1501
|
Schwartz DA. Autopsy and Postmortem Studies Are Concordant: Pathology of Zika Virus Infection Is Neurotropic in Fetuses and Infants With Microcephaly Following Transplacental Transmission. Arch Pathol Lab Med 2016; 141:68-72. [PMID: 27557413 DOI: 10.5858/arpa.2016-0343-oa] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT -Pathology studies have been important in concluding that Zika virus infection occurring in pregnant women can result in vertical transmission of the agent from mother to fetus. Fetal and infant autopsies have provided crucial direct evidence that Zika virus can infect an unborn child, resulting in microcephaly, other malformations, and, in some cases, death. OBJECTIVE -To better understand the etiologic role and mechanism(s) of Zika virus in causing birth defects such as microcephaly, this communication analyzes the spectrum of clinical and autopsy studies reported from fetuses and infants who developed intrauterine Zika virus infection, and compares these findings with experimental data related to Zika virus infection. DESIGN -Retrospective analysis of reported clinical, autopsy, pathology, and related postmortem studies from 9 fetuses and infants with intrauterine Zika virus infection and microcephaly. RESULTS -All fetuses and infants examined demonstrated an overlapping spectrum of gross and microscopic neuropathologic abnormalities. Direct cytopathic effects of infection by the Zika virus were confined to the brain; in cases where other organs were evaluated, no direct viral effects were identified. CONCLUSIONS -There is concordance of the spectrum of brain damage, reinforcing previous data indicating that the Zika virus has a strong predilection for cells of the fetal central nervous system following vertical transmission. The occurrence of additional congenital abnormalities suggests that intrauterine brain damage from Zika virus interferes with normal fetal development, resulting in fetal akinesia. Experimental in vitro and in vivo studies of Zika virus infection corroborate the human autopsy findings of neural specificity.
Collapse
Affiliation(s)
- David A Schwartz
- From the Department of Pathology, Medical College of Georgia, Augusta University, Augusta
| |
Collapse
|
1502
|
Barzon L, Trevisan M, Sinigaglia A, Lavezzo E, Palù G. Zika virus: from pathogenesis to disease control. FEMS Microbiol Lett 2016; 363:fnw202. [PMID: 27549304 DOI: 10.1093/femsle/fnw202] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2016] [Indexed: 12/21/2022] Open
Abstract
Zika virus is a mosquito-borne flavivirus discovered in Uganda in 1947. The virus has emerged in recent years and spread in the Pacific Area and the Americas, where it has caused large human outbreaks. The factors involved in the virus's emergence are still unknown, but probably include its introduction in naïve environments characterised by the presence of high densities of competent Aedes spp. mosquitoes and susceptible human hosts in urban areas. Unique features of Zika virus infection are sexual and transplacental transmission and associated neurological morbidities, i.e. Guillain-Barré syndrome and fetal microcephaly. Diagnosis relies on the detection of viral nucleic acids in biological samples, while detection of a specific antibody response may be inconclusive because of the broad cross-reactivity of antibodies among flaviviruses. Experimental studies have clarified some mechanisms of Zika virus pathogenesis and have identified potential targets for antiviral drugs. In animal models, the virus can infect and efficiently replicate in the placenta and in the brain, and induce fetal demise or neural damage, recapitulating human diseases. These animal models have been used to evaluate candidate vaccines and promising results have been obtained.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Marta Trevisan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
1503
|
Li H, Saucedo-Cuevas L, Regla-Nava JA, Chai G, Sheets N, Tang W, Terskikh AV, Shresta S, Gleeson JG. Zika Virus Infects Neural Progenitors in the Adult Mouse Brain and Alters Proliferation. Cell Stem Cell 2016; 19:593-598. [PMID: 27545505 PMCID: PMC5097023 DOI: 10.1016/j.stem.2016.08.005] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/18/2016] [Accepted: 08/02/2016] [Indexed: 12/31/2022]
Abstract
Zika virus (ZIKV)-related neuropathology is an important global health concern. Several studies have shown that ZIKV can infect neural stem cells in the developing brain, but infection in the adult brain has not been examined. Two areas in the adult mouse brain contain neural stem cells: the subventricular zone of the anterior forebrain and the subgranular zone of the hippocampus. Here, using 6-week-old mice triply deficient in interferon regulatory factor (IRF) as a model, we show that blood-borne ZIKV administration can lead to pronounced evidence of ZIKV infection in these adult neural stem cells, leading to cell death and reduced proliferation. Our data therefore suggest that adult as well as fetal neural stem cells are vulnerable to ZIKV neuropathology. Thus, although ZIKV is considered a transient infection in adult humans without marked long-term effects, there may in fact be consequences of exposure in the adult brain.
