1551
|
Enabling Sensor Technologies for the Quantitative Evaluation of Engineered Tissue. Ann Biomed Eng 2007; 36:30-40. [DOI: 10.1007/s10439-007-9399-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 10/23/2007] [Indexed: 10/22/2022]
|
1552
|
Dvir T, Levy O, Shachar M, Granot Y, Cohen S. Activation of the ERK1/2 cascade via pulsatile interstitial fluid flow promotes cardiac tissue assembly. ACTA ACUST UNITED AC 2007; 13:2185-93. [PMID: 17518740 DOI: 10.1089/ten.2006.0364] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Deciphering the cellular signals leading to cardiac muscle assembly is a major challenge in ex vivo tissue regeneration. For the first time, we demonstrate that pulsatile interstitial fluid flow in three-dimensional neonatal cardiac cell constructs can activate ERK1/2 sixfold, as compared to static-cultivated constructs. Activation of ERK1/2 was attained under physiological shear stress conditions, without activating the p38 cell death signal above its basic level. Activation of the ERK1/2 signaling cascade induced synthesis of high levels of contractile and cell-cell contact proteins by the cardiomyocytes, while its inhibition diminished the inducing effects of pulsatile flow. The pulsed medium-induced cardiac cell constructs showed improved cellularity and viability, while the regenerated cardiac tissue demonstrated some ultra-structural features of the adult myocardium. The cardiomyocytes were elongated and aligned into myofibers with defined Z-lines and multiple high-ordered sarcomeres. Numerous intercalated disks were positioned between adjacent cardiomyocytes, and deposits of collagen fibers surrounded the myofibrils. The regenerated cardiac tissue exhibited high density of connexin 43, a major protein involved in electrical cellular connections. Our research thus demonstrates that by judiciously applying fluid shear stress, cell signaling cascades can be augmented with subsequent profound effects on cardiac tissue regeneration.
Collapse
Affiliation(s)
- Tal Dvir
- Department of Biotechnology Engineering, Ben-Gurion University of Negev, Beer-Sheva, Israel
| | | | | | | | | |
Collapse
|
1553
|
Pampaloni F, Reynaud EG, Stelzer EHK. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 2007; 8:839-45. [PMID: 17684528 DOI: 10.1038/nrm2236] [Citation(s) in RCA: 1875] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Moving from cell monolayers to three-dimensional (3D) cultures is motivated by the need to work with cellular models that mimic the functions of living tissues. Essential cellular functions that are present in tissues are missed by 'petri dish'-based cell cultures. This limits their potential to predict the cellular responses of real organisms. However, establishing 3D cultures as a mainstream approach requires the development of standard protocols, new cell lines and quantitative analysis methods, which include well-suited three-dimensional imaging techniques. We believe that 3D cultures will have a strong impact on drug screening and will also decrease the use of laboratory animals, for example, in the context of toxicity assays.
Collapse
Affiliation(s)
- Francesco Pampaloni
- Francesco Pampaloni, Emmanuel G. Reynaud and Ernst H. K. Stelzer are at the Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | |
Collapse
|
1554
|
Abstract
Three-dimensional (3D) in vitro models span the gap between two-dimensional cell cultures and whole-animal systems. By mimicking features of the in vivo environment and taking advantage of the same tools used to study cells in traditional cell culture, 3D models provide unique perspectives on the behavior of stem cells, developing tissues and organs, and tumors. These models may help to accelerate translational research in cancer biology and tissue engineering.
Collapse
Affiliation(s)
- Kenneth M Yamada
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
1555
|
Borenstein JT, Weinberg EJ, Orrick BK, Sundback C, Kaazempur-Mofrad MR, Vacanti JP. Microfabrication of three-dimensional engineered scaffolds. ACTA ACUST UNITED AC 2007; 13:1837-44. [PMID: 17590149 DOI: 10.1089/ten.2006.0156] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One of the principal challenges facing the field of tissue engineering over the past 2 decades has been the requirement for large-scale engineered constructs comprising precisely organized cellular microenvironments. For vital organ assist and replacement devices, microfluidic-based systems such as the microcirculation, biliary, or renal filtration and resorption systems and other functional elements containing multiple cell types must be generated to provide for viable engineered tissues and clinical benefit. Over the last several years, microfabrication technology has emerged as a versatile and powerful approach for generating precisely engineered scaffolds for engineered tissues. Fabrication process tools such as photolithography, etching, molding, and lamination have been established for applications involving a range of biocompatible and biodegradable polymeric scaffolding materials. Computational fluid dynamic designs have been used to generate scaffold designs suitable for microvasculature and a number of organ-specific constructs; these designs have been translated into 3-dimensional scaffolding using microfabrication processes. Here a brief overview of the fundamental microfabrication technologies used for tissue engineering will be presented, along with a summary of progress in a number of applications, including the liver and kidney.
Collapse
Affiliation(s)
- Jeffrey T Borenstein
- Biomedical Engineering Center, Charles Stark Draper Laboratory, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | |
Collapse
|
1556
|
Anderson EJ, Knothe Tate ML. Design of Tissue Engineering Scaffolds as Delivery Devices for Mechanical and Mechanically Modulated Signals. ACTA ACUST UNITED AC 2007; 13:2525-38. [PMID: 17822359 DOI: 10.1089/ten.2006.0443] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
New approaches to tissue engineering aim to exploit endogenous strategies such as those occurring in prenatal development and recapitulated during postnatal healing. Defining tissue template specifications to mimic the environment of the condensed mesenchyme during development allows for exploitation of tissue scaffolds as delivery devices for extrinsic cues, including biochemical and mechanical signals, to drive the fate of mesenchymal stem cells seeded within. Although a variety of biochemical signals that modulate stem cell fate have been identified, the mechanical signals conducive to guiding pluripotent cells toward specific lineages are less well characterized. Furthermore, not only is spatial and temporal control of mechanical stimuli to cells challenging, but also tissue template geometries vary with time due to tissue ingrowth and/or scaffold degradation. Hence, a case study was carried out to analyze flow regimes in a testbed scaffold as a first step toward optimizing scaffold architecture. A pressure gradient was applied to produce local (nm-micron) flow fields conducive to migration, adhesion, proliferation, and differentiation of cells seeded within, as well as global flow parameters (micron-mm), including flow velocity and permeability, to enhance directed cell infiltration and augment mass transport. Iterative occlusion of flow channel dimensions was carried out to predict virtually the effect of temporal geometric variation (e.g., due to tissue development and growth) on delivery of local and global mechanical signals. Thereafter, insights from the case study were generalized to present an optimization scheme for future development of scaffolds to be implemented in vitro or in vivo. Although it is likely that manufacture and testing will be required to finalize design specifications, it is expected that the use of the rational design optimization will reduce the number of iterations required to determine final prototype geometries and flow conditions. As the range of mechanical signals conducive to guiding cell fate in situ is further elucidated, these refined design criteria can be integrated into the general optimization rubric, providing a technological platform to exploit nature's endogenous tissue engineering strategies for targeted tissue generation in the lab or the clinic.
Collapse
Affiliation(s)
- Eric J Anderson
- Department of Mechanical and Aerospace Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
1557
|
Abstract
The public fear of radiation is in part driven by the Linear No Threshold Hypothesis (LNTH), or the concept that each and every ionization increases the risk for cancer. Even if this were true, it is important to recognize that the increased risk is very small at low doses and cannot be detected. This paper demonstrates the large number of assumptions and extrapolations needed when using the LNTH to estimate low-dose cancer risk. The manuscript provides information at every level of biological organization suggesting that many of these linear assumptions do not hold. While the initial damage may be produced linearly with dose, the processing of that damage is very non-linear. Finally, the paper provides the unique prospective on radiation-induced cancer, demonstrating that it takes large amounts (total energy) of radiation delivered to large populations to detect an increase in cancer frequency. These observations are supported by both theoretical calculations and examples based on past human radiation exposure.
