1551
|
Qiao W, Wang H, Zhang X, Luo K. Proline-rich protein 11 silencing inhibits hepatocellular carcinoma growth and epithelial-mesenchymal transition through β-catenin signaling. Gene 2018; 681:7-14. [PMID: 30248355 DOI: 10.1016/j.gene.2018.09.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/30/2018] [Accepted: 09/19/2018] [Indexed: 11/18/2022]
Abstract
Proline-rich protein 11 (PRR11) has been shown to play an critical roles in the development of cancer. However, the clinical significance and the biological role of PRR11 in hepatocellular carcinoma (HCC) remains unknown. The present study aimed to investigate the expression pattern, prognostic value and the biological role of PRR11 in HCC. PRR11 expression in 80 HCC surgical specimens was examined, and its clinical significance was analyzed. The role of PRR11 in cell proliferation, colony formation, migration and invasion were also determined. The results showed that PRR11 mRNA was significantly up-regulated in 56.25% (45/80) HCC from that in matched adjacent non-tumor tissues. High PRR11 was correlated with tumor size (P = 0.01) and TNM stage (P = 0.006). Patients with higher PRR11 expression had poor overall survival time (P < 0.001). Furthermore, PRR11 silencing obviously inhibited cell proliferation, colony formation, as well as cell migration and invasion of HCC cell lines in vitro. Mechanistically, knockdown of PRR11 significantly decreased the expression of β-catenin, cyclinD1, c-myc and N-cadherin in HCC cell lines. Additionally, the inhibitory effects of PRR11 silencing on cell migration was significantly enhanced by β-catenin inhibition. PRRl1 mRNA expression was found positively correlated with β-catenin (R = 0.5472, P ˂ 0.0001), c-myc (R = 0.5527, P ˂ 0.0001) and cyclinD1 (R = 0.3948, P = 0.0003) in HCC tissues. Collectively, our data demonstrate that PRR11 plays an oncogenic role in HCC progression, through activating the Wnt/β-catenin signaling pathway, and may represent a valuable prognostic marker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Wei Qiao
- Department of General Surgery, The Ninth Hospital of Xi'an, No 151 South Erhuan Dongduan, Xi'an City, Shaanxi Province 710054, China.
| | - Hengyang Wang
- Department of General Surgery, The Ninth Hospital of Xi'an, No 151 South Erhuan Dongduan, Xi'an City, Shaanxi Province 710054, China
| | - Xiaozhao Zhang
- Department of General Surgery, The Ninth Hospital of Xi'an, No 151 South Erhuan Dongduan, Xi'an City, Shaanxi Province 710054, China
| | - Kongliang Luo
- Department of General Surgery, The Ninth Hospital of Xi'an, No 151 South Erhuan Dongduan, Xi'an City, Shaanxi Province 710054, China
| |
Collapse
|
1552
|
Rastogi A. Changing role of histopathology in the diagnosis and management of hepatocellular carcinoma. World J Gastroenterol 2018; 24:4000-4013. [PMID: 30254404 PMCID: PMC6148422 DOI: 10.3748/wjg.v24.i35.4000] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and fatal cancer in the world. HCC frequently presents with advanced disease, has a high recurrence rate and limited treatment options, which leads to very poor prognosis. This warrants urgent improvement in the diagnosis and treatment. Liver biopsy plays very important role in the diagnosis and prognosis of HCC, but with technical advancements and progression in the field of imaging, clinical guidelines have restricted the role of biopsy to very limited situations. Biopsy also has its own problems of needle tract seeding of tumor, small risk of complications, technical and sampling errors along with interpretative errors. Despite this, tissue analysis is often required because imaging is not always specific, limited expertise and lack of advanced imaging in many centers and limitations of imaging in the diagnosis of small, mixed and other variant forms of HCC. In addition, biopsy confirmation is often required for clinical trials of new drugs and targeted therapies. Tissue biomarkers along with certain morphological features, phenotypes and immune-phenotypes that serve as important prognostic and outcome predictors and as decisive factors for therapy decisions, add to the continuing role of histopathology. Advancements in cancer biology and development of molecular classification of HCC with clinic pathological correlation, lead to discovery of HCC phenotypic surrogates of prognostic and therapeutically significant molecular signatures. Thus tissue characteristics and morphology based correlates of molecular subtypes provide invaluable information for management and prognosis. This review thus focuses on the importance of histopathology and resurgence of role of biopsy in the diagnosis, management and prognostication of HCC.
Collapse
Affiliation(s)
- Archana Rastogi
- Department of Pathology, Institute of Liver & Biliary Sciences, New Delhi 110070, India
| |
Collapse
|
1553
|
Mato JM, Elortza F, Lu SC, Brun V, Paradela A, Corrales FJ. Liver cancer-associated changes to the proteome: what deserves clinical focus? Expert Rev Proteomics 2018; 15:749-756. [PMID: 30204005 DOI: 10.1080/14789450.2018.1521277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is recognized as the fifth most common neoplasm and currently represents the second leading form of cancer-related death worldwide. Despite great progress has been done in the understanding of its pathogenesis, HCC represents a heavy societal and economic burden as most patients are still diagnosed at advanced stages and the 5-year survival rate remain below 20%. Early detection and revolutionary therapies that rely on the discovery of new molecular biomarkers and therapeutic targets are therefore urgently needed to develop precision medicine strategies for a more efficient management of patients. Areas covered: This review intends to comprehensively analyse the proteomics-based research conducted in the last few years to address some of the principal still open riddles in HCC biology, based on the identification of molecular drivers of tumor progression and metastasis. Expert commentary: The technical advances in mass spectrometry experienced in the last decade have significantly improved the analytical capacity of proteome wide studies. Large-scale protein and protein variant (post-translational modifications) identification and quantification have allowed detailed dissections of molecular mechanisms underlying HCC progression and are already paving the way for the identification of clinically relevant proteins and the development of their use on patient care.
Collapse
Affiliation(s)
- José M Mato
- a CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park , Derio , Spain.,b National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health , Madrid , Spain
| | - Félix Elortza
- a CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park , Derio , Spain.,b National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health , Madrid , Spain
| | - Shelly C Lu
- c Division of Digestive and Liver Diseases , Cedars-Sinai Medical Center , LA , CA , USA
| | - Virginie Brun
- d Université Grenoble-Alpes, CEA, BIG, Biologie à Grande Echelle, Inserm , Grenoble , France
| | - Alberto Paradela
- e Functional Proteomics Laboratory , Centro Nacional de Biotecnología-CSIC, Proteored-ISCIII, CIBERehd , Madrid , Spain
| | - Fernando J Corrales
- b National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health , Madrid , Spain.,e Functional Proteomics Laboratory , Centro Nacional de Biotecnología-CSIC, Proteored-ISCIII, CIBERehd , Madrid , Spain
| |
Collapse
|
1554
|
Yue D, Sun X. Idelalisib promotes Bim-dependent apoptosis through AKT/FoxO3a in hepatocellular carcinoma. Cell Death Dis 2018; 9:935. [PMID: 30224718 PMCID: PMC6141589 DOI: 10.1038/s41419-018-0960-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 12/16/2022]
Abstract
Idelalisib, a selective PI3Kδ inhibitor, has been approved by the FDA for chronic lymphocytic leukemia/small lymphocytic lymphoma treatment and for follicular lymphoma treatment when combined with rituximab. However, the mechanisms of effective action of idelalisib in hepatocellular carcinoma (HCC) remain unclear. In the current study, we aimed to investigate how idelalisib inhibits the growth of HCC cells and enhances the effects of other chemotherapeutic drugs. Our results show that idelalisib treatment promotes Bim induction in HCC via the FoxO3a pathway following PI3K/AKT inactivation. Moreover, our results show that Bim is required for idelalisib-mediated apoptosis in HCC. Idelalisib also synergizes with sorafenib or doxorubicin to induce significant apoptosis in HCC, and Bim is also necessary for the induction of apoptosis by cotreatment. Furthermore, a xenograft experiment reveals that the Bim deficiency abolishes apoptosis and antitumor effects of idelalisib in vivo. In summary, our results indicate a key role of Bim in mediating the antitumor effects of idelalisib in HCC. Our results also support the clinical significance of the drug.
Collapse
Affiliation(s)
- Dan Yue
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Xun Sun
- Department of Immunology, China Medical University, Shenyang, China
| |
Collapse
|
1555
|
Zhang J, Fang C, Qu M, Wu H, Wang X, Zhang H, Ma H, Zhang Z, Huang Y, Shi L, Liang S, Gao Z, Song W, Wang X. CD13 Inhibition Enhances Cytotoxic Effect of Chemotherapy Agents. Front Pharmacol 2018; 9:1042. [PMID: 30258365 PMCID: PMC6144529 DOI: 10.3389/fphar.2018.01042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022] Open
Abstract
Multidrug resistance (MDR) of hepatocellular carcinoma is a serious problem. Although CD13 is a biomarker in human liver cancer stem cells, the relationship between CD13 and MDR remains uncertain. This study uses liver cancer cell model to understand the role of CD13 in enhancing the cytotoxic effect of chemotherapy agents. Cytotoxic agents can induce CD13 expression. CD13 inhibitor, bestatin, enhances the antitumor effect of cytotoxic agents. Meanwhile, CD13-targeting siRNA and neutralizing antibody can enhance the cytotoxic effect of 5-fluorouracil (5FU). CD13 overexpression increases cell survival upon cytotoxic agents treatment, while the knockdown of CD13 causes hypersensitivity of cells to cytotoxic agents treatment. Mechanistically, the inhibition of CD13 leads to the increase of cellular reactive oxygen species (ROS). BC-02 is a novel mutual prodrug (hybrid drug) of bestatin and 5FU. Notably, BC-02 can inhibit cellular activity in both parental and drug-resistant cells, accompanied with significantly increased ROS level. Moreover, the survival time of Kunming mice bearing H22 cells under BC-02 treatment is comparable to the capecitabine treatment at maximum dosage. These data implicate a therapeutic method to reverse MDR by targeting CD13, and indicate that BC-02 is a potent antitumor compound.
Collapse
Affiliation(s)
- Jian Zhang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Chunyan Fang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Meihua Qu
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Huina Wu
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Xuejuan Wang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Hongan Zhang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Hui Ma
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Zhaolin Zhang
- Weifang Bochuang International Biological Medicinal Institute, Weifang, China
| | - Yongxue Huang
- Weifang Bochuang International Biological Medicinal Institute, Weifang, China
| | - Lihong Shi
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Shujuan Liang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Zhiqin Gao
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Weiguo Song
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Xuejian Wang
- School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
1556
|
Danos D, Leonardi C, Gilliland A, Shankar S, Srivastava RK, Simonsen N, Ferguson T, Yu Q, Wu XC, Scribner R. Increased Risk of Hepatocellular Carcinoma Associated With Neighborhood Concentrated Disadvantage. Front Oncol 2018; 8:375. [PMID: 30254987 PMCID: PMC6141716 DOI: 10.3389/fonc.2018.00375] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/21/2018] [Indexed: 12/19/2022] Open
Abstract
Purpose: Over the past three decades, Hepatocellular Carcinoma (HCC) is one of few cancers for which incidence has increased in the United States (US). It is likely social determinants at the population level are driving this increase. We designed a population-based study to explore whether social determinants at the neighborhood level are geographically associated with HCC incidence in Louisiana by examining the association of HCC incidence with neighborhood concentrated disadvantage. Methods: Primary HCC cases diagnosed from 2008 to 2012 identified from the Louisiana Tumor Registry were geocoded to census tract of residence at the time of diagnosis. Neighborhood concentrated disadvantage index (CDI) for each census tract was calculated according to the PhenX Toolkit data protocol based on population and socioeconomic measures from the US Census. The incidence of HCC was modeled using multilevel binomial regression with individuals nested within neighborhoods. Results: The study included 1,418 HCC cases. Incidence of HCC was greater among males than females and among black than white. In multilevel models controlling for age, race, and sex, neighborhood CDI was positively associated with the incidence of HCC. A one standard deviation increase in CDI was associated with a 22% increase in HCC risk [Risk Ratio (RR) = 1.22; 95% CI (1.15, 1.31)]. Adjusting for contextual effects of an individual's neighborhood reduced the disparity in HCC incidence. Conclusion: Neighborhood concentrated disadvantage, a robust measure of an adverse social environment, was found to be a geographically associated with HCC incidence. Differential exposure to neighborhoods characterized by concentrated disadvantage partially explained the racial disparity in HCC for Louisiana. Our results suggest that increasing rates of HCC, and existing racial disparities for the disease, are partially explained by measures of an adverse social environment.