Collapse
Affiliation(s)
- Hongda Li
- Laboratory for Pediatric Brain Diseases, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA 10065 and Department of Neurosciences, Rady Children's Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Laura Saucedo-Cuevas
- Laboratory for Pediatric Brain Diseases, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA 10065 and Department of Neurosciences, Rady Children's Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Jose A Regla-Nava
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA 92037
| | - Guoliang Chai
- Laboratory for Pediatric Brain Diseases, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA 10065 and Department of Neurosciences, Rady Children's Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Nicholas Sheets
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA 92037
| | - William Tang
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA 92037
| | - Alexey V Terskikh
- Del. E. Webb Center for Neuroscience, Aging and Stem Cell Regeneration, Sanford Burnham Prebys Discovery Institute, La Jolla, CA, USA 92037
| | - Sujan Shresta
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA 92037
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Diseases, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA 10065 and Department of Neurosciences, Rady Children's Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
1504
|
Betizeau M, Dehay C. From stem cells to comparative corticogenesis: a bridge too far? Stem Cell Investig 2016; 3:39. [PMID: 27668246 DOI: 10.21037/sci.2016.08.02] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/03/2016] [Indexed: 11/06/2022]
Abstract
It has been hypothesized that the higher number of neurons in human cortex compared to the chimpanzee and other primate species is key to high cognitive function. Are human cortical precursors endowed with specific properties that drive greater neuronal expansion than in other non-human primates? Otani et al. 2016 addressed this issue taking advantage of comparative in vitro corticogenesis models based on human, chimpanzee and macaque pluripotent stem cells. Clonal analysis revealed a heterochrony of early developmental events possibly leading to a relatively higher expansion of human cortical precursor population. In absence of evidence going beyond putative correlation, the claim that stem cell models of cortical development indicate mechanism of cortical size regulation needs to be further examined notably with respect to in vivo observations of cortical precursor lineages.
Collapse
Affiliation(s)
- Marion Betizeau
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Colette Dehay
- Univ Lyon, Universite Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| |
Collapse
|
1505
|
Liang Q, Luo Z, Zeng J, Chen W, Foo SS, Lee SA, Ge J, Wang S, Goldman SA, Zlokovic BV, Zhao Z, Jung JU. Zika Virus NS4A and NS4B Proteins Deregulate Akt-mTOR Signaling in Human Fetal Neural Stem Cells to Inhibit Neurogenesis and Induce Autophagy. Cell Stem Cell 2016; 19:663-671. [PMID: 27524440 DOI: 10.1016/j.stem.2016.07.019] [Citation(s) in RCA: 401] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/20/2016] [Accepted: 07/21/2016] [Indexed: 12/19/2022]
Abstract
The current widespread outbreak of Zika virus (ZIKV) infection has been linked to severe clinical birth defects, particularly microcephaly, warranting urgent study of the molecular mechanisms underlying ZIKV pathogenesis. Akt-mTOR signaling is one of the key cellular pathways essential for brain development and autophagy regulation. Here, we show that ZIKV infection of human fetal neural stem cells (fNSCs) causes inhibition of the Akt-mTOR pathway, leading to defective neurogenesis and aberrant activation of autophagy. By screening the three structural proteins and seven nonstructural proteins present in ZIKV, we found that two, NS4A and NS4B, cooperatively suppress the Akt-mTOR pathway and lead to cellular dysregulation. Corresponding proteins from the closely related dengue virus do not have the same effect on neurogenesis. Thus, our study highlights ZIKV NS4A and NS4B as candidate determinants of viral pathogenesis and identifies a mechanism of action for their effects, suggesting potential targets for anti-ZIKV therapeutic intervention.
