smoke. Genes within the receptor tyrosine kinase-Ras pathway had distinct impacts on survival; five genomic alterations independently doubled mortality. These findings create avenues for personalized treatment in LCINS.
Collapse
Affiliation(s)
- Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| | - Naser Ansari-Pour
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wei Zhao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Phuc H Hoang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Rachel Lokanga
- Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Aaron L Moye
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
| | | | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine Barcelona, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Francisco Martínez-Jiménez
- Institute for Research in Biomedicine Barcelona, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Andrea Castro
- Department of Medicine, Division of Medical Genetics, University of California San Diego, San Diego, CA, USA
| | - Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, University Hospital Federation OncoAge, Nice Hospital, University Côte d'Azur, Nice, France
| | - Dario Consonni
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela C Pesatori
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Michael Kebede
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mengying Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Bonnie E Gould Rothberg
- Smilow Cancer Hospital, Yale-New Haven Health, New Haven, CT, USA
- Yale Comprehensive Cancer Center, New Haven, CT, USA
| | - Iliana Peneva
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Maria Luana Poeta
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Manuela Costantini
- Department of Urology, Istituto di Ricovero e Cura a Carattere Scientifico Regina Elena National Cancer Institute, Rome, Italy
| | - Daniela Hirsch
- Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mary Olanich
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Scott M Lawrence
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Petra Lenz
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Maire Duggan
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Praphulla M S Bhawsar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jian Sang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jung Kim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Laura Mendoza
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Natalie Saini
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle, NC, USA
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle, NC, USA
| | - S M Ashiqul Islam
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Burcak Otlu
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Azhar Khandekar
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Nathan Cole
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Douglas R Stewart
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle, NC, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jonas S Almeida
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Hannah Carter
- Department of Medicine, Division of Medical Genetics, University of California San Diego, San Diego, CA, USA
| | - Thomas Ried
- Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Carla F Kim
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine Barcelona, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | | | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
- Department of Molecular Medicine, Laval University, Quebec City, Quebec, Canada
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Dmitry A Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle, NC, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - David C Wedge
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
147
|
Mitochondrial Dysfunction in Diseases, Longevity, and Treatment Resistance: Tuning Mitochondria Function as a Therapeutic Strategy. Genes (Basel) 2021; 12:genes12091348. [PMID: 34573330 PMCID: PMC8467098 DOI: 10.3390/genes12091348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are very important intracellular organelles because they have various functions. They produce ATP, are involved in cell signaling and cell death, and are a major source of reactive oxygen species (ROS). Mitochondria have their own DNA (mtDNA) and mutation of mtDNA or change the mtDNA copy numbers leads to disease, cancer chemo/radioresistance and aging including longevity. In this review, we discuss the mtDNA mutation, mitochondrial disease, longevity, and importance of mitochondrial dysfunction in cancer first. In the later part, we particularly focus on the role in cancer resistance and the mitochondrial condition such as mtDNA copy number, mitochondrial membrane potential, ROS levels, and ATP production. We suggest a therapeutic strategy employing mitochondrial transplantation (mtTP) for treatment-resistant cancer.
Collapse
|
148
|
Jones SW, Ball AL, Chadwick AE, Alfirevic A. The Role of Mitochondrial DNA Variation in Drug Response: A Systematic Review. Front Genet 2021; 12:698825. [PMID: 34484295 PMCID: PMC8416105 DOI: 10.3389/fgene.2021.698825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/14/2021] [Indexed: 01/11/2023] Open
Abstract
Background: The triad of drug efficacy, toxicity and resistance underpins the risk-benefit balance of all therapeutics. The application of pharmacogenomics has the potential to improve the risk-benefit balance of a given therapeutic via the stratification of patient populations based on DNA variants. A growth in the understanding of the particulars of the mitochondrial genome, alongside the availability of techniques for its interrogation has resulted in a growing body of literature examining the impact of mitochondrial DNA (mtDNA) variation upon drug response. Objective: To critically evaluate and summarize the available literature, across a defined period, in a systematic fashion in order to map out the current landscape of the subject area and identify how the field may continue to advance. Methods: A systematic review of the literature published between January 2009 and December 2020 was conducted using the PubMed database with the following key inclusion criteria: reference to specific mtDNA polymorphisms or haplogroups, a core objective to examine associations between mtDNA variants and drug response, and research performed using human subjects or human in vitro models. Results: Review of the literature identified 24 articles reporting an investigation of the association between mtDNA variant(s) and drug efficacy, toxicity or resistance that met the key inclusion criteria. This included 10 articles examining mtDNA variations associated with antiretroviral therapy response, 4 articles examining mtDNA variants associated with anticancer agent response and 4 articles examining mtDNA variants associated with antimicrobial agent response. The remaining articles covered a wide breadth of medications and were therefore grouped together and referred to as "other." Conclusions: Investigation of the impact of mtDNA variation upon drug response has been sporadic to-date. Collective assessment of the associations identified in the articles was inconclusive due to heterogeneous methods and outcomes, limited racial/ethnic groups, lack of replication and inadequate statistical power. There remains a high degree of idiosyncrasy in drug response and this area has the potential to explain variation in drug response in a clinical setting, therefore further research is likely to be of clinical benefit.