Collapse
Affiliation(s)
- Antone L Brooks
- Washington State University Tri-Cities, Richland, WA 99354, USA.
| | | | | |
Collapse
|
1558
|
Abstract
Neovascularization can be categorized into two general processes: vasculogenesis and angiogenesis. Angiogenesis is the formation of new capillaries from pre-existing vessels, requiring growth factor driven recruitment, migration, proliferation, and differentiation of endothelial cells (ECs). Complex cell-cell and cell-extracellular matrix (ECM) interactions contribute to this process, leading finally to a network of tube-like formations of endothelial cells supported by surrounding mural cells. The study of angiogenesis has broad clinical implications in the fields of peripheral and coronary vascular disease, oncology, hematology, wound healing, dermatology, and ophthalmology, among others. As such, novel, clinically relevant models of angiogenesis in vitro are crucial to the understanding of angiogenic processes. We highlight some of the advances made in the development of these models, and discuss the importance of incorporating the three-dimensional cell-matrix and EC-mural cell interactions into these in vitro assays of angiogenesis. This review also discusses our own 3-D angiogenesis assay and some of the in vitro results from our lab as they relate to therapeutic neovascularization and tissue engineering of vascular grafts.
Collapse
Affiliation(s)
- Areck A Ucuzian
- Department of Surgery, Loyola University Medical Center, 2160 South First Ave, Maywood, Illinois 60153, USA
| | | |
Collapse
|
1559
|
Lee PJ, Hung PJ, Lee LP. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol Bioeng 2007; 97:1340-6. [PMID: 17286266 DOI: 10.1002/bit.21360] [Citation(s) in RCA: 333] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Primary hepatocytes represent a physiologically relevant model for drug toxicity screening. Here, we created a biologically inspired artificial liver sinusoid with a microfluidic endothelial-like barrier having mass transport properties similar to the liver acinus. This unit consisted of a cord of hepatocytes (50 x 30 x 500 microm) fed by diffusion of nutrients across the microfluidic endothelial-like barrier from a convective transport vessel (10 nL/min). This configuration sustained rat and human hepatocytes for 7 days without an extracellular matrix (ECM) coating. Experiments with the metabolism mediated liver toxicant diclofenac showed no hepatotoxicity after 4 h and an IC(50) of 334 +/- 41 microM after 24 h.
Collapse
Affiliation(s)
- Philip J Lee
- Department of Bioengineering, Biomolecular Nanotechnology Center, Berkeley Sensor and Actuator Center, University of California-Berkeley, Berkeley, CA 94720-1762, USA
| | | | | |
Collapse
|
1560
|
Howes AL, Chiang GG, Lang ES, Ho CB, Powis G, Vuori K, Abraham RT. The phosphatidylinositol 3-kinase inhibitor, PX-866, is a potent inhibitor of cancer cell motility and growth in three-dimensional cultures. Mol Cancer Ther 2007; 6:2505-14. [PMID: 17766839 DOI: 10.1158/1535-7163.mct-06-0698] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The phosphatidylinositol 3-kinase (PI3K) pathway is activated in many human tumors and mediates processes such as cell proliferation, survival, adhesion, and motility. The natural product, wortmannin, has been widely used to study the functional consequences of PI3K inhibition in both normal and transformed cells in culture but is not a suitable cancer chemotherapeutic agent due to stability and toxicity issues. PX-866, an improved wortmannin analogue, displays significant antitumor activity in xenograft models. Here, we directly compare PX-866 and wortmannin in human cancer cell lines cultured in monolayer or as three-dimensional spheroids. Both PI3K inhibitors failed to inhibit monolayer cell growth at concentrations up to 100 nmol/L but strongly suppressed spheroid growth at low nanomolar concentrations, with PX-866 showing greater potency than wortmannin. Relative to wortmannin, PX-866 treatment results in a more sustained loss of Akt phosphorylation, suggesting that the increased potency of PX-866 is related to a more durable inhibition of PI3K signaling. PX-866 and wortmannin both inhibit spheroid growth without causing cytotoxicity, similar to known cytostatic agents, such as rapamycin. PX-866 also inhibits cancer cell motility at subnanomolar concentrations. These findings suggest that the antitumor activities of PX-866 stem from prolonged inhibition of the PI3K pathway and inhibition of cell motility. In addition, we propose that the use of three-dimensional tumor models is more predictive of in vivo growth inhibition by PI3K inhibitors in cancer cell lines lacking phosphatase and tensin homologue activity or expression.
Collapse
Affiliation(s)
- Amy L Howes
- Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
1561
|
Metcalfe AD, Ferguson MWJ. Bioengineering skin using mechanisms of regeneration and repair. Biomaterials 2007; 28:5100-13. [PMID: 17688942 DOI: 10.1016/j.biomaterials.2007.07.031] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 07/17/2007] [Indexed: 12/22/2022]
Abstract
The development and use of artificial skin in treating acute and chronic wounds has, over the last 30 years, advanced from a scientific concept to a series of commercially viable products. Many important clinical milestones have been reached and the number of artificial skin substitutes licensed for clinical use is growing, but they have yet to replace the current "gold standard" of an autologous skin graft. Currently available skin substitutes often suffer from a range of problems that include poor integration (which in many cases is a direct result of inadequate vascularisation), scarring at the graft margins and a complete lack of differentiated structures. The ultimate goal for skin tissue engineers is to regenerate skin such that the complete structural and functional properties of the wounded area are restored to the levels before injury. New synthetic biomaterials are constantly being developed that may enable control over wound repair and regeneration mechanisms by manipulating cell adhesion, growth and differentiation and biomechanics for optimal tissue development. In this review, the clinical developments in skin bioengineering are discussed, from conception through to the development of clinically viable products. Central to the discussion is the development of the next generation of skin replacement therapy, the success of which is likely to be underpinned with our knowledge of wound repair and regeneration.
Collapse
Affiliation(s)
- Anthony D Metcalfe
- UK Centre for Tissue Engineering (UKCTE), Faculty of Life Sciences, University of Manchester, 3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
1562
|
Abstract
There is currently great interest in molecular therapies to treat various diseases, and this has prompted extensive efforts to achieve target-specific and controlled delivery of bioactive macromolecules (for example, proteins, antibodies, DNA and small interfering RNA) through the design of smart drug carriers. By contrast, the influence of the microenvironment in which the target cell resides and the effect it might have on the success of biomacromolecular therapies has been under-appreciated. The extracellular matrix (ECM) component of the cellular niche may be particularly important, as many diseases and injury disrupt the normal ECM architecture, the cell adhesion to ECM, and the subsequent cellular activities. This Review will discuss the importance of the ECM and the ECM-cell interactions on the cell response to bioactive macromolecules, and suggest how this information could lead to new criteria for the design of novel drug delivery systems.
Collapse
Affiliation(s)
- Hyun Joon Kong
- Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
1563
|
Ochsner M, Dusseiller MR, Grandin HM, Luna-Morris S, Textor M, Vogel V, Smith ML. Micro-well arrays for 3D shape control and high resolution analysis of single cells. LAB ON A CHIP 2007; 7:1074-7. [PMID: 17653351 DOI: 10.1039/b704449f] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In addition to rigidity, matrix composition, and cell shape, dimensionality is now considered an important property of the cell microenvironment which directs cell behavior. However, available tools for cell culture in two-dimensional (2D) versus three-dimensional (3D) environments are difficult to compare, and no tools exist which provide 3D shape control of single cells. We developed polydimethylsiloxane (PDMS) substrates for the culture of single cells in 3D arrays which are compatible with high-resolution microscopy. Cell adhesion was limited to within microwells by passivation of the flat upper surface through 'wet-printing' of a non-fouling polymer and backfilling of the wells with specific adhesive proteins or lipid bilayers. Endothelial cells constrained within microwells were viable, and intracellular features could be imaged with high resolution objectives. Finally, phalloidin staining of actin stress fibers showed that the cytoskeleton of cells in microwells was 3D and not limited to the cell-substrate interface. Thus, microwells can be used to produce microenvironments for large numbers of single cells with 3D shape control and can be added to a repertoire of tools which are ever more sought after for both fundamental biological studies as well as high throughput cell screening assays.