Collapse
Affiliation(s)
- Qiming Liang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhifei Luo
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jianxiong Zeng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Weiqiang Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Suan-Sin Foo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Shin-Ae Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jianning Ge
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Su Wang
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA; Department of Neurology, University of Rochester, Rochester, NY 14642, USA; Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA; Department of Neurology, University of Rochester, Rochester, NY 14642, USA; Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Berislav V Zlokovic
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhen Zhao
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
1506
|
Zika virus disease: a current review of the literature. Infection 2016; 44:695-705. [DOI: 10.1007/s15010-016-0935-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022]
|
1507
|
Barrows NJ, Campos RK, Powell ST, Prasanth KR, Schott-Lerner G, Soto-Acosta R, Galarza-Muñoz G, McGrath EL, Urrabaz-Garza R, Gao J, Wu P, Menon R, Saade G, Fernandez-Salas I, Rossi SL, Vasilakis N, Routh A, Bradrick SS, Garcia-Blanco MA. A Screen of FDA-Approved Drugs for Inhibitors of Zika Virus Infection. Cell Host Microbe 2016; 20:259-70. [PMID: 27476412 PMCID: PMC4993926 DOI: 10.1016/j.chom.2016.07.004] [Citation(s) in RCA: 379] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/19/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022]
Abstract
Currently there are no approved vaccines or specific therapies to prevent or treat Zika virus (ZIKV) infection. We interrogated a library of FDA-approved drugs for their ability to block infection of human HuH-7 cells by a newly isolated ZIKV strain (ZIKV MEX_I_7). More than 20 out of 774 tested compounds decreased ZIKV infection in our in vitro screening assay. Selected compounds were further validated for inhibition of ZIKV infection in human cervical, placental, and neural stem cell lines, as well as primary human amnion cells. Established anti-flaviviral drugs (e.g., bortezomib and mycophenolic acid) and others that had no previously known antiviral activity (e.g., daptomycin) were identified as inhibitors of ZIKV infection. Several drugs reduced ZIKV infection across multiple cell types. This study identifies drugs that could be tested in clinical studies of ZIKV infection and provides a resource of small molecules to study ZIKV pathogenesis.
Collapse
Affiliation(s)
- Nicholas J Barrows
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, 301 University Blvd, Galveston, TX 77555, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Rafael K Campos
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, 301 University Blvd, Galveston, TX 77555, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Steven T Powell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, 301 University Blvd, Galveston, TX 77555, USA
| | - K Reddisiva Prasanth
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, 301 University Blvd, Galveston, TX 77555, USA
| | - Geraldine Schott-Lerner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, 301 University Blvd, Galveston, TX 77555, USA
| | - Ruben Soto-Acosta
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, 301 University Blvd, Galveston, TX 77555, USA
| | - Gaddiel Galarza-Muñoz
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, 301 University Blvd, Galveston, TX 77555, USA
| | - Erica L McGrath
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Rheanna Urrabaz-Garza
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Junling Gao
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Ping Wu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - George Saade
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Ildefonso Fernandez-Salas
- Centro Regional de Investigación en Salud Publica INSP, 19 Poniente Esquina 4(a) Norte s/n, Colonia Centro, Tapachula, Chiapas 30700, C.P., Mexico
| | - Shannan L Rossi
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, and Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Nikos Vasilakis
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, and Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Andrew Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, 301 University Blvd, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, 301 University Blvd, Galveston, TX 77555, USA.
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, 301 University Blvd, Galveston, TX 77555, USA; Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Republic of Singapore.
| |
Collapse
|
1508
|
Mason JO, Price DJ. Building brains in a dish: Prospects for growing cerebral organoids from stem cells. Neuroscience 2016; 334:105-118. [PMID: 27506142 DOI: 10.1016/j.neuroscience.2016.07.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/22/2016] [Accepted: 07/30/2016] [Indexed: 11/27/2022]
Abstract
The recent development of organoid techniques, in which embryonic brain-like tissue can be grown from human or mouse stem cells in vitro offers the potential to transform the way in which brain development is studied. In this review, we summarize key aspects of the embryonic development of mammalian forebrains, focussing in particular on the cerebral cortex and highlight significant differences between mouse and primates, including human. We discuss recent work using cerebral organoids that has revealed key similarities and differences between their development and that of the brain in vivo. Finally, we outline the ways in which cerebral organoids can be used in combination with CRISPR/Cas9 genome editing to unravel genetic mechanisms that control embryonic development of the cerebral cortex, how this can help us understand the causes of neurodevelopmental disorders and some of the key challenges which will have to be resolved before organoids can become a mainstream tool to study brain development.