Collapse
Affiliation(s)
- Samantha W. Jones
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, United Kingdom
| | - Amy L. Ball
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, United Kingdom
| | - Amy E. Chadwick
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, United Kingdom
| | - Ana Alfirevic
- Department of Pharmacology and Therapeutics, Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
149
|
Association of Mitochondrial DNA Copy Number and Telomere Length with Prevalent and Incident Cancer and Cancer Mortality in Women: A Prospective Swedish Population-Based Study. Cancers (Basel) 2021; 13:cancers13153842. [PMID: 34359743 PMCID: PMC8345403 DOI: 10.3390/cancers13153842] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/09/2022] Open
Abstract
Changes in mitochondrial DNA copy number (mtDNA-CN) and telomere length have, separately, been proposed as risk factors for various cancer types. However, those results are conflicting. Here, mtDNA-CN and relative telomere length were measured in 3225 middle-aged women included in a large population-based prospective cohort. The baseline mtDNA-CN in patients with prevalent breast cancer was significantly higher (12.39 copies/µL) than cancer-free individuals. During an average of 15.2 years of follow-up, 520 patients were diagnosed with cancer. Lower mtDNA-CN was associated with decreased risk of genital organ cancer (hazard ratio (HR), 0.84), and shorter telomere length was associated with increased risk of urinary system cancer (HR, 1.79). Furthermore, mtDNA-CN was inversely associated with all-cause (HR, 1.20) and cancer-specific mortality (HR, 1.21) when considering all cancer types. Surprisingly, shorter telomere length was associated with decreased risk of cancer-specific mortality when considering all cancer types (HR, 0.85). Finally, lower mtDNA-CN and shorter telomere length were associated with increased risk of both all-cause and cancer-specific mortality in genital organ cancer patients. In this study population, we found that mtDNA-CN and telomere length were significantly associated with prevalent and incident cancer and cancer mortality. However, these associations were cancer type specific and need further investigation.
Collapse
|
150
|
Pérez-Amado CJ, Bazan-Cordoba A, Hidalgo-Miranda A, Jiménez-Morales S. Mitochondrial Heteroplasmy Shifting as a Potential Biomarker of Cancer Progression. Int J Mol Sci 2021; 22:7369. [PMID: 34298989 PMCID: PMC8304746 DOI: 10.3390/ijms22147369] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is a serious health problem with a high mortality rate worldwide. Given the relevance of mitochondria in numerous physiological and pathological mechanisms, such as adenosine triphosphate (ATP) synthesis, apoptosis, metabolism, cancer progression and drug resistance, mitochondrial genome (mtDNA) analysis has become of great interest in the study of human diseases, including cancer. To date, a high number of variants and mutations have been identified in different types of tumors, which coexist with normal alleles, a phenomenon named heteroplasmy. This mechanism is considered an intermediate state between the fixation or elimination of the acquired mutations. It is suggested that mutations, which confer adaptive advantages to tumor growth and invasion, are enriched in malignant cells. Notably, many recent studies have reported a heteroplasmy-shifting phenomenon as a potential shaper in tumor progression and treatment response, and we suggest that each cancer type also has a unique mitochondrial heteroplasmy-shifting profile. So far, a plethora of data evidencing correlations among heteroplasmy and cancer-related phenotypes are available, but still, not authentic demonstrations, and whether the heteroplasmy or the variation in mtDNA copy number (mtCNV) in cancer are cause or consequence remained unknown. Further studies are needed to support these findings and decipher their clinical implications and impact in the field of drug discovery aimed at treating human cancer.
Collapse
Affiliation(s)
- Carlos Jhovani Pérez-Amado
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (C.J.P.-A.); (A.B.-C.); (A.H.-M.)
- Programa de Maestría y Doctorado, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Amellalli Bazan-Cordoba
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (C.J.P.-A.); (A.B.-C.); (A.H.-M.)
- Programa de Maestría y Doctorado, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (C.J.P.-A.); (A.B.-C.); (A.H.-M.)
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (C.J.P.-A.); (A.B.-C.); (A.H.-M.)
| |
Collapse
|