Collapse
Affiliation(s)
- Denise Danos
- Louisiana State University Health Sciences Center School of Medicine, Stanley S. Scott Cancer Center, New Orleans, LA, United States
| | - Claudia Leonardi
- Behavioral and Community Health Sciences Department, Louisiana State University Health Sciences Center School of Public Health, New Orleans, LA, United States
| | - Aubrey Gilliland
- Epidemiology Department, Louisiana State University Health Sciences Center School of Public Health, New Orleans, LA, United States
| | - Sharmila Shankar
- Department of Genetics, Louisiana State University Health Sciences Center School of Medicine, Stanley S. Scott Cancer Center, New Orleans, LA, United States
| | - Rakesh K. Srivastava
- Department of Genetics, Louisiana State University Health Sciences Center School of Medicine, Stanley S. Scott Cancer Center, New Orleans, LA, United States
| | - Neal Simonsen
- Louisiana State University Health Sciences Center School of Medicine, Stanley S. Scott Cancer Center, New Orleans, LA, United States
| | - Tekeda Ferguson
- Epidemiology Department, Louisiana State University Health Sciences Center School of Public Health, New Orleans, LA, United States
| | - Qingzhao Yu
- Biostatistics Department, Louisiana State University Health Sciences Center School of Public Health, New Orleans, LA, United States
| | - Xiao-Cheng Wu
- Epidemiology Department, Louisiana State University Health Sciences Center School of Public Health, New Orleans, LA, United States
| | - Richard Scribner
- Louisiana State University Health Sciences Center School of Medicine, Stanley S. Scott Cancer Center, New Orleans, LA, United States
- Epidemiology Department, Louisiana State University Health Sciences Center School of Public Health, New Orleans, LA, United States
| |
Collapse
|
1557
|
Mishra M, Jayal P, Karande AA, Chandra N. Identification of a co-target for enhancing efficacy of sorafenib in HCC through a quantitative modeling approach. FEBS J 2018; 285:3977-3992. [PMID: 30136368 DOI: 10.1111/febs.14641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/07/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022]
Abstract
Sorafenib (SFB), a multi-kinase inhibitor, is the only approved drug for treating hepatocellular carcinoma (HCC). However, SFB shows low efficacy in many cases. HCC related mortality therefore remains to be high worldwide. SFB, a multi-kinase inhibitor is also known to modulate the redox homeostasis in cancer cells. To understand the effect of SFB on the redox status, a quantitative understanding of the system is necessary. Kinetic modeling of the relevant pathways is a useful approach for obtaining a quantitative understanding of the pathway dynamics and to rank the individual factors based on the extent of influence they wield on the pathway. Here, we report a comprehensive model of the glutathione reaction network (GSHnet ), consisting of four modules and includes SFB-induced redox stress. We compared GSHnet simulations for HCC of six different etiologies with healthy liver, and correctly identified the expected variations in cancer. Next, we studied alterations induced in the system upon SFB treatment and observed differential H2 O2 dynamics in all the conditions. Using metabolic control analysis, we identified glutathione S-transferase (GST) as the enzyme with the highest selective control coefficient, making it an attractive co-target for potentiating the action of SFB across all six etiologies. As a proof-of-concept, we selected ethacrynic acid (EA), a known inhibitor of GST, and verified ex vivo that EA synergistically potentiates the cytotoxic effect of SFB. Being an FDA approved drug, EA is a promising candidate for repurposing as a combination therapy with SFB for HCC treatment.
Collapse
Affiliation(s)
- Madhulika Mishra
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Priyanka Jayal
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Anjali A Karande
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
1558
|
Roca Suarez AA, Baumert TF, Lupberger J. Beyond viral dependence: The pathological consequences of HCV-induced EGF signaling. J Hepatol 2018; 69:564-566. [PMID: 29937068 PMCID: PMC7613413 DOI: 10.1016/j.jhep.2018.05.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/27/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Armando Andres Roca Suarez
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Pôle Hépato-digestif, Institut Hospitalo-universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | - Joachim Lupberger
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France
| |
Collapse
|
1559
|
Kudo M. Proposal of Primary Endpoints for TACE Combination Trials with Systemic Therapy: Lessons Learned from 5 Negative Trials and the Positive TACTICS Trial. Liver Cancer 2018; 7:225-234. [PMID: 30319982 PMCID: PMC6167729 DOI: 10.1159/000492535] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 02/04/2023] Open
Affiliation(s)
- Masatoshi Kudo
- *Masatoshi Kudo, Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511 (Japan), E-Mail
| |
Collapse
|
1560
|
Brown ZJ, Heinrich B, Greten TF. Mouse models of hepatocellular carcinoma: an overview and highlights for immunotherapy research. Nat Rev Gastroenterol Hepatol 2018; 15:536-554. [PMID: 29904153 DOI: 10.1038/s41575-018-0033-6] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mouse models are the basis of preclinical and translational research in hepatocellular carcinoma (HCC). Multiple methods exist to induce tumour formation in mice, including genetically engineered mouse models, chemotoxic agents, intrahepatic or intrasplenic injection of tumour cells and xenograft approaches. Additionally, as HCC generally develops in the context of diseased liver, methods exist to induce liver disease in mice to mimic viral hepatitis, fatty liver disease, fibrosis, alcohol-induced liver disease and cholestasis. Similar to HCC in humans, response to therapy in mouse models is monitored with imaging modalities such as CT or MRI, as well as additional techniques involving bioluminescence. As immunotherapy is increasingly applied to HCC, mouse models for these approaches are required for preclinical data. In studying cancer immunotherapy, it is important to consider aspects of antitumour immune responses and to produce a model that mimics the complexity of the immune system. This Review provides an overview of the different mouse models of HCC, presenting techniques to prepare an HCC mouse model and discussing different approaches to help researchers choose an appropriate model for a specific hypothesis. Specific aspects of immunotherapy research in HCC and the applied mouse models in this field are also highlighted.
Collapse
Affiliation(s)
- Zachary J Brown
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bernd Heinrich
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
1561
|
He Q, He X, Deng B, Shi C, Lin L, Liu P, Yang Z, Yang S, Xu Z. Sorafenib and indocyanine green co-loaded in photothermally sensitive liposomes for diagnosis and treatment of advanced hepatocellular carcinoma. J Mater Chem B 2018; 6:5823-5834. [PMID: 32254989 DOI: 10.1039/c8tb01641k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sorafenib (SF), as an irreplaceable first-line drug to help advanced hepatocellular carcinoma (HCC) patients to prolong their lives, has already been used in clinical practice for several years. However, this treatment causes several side effects, and few alternatives to SF treatment exist. Herein, we designed NIR fluorescence imaging-guided photothermally sensitive nanoliposomes based on co-encapsulation of SF and the clinical photothermal and photodynamic therapy agent Indocyanine Green (ICG) to solve the problems of SF-based treatment in advanced HCC. As expected, in vitro and in vivo drug release studies on SF-ICG liposomes (SILs) demonstrated SF release from SILs compared with free SF at the same concentration. In addition, in vivo NIR fluorescence imaging and anti-tumor treatment using SILs have been demonstrated by using Hep3B tumor-bearing xenograft nude mice. All detailed experimental evidence suggested that biocompatibility, biotoxicity, and anti-tumor effects were improved by using SILs instead of free SF. In conclusion, our designed SILs could present a novel and suitable SF-based treatment strategy for advanced HCC therapy in the future.
Collapse
Affiliation(s)
- Qianyuan He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for The Green Preparation and Application of Functional Material, Hubei University, Wuhan, Hubei 430062, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
1562
|
Thompson SM, Garg I, Ehman EC, Sheedy SP, Bookwalter CA, Carter RE, Roberts LR, Venkatesh SK. Non-alcoholic fatty liver disease-associated hepatocellular carcinoma: effect of hepatic steatosis on major hepatocellular carcinoma features at MRI. Br J Radiol 2018; 91:20180345. [PMID: 30074820 DOI: 10.1259/bjr.20180345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE: To evaluate the effect of hepatic steatosis on LI-RADS® major features at MRI in patients with non-alcoholic fatty liver disease (NAFLD)-associated hepatocellular carcinoma (HCC). METHODS: HCC and liver parenchyma features at MRI from 48 consecutive patients with NAFLD and histology proven HCC (mean ± SD; 4.5 ± 3.4 cm) were independently reviewed by three radiologists. Inter-rater agreement was determined by prevalence/bias-adjusted kappa. Hepatic fat signal fraction (FS%) was independently calculated. HCC features were compared by FS% at MRI using logistic regression analysis and histologic steatosis grade using Cochran-Armitage test for trend, stratified by cirrhotic liver morphology or histologic fibrosis stage. Receiver operating characteristic curves were generated to determine the sensitivity and specificity for major HCC features by FS%. RESULTS: Major HCC features included arterial phase hyperenhancement (APHE) in 45 (93%), portal venous phase washout (PVWO) in 30 (63%), delayed phase washout (DPWO) in 38 (79%) and enhancing "capsule" in 34 (71%). Cirrhotic morphology was present in 22 (46%). Inter-rater agreement was 0.75 for APHE, 0.42-0.58 for PVWO, 0.58-0.71 for DPWO and 0.38-0.67 for enhancing "capsule". There was an 18%, 14% and 22% increase in the odds of absent PVWO, DPWO and capsule appearance for every 1% increase in hepatic FS% in patients with non-cirrhotic liver morphology (p = 0.011, 0.040 and 0.029, respectively). Hepatic FS% ≥ 14.8% had a sensitivity and specificity of 64 and 100% for absent PVWO and 71 and 90% for absent DPWO in patients with non-cirrhotic liver morphology. CONCLUSION: Absent washout and capsule appearance are associated with increasing hepatic steatosis in patients with non-cirrhotic, NAFLD-associated HCC. ADVANCES IN KNOWLEDGE: In patients with non-cirrhotic, non-alcoholic fatty liver disease (NAFLD)-associated hepatocellular carcinoma (HCC), absent HCC washout and capsule appearance are associated with increasing hepatic steatosis, thereby potentially impacting the noninvasive imaging diagnosis of HCC in these patients. Lack of washout or capsule appearance in steatotic livers at MRI may require alternative criteria for the diagnosis of HCC in patients with non-cirrhotic NAFLD.
Collapse
Affiliation(s)
- Scott M Thompson
- 1 Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic , Rochester, MN , USA
| | - Ishan Garg
- 1 Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic , Rochester, MN , USA
| | - Eric C Ehman
- 1 Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic , Rochester, MN , USA
| | - Shannon P Sheedy
- 1 Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic , Rochester, MN , USA
| | - Candice A Bookwalter
- 1 Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic , Rochester, MN , USA
| | - Rickey E Carter
- 2 Division of Biomedical Statistics and Informatics, Mayo Clinic School of Medicine, Mayo Clinic , Jacksonville, FL , USA
| | - Lewis R Roberts
- 3 Division of Gastroenterology and Hepatology, Mayo Clinic School of Medicine, Mayo Clinic , Rochester, MN , USA
| | - Sudhakar K Venkatesh
- 1 Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic , Rochester, MN , USA
| |
Collapse
|
1563
|
Cytokine-mediated modulation of the hepatic miRNome: miR-146b-5p is an IL-6-inducible miRNA with multiple targets. J Leukoc Biol 2018; 104:987-1002. [DOI: 10.1002/jlb.ma1217-499rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
|
1564
|
Huck I, Beggs K, Apte U. Paradoxical Protective Effect of Perfluorooctanesulfonic Acid Against High-Fat Diet-Induced Hepatic Steatosis in Mice. Int J Toxicol 2018; 37:383-392. [PMID: 30134762 PMCID: PMC6150807 DOI: 10.1177/1091581818790934] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a persistent organic pollutant with worldwide bioaccumulation due to a very long half-life. Perfluorooctanesulfonic acid exposure results in significant hepatic effects including steatosis, proliferation, hepatomegaly, and in rodents, carcinogenesis. The objective of this study was to determine whether PFOS exposure exacerbates nonalcoholic fatty liver disease and nonalcoholic steatohepatitis pathogenesis. Eight-week-old male C57BL/6 J mice (n = 5 per group) were fed ad libitum normal chow diet (ND) alone, 60% high-fat diet (HFD) alone, ND + PFOS, and HFD + PFOS (0.0001% w/w (1 mg/kg) of PFOS) for 6 weeks. Both HFD alone and the ND + PFOS treatment induced significant adiposity and hepatomegaly, but the HFD + PFOS treatment showed a marked protection. Oil Red O staining and quantitative analysis of hepatic lipid content revealed increased hepatic steatosis in ND + PFOS and in HFD alone fed mice, which was prevented in HFD + PFOS treatment. Further studies revealed that ND + PFOS treatment significantly affected expression of lipid trafficking genes to favor steatosis, but these changes were absent in HFD + PFOS group. Specifically, expression of CD36, the major lipid importer in the cells, and peroxisome proliferator-activated receptor gamma (PPARγ), its major regulator, were induced in HFD + no treatment (NT) and ND + PFOS-fed mice but remained unchanged in HFD + PFOS mice. In conclusion, these data indicate that coadministration of PFOS with HFD mitigates steatosis and hepatomegaly induced by HFD and that by PFOS fed in ND diet via regulation of cellular lipid import machinery. These findings suggest dietary lipid content be considered when performing risk management of PFOS in humans and the elucidation of PFOS-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ian Huck
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kevin Beggs
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Udayan Apte
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
1565
|
Hill MA, Alexander WB, Guo B, Kato Y, Patra K, O'Dell MR, McCall MN, Whitney-Miller CL, Bardeesy N, Hezel AF. Kras and Tp53 Mutations Cause Cholangiocyte- and Hepatocyte-Derived Cholangiocarcinoma. Cancer Res 2018; 78:4445-4451. [PMID: 29871934 PMCID: PMC6097629 DOI: 10.1158/0008-5472.can-17-1123] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 04/18/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a primary liver cancer epidemiologically linked with liver injury, which has poorly understood incipient stages and lacks early diagnostics and effective therapies. While iCCA is conventionally thought to arise from the biliary tract, studies have suggested that both hepatocytes and biliary cells (cholangiocytes) may give rise to iCCA. Consistent with the plasticity of these cell lineages, primary liver carcinomas exhibit a phenotypic range from hepatocellular carcinoma (HCC) to iCCA, with intermediates along this spectrum. Here, we generated mouse models to examine the consequence of targeting mutant Kras and Tp53, common alterations in human iCCA, to different adult liver cell types. Selective induction of these mutations in the SOX9+ population, predominantly consisting of mature cholangiocytes, resulted in iCCA emerging from premalignant biliary intraepithelial neoplasia (BilIN). In contrast, adult hepatocytes were relatively refractory to these mutations and formed rare HCC. In this context, injury accelerated hepatocyte-derived tumorigenesis and promoted a phenotypic switch to iCCA. BilIN precursor lesions were absent in the hepatocyte-derived iCCA models, pointing toward distinct and direct emergence of a malignant cholangiocytic phenotype from injured, oncogenically primed hepatocytes. Tp53 loss enhanced the reprogramming of hepatocytes to cholangiocytes, which may represent a mechanism facilitating formation of hepatocyte-derived iCCA. Overall, our work shows iCCA driven by Kras and Tp53 may originate from both mature cholangiocytes and hepatocytes, and factors such as chronic liver injury and underlying genetic mutations determine the path of progression and resulting cancer phenotype.Significance: The histopathogenesis of biliary tract cancer, driven by Tp53 and Kras mutations, can be differentially impacted by the cell of origin within the mature liver as well by major epidemiologic risk factors. Cancer Res; 78(16); 4445-51. ©2018 AACR.