Collapse
Affiliation(s)
- John O Mason
- Centre for Integrative Physiology, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| | - David J Price
- Centre for Integrative Physiology, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| |
Collapse
|
1509
|
|
1510
|
Poretti A, Huisman TAGM. Neuroimaging Findings in Congenital Zika Syndrome. AJNR Am J Neuroradiol 2016; 37:1764-1765. [PMID: 27492074 DOI: 10.3174/ajnr.a4924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
1511
|
da Silva SR, Gao SJ. Zika virus: An update on epidemiology, pathology, molecular biology, and animal model. J Med Virol 2016; 88:1291-6. [PMID: 27124623 PMCID: PMC5235365 DOI: 10.1002/jmv.24563] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2016] [Indexed: 12/29/2022]
Abstract
Zika virus (ZIKV) was first described in 1947, and became a health emergency problem in 2016 when its association with fetal microcephaly cases was confirmed by Centers for Disease Control and Prevention (CDC) in the United States. To date, ZIKV infection has been documented in 66 countries. ZIKV is recognized as a neurotropic virus and numerous diseases manifested in multiple neurological disorders have been described, mainly in countries that have been exposed to ZIKV after the 2007 outbreak in the Federated States of Micronesia. The most dramatic consequence of ZIKV infection documented is the abrupt increase in fetal microcephaly cases in Brazil. Here, we present an update of the published research progress in the past few months. J. Med. Virol. 88:1291-1296, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Suzane Ramos da Silva
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
1512
|
Jo J, Xiao Y, Sun AX, Cukuroglu E, Tran HD, Göke J, Tan ZY, Saw TY, Tan CP, Lokman H, Lee Y, Kim D, Ko HS, Kim SO, Park JH, Cho NJ, Hyde TM, Kleinman JE, Shin JH, Weinberger DR, Tan EK, Je HS, Ng HH. Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons. Cell Stem Cell 2016; 19:248-257. [PMID: 27476966 DOI: 10.1016/j.stem.2016.07.005] [Citation(s) in RCA: 577] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/22/2016] [Accepted: 07/08/2016] [Indexed: 12/13/2022]
Abstract
Recent advances in 3D culture systems have led to the generation of brain organoids that resemble different human brain regions; however, a 3D organoid model of the midbrain containing functional midbrain dopaminergic (mDA) neurons has not been reported. We developed a method to differentiate human pluripotent stem cells into a large multicellular organoid-like structure that contains distinct layers of neuronal cells expressing characteristic markers of human midbrain. Importantly, we detected electrically active and functionally mature mDA neurons and dopamine production in our 3D midbrain-like organoids (MLOs). In contrast to human mDA neurons generated using 2D methods or MLOs generated from mouse embryonic stem cells, our human MLOs produced neuromelanin-like granules that were structurally similar to those isolated from human substantia nigra tissues. Thus our MLOs bearing features of the human midbrain may provide a tractable in vitro system to study the human midbrain and its related diseases.
Collapse
Affiliation(s)
- Junghyun Jo
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Yixin Xiao
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Alfred Xuyang Sun
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore; National Neuroscience Institute, 20 College Road, Singapore 169856, Singapore
| | - Engin Cukuroglu
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Hoang-Dai Tran
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore; Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Jonathan Göke
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Zi Ying Tan
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Tzuen Yih Saw
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Cheng-Peow Tan
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Hidayat Lokman
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Younghwan Lee
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Donghoon Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seong-Oh Kim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jae Hyeon Park
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, Korea
| | - Thomas M Hyde
- The Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joel E Kleinman
- The Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joo Heon Shin
- The Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Daniel R Weinberger
- The Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eng King Tan
- National Neuroscience Institute, 20 College Road, Singapore 169856, Singapore
| | - Hyunsoo Shawn Je
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Huck-Hui Ng
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore; Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 639798, Singapore.
| |
Collapse
|
1513
|
Maestre AM, Fernández-Sesma A. Finding Clues for Congenital Zika Syndrome: Zika Virus Selective Infection of Immature Neurons. EBioMedicine 2016; 10:7-8. [PMID: 27475896 PMCID: PMC5006724 DOI: 10.1016/j.ebiom.2016.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 11/04/2022] Open
Affiliation(s)
- Ana M Maestre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Ana Fernández-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, United States.