Collapse
Affiliation(s)
- Mirjam Ochsner
- BioInterface Group, Laboratory for Surface Science and Technology, ETH Zurich, CH-8093, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
1564
|
Saha K, Pollock JF, Schaffer DV, Healy KE. Designing synthetic materials to control stem cell phenotype. Curr Opin Chem Biol 2007; 11:381-7. [PMID: 17669680 PMCID: PMC1993842 DOI: 10.1016/j.cbpa.2007.05.030] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 05/31/2007] [Indexed: 12/13/2022]
Abstract
The micro-environment in which stem cells reside regulates their fate, and synthetic materials have recently been designed to emulate these regulatory processes for various medical applications. Ligands inspired by the natural extracellular matrix, cell-cell contacts, and growth factors have been incorporated into synthetic materials with precisely engineered density and presentation. Furthermore, material architecture and mechanical properties are material design parameters that provide a context for receptor-ligand interactions and thereby contribute to fate determination of uncommitted stem cells. Although significant progress has been made in biomaterials development for cellular control, the design of more sophisticated and robust synthetic materials can address future challenges in achieving spatiotemporal control of cellular phenotype and in implementing histocompatible clinical therapies.
Collapse
Affiliation(s)
- Krishanu Saha
- Department of Chemical Engineering, University of California at Berkeley, Berkeley, California
| | - Jacob F. Pollock
- Department of Bioengineering, University of California at Berkeley, Berkeley, California
- UCSF and UCB Joint Graduate Group in Bioengineering, University of California at Berkeley, Berkeley, California
| | - David V. Schaffer
- Department of Chemical Engineering, University of California at Berkeley, Berkeley, California
- The Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, California
- Correspondence should be addressed to D.V.S.: 201 Gilman Hall, Berkeley, California 94720-1462, (510) 643-5963, (510) 642-4778 (fax), , K.E.H: 370 Hearst Memorial Mining Building, #1760, Berkeley, California 94720-1760, (510) 643-3559, (510) 643-5792 (fax),
| | - Kevin E. Healy
- Department of Bioengineering, University of California at Berkeley, Berkeley, California
- UCSF and UCB Joint Graduate Group in Bioengineering, University of California at Berkeley, Berkeley, California
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California
- Correspondence should be addressed to D.V.S.: 201 Gilman Hall, Berkeley, California 94720-1462, (510) 643-5963, (510) 642-4778 (fax), , K.E.H: 370 Hearst Memorial Mining Building, #1760, Berkeley, California 94720-1760, (510) 643-3559, (510) 643-5792 (fax),
| |
Collapse
|
1565
|
King JA, Miller WM. Bioreactor development for stem cell expansion and controlled differentiation. Curr Opin Chem Biol 2007; 11:394-8. [PMID: 17656148 PMCID: PMC2038982 DOI: 10.1016/j.cbpa.2007.05.034] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Accepted: 05/29/2007] [Indexed: 11/24/2022]
Abstract
Widespread use of embryonic and adult stem cells for therapeutic applications will require reproducible production of large numbers of well-characterized cells under well-controlled conditions in bioreactors. During the past two years, substantial progress has been made towards this goal. Human mesenchymal stem cells expanded in perfused scaffolds retained multi-lineage potential. Mouse neural stem cells were expanded as aggregates in serum-free medium for 44 days in stirred bioreactors. Mouse embryonic stem cells expanded as aggregates and on microcarriers in stirred vessels retained expression of stem cell markers and could form embryoid bodies. Embryoid body formation from dissociated mouse embryonic stem cells, followed by embryoid body expansion and directed differentiation, was scaled up to gas-sparged, 2-l instrumented bioreactors with pH and oxygen control.
Collapse
Affiliation(s)
- James A. King
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois,
| | - William M. Miller
- Department of Chemical and Biological Engineering and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois,
| |
Collapse
|
1566
|
Qutub AA, Popel AS. Three autocrine feedback loops determine HIF1 alpha expression in chronic hypoxia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1511-25. [PMID: 17720260 PMCID: PMC2094118 DOI: 10.1016/j.bbamcr.2007.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 06/13/2007] [Accepted: 07/12/2007] [Indexed: 11/30/2022]
Abstract
Hypoxia occurs in cancer, prolonged exercise, and long-term ischemia with durations of several hours or more, and the hypoxia-inducible factor 1 (HIF1) pathway response to these conditions differs from responses to transient hypoxia. We used computational modeling, validated by experiments, to gain a quantitative, temporal understanding of the mechanisms driving HIF1 response. To test the hypothesis that HIF1 alpha protein levels during chronic hypoxia are tightly regulated by a series of molecular feedbacks, we took into account protein synthesis and product inhibition, and analyzed HIF1 system changes in response to hypoxic exposures beyond 3 to 4 h. We show how three autocrine feedback loops together regulate HIF 1 alpha hydroxylation in different microenvironments. Results demonstrate that prolyl hydroxylase, succinate and HIF1 alpha feedback determine intracellular HIF1 alpha levels over the course of hours to days. The model provides quantitative insight critical for characterizing molecular mechanisms underlying a cell's response to long-term hypoxia.
Collapse
Affiliation(s)
- Amina A Qutub
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, 613 Traylor Building, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | |
Collapse
|
1567
|
Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P, Mey J. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone blend. Biomaterials 2007; 28:3012-25. [PMID: 17408736 DOI: 10.1016/j.biomaterials.2007.03.009] [Citation(s) in RCA: 474] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 03/14/2007] [Indexed: 11/24/2022]
Abstract
Our long-term goal is to develop an artificial implant as a conduit for axonal regeneration after peripheral nerve injury. In this study, biodegradable, aligned poly-epsilon-caprolactone (PCL) and collagen/PCL (C/PCL) nanofibers designed as guidance structures were produced by electrospinning and tested in cell culture assays. We compared fibers of 100% PCL with fibers consisting of a 25:75% C/PCL blend. To test their biocompatibility, assays of cell adhesion, survival, migration, effects on cell morphology, axonal growth and axonal guidance were performed. Both types of eletrospun fibers supported oriented neurite outgrowth and glial migration from dorsal root ganglia (DRG) explants. Schwann cell migration, neurite orientation, and process formation of Schwann cells, fibroblasts and olfactory ensheathing cells were improved on C/PCL fibers, when compared to pure PCL fibers. While the velocity of neurite elongation from DRG explants was higher on PCL fibers, analysis of isolated sensory neurons showed significantly better axonal guidance by the C/PCL material. The data demonstrate that electrospun fibers composed of a collagen and PCL blend represent a suitable substrate for supporting cell proliferation, process outgrowth and migration and as such would be a good material for artificial nerve implants.
Collapse
Affiliation(s)
- Eva Schnell
- Institut für Biologie II, RWTH Aachen, Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
1568
|
Lee PJ, Gaige TA, Ghorashian N, Hung PJ. Microfluidic tissue model for live cell screening. Biotechnol Prog 2007; 23:946-51. [PMID: 17585775 PMCID: PMC2532848 DOI: 10.1021/bp070053l] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have developed a microfluidic platform modeled after the physiologic microcirculation for multiplexed tissue-like culture and high-throughput analysis. Each microfabricated culture unit consisted of three functional components: a 50 microm wide cell culture pocket, an artificial endothelial barrier with 2 microm pores, and a nutrient transport channel. This configuration enabled a high density of cancer cells to be maintained for over 1 week in a solid tumor-like morphology when fed with continuous flow. The microfluidic chip contained 16 parallel units for "flow cell" based experiments where live cells were exposed to a soluble factor and analyzed via fluorescence microscopy or flow-through biochemistry. Each fluidically independent tissue unit contained approximately 500 cells fed with a continuous flow of 10 nL/min. As a demonstration, the toxicity profile of the anti-cancer drug paclitaxel was collected on HeLa cells cultured in the microfluidic format and compared with a 384-well dish for up to 5 days of continuous drug exposure.