Collapse
Affiliation(s)
- Margaret A Hill
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - William B Alexander
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Bing Guo
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Yasutaka Kato
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Krushna Patra
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Michael R O'Dell
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Matthew N McCall
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York
| | - Christa L Whitney-Miller
- Department of Pathology and Laboratory Medicine University of Rochester Medical Center, Rochester, New York
| | - Nabeel Bardeesy
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Aram F Hezel
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York.
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
1566
|
Wu MY, Yiang GT, Cheng PW, Chu PY, Li CJ. Molecular Targets in Hepatocarcinogenesis and Implications for Therapy. J Clin Med 2018; 7:jcm7080213. [PMID: 30104473 PMCID: PMC6112027 DOI: 10.3390/jcm7080213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocarcinogenesis comprises of multiple, complex steps that occur after liver injury and usually involve several pathways, including telomere dysfunction, cell cycle, WNT/β-catenin signaling, oxidative stress and mitochondria dysfunction, autophagy, apoptosis, and AKT/mTOR signaling. Following liver injury, gene mutations, accumulation of oxidative stress, and local inflammation lead to cell proliferation, differentiation, apoptosis, and necrosis. The persistence of this vicious cycle in turn leads to further gene mutation and dysregulation of pro- and anti-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, IL-10, IL-12, IL-13, IL-18, and transforming growth factor (TGF)-β, resulting in immune escape by means of the NF-κB and inflammasome signaling pathways. In this review, we summarize studies focusing on the roles of hepatocarcinogenesis and the immune system in liver cancer. In addition, we furnish an overview of recent basic and clinical studies to provide a strong foundation to develop novel anti-carcinogenesis targets for further treatment interventions.
Collapse
Affiliation(s)
- Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Giuo-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Pei-Wen Cheng
- Yuh-Ing Junior College of Health Care & Management, Kaohsiung 807, Taiwan.
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Pei-Yi Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 231, Taiwan.
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 704, Taiwan.
| | - Chia-Jung Li
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| |
Collapse
|
1567
|
Huang CY, Hsieh FS, Wang CY, Chen LJ, Chang SS, Tsai MH, Hung MH, Kuo CW, Shih CT, Chao TI, Chen KF. Palbociclib enhances radiosensitivity of hepatocellular carcinoma and cholangiocarcinoma via inhibiting ataxia telangiectasia-mutated kinase-mediated DNA damage response. Eur J Cancer 2018; 102:10-22. [PMID: 30103095 DOI: 10.1016/j.ejca.2018.07.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/15/2022]
Abstract
AIM Palbociclib is an oral cyclin-dependent kinase 4/6 inhibitor, which is efficacious in treating breast cancer. Currently, there are numerous active clinical trials testing palbociclib alone or in combination with other medications for treating various types of malignancies. Here, we evaluated the anti-cancer effect of palbociclib in combination with radiation therapy (RT) for treating human hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) and addressed the molecular mechanism behind the combination therapy. METHODS Immunofluorescence staining of γH2AX or 53BP1 was used to determine the effect of palbociclib on double-strand break (DSB) repair. Clonogenic assays, sphere formation and cell death ELISA were performed to study the sensitising effect of palbociclib on radiation-induced cytotoxicity. Signal alteration in DSB repair pathways was examined by Western blot analysis. Finally, we evaluated the in vivo anti-cancer activity and the associated molecular events of the combination therapy in a preclinical HCC xenograft model. RESULTS Palbociclib affected the kinetics of DNA repair and enhanced the radiation sensitivity of HCC and CCA cells. Importantly, we found that palbociclib inhibits ataxia telangiectasia-mutated (ATM) kinase, the key upstream kinase responding to RT-induced DSBs. Furthermore, we showed that the inhibitory effect of palbociclib on RT-induced ATM kinase activation is mediated by protein phosphatase 5 (PP5). Both in vitro and in vivo investigations revealed that the inhibition of the PP5-ATM axis by palbociclib after DNA damage is responsible for the synergism between palbociclib and RT. CONCLUSION Our findings provide a novel combination strategy against liver cancer cells. Clinical trials using palbociclib as an adjuvant in RT are warranted.
Collapse
Affiliation(s)
- Chao-Yuan Huang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan
| | - Feng-Shu Hsieh
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| | - Cheng-Yi Wang
- Department of Internal Medicine, Cardinal Tien Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Li-Ju Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Shin Chang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Hsien Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Man-Hsin Hung
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chiung-Wen Kuo
- Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan
| | - Chi-Ting Shih
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | | | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
1568
|
Zhang HE, Henderson JM, Gorrell MD. Animal models for hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2018; 1865:993-1002. [PMID: 31007176 DOI: 10.1016/j.bbadis.2018.08.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) represents ~90% of all cases of primary liver cancer and occurs predominantly in patients with underlying chronic liver disease and cirrhosis. Establishing appropriate animal models for HCC is required for basic and translational studies, especially the models that can recapitulate one of the human disease settings. Current animal models can be categorized as chemically-induced, genetically-engineered, xenograft, or a combination of these with each other or with a metabolic insult. A single approach to resemble human HCC in animals is not sufficient. Combining pathogenic insults in animal models may more realistically recapitulate the multiple etiologic agents occurring in humans. Combining chemical injury with metabolic disorder or alcohol consumption in mice reduces the time taken to hepatocarcinogenesis. Genetically-engineering weak activation of HCC-promoting pathways combined with disease-specific injury models will possibly mimic the pathophysiology of human HCC in distinct clinical settings.
Collapse
Affiliation(s)
- Hui Emma Zhang
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia; The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | - James M Henderson
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia; The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | - Mark D Gorrell
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia; The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia.
| |
Collapse
|
1569
|
Prognostic Role of Platelet-to-Lymphocyte Ratio in Hepatocellular Carcinoma with Different BCLC Stages: A Systematic Review and Meta-Analysis. Gastroenterol Res Pract 2018; 2018:5670949. [PMID: 30158964 PMCID: PMC6109515 DOI: 10.1155/2018/5670949] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/24/2018] [Indexed: 02/08/2023] Open
Abstract
The role of platelet-to-lymphocyte ratio (PLR) in the prognosis of hepatocellular carcinoma (HCC) patients with different Barcelona Clinic Liver Cancer (BCLC) stages remains controversial. This systematic review and meta-analysis aimed to determine the efficacy of PLR on HCC prognosis. Five electronic databases were searched for clinical trials focusing on the role of PLR in the prognosis of HCC. A total of 297 potential studies were initially identified, and 9 studies comprising 2449 patients were finally enrolled to evaluate the association between the pretreatment PLR and clinical outcomes of overall survival (OS), disease-free survival (DFS), and event occurrence in patients with HCC in different BCLC stages. An elevated pretreatment PLR indicated unfavorable worse OS (HR = 1.73; 95% CI: (1.46, 2.04); P < 0.00001) and DFS (HR = 1.30; 95% CI: (1.06, 1.60); P = 0.01). Subgroup analysis indicated that high PLR indicated poor OS among BCLC-B/C patients without heterogeneity, while PLR in BCLC-A patients indicated high statistical heterogeneity with I2 value of 78%. As for the correlation between PLR and event occurrence, high PLR was related to poor clinical event occurrence only among BCLC-C patients, though obvious heterogeneity was observed in all different BCLC stages. In conclusion, PLR may be a significant biomarker in the prognosis of HCC in different BCLC stages.
Collapse
|
1570
|
Wang S, Long S, Wu W. Application of Traditional Chinese Medicines as Personalized Therapy in Human Cancers. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:953-970. [DOI: 10.1142/s0192415x18500507] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although lots of great achievements have been gained in the battle against cancer during the past decades, cancer is still the leading cause of death in the world including in developing countries such as China. Traditional Chinese medicine (TCM) is popular in Chinese and East Asian societies as well as some other Western countries and plays an active role in the modern healthcare system including patients with cancer, which may act as a potential effective strategy in treating human cancers. In this review, we aimed to introduce the mechanisms of TCM compound, as an option of individualized therapy, in treating cancer patients from the perspective of both Chinese and Western medicine. In the view of traditional Chinese medicine theory, individualized treatment for human cancers based on syndrome type benefits the cancer patients with personalized conditions. Balancing Qi, Xue, Yin and Yang, eliminating phlegm and removing dampness is how TCM compound functions on cancer patients. While in the view of Western medicine, inhibiting cancer cell growth and metastasis as well as improving immune status is how herbal compounds act on cancer patients. We also summarized the applications of TCM compound in human cancers, which will shed light on the clinical application of TCM compound on patients with cancer. TCM compound could be used as a complementary and alternative medicine (CAM) in human cancers. It could be applied in cancer patients with cancer-related fatigue (CRF). In addition, it is a good method for alleviating the side effects of both radiotherapy and chemotherapy. Therefore, TCM compound plays a critical role in treating patients with cancer, which has a promising strategy in the field of cancer management.
Collapse
Affiliation(s)
- Sumei Wang
- Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese, Medicine Guangzhou, Guangdong 510120, P. R. China
- The Postdoctoral Research Station, Guangzhou University of Chinese Medicine Guangzhou, Guangdong 510120, P. R. China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong 510120, P. R. China
| | - Shunqin Long
- Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese, Medicine Guangzhou, Guangdong 510120, P. R. China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong 510120, P. R. China
| | - Wanyin Wu
- Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese, Medicine Guangzhou, Guangdong 510120, P. R. China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong 510120, P. R. China
| |
Collapse
|
1571
|
Wang M, Yu F, Li P. Circular RNAs: Characteristics, Function and Clinical Significance in Hepatocellular Carcinoma. Cancers (Basel) 2018; 10:cancers10080258. [PMID: 30072625 PMCID: PMC6116001 DOI: 10.3390/cancers10080258] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. HCC patients are commonly diagnosed at an advanced stage, for which highly effective therapies are limited. Moreover, the five-year survival rate of HCC patients remains poor due to high frequency of tumor metastasis and recurrence. These challenges give rise to the emergent need to discover promising biomarkers for HCC diagnosis and identify novel targets for HCC therapy. Circular RNAs (circRNAs), a class of long-overlook non-coding RNA, have been revealed as multi-functional RNAs in recent years. Growing evidence indicates that circRNA expression alterations have a broad impact in biological characteristics of HCC. Most of these circRNAs regulate HCC progression by acting as miRNA sponges, suggesting that circRNAs may function as promising diagnostic biomarkers and ideal therapeutic targets for HCC. In this review, we summarize the current progress in studying the functional role of circRNAs in HCC pathogenesis and present their potential values as diagnostic biomarkers and therapeutic targets. In-depth investigations on the function and mechanism of circRNAs in HCC will enrich our knowledge of HCC pathogenesis and contribute to the development of effective diagnostic biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China.
| | - Fei Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China.
| | - Peifeng Li
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China.
| |
Collapse
|
1572
|
Thompson SM, Wells ML, Andrews JC, Ehman EC, Menias CO, Hallemeier CL, Roberts LR, Venkatesh SK. Venous invasion by hepatic tumors: imaging appearance and implications for management. Abdom Radiol (NY) 2018; 43:1947-1967. [PMID: 28929197 DOI: 10.1007/s00261-017-1298-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Venous invasion by hepatic tumors most commonly occurs with hepatocellular carcinoma and is associated with worse patient prognosis. Imaging plays an important role in the diagnosis of tumor thrombus in the liver. Moreover, differentiating between bland and tumor thrombus in the liver has important diagnostic, staging, therapeutic, and prognostic implications and may require a multimodal imaging approach including ultrasound, computed tomography, and/or magnetic resonance imaging. Treatment of hepatic malignancies with associated tumor thrombus is dependent on tumor type, disease extent within the liver, liver hemodynamics, and underlying liver function. Treatment of such tumors may involve surgical, locoregional and/or systemic therapies. The current review will focus on the imaging characteristics of venous invasion by hepatic tumors. The imaging findings most useful for differentiating hepatic venous tumor thrombus and bland thrombus will be highlighted and demonstrated with imaging examples. Imaging findings with implications for subsequent patient management will be described.
Collapse
Affiliation(s)
- Scott M Thompson
- Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| | - Michael L Wells
- Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - James C Andrews
- Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Eric C Ehman
- Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Christine O Menias
- Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Christopher L Hallemeier
- Department of Radiation Oncology, Mayo Clinic School of Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic School of Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Sudhakar K Venkatesh
- Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
1573
|
Chen DP, Ning WR, Li XF, Wei Y, Lao XM, Wang JC, Wu Y, Zheng L. Peritumoral monocytes induce cancer cell autophagy to facilitate the progression of human hepatocellular carcinoma. Autophagy 2018; 14:1335-1346. [PMID: 29940792 DOI: 10.1080/15548627.2018.1474994] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Macroautophagy/autophagy is an important catabolic process mediating cellular homeostasis and plays critical roles in cancer development. Whereas autophagy has been widely studied in various pathological models, little is known about the distribution, clinical significance and regulatory mechanism of this process in human hepatocellular carcinoma (HCC). In the present study, we found that tumor tissues exhibited significantly increased levels of autophagy compared with non-tumor tissues, and cancer cells with higher levels of autophagy were predominantly enriched in the invading edge regions of human HCC. Increased MAP1LC3B/LC3B expression in the invading edge regions was significantly correlated with a higher density of closely located monocytes, and TNF and IL1B derived from tumor-activated monocytes synergistically induced cancer cell autophagy in the invading edge regions of HCC. Monocyte-elicited autophagy induced the epithelial-mesenchymal transition (EMT) of cancer cells and promoted tumor metastasis by activating the NFKB-SNAI1 signaling pathway. Moreover, the increase of LC3B+ cancer cells in the invading edge areas was associated with high mortality and reduced survival of patients with HCC. These findings indicated that cancer cell autophagy is regulated by a collaborative interaction between tumor and immune cell components in distinct HCC microenvironments, thus allowing the inflammatory monocytes to be rerouted in a tumor-promoting direction.