| |
Collapse
|
1514
|
Brault JB, Khou C, Basset J, Coquand L, Fraisier V, Frenkiel MP, Goud B, Manuguerra JC, Pardigon N, Baffet AD. Comparative Analysis Between Flaviviruses Reveals Specific Neural Stem Cell Tropism for Zika Virus in the Mouse Developing Neocortex. EBioMedicine 2016; 10:71-6. [PMID: 27453325 PMCID: PMC5006693 DOI: 10.1016/j.ebiom.2016.07.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/06/2016] [Accepted: 07/14/2016] [Indexed: 02/04/2023] Open
Abstract
The recent Zika outbreak in South America and French Polynesia was associated with an epidemic of microcephaly, a disease characterized by a reduced size of the cerebral cortex. Other members of the Flavivirus genus, including West Nile virus (WNV), can cause encephalitis but were not demonstrated to cause microcephaly. It remains unclear whether Zika virus (ZIKV) and other flaviviruses may infect different cell populations in the developing neocortex and lead to distinct developmental defects. Here, we describe an assay to infect mouse E15 embryonic brain slices with ZIKV, WNV and dengue virus serotype 4 (DENV-4). We show that this tissue is able to support viral replication of ZIKV and WNV, but not DENV-4. Cell fate analysis reveals a remarkable tropism of ZIKV infection for neural stem cells. Closely related WNV displays a very different tropism of infection, with a bias towards neurons. We further show that ZIKV infection, but not WNV infection, impairs cell cycle progression of neural stem cells. Both viruses inhibited apoptosis at early stages of infection. This work establishes a powerful comparative approach to identify ZIKV-specific alterations in the developing neocortex and reveals specific preferential infection of neural stem cells by ZIKV. Mouse embryonic brain slices sustain Zika and West Nile, but not Dengue-4, virus replication. Zika virus, but not West Nile virus, exhibits a selective tropism of infection for neural stem cells. Zika virus, but not West Nile virus, alters cell cycle progression of neural stem cells.
A Zika virus outbreak in South America is currently responsible for a large burst of microcephaly cases, a congenital brain malformation characterized by a reduced brain size. We describe here an assay to infect cultured mouse embryonic brain slices with Zika virus as well as other closely related flaviviruses not demonstrated to cause microcephaly. We show that Zika virus displays a specific pattern of infection in the developing brain, almost exclusively infecting neural stem cells. Zika virus impairs neural stem cell proliferation, an effect not seen for other flaviviruses and that may participate in the induction of microcephaly.
Collapse
Affiliation(s)
| | - Cécile Khou
- Institut Pasteur, ERI/CIBU Arbovirus Group, 25 rue du Dr Roux, 75015 Paris, France
| | - Justine Basset
- Institut Pasteur, ERI/CIBU Arbovirus Group, 25 rue du Dr Roux, 75015 Paris, France
| | - Laure Coquand
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
| | - Vincent Fraisier
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
| | | | - Bruno Goud
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
| | | | - Nathalie Pardigon
- Institut Pasteur, ERI/CIBU Arbovirus Group, 25 rue du Dr Roux, 75015 Paris, France
| | - Alexandre D Baffet
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France.
| |
Collapse
|
1515
|
Masserdotti G, Gascón S, Götz M. Direct neuronal reprogramming: learning from and for development. Development 2016; 143:2494-510. [DOI: 10.1242/dev.092163] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The key signalling pathways and transcriptional programmes that instruct neuronal diversity during development have largely been identified. In this Review, we discuss how this knowledge has been used to successfully reprogramme various cell types into an amazing array of distinct types of functional neurons. We further discuss the extent to which direct neuronal reprogramming recapitulates embryonic development, and examine the particular barriers to reprogramming that may exist given a cell's unique developmental history. We conclude with a recently proposed model for cell specification called the ‘Cook Islands’ model, and consider whether it is a fitting model for cell specification based on recent results from the direct reprogramming field.