Collapse
Affiliation(s)
- Philip J Lee
- CellASIC Corporation, 2551 Merced St., San Leandro, California 94577, USA.
| | | | | | | |
Collapse
|
1569
|
Metcalfe AD, Ferguson MW. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface 2007; 4:413-37. [PMID: 17251138 PMCID: PMC2373411 DOI: 10.1098/rsif.2006.0179] [Citation(s) in RCA: 461] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 09/08/2006] [Indexed: 12/12/2022] Open
Abstract
Advanced therapies combating acute and chronic skin wounds are likely to be brought about using our knowledge of regenerative medicine coupled with appropriately tissue-engineered skin substitutes. At the present time, there are no models of an artificial skin that completely replicate normal uninjured skin. Natural biopolymers such as collagen and fibronectin have been investigated as potential sources of biomaterial to which cells can attach. The first generation of degradable polymers used in tissue engineering were adapted from other surgical uses and have drawbacks in terms of mechanical and degradation properties. This has led to the development of synthetic degradable gels primarily as a way to deliver cells and/or molecules in situ, the so-called smart matrix technology. Tissue or organ repair is usually accompanied by fibrotic reactions that result in the production of a scar. Certain mammalian tissues, however, have a capacity for complete regeneration without scarring; good examples include embryonic or foetal skin and the ear of the MRL/MpJ mouse. Investigations of these model systems reveal that in order to achieve such complete regeneration, the inflammatory response is altered such that the extent of fibrosis and scarring is diminished. From studies on the limited examples of mammalian regeneration, it may also be possible to exploit such models to further clarify the regenerative process. The challenge is to identify the factors and cytokines expressed during regeneration and incorporate them to create a smart matrix for use in a skin equivalent. Recent advances in the use of DNA microarray and proteomic technology are likely to aid the identification of such molecules. This, coupled with recent advances in non-viral gene delivery and stem cell technologies, may also contribute to novel approaches that would generate a skin replacement whose materials technology was based not only upon intelligent design, but also upon the molecules involved in the process of regeneration.
Collapse
Affiliation(s)
| | - Mark W.J Ferguson
- UK Centre for Tissue Engineering, Faculty of Life Sciences, University of Manchester3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
1570
|
Abstract
This protocol describes the setup, maintenance and characteristics of a tissue-engineered model of the human bronchial mucosa that can be used for basic physiology and pathophysiology studies. The model includes a well-differentiated epithelium with functional cilia, mucus secretion and subepithelial fibroblasts within type I collagen. The tissue is created within porous polymeric wells to prevent gel contraction and allow culture at the air-liquid interface. It requires at least 2 wk to be established and can be maintained thereafter for over 4 wk, with tissue differentiation moving towards a more physiologically relevant phenotype with increasing time in culture. Over time, the extracellular matrix also remodels, depositing proteins such as types III and IV collagen and fibronectin. Because it recapitulates many key anatomical and functional features of the airway wall, this model is well suited for a wide range of studies, including those on airway remodeling, transepithelial transport and inflammatory cell interactions with the mucosa. The entire protocol takes 4-6 wk, including cell expansion, depending on the extent of ciliogenesis desired.
Collapse
Affiliation(s)
- Melanie M Choe
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
1571
|
Kim L, Toh YC, Voldman J, Yu H. A practical guide to microfluidic perfusion culture of adherent mammalian cells. LAB ON A CHIP 2007; 7:681-94. [PMID: 17538709 DOI: 10.1039/b704602b] [Citation(s) in RCA: 225] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Culturing cells at microscales allows control over microenvironmental cues, such as cell-cell and cell-matrix interactions; the potential to scale experiments; the use of small culture volumes; and the ability to integrate with microsystem technologies for on-chip experimentation. Microfluidic perfusion culture in particular allows controlled delivery and removal of soluble biochemical molecules in the extracellular microenvironment, and controlled application of mechanical forces exerted via fluid flow. There are many challenges to designing and operating a robust microfluidic perfusion culture system for routine culture of adherent mammalian cells. The current literature on microfluidic perfusion culture treats microfluidic design, device fabrication, cell culture, and micro-assays independently. Here we systematically present and discuss important design considerations in the context of the entire microfluidic perfusion culture system. These design considerations include the choice of materials, culture configurations, microfluidic network fabrication and micro-assays. We also present technical issues such as sterilization; seeding cells in both 2D and 3D configurations; and operating the system under optimized mass transport and shear stress conditions, free of air-bubbles. The integrative and systematic treatment of the microfluidic system design and fabrication, cell culture, and micro-assays provides novices with an effective starting point to build and operate a robust microfludic perfusion culture system for various applications.
Collapse
Affiliation(s)
- Lily Kim
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Rm 36-824, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
1572
|
Shields JD, Fleury ME, Yong C, Tomei AA, Randolph GJ, Swartz MA. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 2007; 11:526-38. [PMID: 17560334 DOI: 10.1016/j.ccr.2007.04.020] [Citation(s) in RCA: 409] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2006] [Revised: 03/20/2007] [Accepted: 04/26/2007] [Indexed: 02/05/2023]
Abstract
CCR7 is implicated in lymph node metastasis of cancer, but its role is obscure. We report a mechanism explaining how interstitial flow caused by lymphatic drainage directs tumor cell migration by autocrine CCR7 signaling. Under static conditions, lymphatic endothelium induced CCR7-dependent chemotaxis of tumor cells through 3D matrices. However, interstitial flow induced strong increases in tumor cell migration that were also CCR7 dependent, but lymphatic independent. This autologous chemotaxis correlated with metastatic potential in four cell lines and was verified by visualizing directional polarization of cells in the flow direction. Computational modeling revealed that transcellular gradients of CCR7 ligand were created under flow to drive this response. This illustrates how tumor cells may be guided to lymphatics during metastasis.
Collapse
Affiliation(s)
- Jacqueline D Shields
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | | | | | | | | | | |
Collapse
|
1573
|
Galownia NC, Kushiro K, Gong Y, Asthagiri AR. Selective desensitization of growth factor signaling by cell adhesion to fibronectin. J Biol Chem 2007; 282:21758-66. [PMID: 17540764 DOI: 10.1074/jbc.m703577200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cell adhesion to the extracellular matrix is required to execute growth factor (GF)-mediated cell behaviors, such as proliferation. A major underlying mechanism is that cell adhesion enhances GF-mediated intracellular signals, such as extracellular signal-regulated kinase (Erk). However, because GFs use distinct mechanisms to activate Ras-Erk signaling, it is unclear whether adhesion-mediated enhancement of Erk signaling is universal to all GFs. We examined this issue by quantifying the dynamics of Erk signaling induced by epidermal growth factor, basic fibroblast growth factor (bFGF), and platelet-derived growth factor (PDGF) in NIH-3T3 fibroblasts. Adhesion to fibronectin-coated surfaces enhances Erk signaling elicited by epidermal growth factor but not by bFGF or PDGF. Unexpectedly, adhesion is not always a positive influence on GF-mediated signaling. At critical subsaturating doses of PDGF or bFGF, cell adhesion ablates Erk signaling; that is, adhesion desensitizes the cell to GF stimulation, rendering the signaling pathway unresponsive to GF. Interestingly, the timing of growth factor stimulation proved critical to the desensitization process. Erk activation significantly improved only when pre-exposure to adhesion was completely eliminated; thus, concurrent stimulation by GF and adhesion was able to partially rescue adhesion-mediated desensitization of PDGF- and bFGF-mediated Erk and Akt signaling. These findings suggest that adhesion-mediated desensitization occurs with rapid kinetics and targets a regulatory point upstream of Ras and proximal to GF receptor activation. Thus, adhesion-dependent Erk signaling is not universal to all GFs but, rather, is GF-specific with quantitative features that depend strongly on the dose and timing of GF exposure.
Collapse
Affiliation(s)
- Niki C Galownia
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
1574
|
Engelbrecht CJ, Greger K, Reynaud EG, Krzic U, Colombelli J, Stelzer EH. Three-dimensional laser microsurgery in light-sheet based microscopy (SPIM). OPTICS EXPRESS 2007; 15:6420-30. [PMID: 19546948 DOI: 10.1364/oe.15.006420] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Advances in the life sciences rely on the ability to observe dynamic processes in live systems and in environments that mimic in-vivo situations. Therefore, new methodological developments have to provide environments that resemble physiologically and clinically relevant conditions as closely as possible. In this work, plasma-induced laser nanosurgery for three-dimensional sample manipulation and sample perturbation is combined with optically sectioning light-sheet based fluorescence microscopy (SPIM) and applied to three-dimensional biological model systems. This means: a) working with a biological system that is not confined to essentially two dimensions like cell cultures on cover glasses, b) gaining intrinsic optical sectioning capabilities by an efficient three-dimensional fluorescence imaging system, and c) using arbitrarily-shaped three-dimensional ablation-patterns by a plasma-induced laser ablation system that prevent damage to surrounding tissues. Spatial levels in our biological applications range from sub-microns during delicate ablation of single microtubules over the confined disruption of cell membranes in an MDCK-cyst to the macroscopic cutting of a millimeter-sized Zebrafish caudal fin with arbitrary three-dimensional ablation patterns. Dynamic processes like laser-induced hemocyte migration can be studied with our SPIM-microscalpel in intact, live embryos.