Collapse
Affiliation(s)
- Dong-Ping Chen
- a MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , P. R. China
| | - Wan-Ru Ning
- a MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , P. R. China
| | - Xue-Feng Li
- a MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , P. R. China
| | - Yuan Wei
- a MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , P. R. China
| | - Xiang-Ming Lao
- b State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-sen University Cancer Center , Guangzhou , China
| | - Jun-Cheng Wang
- b State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-sen University Cancer Center , Guangzhou , China
| | - Yan Wu
- a MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , P. R. China
| | - Limin Zheng
- a MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , P. R. China.,b State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-sen University Cancer Center , Guangzhou , China
| |
Collapse
|
1574
|
Zhou B, Xiong Z, Wang P, Peng C, Shen M, Shi X. Acetylated Polyethylenimine-Entrapped Gold Nanoparticles Enable Negative Computed Tomography Imaging of Orthotopic Hepatic Carcinoma. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8701-8707. [PMID: 29958496 DOI: 10.1021/acs.langmuir.8b01669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Developing an effective computed tomography (CT) contrast agent is still a challenging task for precise diagnosis of hepatic carcinoma (HCC). Here, we present the use of acetylated polyethylenimine (PEI)-entrapped gold nanoparticles (Ac-PE-AuNPs) without antifouling modification for negative CT imaging of HCC. PEI was first linked to fluorescein isothiocyanate (FI) and then utilized as a vehicle for the entrapment of AuNPs. The particles were then acetylated to reduce its positive surface potential. The designed Ac-PE-AuNPs were characterized by various techniques. We find that the Ac-PE-AuNPs with a uniform size distribution (mean diameter = 2.3 nm) are colloidally stable and possess low toxicity in the studied range of concentration. Owing to the fact that the particles without additional antifouling modification were mainly gathered in liver, the Ac-PE-AuNPs could greatly improve the CT contrast enhancement of normal liver, whereas poor CT contrast enhancement appeared in liver necrosis region caused by HCC. As a result, HCC could be easily and precisely diagnosed. The designed Ac-PE-AuNPs were demonstrated to have biocompatibility through in vivo biodistribution and histological studies, hence holding an enormous potential to be adopted as an effective negative CT contrast agent for diagnosis of hepatoma carcinoma.
Collapse
Affiliation(s)
- Benqing Zhou
- Department of Radiology, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , P. R. China
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Zhijuan Xiong
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Peng Wang
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Chen Peng
- Department of Radiology, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , P. R. China
| | - Mingwu Shen
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Xiangyang Shi
- Department of Radiology, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , P. R. China
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
- CQM-Centro de Química da Madeira , Universidade da Madeira , Campus da Penteada , 9020-105 Funchal , Portugal
| |
Collapse
|
1575
|
Wang J, Sun P, Chen Y, Yao H, Wang S. Novel 2-phenyloxypyrimidine derivative induces apoptosis and autophagy via inhibiting PI3K pathway and activating MAPK/ERK signaling in hepatocellular carcinoma cells. Sci Rep 2018; 8:10923. [PMID: 30026540 PMCID: PMC6053381 DOI: 10.1038/s41598-018-29199-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/04/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality globally. Because most patients are diagnosed at advanced stages of the disease, multi-targeted tyrosine kinase inhibitor sorafenib is the only available drug to show limited effectiveness. Novel and effective therapies are unmet medical need for advanced HCC patients. Given that the aberrant expression and activity of platelet-derived growth factor receptor α (PDGFRα) are closely associated with the pathogenesis of HCC, here we present the discovery and identification of a novel PDGFRα inhibitor, N-(3-((4-(benzofuran-2-yl)pyrimidin-2-yl)oxy)-4-methylphenyl)-4-((4-methylpiperazin-1-yl)methyl)benzamide (E5) after comparison of different derivatives. We found that E5 inhibited proliferation and induced apoptosis in HCC cells. Since the pan-caspase inhibitor Z-VAD-FMK partially rescued HCC cells from E5-reduced cell viability, autophagic cell death triggered by E5 was subsequently investigated. E5 could induce the conversion of LC3-I to LC3-II, increase the expression of Atg5 and restore the autophagy flux blocked by chloroquine. Meanwhile, E5 was able to downregulate the PDGFRα/PI3K/AKT/mTOR pathway and to activate MAPK/ERK signaling pathway. Taken together, in addition to the possibility of E5 as a valuable drug candidate, the present study further supports the notion that targeted inhibition of PDGFRα is a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Natural Medicines (SKLNM) and Laboratory of Chemical Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Peng Sun
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Artemisinine Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines (SKLNM) and Laboratory of Chemical Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Shuzhen Wang
- State Key Laboratory of Natural Medicines (SKLNM) and Laboratory of Chemical Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
1576
|
Jovel J, Lin Z, O'keefe S, Willows S, Wang W, Zhang G, Patterson J, Moctezuma-Velázquez C, Kelvin DJ, Ka-Shu Wong G, Mason AL. A Survey of Molecular Heterogeneity in Hepatocellular Carcinoma. Hepatol Commun 2018; 2:941-955. [PMID: 30094405 PMCID: PMC6078210 DOI: 10.1002/hep4.1197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 12/24/2022] Open
Abstract
Understanding the heterogeneity of dysregulated pathways associated with the development of hepatocellular carcinoma (HCC) may provide prognostic and therapeutic avenues for disease management. As HCC involves a complex process of genetic and epigenetic modifications, we evaluated expression of both polyadenylated transcripts and microRNAs from HCC and liver samples derived from two cohorts of patients undergoing either partial hepatic resection or liver transplantation. Copy number variants were inferred from whole genome low‐pass sequencing data, and a set of 56 cancer‐related genes were screened using an oncology panel assay. HCC was associated with marked transcriptional deregulation of hundreds of protein‐coding genes. In the partially resected livers, diminished transcriptional activity was observed in genes associated with drug catabolism and increased expression in genes related to inflammatory responses and cell proliferation. Moreover, several long noncoding RNAs and microRNAs not previously linked with HCC were found to be deregulated. In liver transplant recipients, down‐regulation of genes involved in energy production and up‐regulation of genes associated with glycolysis were detected. Numerous copy number variants events were observed, with hotspots on chromosomes 1 and 17. Amplifications were more common than deletions and spanned regions containing genes potentially involved in tumorigenesis. Colony stimulating factor 1 receptor (CSF1R), fibroblast growth factor receptor 3 (FGFR3), fms‐like tyrosine kinase 3 (FLT3), nucleolar phosphoprotein B23 (NPM1), platelet‐derived growth factor receptor alpha polypeptide (PDGFRA), phosphatase and tensin homolog (PTEN), G‐protein‐coupled receptors‐like receptor Smoothened (SMO), and tumor protein P53 (TP53) were mutated in all tumors; another 26 cancer‐related genes were mutated with variable penetrance. Conclusion: Our results underscore the marked molecular heterogeneity between HCC tumors and reinforce the notion that precision medicine approaches are needed for management of individual HCC. These data will serve as a resource to generate hypotheses for further research to improve our understanding of HCC biology. (Hepatology Communications 2018; 00:000‐000)
Collapse
Affiliation(s)
- Juan Jovel
- Department of Medicine University of Alberta Edmonton Canada
| | - Zhen Lin
- Department of Medicine University of Alberta Edmonton Canada
| | - Sandra O'keefe
- Department of Medicine University of Alberta Edmonton Canada
| | - Steven Willows
- Department of Medicine University of Alberta Edmonton Canada
| | - Weiwei Wang
- Department of Medicine University of Alberta Edmonton Canada
| | - Guangzhi Zhang
- Department of Medicine University of Alberta Edmonton Canada
| | | | | | - David J Kelvin
- Division of Experimental Therapeutics University Health Network Toronto Canada
| | - Gane Ka-Shu Wong
- Department of Medicine University of Alberta Edmonton Canada.,Department of Biological Sciences University of Alberta Edmonton Canada.,BGI-Shenzhen Shenzhen China
| | - Andrew L Mason
- Department of Medicine University of Alberta Edmonton Canada
| |
Collapse
|
1577
|
Henderson JM, Polak N, Chen J, Roediger B, Weninger W, Kench JG, McCaughan GW, Zhang HE, Gorrell MD. Multiple liver insults synergize to accelerate experimental hepatocellular carcinoma. Sci Rep 2018; 8:10283. [PMID: 29980757 PMCID: PMC6035229 DOI: 10.1038/s41598-018-28486-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022] Open
Abstract
The urgent unmet need for hepatocellular carcinoma (HCC) therapies is addressed here by characterising a novel mouse model of HCC in the context of ongoing liver damage and overnutrition. Male C57Bl/6J mice were treated with diethylnitrosamine (DEN) and thioacetamide (TAA), and some were provided with an atherogenic high fat diet (HFD). Inflammation, steatosis, fibrosis, 87 genes, liver lesions and intratumoural leukocyte subsets were quantified up to 24 weeks of age. Adding HFD to DEN/TAA increased fibrosis, steatosis and inflammation, and the incidence of both HCC and non-HCC dysplastic lesions. All lesions contained α-SMA positive fibroblasts. Macrophage marker F4/80 was not significantly different between treatment groups, but the macrophage-associated genes Arg-1 and Cd47 were differentially expressed. Fibrosis, cancer and cell death associated genes were upregulated in DEN/TAA/HFD livers. Fewer Kupffer cells and plasmacytoid dendritic cells were in tumours compared to control liver. In conclusion, combining a hepatotoxin with an atherogenic diet produced more intrahepatic tumours, dysplastic lesions and fibrosis compared to hepatotoxin alone. This new HCC model provides a relatively rapid means of examining primary HCC and potential therapies in the context of multiple hepatotoxins including those derived from overnutrition.
Collapse
Affiliation(s)
- James M Henderson
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia.,The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | - Natasa Polak
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia.,The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | - Jinbiao Chen
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia.,The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | - Ben Roediger
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia.,The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | - Wolfgang Weninger
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia.,The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia.,Royal Prince Alfred Hospital, Camperdown, New South Wales, 2050, Australia
| | - James G Kench
- The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia.,Royal Prince Alfred Hospital, Camperdown, New South Wales, 2050, Australia
| | - Geoffrey W McCaughan
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia.,The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia.,Royal Prince Alfred Hospital, Camperdown, New South Wales, 2050, Australia
| | - Hui Emma Zhang
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia.,The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | - Mark D Gorrell
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia. .,The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia. .,Charles Perkins Centre, The University of Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
1578
|
Zhu WF, Cheng LX, Li M, Zuo D, Zhang N, Zhuang HJ, Xie D, Zeng QD, Hutchison JA, Zhao YL. Frequency Shift Raman-Based Sensing of Serum MicroRNAs for Early Diagnosis and Discrimination of Primary Liver Cancers. Anal Chem 2018; 90:10144-10151. [DOI: 10.1021/acs.analchem.8b01798] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Wen-Feng Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Lin-Xiu Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing 100049, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Min Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Duo Zuo
- Department of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ning Zhang
- Department of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Hong-Jun Zhuang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Dan Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Qing-Dao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - James A. Hutchison
- School of Chemistry and Bio21 Institute, University of Melbourne, 30 Flemington Road, Parkville Victoria 3052 Australia
| | - Yu-Liang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing 100049, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| |
Collapse
|
1579
|
Ma H, Yuan L, Li W, Xu K, Yang L. The LncRNA H19/miR-193a-3p axis modifies the radio-resistance and chemotherapeutic tolerance of hepatocellular carcinoma cells by targeting PSEN1. J Cell Biochem 2018; 119:8325-8335. [PMID: 29968942 DOI: 10.1002/jcb.26883] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/21/2018] [Indexed: 12/21/2022]
Abstract
This study was designated to verify if the lncRNA H19/miR-193a-3p axis would play a regulatory role in the radio-/chemo-resistances of HCC cells through targeting PSEN1. Within the study, five human HCC cell lines were prepared, including Bel-7402, HepG2, Hep3b, QGY-7703, and SMMC-7721. Moreover, docetaxel (DT), paclitaxel (Pt), vinorelbine (Vb), and 5-fluorouracil (5-Fu) were managed as the chemo-therapeutics, and single-dose X-rays were performed as radio-therapies. Besides, lncRNA H19 and miR-193a-3p were detected by qRT-PCR and Western blot were implemented to quantify the expressional levels of PSEN1, Ku80, γ-H2AX, and RAD51. Luciferase reporter gene assay was advanced to verify the targeted relationship between lncRNA H19 and miR-193a-3p. As a consequence, QGY-7703 and Bel-7402 were, respectively, the most radiation-sensitive and radiation-proof cell lines, and Bel-7402 was associated with the highest resistances to DT, Pt, Vb, and 5-FU. The restrained lncRNA H19 and over-expressed miR-193a-3p expressions tended to significantly elevate the survival rate and proliferation of Bel-7402 cells, when they were exposed to radiation and subject to chemo-therapies. The lncRNA H19 was also found to directly target miR-193a-3p in inducing the HCC development. PSEN1 appeared to be subject to the modification of lncRNA H19 and miR-193a-3p in its acting on the survival rates and proliferative abilities of HCC cells. The lncRNA H19/miR-193a-3p/PSEN1 axis could be regarded as the treatment targets for HCC, so as to further improve the treatment efficacy of chemo- and radio-therapies for HCC.