Collapse
Affiliation(s)
- Giacomo Masserdotti
- Institute of Stem Cell Research, Helmholtz Center Munich, Ingolstädter Landstrasse 1, Neuherberg/Munich D-85764, Germany
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, Großhadernerstrasse 9, Martinsried 82154, Germany
| | - Sergio Gascón
- Institute of Stem Cell Research, Helmholtz Center Munich, Ingolstädter Landstrasse 1, Neuherberg/Munich D-85764, Germany
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, Großhadernerstrasse 9, Martinsried 82154, Germany
| | - Magdalena Götz
- Institute of Stem Cell Research, Helmholtz Center Munich, Ingolstädter Landstrasse 1, Neuherberg/Munich D-85764, Germany
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, Großhadernerstrasse 9, Martinsried 82154, Germany
- Excellence Cluster of Systems Neurology, Großhadernerstrasse 9, Martinsried 82154, Germany
| |
Collapse
|
1516
|
Becker-Pauly C, Pietrzik CU. Mice are not Men: ADAM30 Findings Emphasize a Broader Look Towards Murine Alzheimer's Disease Models. EBioMedicine 2016; 9:19-20. [PMID: 27396345 PMCID: PMC4972564 DOI: 10.1016/j.ebiom.2016.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
1517
|
|
1518
|
Araujo AQC, Silva MTT, Araujo APQC. Zika virus-associated neurological disorders: a review. Brain 2016; 139:2122-30. [PMID: 27357348 DOI: 10.1093/brain/aww158] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/01/2016] [Indexed: 11/12/2022] Open
Abstract
Zika virus, an arbovirus transmitted by mosquitoes of the Aedes species, is now rapidly disseminating throughout the Americas and the ongoing Brazilian outbreak is the largest Zika virus epidemic so far described. In addition to being associated with a non-specific acute febrile illness, a number of neurological manifestations, mainly microcephaly and Guillain-Barré syndrome, have been associated with infection. These with other rarer neurological conditions suggest that Zika virus, similar to other flaviviruses, is neuropathogenic. The surge of Zika virus-related microcephaly cases in Brazil has received much attention and the role of the virus in this and in other neurological manifestations is growing. Zika virus has been shown to be transmitted perinatally and the virus can be detected in amniotic fluid, placenta and foetus brain tissue. A significant increase in Guillain-Barré syndrome incidence has also been reported during this, as well as in previous outbreaks. More recently, meningoencephalitis and myelitis have also been reported following Zika virus infection. In summary, while preliminary studies have suggested a clear relationship between Zika virus infection and certain neurological conditions, only longitudinal studies in this epidemic, as well as experimental studies either in animal models or in vitro, will help to better understand the role of the virus and the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Abelardo Q C Araujo
- 1 Laboratory for Clinical Research in Neuroinfections (Lapclin-Neuro), The Evandro Chagas National Institute Of Infectious Diseases (INI), FIOCRUZ, Avenida Brasil 4365, CEP 21040-360, Rio de Janeiro - RJ, Brazil 2 The Deolindo Couto Institute of Neurology (INDC), The Federal University of Rio de Janeiro (UFRJ), Avenida Venceslau Bras 95, CEP 21941-901, Rio de Janeiro - RJ, Brazil
| | - Marcus Tulius T Silva
- 1 Laboratory for Clinical Research in Neuroinfections (Lapclin-Neuro), The Evandro Chagas National Institute Of Infectious Diseases (INI), FIOCRUZ, Avenida Brasil 4365, CEP 21040-360, Rio de Janeiro - RJ, Brazil
| | - Alexandra P Q C Araujo
- 3 Neuropaediatrics Unit, the Martagão Gesteira Institute of Child Health and Paediatrics (IPPMG), The Federal University of Rio de Janeiro (UFRJ), Rua Bruno Lobo 50, CEP 21941-912, Rio de Janeiro - RJ, Brazil
| |
Collapse
|
1519
|
Mills M, Estes MK. Physiologically relevant human tissue models for infectious diseases. Drug Discov Today 2016; 21:1540-1552. [PMID: 27352632 DOI: 10.1016/j.drudis.2016.06.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 12/16/2022]
Abstract
Limitations of animal infection models have engendered longstanding obstacles in basic science and translational research. Lack of suitable animal models, the need for better predictors of human immune responses and pathogens that grow poorly or not at all outside the human host impact our ability to study infectious agents that cause human disease, generation of essential tools for genetic manipulation of microbial pathogens and development of vaccines, therapeutics and host-targeted immunotherapies. The advent of conceptual and methodological advances in tissue engineering along with collaborative efforts between the bioengineering and infectious diseases scientific communities hold great promise to overcome these significant barriers.
Collapse
Affiliation(s)
- Melody Mills
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Mary K Estes
- Molecular Virology and Microbiology and Medicine-GI, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
1520
|
Abstract
The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. Insights from cell and animal models to understand how Zika virus causes severe birth defects may lead to treatments and prevention of these diseases.