Collapse
Affiliation(s)
- Christoph J Engelbrecht
- EMBL Heidelberg, Light Microscopy Group, Cell Biology and Biophysics Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
1575
|
Cheung YK, Gillette BM, Zhong M, Ramcharan S, Sia SK. Direct patterning of composite biocompatible microstructures using microfluidics. LAB ON A CHIP 2007; 7:574-9. [PMID: 17476375 DOI: 10.1039/b700869d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This study demonstrates a versatile and fast method for patterning three-dimensional (3D) monolithic microstructures made of multiple (up to 24 demonstrated) types of materials, all spatially aligned, inside a microchannel. This technique uses confocal scanning or conventional fluorescence microscopy to polymerize selected regions of a photocurable material, and microfluidics to automate the delivery of a series of washes and photocurable reagents. Upon completion of lithographic cycles, the aligned 3D microstructures are suitable for microfluidic manipulation and analysis. We demonstrated the fabrication of composite 3D microstructures with various geometries, size scales (up to 1 mm2), spatial resolution (down to 3 microm), and materials. For a typical multi-cycle process, the total fabrication time was tens of minutes, compared to tens of hours for conventional methods. In the case of 3D hydrogels, a potential use is the direct patterning of inhomogeneous 3D microenvironments for studying cell behavior.
Collapse
Affiliation(s)
- Yuk Kee Cheung
- Columbia University, Department of Biomedical Engineering, 351 Engineering Terrace, 1210 Amsterdam Ave., New York, NY 10027, USA
| | | | | | | | | |
Collapse
|
1576
|
Abstract
Interstitial flow plays important roles in the morphogenesis, function, and pathogenesis of tissues. To investigate these roles and exploit them for tissue engineering or to overcome barriers to drug delivery, a comprehensive consideration of the interstitial space and how it controls and affects such processes is critical. Here we attempt to review the many physical and mathematical correlations that describe fluid and mass transport in the tissue interstitium; the factors that control and affect them; and the importance of interstitial transport on cell biology, tissue morphogenesis, and tissue engineering. Finally, we end with some discussion of interstitial transport issues in drug delivery, cell mechanobiology, and cell homing toward draining lymphatics.
Collapse
Affiliation(s)
- Melody A Swartz
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Switzerland.
| | | |
Collapse
|
1577
|
Hwa AJ, Fry RC, Sivaraman A, So PT, Samson LD, Stolz DB, Griffith LG. Rat liver sinusoidal endothelial cells survive without exogenous VEGF in 3D perfused co-cultures with hepatocytes. FASEB J 2007; 21:2564-79. [PMID: 17426068 DOI: 10.1096/fj.06-7473com] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Liver sinusoidal endothelial cells (SECs) are generally refractory to extended in vitro culture. In an attempt to recreate some features of the complex set of cues arising from the liver parenchyma, we cocultured adult rat liver SECs, identified by the expression of the marker SE-1, with primary adult rat hepatocytes in a 3D culture system that provides controlled microscale perfusion through the tissue mass. The culture was established in a medium containing serum and VEGF, and these factors were then removed to assess whether cells with the SE-1 phenotype could be supported by the local microenvironment in vitro. Rats expressing enhanced green fluorescent protein (EGFP) in all liver cells were used for isolation of the SE-1-positive cells added to cocultures. By the 13th day of culture, EGFP-expressing cells had largely disappeared from 2D control cultures but exhibited moderate proliferation in 3D perfused cultures. SE-1-positive cells were present in 3D cocultures after 13 days, and these cultures also contained Kupffer cells, stellate cells, and CD31-expressing endothelial cells. Global transcriptional profiling did not reveal profound changes between 2D and 3D cultures in expression of most canonical angiogenic factors but suggested changes in several pathways related to endothelial cell function.
Collapse
Affiliation(s)
- Albert J Hwa
- Department of Mechanical Engineering, MIT, 77 Mass. Ave., Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
1578
|
Abstract
A goal of modern biology is to understand the molecular mechanisms underlying cellular function. The ability to manipulate and analyze single cells is crucial for this task. The advent of microengineering is providing biologists with unprecedented opportunities for cell handling and investigation on a cell-by-cell basis. For this reason, lab-on-a-chip (LOC) technologies are emerging as the next revolution in tools for biological discovery. In the current discussion, we seek to summarize the state of the art for conventional technologies in use by biologists for the analysis of single, mammalian cells, and then compare LOC devices engineered for these same single-cell studies. While a review of the technical progress is included, a major goal is to present the view point of the practicing biologist and the advances that might increase adoption by these individuals. The LOC field is expanding rapidly, and we have focused on areas of broad interest to the biology community where the technology is sufficiently far advanced to contemplate near-term application in biological experimentation. Focus areas to be covered include flow cytometry, electrophoretic analysis of cell contents, fluorescent-indicator-based analyses, cells as small volume reactors, control of the cellular microenvironment, and single-cell PCR.
Collapse
Affiliation(s)
- Christopher E Sims
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
1579
|
Toh YC, Zhang C, Zhang J, Khong YM, Chang S, Samper VD, van Noort D, Hutmacher DW, Yu H. A novel 3D mammalian cell perfusion-culture system in microfluidic channels. LAB ON A CHIP 2007; 7:302-9. [PMID: 17330160 DOI: 10.1039/b614872g] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mammalian cells cultured on 2D surfaces in microfluidic channels are increasingly used in drug development and biological research applications. These systems would have more biological or clinical relevance if the cells exhibit 3D phenotypes similar to the cells in vivo. We have developed a microfluidic channel based system that allows cells to be perfusion-cultured in 3D by supporting them with adequate 3D cell-cell and cell-matrix interactions. The maximal cell-cell interaction was achieved by perfusion-seeding cells through an array of micropillars; and 3D cell-matrix interactions were achieved by a polyelectrolyte complex coacervation process to form a thin layer of matrix conforming to the 3D cell shapes. Carcinoma cell lines (HepG2, MCF7), primary differentiated (hepatocytes) and primary progenitor cells (bone marrow mesenchymal stem cells) were perfusion-cultured for 72 hours to 1 week in the microfluidic channel, which preserved their 3D cyto-architecture and cell-specific functions or differentiation competence. This transparent 3D microfluidic channel-based cell culture system also allows direct optical monitoring of cellular events for a wide range of applications.
Collapse
Affiliation(s)
- Yi-Chin Toh
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, 138669, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
1580
|
Helm CLE, Zisch A, Swartz MA. Engineered blood and lymphatic capillaries in 3-D VEGF-fibrin-collagen matrices with interstitial flow. Biotechnol Bioeng 2007; 96:167-76. [PMID: 17133613 DOI: 10.1002/bit.21185] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In vitro endothelial cell organization into capillaries is a long standing challenge of tissue engineering. We recently showed the utility of low level interstitial flow in guiding the organization of endothelial cells through a 3-D fibrin matrix-containing covalently bound vascular endothelial growth factor (VEGF). Here this synergistic phenomenon was extended to explore the effects of matrix composition on in vitro capillary morphogenesis of human blood versus lymphatic endothelial cells (BECs and LECs). Different mixtures of fibrin and collagen were used in conjunction with constant concentrations of matrix-bound VEGF and slow interstitial flow over 10 days. Interestingly, the BECs and LECs each showed a distinct preference in terms of organization for matrix composition: LECs organized the most extensively in a fibrin-only matrix, while BEC organization was optimized in the compliant collagen-containing matrices. Furthermore, the BECs and LECs produced architecturally different structures; while BECs organized in thick, branched networks containing wide lumen, the LECs were elongated into slender, overlapping networks with fine lumen. These data demonstrate the importance of the 3-D matrix composition in facilitating and coordinating BEC and LEC capillary morphogenesis, which is important for in vitro vascularization of engineered tissues.