Collapse
Affiliation(s)
- Hongbin Ma
- Department of Radiotherapy, Eastern Hepatobiliary Surgery Hospital, ShangHai, China
| | - Lei Yuan
- The First Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Wanhu Li
- Department of Radiology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Kaiyun Xu
- Department of General Medicine, Eastern Hepatobiliary Surgery Hospital, ShangHai, China
| | - Liang Yang
- Department of Radiotherapy, Eastern Hepatobiliary Surgery Hospital, ShangHai, China
| |
Collapse
|
1580
|
Ziol M, Poté N, Amaddeo G, Laurent A, Nault JC, Oberti F, Costentin C, Michalak S, Bouattour M, Francoz C, Pageaux GP, Ramos J, Decaens T, Luciani A, Guiu B, Vilgrain V, Aubé C, Derman J, Charpy C, Zucman-Rossi J, Barget N, Seror O, Ganne-Carrié N, Paradis V, Calderaro J. Macrotrabecular-massive hepatocellular carcinoma: A distinctive histological subtype with clinical relevance. Hepatology 2018; 68:103-112. [PMID: 29281854 DOI: 10.1002/hep.29762] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/21/2017] [Indexed: 12/19/2022]
Abstract
UNLABELLED We recently identified a histological subtype of hepatocellular carcinoma (HCC), designated as "macrotrabecular-massive" (MTM-HCC) and associated with specific molecular features. In order to assess the clinical relevance of this variant, we investigated its prognostic value in two large series of patients with HCC treated by either surgical resection or radiofrequency ablation (RFA). We retrospectively included 237 HCC surgical samples and 284 HCC liver biopsies from patients treated by surgical resection and RFA, respectively. Histological slides were reviewed by pathologists specialized in liver disease, and the MTM-HCC subtype was defined by the presence of a predominant (>50%) macrotrabecular architecture (more than six cells thick). The main clinical and biological features were recorded at baseline. Clinical endpoints were early and overall recurrence. The MTM-HCC subtype was identified in 12% of the whole cohort (16% of surgically resected samples, 8.5% of liver biopsy samples). It was associated at baseline with known poor prognostic factors (tumor size, alpha-fetoprotein level, satellite nodules, and vascular invasion). Multivariate analysis showed that MTM-HCC subtype was an independent predictor of early and overall recurrence (surgical series: hazard ratio, 3.03; 95% confidence interval, 1.38-6.65; P = 0.006; and 2.76; 1.63-4.67; P < 0.001; RFA series: 2.37; 1.36-4.13; P = 0.002; and 2.19; 1.35-3.54; P = 0.001, respectively). Its prognostic value was retained even after patient stratification according to common clinical, biological, and pathological features of aggressiveness. No other baseline parameter was independently associated with recurrence in the RFA series. CONCLUSION The MTM-HCC subtype, reliably observed in 12% of patients eligible for curative treatment, represents an aggressive form of HCC that may require more specific therapeutic strategies. (Hepatology 2018;68:103-112).
Collapse
Affiliation(s)
- Marianne Ziol
- Service d'anatomie pathologique, Hôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance Publique Hôpitaux de Paris, Bondy, France.,Unité Mixte de Recherche 1162, Génomique Fonctionnelle des Tumeurs Solides, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes, Université Paris Diderot, Paris, France.,Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France
| | - Nicolas Poté
- Assistance Publique-Hôpitaux de Paris, Service d'Anatomie et de Cytologie Pathologiques, Hôpital Universitaire Beaujon; INSERM, Université Paris Diderot, CNRS, Centre de Recherche sur l'Inflammation (CRI), Paris, Département Hospitalo-Universitaire (DHU) UNITY, Clichy, France
| | - Giuliana Amaddeo
- Inserm, U955, Team 18, Université Paris-Est Créteil, Faculté de Médecine.,Assistance Publique-Hôpitaux de Paris, Service d'Hépatologie, CHU Henri Mondor
| | - Alexis Laurent
- Inserm, U955, Team 18, Université Paris-Est Créteil, Faculté de Médecine.,Assistance Publique-Hôpitaux de Paris, Département de Chirurgie Digestive et Hépato-Biliaire, CHU Henri Mondor, Créteil, France
| | - Jean-Charles Nault
- Unité Mixte de Recherche 1162, Génomique Fonctionnelle des Tumeurs Solides, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes, Université Paris Diderot, Paris, France.,Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France.,Service d'Hépatologie, Groupe hospitalier Paris-Seine-Saint Denis, Hôpital Jean Verdier, AP-HP, Bondy, France
| | - Frédéric Oberti
- Hépato-gastroentérologie et oncologie digestive, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Charlotte Costentin
- Assistance Publique-Hôpitaux de Paris, Service d'Hépatologie, CHU Henri Mondor
| | - Sophie Michalak
- Service d'Anatomie et de Cytologie Pathologiques, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Mohamed Bouattour
- Assistance Publique-Hôpitaux de Paris, Service d'Hépatologie, Hôpital Universitaire Beaujon, France
| | - Claire Francoz
- Assistance Publique-Hôpitaux de Paris, Service d'Hépatologie, Hôpital Universitaire Beaujon, France
| | - Georges Philippe Pageaux
- Hépato-gastroentérologie et oncologie digestive, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Jeanne Ramos
- Service d'Anatomie et de Cytologie Pathologiques, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Thomas Decaens
- Clinique Universitaire d'Hépato-gastroentérologie, Pôle Digidune, CHU Grenoble Alpes; Université Grenoble Alpes; Institute for Advanced Biosciences-Inserm U1209/CNRS UMR 5309/Université de Grenoble-Alpes, Grenoble, France
| | - Alain Luciani
- Inserm, U955, Team 18, Université Paris-Est Créteil, Faculté de Médecine.,Assistance Publique-Hôpitaux de Paris, Service de Radiologie, CHU Henri Mondor, Créteil, France
| | - Boris Guiu
- Service de Radiologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | | | - Christophe Aubé
- Service de Radiologie, Centre Hospitalier-Universitaire d'Angers, Angers, France
| | - Jonathan Derman
- Assistance Publique-Hôpitaux de Paris, Département de Pathologie, Hôpital Henri Mondor, Créteil, France
| | - Cécile Charpy
- Assistance Publique-Hôpitaux de Paris, Département de Pathologie, Hôpital Henri Mondor, Créteil, France
| | - Jessica Zucman-Rossi
- Unité Mixte de Recherche 1162, Génomique Fonctionnelle des Tumeurs Solides, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Nathalie Barget
- Centre de ressources biologiques BB-0033-00027, Hôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance Publique Hôpitaux de Paris
| | - Olivier Seror
- Assistance Publique-Hôpitaux de Paris, Service de Radiologie, Hôpital Jean Verdier, Bondy, France
| | - Nathalie Ganne-Carrié
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France.,Service d'Hépatologie, Groupe hospitalier Paris-Seine-Saint Denis, Hôpital Jean Verdier, AP-HP, Bondy, France
| | - Valérie Paradis
- Assistance Publique-Hôpitaux de Paris, Service d'Anatomie et de Cytologie Pathologiques, Hôpital Universitaire Beaujon; INSERM, Université Paris Diderot, CNRS, Centre de Recherche sur l'Inflammation (CRI), Paris, Département Hospitalo-Universitaire (DHU) UNITY, Clichy, France
| | - Julien Calderaro
- Inserm, U955, Team 18, Université Paris-Est Créteil, Faculté de Médecine.,Assistance Publique-Hôpitaux de Paris, Département de Pathologie, Hôpital Henri Mondor, Créteil, France
| |
Collapse
|
1581
|
Aramburu J, Antón R, Rivas A, Ramos JC, Larraona GS, Sangro B, Bilbao JI. Numerical zero-dimensional hepatic artery hemodynamics model for balloon-occluded transarterial chemoembolization. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2983. [PMID: 29575739 DOI: 10.1002/cnm.2983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/28/2018] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
Balloon-occluded transarterial chemoembolization (B-TACE) is a valuable treatment option for patients with inoperable malignant tumors in the liver. Balloon-occluded transarterial chemoembolization consists of the transcatheter infusion of an anticancer drug mixture and embolic agents. Contrary to conventional TACE, B-TACE is performed via an artery-occluding microballoon catheter, which makes the blood flow to redistribute due to the intra- and extrahepatic arterial collateral circulation. Several recent studies have stressed the importance of the redistribution of blood flow in enhancing the treatment outcome. In the present study, the geometries of a representative hepatic artery and the communicating arcades (CAs) are modeled. An in silico zero-dimensional hemodynamic model is created by characterizing the geometry and the boundary conditions and then is validated in vitro. The role of CAs is assessed by combining 2 cancer scenarios and 2 catheter locations. The importance of the diameter of the CAs is also studied. Results show that occluding a main artery leads to collateral circulation and CAs start to play a role in blood-flow redistribution. In summary, numerical zero-dimensional simulations permit a fast and reliable approach for exploring the blood-flow redistribution caused by the occlusion of a main artery, and this approach could be used during B-TACE planning.
Collapse
Affiliation(s)
- Jorge Aramburu
- TECNUN Escuela de Ingenieros, Universidad de Navarra, P° Manuel Lardizabal 13, 20018, Donostia-San Sebastián, Spain
| | - Raúl Antón
- TECNUN Escuela de Ingenieros, Universidad de Navarra, P° Manuel Lardizabal 13, 20018, Donostia-San Sebastián, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Av. Pío XII 36, 31008, Pamplona, Spain
| | - Alejandro Rivas
- TECNUN Escuela de Ingenieros, Universidad de Navarra, P° Manuel Lardizabal 13, 20018, Donostia-San Sebastián, Spain
| | - Juan Carlos Ramos
- TECNUN Escuela de Ingenieros, Universidad de Navarra, P° Manuel Lardizabal 13, 20018, Donostia-San Sebastián, Spain
| | - Gorka S Larraona
- TECNUN Escuela de Ingenieros, Universidad de Navarra, P° Manuel Lardizabal 13, 20018, Donostia-San Sebastián, Spain
| | - Bruno Sangro
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Av. Pío XII 36, 31008, Pamplona, Spain
- Clínica Universidad de Navarra, Av. Pío XII 36, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Av. Pío XII 36, 31008, Pamplona, Spain
| | - José Ignacio Bilbao
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Av. Pío XII 36, 31008, Pamplona, Spain
- Clínica Universidad de Navarra, Av. Pío XII 36, 31008, Pamplona, Spain
| |
Collapse
|
1582
|
Labgaa I, Villacorta-Martin C, D'Avola D, Craig AJ, von Felden J, Martins-Filho SN, Sia D, Stueck A, Ward SC, Fiel MI, Mahajan M, Tabrizian P, Thung SN, Ang C, Friedman SL, Llovet JM, Schwartz M, Villanueva A. A pilot study of ultra-deep targeted sequencing of plasma DNA identifies driver mutations in hepatocellular carcinoma. Oncogene 2018; 37:3740-3752. [PMID: 29628508 PMCID: PMC6035113 DOI: 10.1038/s41388-018-0206-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 01/12/2018] [Accepted: 02/16/2018] [Indexed: 01/28/2023]
Abstract
Cellular components of solid tumors including DNA are released into the bloodstream, but data on circulating-free DNA (cfDNA) in hepatocellular carcinoma (HCC) are still scarce. This study aimed at analyzing mutations in cfDNA and their correlation with tissue mutations in patients with HCC. We included 8 HCC patients treated with surgical resection for whom we collected paired tissue and plasma/serum samples. We analyzed 45 specimens, including multiregional tumor tissue sampling (n = 24), peripheral blood mononuclear cells (PMBC, n = 8), plasma (n = 8) and serum (n = 5). Ultra-deep sequencing (5500× coverage) of all exons was performed in a targeted panel of 58 genes, including frequent HCC driver genes and druggable mutations. Mutations detected in plasma included known HCC oncogenes and tumor suppressors (e.g., TERT promoter, TP53, and NTRK3) as well as a candidate druggable mutation (JAK1). This approach increased the detection rates previously reported for mutations in plasma of HCC patients. A thorough characterization of cis mutations found in plasma confirmed their tumoral origin, which provides definitive evidence of the release of HCC-derived DNA fragments into the bloodstream. This study demonstrates that ultra-deep sequencing of cfDNA is feasible and can confidently detect somatic mutations found in tissue; these data reinforce the role of plasma DNA as a promising minimally invasive tool to interrogate HCC genetics.
Collapse
Affiliation(s)
- Ismail Labgaa
- Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Visceral Surgery, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - Carlos Villacorta-Martin
- Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Delia D'Avola
- Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
- Liver Unit and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Clinica Universidad de Navarra, Pamplona, Spain
| | - Amanda J Craig
- Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Johann von Felden
- Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastiao N Martins-Filho
- Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Pathology, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
- Department of Pathology and Laboratory Medicine, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Daniela Sia
- Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ashley Stueck
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Stephen C Ward
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - M Isabel Fiel
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Milind Mahajan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Parissa Tabrizian
- Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Swan N Thung
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Celina Ang
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Division of Hematology and Medical Oncology, New York, USA
| | - Scott L Friedman
- Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Josep M Llovet
- Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
- Liver Cancer Translational Research Laboratory, BCLC Group, IDIBAPS, CIBEREHD, Hospital Clinic, Universitat de Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Myron Schwartz
- Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Augusto Villanueva
- Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Division of Hematology and Medical Oncology, New York, USA.
| |
Collapse
|
1583
|
Brown ZJ, Yu SJ, Heinrich B, Ma C, Fu Q, Sandhu M, Agdashian D, Zhang Q, Korangy F, Greten TF. Indoleamine 2,3-dioxygenase provides adaptive resistance to immune checkpoint inhibitors in hepatocellular carcinoma. Cancer Immunol Immunother 2018; 67:1305-1315. [PMID: 29959458 DOI: 10.1007/s00262-018-2190-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. Immune checkpoint blockade with anti-CTLA-4 and anti-PD-1 antibodies has shown promising results in the treatment of patients with advanced HCC. The anti-PD-1 antibody, nivolumab, is now approved for patients who have had progressive disease on the current standard of care. However, a subset of patients with advanced HCC treated with immune checkpoint inhibitors failed to respond to therapy. Here, we provide evidence of adaptive resistance to immune checkpoint inhibitors through upregulation of indoleamine 2,3-dioxygenase (IDO) in HCC. Anti-CTLA-4 treatment promoted an induction of IDO1 in resistant HCC tumors but not in tumors sensitive to immune checkpoint blockade. Using both subcutaneous and hepatic orthotopic models, we found that the addition of an IDO inhibitor increases the efficacy of treatment in HCC resistant tumors with high IDO induction. Furthermore, in vivo neutralizing studies demonstrated that the IDO induction by immune checkpoint blockade was dependent on IFN-γ. Similar findings were observed with anti-PD-1 therapy. These results provide evidence that IDO may play a role in adaptive resistance to immune checkpoint inhibitors in patients with HCC. Therefore, inhibiting IDO in combination with immune checkpoint inhibitors may add therapeutic benefit in tumors which overexpress IDO and should be considered for clinical evaluation in HCC.