Collapse
|
1521
|
Hanners NW, Eitson JL, Usui N, Richardson RB, Wexler EM, Konopka G, Schoggins JW. Western Zika Virus in Human Fetal Neural Progenitors Persists Long Term with Partial Cytopathic and Limited Immunogenic Effects. Cell Rep 2016; 15:2315-22. [PMID: 27268504 PMCID: PMC5645151 DOI: 10.1016/j.celrep.2016.05.075] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/13/2016] [Accepted: 05/25/2016] [Indexed: 12/01/2022] Open
Abstract
The recent Zika virus (ZIKV) outbreak in the Western hemisphere is associated with severe pathology in newborns, including microcephaly and brain damage. The mechanisms underlying these outcomes are under intense investigation. Here, we show that a 2015 ZIKV isolate replicates in multiple cell types, including primary human fetal neural progenitors (hNPs). In immortalized cells, ZIKV is cytopathic and grossly rearranges endoplasmic reticulum membranes similar to other flaviviruses. In hNPs, ZIKV infection has a partial cytopathic phase characterized by cell rounding, pyknosis, and activation of caspase 3. Despite notable cell death, ZIKV did not activate a cytokine response in hNPs. This lack of cell intrinsic immunity to ZIKV is consistent with our observation that virus replication persists in hNPs for at least 28 days. These findings, supported by published fetal neuropathology, establish a proof-of-concept that neural progenitors in the developing human fetus can be direct targets of detrimental ZIKV-induced pathology.
Collapse
Affiliation(s)
- Natasha W Hanners
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Infectious Disease, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jennifer L Eitson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Noriyoshi Usui
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - R Blake Richardson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric M Wexler
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
1522
|
Whalley K. Techniques: Spinning organoids shed light on Zika. Nat Rev Neurosci 2016; 17:334-5. [PMID: 27194600 DOI: 10.1038/nrn.2016.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
1523
|
Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice. Cell Res 2016; 26:645-54. [PMID: 27174054 PMCID: PMC4897185 DOI: 10.1038/cr.2016.58] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 04/30/2016] [Accepted: 05/02/2016] [Indexed: 12/14/2022] Open
Abstract
The recent Zika virus (ZIKV) epidemic in Latin America coincided with a marked increase in microcephaly in newborns. However, the causal link between maternal ZIKV infection and malformation of the fetal brain has not been firmly established. Here we show a vertical transmission of ZIKV in mice and a marked effect on fetal brain development. We found that intraperitoneal (i.p.) injection of a contemporary ZIKV strain in pregnant mice led to the infection of radial glia cells (RGs) of dorsal ventricular zone of the fetuses, the primary neural progenitors responsible for cortex development, and caused a marked reduction of these cortex founder cells in the fetuses. Interestingly, the infected fetal mice exhibited a reduced cavity of lateral ventricles and a discernable decrease in surface areas of the cortex. This study thus supports the conclusion that vertically transmitted ZIKV affects fetal brain development and provides a valuable animal model for the evaluation of potential therapeutic or preventative strategies.
Collapse
|
1524
|
Li C, Xu D, Ye Q, Hong S, Jiang Y, Liu X, Zhang N, Shi L, Qin CF, Xu Z. Zika Virus Disrupts Neural Progenitor Development and Leads to Microcephaly in Mice. Cell Stem Cell 2016; 19:120-6. [PMID: 27179424 DOI: 10.1016/j.stem.2016.04.017] [Citation(s) in RCA: 467] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 04/25/2016] [Accepted: 04/29/2016] [Indexed: 11/16/2022]
Abstract
The link between Zika virus (ZIKV) infection and microcephaly has raised urgent global alarm. The historical African ZIKV MR766 was recently shown to infect cultured human neural precursor cells (NPCs), but unlike the contemporary ZIKV strains, it is not believed to cause microcephaly. Here we investigated whether the Asian ZIKV strain SZ01 could infect NPCs in vivo and affect brain development. We found that SZ01 replicates efficiently in embryonic mouse brain by directly targeting different neuronal linages. ZIKV infection leads to cell-cycle arrest, apoptosis, and inhibition of NPC differentiation, resulting in cortical thinning and microcephaly. Global gene expression analysis of infected brains reveals upregulation of candidate flavirus entry receptors and dysregulation of genes associated with immune response, apoptosis, and microcephaly. Our model provides evidence for a direct link between Zika virus infection and microcephaly, with potential for further exploration of the underlying mechanisms and management of ZIKV-related pathological effects during brain development.