Collapse
Affiliation(s)
- Cara-Lynn E Helm
- Chemical and Biological Engineering Department, Northwestern University, Evanston, IL, USA
| | | | | |
Collapse
|
1581
|
Schwarz U. Soft matters in cell adhesion: rigidity sensing on soft elastic substrates. SOFT MATTER 2007; 3:263-266. [PMID: 32900142 DOI: 10.1039/b606409d] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This contribution highlights recent advances in our understanding of the relation between soft matter and biological systems. We first discuss the physical scales of living cells which follow from simple scaling arguments developed in soft matter physics. Then we discuss the way cells sense and react to extracellular stiffness as revealed by recent experiments with soft elastic substrates. Theoretical modelling allows addressing of the physical basis of the underlying mechanotransduction processes and its consequences for the organization of single cells and cell communities in soft environments. In the future, these efforts will also lead to an improved understanding of physiological and artificial tissue.
Collapse
Affiliation(s)
- Ulrich Schwarz
- University of Heidelberg, Im Neuenheimer Feld 293, D-69120 Heidelberg, Germany.
| |
Collapse
|
1582
|
Au A, Boehm CA, Mayes AM, Muschler GF, Griffith LG. Formation of osteogenic colonies on well-defined adhesion peptides by freshly isolated human marrow cells. Biomaterials 2007; 28:1847-61. [PMID: 17222453 PMCID: PMC2678558 DOI: 10.1016/j.biomaterials.2006.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 12/04/2006] [Indexed: 01/15/2023]
Abstract
Bone graft performance can be enhanced by addition of connective tissue progenitors (CTPs) from fresh bone marrow in a manner that concentrates the CTP cell population within the graft. Here, we used small peptide adhesion ligands presented against an otherwise adhesion-resistant synthetic polymer background in order to illuminate the molecular basis for the attachment and colony formation by osteogenic CTPs from fresh human marrow, and contrast the behavior of fresh marrow to many commonly used osteogenic cell sources. The linear GRGDSPY ligand was as effective as tissue culture polystyrene in fostering attachment of culture-expanded porcine CTPs. Although this GRGDSPY peptide was more effective than control peptides in fostering alkaline phosphatase (AP)-positive colony formation from primary human marrow in 5 of the 7 patients tested, GRGDSPY was as effective as the control glass substrate in only one patient of 7. Thus, the peptide appears capable of enabling osteoblastic development from only a subpopulation of CTPs in marrow. The bone sialoprotein-derived peptide FHRRIKA was ineffective in fostering attachment of primary culture-expanded pig CTPs, although it was as effective as GRGDSPY in fostering AP-positive colonies from fresh human marrow. This study provides insights into integrin-mediated behaviors of CTPs and highlights differences between freshly isolated marrow and culture-expanded cells.
Collapse
Affiliation(s)
- Ada Au
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
1583
|
Brown RA, Phillips JB. Cell responses to biomimetic protein scaffolds used in tissue repair and engineering. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 262:75-150. [PMID: 17631187 DOI: 10.1016/s0074-7696(07)62002-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Basic science research in tissue engineering and regenerative medicine aims to investigate and understand the deposition, growth, and remodeling of tissues by drawing together approaches from a range of disciplines. This review discusses approaches that use biomimetic proteins and cellular therapies, both in the development of clinical products and of model platforms for scientific investigation. Current clinical approaches to repairing skin, bone, nerve, heart valves, blood vessels, ligaments, and tendons are described and their limitations identified. Opportunities and key questions for achieving clinical goals are discussed through commonly used examples of biomimetic scaffolds: collagen, fibrin, fibronectin, and silk. The key questions addressed by three-dimensional culture models, biomimetic materials, surface chemistry, topography, and their interaction with cells in terms of durotaxis, mechano-regulation, and complex spatial cueing are reviewed to give context to future strategies for biomimetic technology.
Collapse
Affiliation(s)
- Robert A Brown
- Tissue Regeneration & Engineering Center, Institute of Orthopedics, University College London, Stanmore Campus, London, HA7 4LP, United Kingdom
| | | |
Collapse
|
1584
|
Lee PJ, Gaige TA, Ghorashian N, Hung PJ. Microfluidic Tissue Model for Live Cell Screening. Biotechnol Prog 2007. [DOI: 10.1002/bp070053l] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
1585
|
Kang X, Xie Y, Powell HM, James Lee L, Belury MA, Lannutti JJ, Kniss DA. Adipogenesis of murine embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds. Biomaterials 2007; 28:450-8. [PMID: 16997371 DOI: 10.1016/j.biomaterials.2006.08.052] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 08/25/2006] [Indexed: 11/30/2022]
Abstract
A mechanistic understanding of adipose tissue differentiation is critical for the treatment and prevention of obesity and type 2 diabetes. Conventional in vitro models of adipogenesis are preadipocytes or freshly isolated adipocytes grown in two-dimensional (2D) cultures. Optimal results using in vitro tissue culture models can be expected only when adipocyte models closely resemble adipose tissue in vivo. Thus the design of an in vitro three-dimensional (3D) model which faithfully mimics the in vivo environment is needed to effectively study adipogenesis. Pluripotent embryonic stem (ES) cells are a self-renewing cell type that can readily be differentiated into adipocytes. In this study, a 3D culture system was developed to mimic the geometry of adipose tissue in vivo. Murine ES cells were seeded into electrospun polycaprolactone scaffolds and differentiated into adipocytes in situ by hormone induction as demonstrated using a battery of gene and protein expression markers along with the accumulation of neutral lipid droplets. Insulin-responsive Akt phosphorylation, and beta-adrenergic stimulation of cyclic AMP synthesis were demonstrated in ES cell-derived adipocytes. Morphologically, ES cell-derived adipocytes resembled native fat cells by scanning electron and phase contrast microscopy. This tissue engineered ES cell-matrix model has potential uses in drug screening and other therapeutic developments.
Collapse
Affiliation(s)
- Xihai Kang
- Department of Obstetrics and Gynecology (Laboratory of Perinatal Research), The Ohio State University, College of Medicine, 1654 Upham Drive, Means Hall, Fifth Floor, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
1586
|
Kong HJ, Hsiong S, Mooney DJ. Nanoscale cell adhesion ligand presentation regulates nonviral gene delivery and expression. NANO LETTERS 2007; 7:161-6. [PMID: 17212457 PMCID: PMC2581921 DOI: 10.1021/nl062485g] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
It is hypothesized that the nanoscale organization of cell adhesion ligands in a synthetic ECM regulates nonviral gene delivery. This hypothesis was examined with pre-osteoblasts cultured on substrates which present varied density and spacing of synthetic adhesion ligands. The levels of gene transfer and expression were increased with the density of adhesion ligands, but decreased with the spacing of ligands, due to changes in the cell growth rate. This study provides a material-based control point on the nanometer scale for nonviral gene based therapies.
Collapse
Affiliation(s)
- Hyun Joon Kong
- Division of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
1587
|
Sabroe I, Dockrell DH, Vogel SN, Renshaw SA, Whyte MKB, Dower SK. Identifying and hurdling obstacles to translational research. Nat Rev Immunol 2007; 7:77-82. [PMID: 17186032 PMCID: PMC7097148 DOI: 10.1038/nri1999] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although there is overwhelming pressure from funding agencies and the general public for scientists to bridge basic and translational studies, the fact remains that there are significant hurdles to overcome in order to achieve this goal. The purpose of this Opinion article is to examine the nature of these hurdles and to provide food for thought on the main obstacles that impede this process.