Collapse
Affiliation(s)
- Zachary J Brown
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 3B43, Bethesda, MD, 20892, USA
| | - Su Jong Yu
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 3B43, Bethesda, MD, 20892, USA.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Bernd Heinrich
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 3B43, Bethesda, MD, 20892, USA
| | - Chi Ma
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 3B43, Bethesda, MD, 20892, USA
| | - Qiong Fu
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 3B43, Bethesda, MD, 20892, USA
| | - Milan Sandhu
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 3B43, Bethesda, MD, 20892, USA
| | - David Agdashian
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 3B43, Bethesda, MD, 20892, USA
| | - Qianfei Zhang
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 3B43, Bethesda, MD, 20892, USA
| | - Firouzeh Korangy
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 3B43, Bethesda, MD, 20892, USA
| | - Tim F Greten
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 3B43, Bethesda, MD, 20892, USA. .,National Cancer Institute, Center for Cancer Research, Liver Cancer Program, Bethesda, USA.
| |
Collapse
|
1584
|
Lim HY, Merle P, Weiss KH, Yau T, Ross P, Mazzaferro V, Blanc JF, Ma YT, Yen CJ, Kocsis J, Choo SP, Sukeepaisarnjaroen W, Gérolami R, Dufour JF, Gane EJ, Ryoo BY, Peck-Radosavljevic M, Dao T, Yeo W, Lamlertthon W, Thongsawat S, Teufel M, Roth K, Reis D, Childs BH, Krissel H, Llovet JM. Phase II Studies with Refametinib or Refametinib plus Sorafenib in Patients with RAS-Mutated Hepatocellular Carcinoma. Clin Cancer Res 2018; 24:4650-4661. [PMID: 29950351 DOI: 10.1158/1078-0432.ccr-17-3588] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Refametinib, an oral MEK inhibitor, has demonstrated antitumor activity in combination with sorafenib in patients with RAS-mutated hepatocellular carcinoma (HCC). Two phase II studies evaluated the efficacy of refametinib monotherapy and refametinib plus sorafenib in patients with RAS-mutant unresectable or metastatic HCC.Patients and Methods: Eligible patients with RAS mutations of cell-free circulating tumor DNA (ctDNA) determined by beads, emulsion, amplification, and magnetics technology received twice-daily refametinib 50 mg ± sorafenib 400 mg. Potential biomarkers were assessed in ctDNA via next-generation sequencing (NGS).Results: Of 1,318 patients screened, 59 (4.4%) had a RAS mutation, of whom 16 received refametinib and 16 received refametinib plus sorafenib. With refametinib monotherapy, the objective response rate (ORR) was 0%, the disease control rate (DCR) was 56.3%, overall survival (OS) was 5.8 months, and progression-free survival (PFS) was 1.9 months. With refametinib plus sorafenib, the ORR was 6.3%, the DCR was 43.8%, OS was 12.7 months, and PFS was 1.5 months. In both studies, time to progression was 2.8 months. Treatment-emergent toxicities included fatigue, hypertension, and acneiform rash. Twenty-seven patients had ctDNA samples available for NGS. The most frequently detected mutations were in TERT (63.0%), TP53 (48.1%), and β-catenin (CTNNB1; 37.0%).Conclusions: Prospective testing for RAS family mutations using ctDNA was a feasible, noninvasive approach for large-scale mutational testing in patients with HCC. A median OS of 12.7 months with refametinib plus sorafenib in this small population of RAS-mutant patients may indicate a synergistic effect between sorafenib and refametinib-this preliminary finding should be further explored. Clin Cancer Res; 24(19); 4650-61. ©2018 AACR.
Collapse
Affiliation(s)
- Ho Yeong Lim
- Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea.
| | - Philippe Merle
- Service of Hepato-Gastroenterology, Hepatology Unit, Croix-Rousse Hospital, Lyon, France
| | - Karl Heinz Weiss
- Section of Transplant Hepatology, Liver Cancer Center Heidelberg, Heidelberg, Germany
| | - Thomas Yau
- Department of Medicine, Queen Mary Hospital, Hong Kong
| | - Paul Ross
- Cancer Centre, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Vincenzo Mazzaferro
- Gastrointestinal Surgery and Liver Transplant Unit, The Fondazione IRCCS Istituto Nazionale Tumori (National Cancer Institute) and University of Milan, Milan, Italy
| | - Jean-Frédéric Blanc
- Service of Hepato-Gastroenterology and Digestive Oncology, Hôpital Haut-Lévêque, Bordeaux, France
| | - Yuk Ting Ma
- Department of Medical Oncology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Chia Jui Yen
- Division of Hematology and Oncology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Judit Kocsis
- Oncology Department, Debrecen University Clinical Center, Debrecen, Hungary
| | - Su Pin Choo
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | | | - René Gérolami
- Service of Hepato-Gastroenterology, Aix-Marseille University, Marseille, France
| | - Jean-François Dufour
- Department of Hepatology, University Clinic for Visceral Surgery and Medicine, University Hospital of Bern, Bern, Switzerland
| | - Edward J Gane
- New Zealand Liver & Transplant Unit, Auckland City Hospital, Auckland, New Zealand
| | - Baek-Yeol Ryoo
- Department of Oncology, Asan Medical Center, Seoul, Korea
| | - Markus Peck-Radosavljevic
- Department of Gastroenterology and Hepatology, Endocrinology, Rheumatology and Nephrology, Medical University of Vienna, Vienna, Austria
| | - Thong Dao
- Service of Hepato-Gastroenterology and Nutrition, Caen University Hospital, Caen, France
| | - Winnie Yeo
- Department of Clinical Oncology, Chinese University of Hong Kong, Hong Kong
| | | | - Satawat Thongsawat
- Department of Internal Medicine, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai, Thailand
| | - Michael Teufel
- Bayer HealthCare Pharmaceuticals, Inc., Whippany, New Jersey
| | | | - Diego Reis
- Medical and Data Management, Bayer S.A., São Paulo, Brazil
| | | | | | - Josep M Llovet
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York. .,Liver Cancer Translational Research Laboratory, Barcelona Clinic Liver Cancer Group (BCLC), IDIBAPS-Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
1585
|
Lee J, Liao R, Wang G, Yang BH, Luo X, Varki NM, Qiu SJ, Ren B, Fu W, Feng GS. Preventive Inhibition of Liver Tumorigenesis by Systemic Activation of Innate Immune Functions. Cell Rep 2018; 21:1870-1882. [PMID: 29141219 DOI: 10.1016/j.celrep.2017.10.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 09/01/2017] [Accepted: 10/16/2017] [Indexed: 02/06/2023] Open
Abstract
Liver cancer has become the second most deadly malignant disease, with no efficient targeted or immune therapeutic agents available yet. While dissecting the roles of cytoplasmic signaling molecules in hepatocarcinogenesis using an inducible mouse gene targeting system, Mx1-cre, we identified a potent liver tumor-inhibitory effect of synthetic double-stranded RNA (dsRNA), polyinosinic-polycytidylic acid (pIC), an inducer of the Mx1-cre system. Injection of pIC at the pre-cancer stage robustly suppressed liver tumorigenesis either induced by chemical carcinogens or by Pten loss and associated hepatosteatosis. The immunostimulatory dsRNA inhibited liver cancer initiation, apparently by boosting multiple anti-tumor activities of innate immunity, including induction of immunoregulatory cytokines, activation of NK cells and dendritic cells, and reprogramming of macrophage polarization. This study paves the way for the development of preventive and early interfering strategies for liver cancer to reduce the rapidly increasing incidences of liver cancer in an ever-growing population with chronic liver disorders.
Collapse
Affiliation(s)
- Jin Lee
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rui Liao
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Gaowei Wang
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bi-Huei Yang
- Pediatric Diabetes Research Center, Department of Pediatrics and Institute for Diabetes and Metabolic Health, University of California, San Diego, La Jolla, CA 92093-0983, USA
| | - Xiaolin Luo
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nissi M Varki
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuang-Jian Qiu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bing Ren
- Ludwig Cancer Research Institute, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wenxian Fu
- Pediatric Diabetes Research Center, Department of Pediatrics and Institute for Diabetes and Metabolic Health, University of California, San Diego, La Jolla, CA 92093-0983, USA
| | - Gen-Sheng Feng
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
1586
|
Jiang Q, Sun Y, Guo Z, Chen R, Ma S, Fu M, Zhu H, Ning Q, Lei P, Shen G. IL-23 enhances the malignant properties of hepatoma cells by attenuation of HNF4α. Oncotarget 2018; 9:28309-28321. [PMID: 29983862 PMCID: PMC6033364 DOI: 10.18632/oncotarget.24875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 03/06/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic infection with hepatitis B virus (HBV) is one of the major risk factors for hepatocellular carcinoma. HBV infection can induce the expression of IL-23. However, the effects of IL-23 on carcinogenesis are rare and contradictory. To investigate the potential role of IL-23 on malignant properties of hepatoma cells, in the present study, first, we confirmed that HBV drove infected hepatoma cells to produce more IL-23. And then we found that at low concentration, human recombinant IL-23 (hrIL-23) enhanced malignant properties of hepatoma cells through increasing the proportion of stem/progenitor cells, promoting proliferation and colony formation, reducing apoptosis and inducing motility and invasivity of them. Hepatocyte nuclear factor 4 alpha (HNF4α), which is essential for liver development and hepatocyte function, was found to be downregulated in HBV integrated or transiently transfected hepatoma cells. Its expression was also decreased in cells treated by hrIL-23 or by HepG2.215 culture supernatant and this decrease could be abolished by supplementation of anti-IL-23p19 antibody. Hence, it is speculated that HBV related IL-23 can enhance malignant properties of hepatoma cells through attenuation of HNF4α. The findings identified a potential target of interventional strategies for treating hepatitis B patients through manipulation of the IL-23.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanli Sun
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zilong Guo
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ru Chen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Simin Ma
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingpeng Fu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huifen Zhu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qin Ning
- Department of Infectious Disease, Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guanxin Shen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
1587
|
Nagy Á, Lánczky A, Menyhárt O, Győrffy B. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci Rep 2018; 8:9227. [PMID: 29907753 PMCID: PMC6003936 DOI: 10.1038/s41598-018-27521-y] [Citation(s) in RCA: 932] [Impact Index Per Article: 155.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
Multiple studies suggested using different miRNAs as biomarkers for prognosis of hepatocellular carcinoma (HCC). We aimed to assemble a miRNA expression database from independent datasets to enable an independent validation of previously published prognostic biomarkers of HCC. A miRNA expression database was established by searching the TCGA (RNA-seq) and GEO (microarray) repositories to identify miRNA datasets with available expression and clinical data. A PubMed search was performed to identify prognostic miRNAs for HCC. We performed a uni- and multivariate Cox regression analysis to validate the prognostic significance of these miRNAs. The Limma R package was applied to compare the expression of miRNAs between tumor and normal tissues. We uncovered 214 publications containing 223 miRNAs identified as potential prognostic biomarkers for HCC. In the survival analysis, the expression levels of 55 and 84 miRNAs were significantly correlated with overall survival in RNA-seq and gene chip datasets, respectively. The most significant miRNAs were hsa-miR-149, hsa-miR-139, and hsa-miR-3677 in the RNA-seq and hsa-miR-146b-3p, hsa-miR-584, and hsa-miR-31 in the microarray dataset. Of the 223 miRNAs studied, the expression was significantly altered in 102 miRNAs in tumors compared to normal liver tissues. In summary, we set up an integrated miRNA expression database and validated prognostic miRNAs in HCC.
Collapse
Affiliation(s)
- Ádám Nagy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Magyar Tudósok körútja 2, 1117, Budapest, Hungary.,Semmelweis University 2nd Dept. of Pediatrics, Tűzoltó utca 7-9, 1094, Budapest, Hungary
| | - András Lánczky
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Magyar Tudósok körútja 2, 1117, Budapest, Hungary
| | - Otília Menyhárt
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Magyar Tudósok körútja 2, 1117, Budapest, Hungary.,Semmelweis University 2nd Dept. of Pediatrics, Tűzoltó utca 7-9, 1094, Budapest, Hungary
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Magyar Tudósok körútja 2, 1117, Budapest, Hungary. .,Semmelweis University 2nd Dept. of Pediatrics, Tűzoltó utca 7-9, 1094, Budapest, Hungary.
| |
Collapse
|
1588
|
Kamath GR, Taioli E, N Egorova N, Llovet JM, Perumalswami PV, Weiss JJ, Schwartz M, Ewala S, Bickell NA. Liver Cancer Disparities in New York City: A Neighborhood View of Risk and Harm Reduction Factors. Front Oncol 2018; 8:220. [PMID: 29963497 PMCID: PMC6011126 DOI: 10.3389/fonc.2018.00220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/29/2018] [Indexed: 12/29/2022] Open
Abstract
Introduction Liver cancer is the fastest increasing cancer in the United States and is one of the leading causes of cancer-related death in New York City (NYC), with wide disparities among neighborhoods. The purpose of this cross-sectional study was to describe liver cancer incidence by neighborhood and examine its association with risk factors. This information can inform preventive and treatment interventions. Materials and methods Publicly available data were collected on adult NYC residents (n = 6,407,022). Age-adjusted data on liver and intrahepatic bile duct cancer came from the New York State Cancer Registry (1) (2007–2011 average annual incidence); and the NYC Vital Statistics Bureau (2015, mortality). Data on liver cancer risk factors (2012–2015) were sourced from the New York City Department of Health and Mental Hygiene: (1) Community Health Survey, (2) A1C registry, and (3) NYC Health Department Hepatitis surveillance data. They included prevalence of obesity, diabetes, diabetic control, alcohol-related hospitalizations or emergency department visits, hepatitis B and C rates, hepatitis B vaccine coverage, and injecting drug use. Results Liver cancer incidence in NYC was strongly associated with neighborhood poverty after adjusting for race/ethnicity (β = 0.0217, p = 0.013); and with infection risk scores (β = 0.0389, 95% CI = 0.0088–0.069, p = 0.011), particularly in the poorest neighborhoods (β = 0.1207, 95% CI = 0.0147–0.2267, p = 0.026). Some neighborhoods with high hepatitis rates do not have a proportionate number of hepatitis prevention services. Conclusion High liver cancer incidence is strongly associated with infection risk factors in NYC. There are gaps in hepatitis prevention services like syringe exchange and vaccination that should be addressed. The role of alcohol and metabolic risk factors on liver cancer in NYC warrants further study.