Collapse
Affiliation(s)
- Cui Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Dan Xu
- Institute of Life Sciences, Fuzhou University, Fuzhou 350116, China
| | - Qing Ye
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Shuai Hong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yisheng Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinyi Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Nana Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; Guangxi Medical University, Nanning 530021, China
| | - Lei Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing 100101, China.
| |
Collapse
|
1525
|
The Brazilian Zika virus strain causes birth defects in experimental models. Nature 2016; 534:267-71. [PMID: 27279226 PMCID: PMC4902174 DOI: 10.1038/nature18296] [Citation(s) in RCA: 992] [Impact Index Per Article: 110.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/04/2016] [Indexed: 12/22/2022]
Abstract
Zika virus (ZIKV) is an arbovirus belonging to the genus Flavivirus (Family Flaviviridae) and was first described in 1947 in Uganda following blood analyses of sentinel Rhesus monkeys1. Until the 20th century, the African and Asian lineages of the virus did not cause meaningful infections in humans. However, in 2007, vectored by Aedes aegypti mosquitoes, ZIKV caused the first noteworthy epidemic on the island of Yap in Micronesia2. Patients experienced fever, skin rash, arthralgia and conjunctivitis2. From 2013 to 2015, the Asian lineage of the virus caused further massive outbreaks in New Caledonia and French Polynesia. In 2013, ZIKV reached Brazil, later spreading to other countries in South and Central America3. In Brazil, the virus has been linked to congenital malformations, including microcephaly and other severe neurological diseases, such as Guillain-Barré syndrome4,5. Despite clinical evidence, direct experimental proof showing that the Brazilian ZIKV (ZIKVBR) strain causes birth defects remains missing6. Here we demonstrate that the ZIKVBR infects fetuses, causing intra-uterine growth restriction (IUGR), including signs of microcephaly in mice. Moreover, the virus infects human cortical progenitor cells, leading to an increase in cell death. Finally, we observed that the infection of human brain organoids resulted in a reduction of proliferative zones and disrupted cortical layers. These results indicate that ZIKVBR crosses the placenta and causes microcephaly by targeting cortical progenitor cells, inducing cell death by apoptosis and autophagy, impairing neurodevelopment. Our data reinforce the growing body of evidence linking the ZIKVBR outbreak to the alarming number of cases of congenital brain malformations. Our model can be used to determine the efficiency of therapeutic approaches to counteracting the harmful impact of ZIKVBR in human neurodevelopment.
Collapse
|
1526
|
Tsunoda I, Omura S, Sato F, Kusunoki S, Fujita M, Park AM, Hasanovic F, Yanagihara R, Nagata S. Neuropathogenesis of Zika Virus Infection : Potential Roles of Antibody-Mediated Pathology. ACTA MEDICA KINKI UNIVERSITY 2016; 41:37-52. [PMID: 28428682 DOI: pmid/28428682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Zika virus (ZIKV) is an enveloped, positive-sense, single-stranded RNA virus that belongs to the genus Flavivirus, family Flaviviridae, which includes many human and animal pathogens, such as dengue virus (DENV), West Nile virus, and Japanese encephalitis virus. In the original as well as subsequent experimental and clinical reports, ZIKV seems to have moderate neurotropism (in animal models) and neurovirulence (in human fetuses), but no neuroinvasiveness (in human adults). Intrauterine ZIKV infection (viral pathology) has been linked to an increased incidence of microcephaly, while increased Guillain-Barré syndrome (GBS) following ZIKV infection is likely immune-mediated (immunopathology). Clinically, in ZIKV infection, antibodies against other flaviviruses, such as DENV, have been detected; these antibodies can cross-react with ZIKV without ZIKV neutralization. In theory, such non-neutralizing antibodies are generated at the expense of decreased production of neutralizing antibodies ("antigenic sin"), leading to poor viral clearance, while the non-neutralizing antibodies can also enhance viral replication in Fc receptor (FcR)-bearing cells via antibody-dependent enhancement (ADE). Here, we propose three potential roles of the antibody-mediated pathogenesis of ZIKV infection: 1) cross-reactive antibodies that recognize ZIKV and neural antigens cause GBS; 2) ZIKV-antibody complex is transported transplacentally via neonatal FcR (FcRn), resulting in fetal infection; and 3) ZIKV-antibody complex is taken up at peripheral nerve endings and transported to neurons in the central nervous system (CNS), by which the virus can enter the CNS without crossing the blood-brain barrier.
Collapse
Affiliation(s)
- Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Susumu Kusunoki
- Department of Neurology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Mitsugu Fujita
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Faris Hasanovic
- Department of Pathology, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Richard Yanagihara
- Departments of Pediatrics and Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Satoshi Nagata
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|