Collapse
Affiliation(s)
- Ian Sabroe
- Academic Unit of Respiratory Medicine, School of Medicine and Biomedical Sciences, University of Sheffield, Royal Hallamshire Hospital, Sheffield S10 2JF, UK.
| | | | | | | | | | | |
Collapse
|
1588
|
Torisawa YS, Nashimoto Y, Yasukawa T, Shiku H, Matsue T. Regulation and characterization of the polarity of cells embedded in a reconstructed basement matrix using a three-dimensional micro-culture system. Biotechnol Bioeng 2007; 97:615-21. [PMID: 17115450 DOI: 10.1002/bit.21274] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Three cell lines, that is, the human breast cancer cell line (MCF-7) and the human mammary epithelial cell line (S-1) and its malignant form (T4-2) were embedded in a reconstituted basement membrane (Matrigel) that had 20-nL pyramid-shaped silicon microstructures. The proliferative behavior of the MCF-7 cells was dependent on the surrounding conditions (2-D, collagen gel, or Matrigel), whereas the respiratory activity of a single cell (F(c)) was almost identical under different culture conditions. The F(c) value changed with cellular polarity. The F(c) value for the S-1 cells was observed to decrease slightly, whereas that of the T4-2 cells increased 2 days after cultivation in the microstructures within the Matrigel. However, when the T4-2 cells were cultured in the presence of tyrphostin AG 1478 (T4-2 tyr) to inhibit epidermal growth factor (EGF) signaling, the F(c) value decreased slightly and remained almost constant for an additional 1 week; this was similar to the behavior of the S-1 cells. Further, fluorescence images showed that the T4-2 tyr cells formed polar structures that were similar to those formed by the S-1 cells whereas the T4-2 cells did not form such structures. These results indicate that cellular polarity can be assessed by measuring cellular respiratory activity.
Collapse
Affiliation(s)
- Yu-Suke Torisawa
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | | | | | | | | |
Collapse
|
1589
|
Prestwich GD. Simplifying the extracellular matrix for 3-D cell culture and tissue engineering: A pragmatic approach. J Cell Biochem 2007; 101:1370-83. [PMID: 17492655 DOI: 10.1002/jcb.21386] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The common technique of growing cells on tissue culture plastic (TCP) is gradually being supplanted by methods for culturing cells in two-dimensions (2-D) on matrices with more appropriate physical and biological properties or by encapsulation of cells in three-dimensions (3-D). The universal acceptance of the new 3-D paradigm is currently constrained by the lack of a biocompatible material in the marketplace that offers ease of use, experimental flexibility, and a seamless transition from in vitro to in vivo applications. In this Prospect, I argue that the standard for 3-D cell culture should be bio-inspired, biomimetic materials that can be used "as is" in drug discovery, toxicology, cell banking, and ultimately in medicine. Such biomaterials must therefore be highly reproducible, manufacturable, approvable, and affordable. To obtain integrated, functional, multicellular systems that recapitulate tissues and organs, the needs of the true end-users-physicians and patients-must dictate the key design criteria. Herein I describe the development of one such material that meets these requirements: a covalently crosslinked, biodegradable, simplified mimic of the extracellular matrix (ECM) that permits 3-D culture of cells in vitro and enables tissue formation in vivo. In contrast to materials that were designed for in vitro cell culture and then found unsuitable for clinical use, these semi-synthetic hyaluronan-derived materials were developed for in vivo tissue repair, and are now being re-engineered for in vitro applications in research.
Collapse
Affiliation(s)
- Glenn D Prestwich
- Department of Medicinal Chemistry and Center for Therapeutic Biomaterials, The University of Utah, 419 Wakara Way Suite 205, Salt Lake City, Utah 84108, USA.
| |
Collapse
|
1590
|
Abstract
It is important to quantify the distribution of behavior amongst a population of individual cells to reach a more complete quantitative understanding of cellular processes. Improved high-throughput analysis of single cell behavior requires uniform conditions for individual cells with controllable cell-cell interactions, including diffusible and contact elements. Uniform cell arrays for static culture of adherent cells have previously been constructed using protein micropatterning techniques but lack the ability to control diffusible secretions. Here we present a microfluidic-based dynamic single cell culture array that allows both arrayed culture of individual adherent cells and dynamic control of fluid perfusion with uniform environments for individual cells. In our device no surface modification is required and cell loading is done in less than 30 seconds. The device consists of arrays of physical U-shaped hydrodynamic trapping structures with geometries that are biased to trap only single cells. HeLa cells were shown to adhere at a similar rate in the trapping array as on a control glass substrate. Additionally, rates of cell death and division were comparable to the control experiment. Approximately 100 individual isolated cells were observed growing and adhering in a field of view spanning approximately 1 mm(2) with greater than 85% of cells maintained within the primary trapping site after 24 hours. Also, greater than 90% of cells were adherent and only 5% had undergone apoptosis after 24 hours of perfusion culture within the trapping array. We anticipate uses in single cell analysis of drug toxicity with physiologically relevant perfused dosages as well as investigation of cell signaling pathways and systems biology.
Collapse
Affiliation(s)
- Dino Di Carlo
- Berkeley Sensor and Actuator Center, Biomolecular Nanotechnology Center, Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
1591
|
Abstract
A key challenge in stem cell research is to learn how to direct the differentiation of stem cells toward specific fates. In this issue of Cell, Engler et al. (2006) identify a new factor regulating stem cell fate: the elasticity of the matrix microenvironment. By changing the stiffness of the substrate, human mesenchymal stem cells could be directed along neuronal, muscle, or bone lineages.
Collapse
Affiliation(s)
- Sharona Even-Ram
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
1592
|
Larsen M, Artym VV, Green JA, Yamada KM. The matrix reorganized: extracellular matrix remodeling and integrin signaling. Curr Opin Cell Biol 2006; 18:463-71. [PMID: 16919434 DOI: 10.1016/j.ceb.2006.08.009] [Citation(s) in RCA: 361] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 08/03/2006] [Indexed: 12/22/2022]
Abstract
Via integrins, cells can sense dimensionality and other physical and biochemical properties of the extracellular matrix (ECM). Cells respond differently to two-dimensional substrates and three-dimensional environments, activating distinct signaling pathways for each. Direct integrin signaling and indirect integrin modulation of growth factor and other intracellular signaling pathways regulate ECM remodeling and control subsequent cell behavior and tissue organization. ECM remodeling is critical for many developmental processes, and remodeled ECM contributes to tumorigenesis. These recent advances in the field provide new insights and raise new questions about the mechanisms of ECM synthesis and proteolytic degradation, as well as the roles of integrins and tension in ECM remodeling.
Collapse
Affiliation(s)
- Melinda Larsen
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, MSC 4370, Bethesda, MD 20892-4370, USA
| | | | | | | |
Collapse
|
1593
|
Nahmias Y, Berthiaume F, Yarmush ML. Integration of technologies for hepatic tissue engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006; 103:309-29. [PMID: 17195468 DOI: 10.1007/10_029] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The liver is the largest internal organ in the body, responsible for over 500 metabolic, regulatory, and immune functions. Loss of liver function leads to liver failure which causes over 25,000 deaths/year in the United States. Efforts in the field of hepatic tissue engineering include the design of bioartificial liver systems to prolong patient's lives during liver failure, for drug toxicity screening and for the study of liver regeneration, ischemia/reperfusion injury, fibrosis, viral infection, and inflammation. This chapter will overview the current state-of-the-art in hepatology including isolated perfused liver, culture of liver slices and tissue explants, hepatocyte culture on collagen "sandwich" and spheroids, coculture of hepatocytes with non-parenchymal cells, and the integration of these culture techniques with microfluidics and reactor design. This work will discuss the role of oxygen and medium composition in hepatocyte culture and present promising new technologies for hepatocyte proliferation and function. We will also discuss liver development, architecture, and function as they relate to these culture techniques. Finally, we will review current opportunities and major challenges in integrating cell culture, bioreactor design, and microtechnology to develop new systems for novel applications.