Collapse
Affiliation(s)
- Geetanjali R Kamath
- Institute for Translational Epidemiology, New York, NY, United States.,Tisch Cancer Institute, New York, NY, United States.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Emanuela Taioli
- Institute for Translational Epidemiology, New York, NY, United States.,Tisch Cancer Institute, New York, NY, United States.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Natalia N Egorova
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Josep M Llovet
- Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, United States.,Liver Cancer Translational Research Laboratory, BCLC, Liver Unit, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| | - Ponni V Perumalswami
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jeffrey J Weiss
- Division of General Internal Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Myron Schwartz
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stanley Ewala
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nina A Bickell
- Tisch Cancer Institute, New York, NY, United States.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Division of General Internal Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
1589
|
Kan A, Le Y, Zhang YF, Duan FT, Zhong XP, Lu LH, Ling YH, Guo RP. ELTD1 Function in Hepatocellular Carcinoma is Carcinoma-Associated Fibroblast-Dependent. J Cancer 2018; 9:2415-2427. [PMID: 30026838 PMCID: PMC6036878 DOI: 10.7150/jca.24406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/01/2018] [Indexed: 12/20/2022] Open
Abstract
Introduction: EGF, latrophilin, and seven transmembrane domain containing 1 (ELTD1) constitutes an orphan G-protein-coupled receptor (GPCR) of the adhesion family. High expression of ELTD1 is correlated with favorable prognosis of hepatocellular carcinoma (HCC). After silencing ELTD1 expression, however, tumor invasiveness is drastically reduced. The underlying mechanism of this apparent contradictory phenomenon is unknown. Because adhesion GPCRs couple extracellular adhesion to intracellular signaling, as a member of this family, ELTD1 function may be related to its tumor microenvironment. We therefore investigated the interaction between ELTD1 and the HCC tumor microenvironment. Methods: ELTD1 expression was assessed by immunohistochemical analyses of tissue samples from two independent groups of 333 patients with HCC. Correlations between the ELTD1 expression and the clinicopathological values were examined. We also constructed ELTD1 overexpression and knockdown HCC cell lines and conducted a series of in vivo and in vitro ELTD1 functional assays. We further collected carcinoma associated fibroblast (CAF) culture supernatants to culture HCC cell lines and repeat the respective functional assays in comparison with the control group. Results: Clinicopathologic correlations and in vivo models indicated ELTD1 as a tumor suppressor gene, whereas in vitro experiments suggested that ELTD1 could promote malignancy in HCC cell lines. Immunohistochemical staining of the generated ELTD1 overexpression xenograft tumors demonstrated that the CAF markers vimentin and α-SMA were highly expressed compared to the control group. This suggests that ELTD1 expression is correlated to CAF distribution. In addition, culturing with CAF supernatants inhibited HCC cell proliferation and invasion rates, confirming the correlation between CAF and ELTD1. Conclusion: The results of this study indicated that ELTD1 regulation of HCC progression is CAF-dependent, suggesting that ELTD1 function is regulated by its tumor microenvironment. Further investigation is required to determine the underlying mechanisms.
Collapse
Affiliation(s)
- Anna Kan
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center
| | - Yong Le
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center
| | - Yong-Fa Zhang
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center
| | - Fang-Ting Duan
- Department of Experimental Research, Sun Yat-sen University Cancer Center
| | - Xiao-Ping Zhong
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center
| | - Liang-He Lu
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center
| | - Yi-Hong Ling
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center
| | - Rong-Ping Guo
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center
| |
Collapse
|
1590
|
Barajas JM, Reyes R, Guerrero MJ, Jacob ST, Motiwala T, Ghoshal K. The role of miR-122 in the dysregulation of glucose-6-phosphate dehydrogenase (G6PD) expression in hepatocellular cancer. Sci Rep 2018; 8:9105. [PMID: 29904144 PMCID: PMC6002539 DOI: 10.1038/s41598-018-27358-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/23/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide. Thus, a better understanding of molecular aberrations involved in HCC pathogenesis is necessary for developing effective therapy. It is well established that cancer cells metabolize energy sources differently to rapidly generate biomass. Glucose-6-phosphate-dehydrogenase (G6PD), the rate-limiting enzyme of the Pentose Phosphate Pathway (PPP), is often activated in human malignancies to generate precursors for nucleotide and lipid synthesis. Here, we determined the clinical significance of G6PD in primary human HCC by analyzing RNA-seq and clinical data in The Cancer Genome Atlas. We found that the upregulation of G6PD correlates with higher tumor grade, increased tumor recurrence, and poor patient survival. Notably, liver-specific miR-122, which is essential for metabolic homeostasis, suppresses G6PD expression by directly interacting with its 3'UTR. Luciferase reporter assay confirmed two conserved functional miR-122 binding sites located in the 3'-UTR of G6PD. Furthermore, we show that ectopic expression of miR-122 and miR-1, a known regulator of G6PD expression coordinately repress G6PD expression in HCC cells. These miRNAs also reduced G6PD activity in HepG2 cells that express relatively high activity of this enzyme. Collectively, this study provides evidence that anti-HCC efficacy of miR122 and miR-1 could be mediated, at least in part, through inhibition of PPP by suppressing the expression of G6PD.
Collapse
Affiliation(s)
- Juan M Barajas
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Ryan Reyes
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Maria J Guerrero
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Samson T Jacob
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA.
| | - Tasneem Motiwala
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA.
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| | - Kalpana Ghoshal
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA.
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
1591
|
Chesnokov MS, Khesina PA, Shavochkina DA, Kustova IF, Dyakov LM, Morozova OV, Mugue NS, Kudashkin NE, Moroz EA, Patyutko YI, Lazarevich NL. Shift in VEGFA isoform balance towards more angiogenic variants is associated with tumor stage and differentiation of human hepatocellular carcinoma. PeerJ 2018; 6:e4915. [PMID: 29888133 PMCID: PMC5993022 DOI: 10.7717/peerj.4915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common and aggressive type of malignant liver tumor. HCC progression depends significantly on its vascularization and formation of new blood vessels. Vascular endothelial growth factor A (VEGFA) is a crucial regulator of tumor vascularization and components of VEGF-induced cell signaling pathways are important targets of therapeutical drugs that demonstrated the highest efficiency in case of advanced HCC (sorafenib and regorafenib). VEGFA is expressed as a set of isoforms with different functional properties, thus VEGFA isoform expression pattern may affect tumor sensitivity to anti-angiogenic drugs. However, information about VEGFA isoforms expression in HCC is still incomplete and contradictory. The present study aims to quantitatively investigate VEGFA isoform expression aberrations in HCC tissue. METHODS A total of 50 pairs of HCC and non-tumor tissue samples were used to evaluate the VEGFA isoform spectrum using RT-PCR and quantitatively estimate changes in isoform expression using RT-qPCR. Correlations between these changes and tumor clinicopathological characteristics were analyzed. RESULTS We identified VEGFA-189, VEGFA-165, and VEGFA-121 as predominant isoforms in liver tissue. Anti-angiogenic VEGFA-xxxb variants constituted no more than 5% of all mature VEGFA transcripts detected and their expression was not changed significantly in HCC tissue. We demonstrated for the first time that the least active variant VEGFA-189 is frequently repressed in HCC (p < 0.001), while no uniform changes were detected for potent angiogenesis stimulators VEGFA-165 and VEGFA-121. Isoform balance in HCC shifts from VEGFA-189 towards VEGFA-165 or VEGFA-121 in the majority of cases (p < 0.001). Changes in fractions, but not expression levels, of VEGFA-189 (decrease) and VEGFA-121 (increase) correlated with advanced Tumor-Node-Metastasis (TNM) and Barcelona Clinic Liver Cancer (BCLC) tumor stages (p < 0.05), VEGFA-189 fraction reduction was also associated with poor tumor differentiation (p < 0.05). DISCUSSION A distinct shift in VEGFA isoform balance towards more pro-angiogenic variants occurs in HCC tissue and may modulate overall impact of VEGFA signaling. We suppose that the ratio between VEGFA isoforms is an important parameter governing HCC angiogenesis that may affect HCC progression and be used for optimizing the strategy of HCC therapy by predicting the response to anti-angiogenic drugs.
Collapse
Affiliation(s)
- Mikhail S. Chesnokov
- Institute of Carcinogenesis, FSBI “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Polina A. Khesina
- Institute of Carcinogenesis, FSBI “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
- Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Darya A. Shavochkina
- Institute of Carcinogenesis, FSBI “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Inna F. Kustova
- Institute of Carcinogenesis, FSBI “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Leonid M. Dyakov
- Institute of Carcinogenesis, FSBI “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Olga V. Morozova
- Institute of Carcinogenesis, FSBI “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Nikolai S. Mugue
- N.K. Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russian Federation
| | - Nikolay E. Kudashkin
- Institute of Clinical Oncology, FSBI “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Ekaterina A. Moroz
- Institute of Clinical Oncology, FSBI “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Yuri I. Patyutko
- Institute of Clinical Oncology, FSBI “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Natalia L. Lazarevich
- Institute of Carcinogenesis, FSBI “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
- Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
1592
|
Brown ZJ, Heinrich B, Greten TF. Establishment of Orthotopic Liver Tumors by Surgical Intrahepatic Tumor Injection in Mice with Underlying Non-Alcoholic Fatty Liver Disease. Methods Protoc 2018; 1:mps1020021. [PMID: 31164564 PMCID: PMC6526445 DOI: 10.3390/mps1020021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/18/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) and its advanced form, nonalcoholic steatohepatitis (NASH), is increasing, and as such its contribution to the development of hepatocellular carcinoma is also rising. NAFLD has been shown to influence the immune tumor microenvironment. Therefore, development of pre-clinical mouse models in the context of NAFLD are increasingly important. Here, we describe a mouse model designed to recapitulate the findings of NAFLD followed by rapid induction of orthotopic liver tumors with intrahepatic tumor injection. Additionally, we utilized bioluminescent imaging to monitor tumor growth and response to therapy. The development of one dominant tumor nodule allows precise separation of tumor and liver tissue. This is useful for immunotherapy studies as mononuclear cells from the tumor and the surrounding liver tissue can be analyzed separately.