Collapse
Affiliation(s)
- Yaakov Nahmias
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, 51 Blossom St, Boston, MA 02114, USA
| | | | | |
Collapse
|
1594
|
Dix DJ, Houck KA, Martin MT, Richard AM, Setzer RW, Kavlock RJ. The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicol Sci 2006; 95:5-12. [PMID: 16963515 DOI: 10.1093/toxsci/kfl103] [Citation(s) in RCA: 608] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The U.S. Environmental Protection Agency (EPA) is developing methods for utilizing computational chemistry, high-throughput screening (HTS), and various toxicogenomic technologies to predict potential for toxicity and prioritize limited testing resources toward chemicals that likely represent the greatest hazard to human health and the environment. This chemical prioritization research program, entitled "ToxCast," is being initiated with the purpose of developing the ability to forecast toxicity based on bioactivity profiling. The proof-of-concept phase of ToxCast will focus upon chemicals with an existing, rich toxicological database in order to provide an interpretive context for the ToxCast data. This set of several hundred reference chemicals will represent numerous structural classes and phenotypic outcomes, including tumorigens, developmental and reproductive toxicants, neurotoxicants, and immunotoxicants. The ToxCast program will evaluate chemical properties and bioactivity profiles across a broad spectrum of data domains: physical-chemical, predicted biological activities based on existing structure-activity models, biochemical properties based on HTS assays, cell-based phenotypic assays, and genomic and metabolomic analyses of cells. These data will be generated through a series of external contracts, along with collaborations across EPA, with the National Toxicology Program, and with the National Institutes of Health Chemical Genomics Center. The resulting multidimensional data set provides an informatics challenge requiring appropriate computational methods for integrating various chemical, biological, and toxicological data into profiles and models predicting toxicity.
Collapse
Affiliation(s)
- David J Dix
- National Center for Computational Toxicology D343-03, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | | | |
Collapse
|
1595
|
Goentoro LA, Reeves GT, Kowal CP, Martinelli L, Schüpbach T, Shvartsman SY. Quantifying the Gurken morphogen gradient in Drosophila oogenesis. Dev Cell 2006; 11:263-72. [PMID: 16890165 PMCID: PMC4091837 DOI: 10.1016/j.devcel.2006.07.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 06/01/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022]
Abstract
Quantitative information about the distribution of morphogens is crucial for understanding their effects on cell-fate determination, yet it is difficult to obtain through direct measurements. We have developed a parameter estimation approach for quantifying the spatial distribution of Gurken, a TGFalpha-like EGFR ligand that acts as a morphogen in Drosophila oogenesis. Modeling of Gurken/EGFR system shows that the shape of the Gurken gradient is controlled by a single dimensionless parameter, the Thiele modulus, which reflects the relative importance of ligand diffusion and degradation. By combining the model with genetic alterations of EGFR levels, we have estimated the value of the Thiele modulus in the wild-type egg chamber. This provides a direct characterization of the shape of the Gurken gradient and demonstrates how parameter estimation techniques can be used to quantify morphogen gradients in development.
Collapse
Affiliation(s)
- Lea A. Goentoro
- Department of Chemical Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544
| | - Gregory T. Reeves
- Department of Chemical Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544
| | - Craig P. Kowal
- Department of Chemical Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544
| | - Luigi Martinelli
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544
| | - Trudi Schüpbach
- Howard Hughes Medical Institute and Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Stanislav Y. Shvartsman
- Department of Chemical Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
1596
|
Asnes CF, Marquez JP, Elson EL, Wakatsuki T. Reconstitution of the Frank-Starling mechanism in engineered heart tissues. Biophys J 2006; 91:1800-10. [PMID: 16782784 PMCID: PMC1544304 DOI: 10.1529/biophysj.105.065961] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
According to the Frank-Starling mechanism, as the heart is stretched, it increases its contraction force. Reconstitution of the Frank-Starling mechanism is an important milestone for producing functional heart tissue constructs. Spontaneously contracting engineered heart tissues (EHTs) were reconstituted by growing dissociated chicken embryo cardiomyocytes in collagen matrices. Twitch and baseline tensions were recorded at precisely controlled levels of tissue strain. The EHTs showed a steep increase in twitch tension from 0.47 +/- 0.02 to 0.91 +/- 0.02 mN/mm2 as they were stretched at a constant rate (2.67% per min) from 86% to 100% of the length at which maximum twitch force was exerted. In response to a sudden stretch (3.3%), the twitch tension increased gradually (approximately 60 s) in a Gd3+-sensitive manner, suggesting the presence of stretch-activated Ca2+ channels. A large difference in baseline tension between lengthening (loading) and shortening (unloading) was also recorded. Disruption of nonsarcomeric actin filaments by cytochalasin D and latrunculin B decreased this difference. A simple mechanical model interprets these results in terms of mechanical connections between myocytes and nonmuscle cells. The experimental results strongly suggest that regulation of twitch tension in EHTs is similar to that of natural myocardium.
Collapse
Affiliation(s)
- Clara F Asnes
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
1597
|
Choe MM, Sporn PHS, Swartz MA. Extracellular matrix remodeling by dynamic strain in a three-dimensional tissue-engineered human airway wall model. Am J Respir Cell Mol Biol 2006; 35:306-13. [PMID: 16601241 PMCID: PMC2643283 DOI: 10.1165/rcmb.2005-0443oc] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Airway wall remodeling is a hallmark of asthma, characterized by subepithelial thickening and extracellular matrix (ECM) remodeling. Mechanical stress due to hyperresponsive smooth muscle cells may contribute to this remodeling, but its relevance in a three-dimensional environment (where the ECM plays an important role in modulating stresses felt by cells) is unclear. To characterize the effects of dynamic compression in ECM remodeling in a physiologically relevant three-dimensional environment, a tissue-engineered human airway wall model with differentiated bronchial epithelial cells atop a collagen gel containing lung fibroblasts was used. Lateral compressive strain of 10 or 30% at 1 or 60 cycles per hour was applied using a novel straining device. ECM remodeling was assessed by immunohistochemistry and zymography. Dynamic strain, particularly at the lower magnitude, induced airway wall remodeling, as indicated by increased deposition of types III and IV collagen and increased secretion of matrix metalloproteinase-2 and -9. These changes paralleled increased myofibroblast differentiation and were fibroblast-dependent. Furthermore, the spatial pattern of type III collagen deposition correlated with that of myofibroblasts; both were concentrated near the epithelium and decreased diffusely away from the surface, indicating some epithelial control of the remodeling response. Thus, in a physiologically relevant three-dimensional model of the bronchial wall, dynamic compressive strain induced tissue remodeling that mimics many features of remodeling seen in asthma, in the absence of inflammation and dependent on epithelial-fibroblast signaling.
Collapse
Affiliation(s)
- Melanie M Choe
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | | | | |
Collapse
|
1598
|
Zhao F, Chella R, Ma T. Effects of shear stress on 3-D human mesenchymal stem cell construct development in a perfusion bioreactor system: Experiments and hydrodynamic modeling. Biotechnol Bioeng 2006; 96:584-95. [PMID: 16948169 DOI: 10.1002/bit.21184] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Shear stress is an important biomechanical parameter in regulating human mesenchymal stem cell (hMSC) construct development. In this study, the biomechanical characteristics of hMSCs within highly porous 3-D poly (ethylene terephthalate) (PET) matrices in a perfusion bioreactor system were analyzed for two flow rates of 0.1 and 1.5 mL/min, respectively over a 20-day culture period. A 1.4 times higher proliferation rate, higher CFU-F formation, and more fibronectin and HSP-47 secretion at day 20 were observed at the flow rate of 0.1 mL/min compared to those at the flow rate of 1.5 mL/min. The higher flow rate of 1.5 mL/min upregulated osteogenic differentiation potential at day 20 as measured by the expression of alkaline phosphatase activity and calcium deposition in the matrix after 14 days osteogenic induction, consistent with those reported in literatures. Mathematical modeling indicated that shear stress existed in the range of 1 x 10(-5) to 1 x 10(-4) Pa in the constructs up to a depth of 70 microm due to flow penetration in the porous constructs. Analysis of oxygen transport in the constructs for the two flow rates yielded oxygen levels significantly higher than those at which cell growth and metabolism are affected (Jiang et al., 1996). This indicates that differences in convective transport have no significant influence on cell growth and metabolism for the range of flow rates studied. These results demonstrate that shear stress is an important microenvironment parameter that regulates hMSC construct development at a range significantly lower than those reported previously in the perfusion system.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | | | | |
Collapse
|