Collapse
Affiliation(s)
- Zachary J Brown
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Bernd Heinrich
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
1593
|
Duan F, Wu H, Jia D, Wu W, Ren S, Wang L, Song S, Guo X, Liu F, Ruan Y, Gu J. O-GlcNAcylation of RACK1 promotes hepatocellular carcinogenesis. J Hepatol 2018; 68:1191-1202. [PMID: 29454068 DOI: 10.1016/j.jhep.2018.02.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 01/30/2018] [Accepted: 02/03/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Aberrant oncogenic mRNA translation and protein O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) are general features during tumorigenesis. Nevertheless, whether and how these two pathways are interlinked remain unknown. Our previous study indicated that ribosomal receptor for activated C-kinase 1 (RACK1) promoted chemoresistance and growth in hepatocellular carcinoma (HCC). The aim of this study is to examine the role of RACK1 O-GlcNAcylation in oncogene translation and HCC carcinogenesis. METHODS The site(s) of RACK1 for O-GlcNAcylation was mapped by mass spectrometry analysis. HCC cell lines were employed to examine the effects of RACK1 O-GlcNAcylation on the translation of oncogenic factors and behaviors of tumor cells in vitro. Transgenic knock-in mice were used to detect the role of RACK1 O-GlcNAcylation in modulating HCC tumorigenesis in vivo. The correlation of RACK1 O-GlcNAcylation with tumor progression and relapse were analyzed in clinical HCC samples. RESULTS We found that ribosomal RACK1 was highly modified by O-GlcNAc at Ser122. O-GlcNAcylation of RACK1 enhanced its protein stability, ribosome binding and interaction with PKCβII (PRKCB), leading to increased eukaryotic translation initiation factor 4E phosphorylation and translation of potent oncogenes in HCC cells. Genetic ablation of RACK1 O-GlcNAcylation at Ser122 dramatically suppressed tumorigenesis, angiogenesis, and metastasis in vitro and in diethylnitrosamine (DEN)-induced HCC mouse model. Increased RACK1 O-GlcNAcylation was also observed in HCC patient samples and correlated with tumor development and recurrence after chemotherapy. CONCLUSIONS These findings demonstrate that RACK1 acts as key mediator linking O-GlcNAc metabolism to cap-dependent translation during HCC tumorigenesis. Targeting RACK1 O-GlcNAcylation provides promising options for HCC treatment. LAY SUMMARY O-GlcNAcylation of ribosomal receptor for activated C-kinase 1 at the amino acid serine122 promotes its stability, ribosome localization and interaction with the protein kinase, PKCβII, thus driving the translation of oncogenes and tumorigenesis of hepatocellular carcinoma. Increased O-GlcNAcylation of ribosomal receptor for activated C-kinase 1 is positively correlated with tumor growth, metastasis and recurrence in patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Fangfang Duan
- Key Laboratory of Glycoconjugate Research Ministry of Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hao Wu
- Key Laboratory of Glycoconjugate Research Ministry of Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Dongwei Jia
- Key Laboratory of Glycoconjugate Research Ministry of Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Weicheng Wu
- Key Laboratory of Glycoconjugate Research Ministry of Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shifang Ren
- Key Laboratory of Glycoconjugate Research Ministry of Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lan Wang
- Key Laboratory of Glycoconjugate Research Ministry of Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shushu Song
- Key Laboratory of Glycoconjugate Research Ministry of Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xinying Guo
- Key Laboratory of Glycoconjugate Research Ministry of Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Fenglin Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yuanyuan Ruan
- Key Laboratory of Glycoconjugate Research Ministry of Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Jianxin Gu
- Key Laboratory of Glycoconjugate Research Ministry of Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
1594
|
Pavel M, Sanchez Cabus S, Crespo G, Ferrer J, Fondevila C, Fuster J, Garcia-Valdecasas J. Role of Adult Living Donor Liver Transplantation in the Treatment of Hepatocellular Carcinoma Within and Beyond Milan Criteria: A Comparative Study. Transplant Proc 2018; 50:1386-1395. [DOI: 10.1016/j.transproceed.2018.02.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/17/2018] [Indexed: 02/07/2023]
|
1595
|
Li Z, Zhang H, Han J, Chen Y, Lin H, Yang T. Surface Nanopore Engineering of 2D MXenes for Targeted and Synergistic Multitherapies of Hepatocellular Carcinoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706981. [PMID: 29663543 DOI: 10.1002/adma.201706981] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/25/2018] [Indexed: 05/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly gastrointestinal malignancies. Given its insensitivity to traditional systematic chemotherapy, new therapeutic strategies for efficient HCCs treatment are urgently needed. Here, the development of a novel 2D MXene-based composite nanoplatform for highly efficient and synergistic chemotherapy and photothermal hyperthermia against HCC is reported. A surface-nanopore engineering strategy is developed for the MXenes' surface functionalization, which achieves the uniform coating of a thin mesoporous-silica layer onto the surface of 2D Ti3 C2 MXene (Ti3 C2 @mMSNs). This strategy endows MXenes with well-defined mesopores for on-demand drug release/delivery, enhanced hydrophilicity/dispersity, and abundant surface chemistry for targeting engineering. Systematic in vitro and in vivo evaluations have demonstrated the high active-targeting capability of arginine-glycine-aspartic acid (RGD)-targeting Ti3 C2 @mMSNs into tumor, and the synergistic chemotherapy (contributed by the mesoporous shell) and photothermal hyperthermia (contributed by the Ti3 C2 MXene core) completely eradicate the tumor without obvious reoccurrence. This work not only provides a novel strategy for efficiently combating HCC by developing MXene-based composite nanoplatforms, but also paves a new way for extending the biomedical applications of MXenes by surface-nanopore engineering.
Collapse
Affiliation(s)
- Zhenli Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, P. R. China
| | - Han Zhang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, P. R. China
| | - Jun Han
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Tian Yang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, P. R. China
| |
Collapse
|
1596
|
Brown ZJ, Fu Q, Ma C, Kruhlak M, Zhang H, Luo J, Heinrich B, Yu SJ, Zhang Q, Wilson A, Shi ZD, Swenson R, Greten TF. Carnitine palmitoyltransferase gene upregulation by linoleic acid induces CD4 + T cell apoptosis promoting HCC development. Cell Death Dis 2018; 9:620. [PMID: 29795111 PMCID: PMC5966464 DOI: 10.1038/s41419-018-0687-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/29/2018] [Accepted: 05/04/2018] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common cause of cancer-related death worldwide. As obesity and diabetes become more prevalent, the contribution of non-alcoholic fatty liver disease (NAFLD) to HCC is rising. Recently, we reported intrahepatic CD4+ T cells are critical for anti-tumor surveillance in NAFLD. Lipid accumulation in the liver is the hallmark of NAFLD, which may perturb T cell function. We sought to investigate how the lipid-rich liver environment influences CD4+ T cells by focusing on carnitine palmitoyltransferase (CPT) family members, which control the mitochondrial β-oxidation of fatty acids and act as key molecules in lipid catabolism. Linoleic acid (C18:2) co-localized within the mitochondria along with a corresponding increase in CPT gene upregulation. This CPT upregulation can be recapitulated by feeding mice with a high-C18:2 diet or the NAFLD promoting methionine-choline-deficient (MCD) diet. Using an agonist and antagonist, the induction of CPT genes was found to be mediated by peroxisome proliferator-activated receptor alpha (PPAR-α). CPT gene upregulation increased mitochondrial reactive oxygen species (ROS) and led to cell apoptosis. In vivo, using liver-specific inducible MYC transgenic mice fed MCD diet, blocking CPT with the pharmacological inhibitor perhexiline decreased apoptosis of intrahepatic CD4+ T cells and inhibited HCC tumor formation. These results provide useful information for potentially targeting the CPT family to rescue intrahepatic CD4+ T cells and to aid immunotherapy for NAFLD-promoted HCC.
Collapse
Affiliation(s)
- Zachary J Brown
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Qiong Fu
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chi Ma
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael Kruhlak
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Haibo Zhang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bernd Heinrich
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Su Jong Yu
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Qianfei Zhang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew Wilson
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhen-Dan Shi
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rolf Swenson
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
1597
|
NUDT21 negatively regulates PSMB2 and CXXC5 by alternative polyadenylation and contributes to hepatocellular carcinoma suppression. Oncogene 2018; 37:4887-4900. [PMID: 29780166 DOI: 10.1038/s41388-018-0280-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/21/2023]
Abstract
Alternative polyadenylation (APA) is an important post-transcriptional regulatory mechanism and involved in many diseases, including cancer. CFIm25, a subunit of the cleavage factor I encoded by NUDT21, is required for 3'RNA cleavage and polyadenylation. Although it has been recently reported to be involved in glioblastoma tumor suppression, its roles and the underlying functional mechanism remain unclear in other types of cancer. In this study, we characterized NUDT21 in hepatocellular carcinoma (HCC). Reduced expression of NUDT21 was observed in HCC tissue compared to adjacent non-tumorous compartment. HCC patients with lower NUDT21 expression have shorter overall and disease-free survival times than those with higher NUDT21 expression after surgery. Knockdown of NUDT21 promotes HCC cell proliferation, metastasis, and tumorigenesis, whereas forced expression of NUDT21 exhibits the opposite effects. We then performed global APA site profiling analysis in HCC cells and identified considerable number of genes with shortened 3'UTRs upon the modulation of NUDT21 expression. In particular, we further characterized the NUDT21-regulated genes PSMB2 and CXXC5. We found NUDT21 knockdown increases usage of the proximal polyadenylation site in the PSMB2 and CXXC5 3' UTRs, resulting in marked increase in the expression of PSMB2 and CXXC5. Moreover, knockdown of PSMB2 or CXXC5 suppresses HCC cell proliferation and invasion. Taken together, our study demonstrated that NUDT21 inhibits HCC proliferation, metastasis and tumorigenesis, at least in part, by suppressing PSMB2 and CXXC5, and thereby provided a new insight into understanding the connection of HCC suppression and APA machinery.
Collapse
|
1598
|
Zou WY, El-Serag HB, Sada YH, Temple SL, Sansgiry S, Kanwal F, Davila JA. Determinants and Outcomes of Hospice Utilization Among Patients with Advance-Staged Hepatocellular Carcinoma in a Veteran Affairs Population. Dig Dis Sci 2018; 63:1173-1181. [PMID: 29508165 PMCID: PMC6010049 DOI: 10.1007/s10620-018-4989-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hospice provides integrative palliative care for advance-staged hepatocellular carcinoma (HCC) patients, but hospice utilization in HCC patients in the USA is not clearly understood. AIMS We examined hospice use and subsequent clinical course in advance-staged HCC patients. METHODS We conducted a retrospective study on a national, Veterans Affairs cohort with stage C or D HCC. We evaluated demographics, clinical factors, treatment, and clinical course in relation to hospice use. RESULTS We identified 814 patients with advanced HCC, of whom 597 (73.3%) used hospice. Oncologist management consistently predicted hospice use, irrespective of HCC treatment [no treatment: OR 2.25 (1.18-4.3), treatment: OR 1.80 (1.10-2.95)]. Among patients who received HCC treatment, hospice users were less likely to have insurance beyond VA benefits (47.2 vs. 60.0%, p = 0.01). Among patients without HCC treatment, hospice users were older (62.2 [17.2] vs. 60.2 [14.0] years, p = 0.05), white (62.1 vs. 52.9%, p = 0.01), resided in the Southern USA (39.5 vs. 31.8%, p = 0.05), and had a performance score ≥ 3 (41.9 vs. 31.8%, p = 0.01). The median time from hospice entry to death or end of study was 1.05 [2.96] months for stage C and 0.53 [1.18] months for stage D patients. CONCLUSIONS 26.7% advance-staged HCC patients never entered hospice, representing potential missed opportunities for improving end-of-life care. Age, race, location, performance, insurance, and managing specialty can predict hospice use. Differences in managing specialty and short-term hospice use suggest that interventions to optimize early palliative care are necessary.
Collapse
Affiliation(s)
- Winnie Y Zou
- Center of Innovation, Effectiveness and Quality, The Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, 2002 Holcombe Blvd. (MS152), Houston, TX, 77030, USA
- Sections of Health Services Research and Gastroenterology and Hepatology, The Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, TX, USA
| | - Hashem B El-Serag
- Center of Innovation, Effectiveness and Quality, The Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, 2002 Holcombe Blvd. (MS152), Houston, TX, 77030, USA
- Sections of Health Services Research and Gastroenterology and Hepatology, The Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, TX, USA
| | - Yvonne H Sada
- Center of Innovation, Effectiveness and Quality, The Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, 2002 Holcombe Blvd. (MS152), Houston, TX, 77030, USA
- Sections of Health Services Research and Gastroenterology and Hepatology, The Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, TX, USA
| | - Sarah L Temple
- Center of Innovation, Effectiveness and Quality, The Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, 2002 Holcombe Blvd. (MS152), Houston, TX, 77030, USA
| | - Shubhada Sansgiry
- Center of Innovation, Effectiveness and Quality, The Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, 2002 Holcombe Blvd. (MS152), Houston, TX, 77030, USA
- South Central Mental Illness Research, Education and Clinical Centers, The Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, TX, USA
| | - Fasiha Kanwal
- Center of Innovation, Effectiveness and Quality, The Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, 2002 Holcombe Blvd. (MS152), Houston, TX, 77030, USA
- Sections of Health Services Research and Gastroenterology and Hepatology, The Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, TX, USA
| | - Jessica A Davila
- Center of Innovation, Effectiveness and Quality, The Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, 2002 Holcombe Blvd. (MS152), Houston, TX, 77030, USA.
- Sections of Health Services Research and Gastroenterology and Hepatology, The Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
1599
|
Hepatocellular carcinoma with en bloc diaphragmatic resection: A single-center experience over 14 years. Int J Surg 2018; 53:93-97. [DOI: 10.1016/j.ijsu.2018.03.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/12/2018] [Accepted: 03/12/2018] [Indexed: 11/17/2022]
|
1600
|
Liang Y, Feng Y, Zong M, Wei X, Lee J, Feng Y, Li H, Yang G, Wu ZJ, Fu XD, Feng GS. β-catenin deficiency in hepatocytes aggravates hepatocarcinogenesis driven by oncogenic β-catenin and MET. Hepatology 2018; 67:1807-1822. [PMID: 29152756 PMCID: PMC5906147 DOI: 10.1002/hep.29661] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/30/2017] [Accepted: 11/13/2017] [Indexed: 12/28/2022]
Abstract
UNLABELLED Both activating and inactivating mutations in catenin β1 (ctnnb1), which encodes β-catenin, have been implicated in liver tumorigenesis in humans and mice, although the underlying mechanisms are not fully understood. Herein, we show that deletion of endogenous β-catenin in hepatocytes aggravated hepatocellular carcinoma (HCC) development driven by an oncogenic version of β-catenin (CAT) in combination with the hepatocyte growth factor receptor MET proto-oncogene receptor tyrosine kinase (MET). Although the mitogenic signaling and cell cycle progression was modestly impaired after CAT/MET transfection, the β-catenin-deficient livers displayed changes in transcriptomes, increased DNA damage response, expanded Sox9+ cells, and up-regulation of protumorigenic cytokines, including interleukin-6 and transforming growth factor β1. These events eventually exacerbated CAT/MET-driven hepatocarcinogenesis in β-catenin-deficient livers, featured by up-regulation of extracellular signal-regulated kinase (Erk), protein kinase B (Akt), and Wnt/β-catenin signaling and cyclin D1 expression. The resultant mouse tumors showed similar transcriptomes to human HCC samples with concomitant CTNNB1 mutations and MET overexpression. CONCLUSION These data argue that while dominantly activating mutants of β-catenin are oncogenic, inhibiting the oncogenic signaling pathway generates a pro-oncogenic microenvironment that may facilitate HCC recurrence following a targeted therapy of the primary tumor. An effective therapeutic strategy must require disruption of the oncogenic signaling in tumor cells and suppression of the secondary tumor-promoting stromal effects in the liver microenvironment. (Hepatology 2018;67:1807-1822).
Collapse
Affiliation(s)
- Yan Liang
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Yun Feng
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, California 92093, USA,The Fifth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Min Zong
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Xufu Wei
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, California 92093, USA,Department of Hepatology, 1 affiliated Hospital, Chong-Qing Medical University, China
| | - Jin Lee
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Yukuan Feng
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA,Department of Anatomy, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, China
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Guangshun Yang
- The Fifth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Zhong-Jun Wu
- Department of Hepatology, 1 affiliated Hospital, Chong-Qing Medical University, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Gen-Sheng Feng
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, California 92093, USA, Corresponding to: Gen-Sheng Feng,
| |
Collapse
|