1601
|
Tsuchihara K, Fujii S, Esumi H. Autophagy and cancer: dynamism of the metabolism of tumor cells and tissues. Cancer Lett 2008; 278:130-138. [PMID: 19004545 DOI: 10.1016/j.canlet.2008.09.040] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 09/17/2008] [Accepted: 09/30/2008] [Indexed: 01/05/2023]
Abstract
Autophagy is a dynamic process involving the bulk degradation of cytoplasmic organelles and proteins. Based on the function of "cellular recycling", autophagy plays key roles in the quality control of cellular components as well as supplying nutrients and materials for newly constructed structures in cells under metabolic stresses. The physiological relevance of autophagy in tumor formation and progression is still controversial. The cytoprotective function of autophagy in cells subjected to starvation might enhance the prolonged survival of tumor cells that are often exposed to metabolic stresses in vivo. Meanwhile, a tumor-suppressive function of autophagy has also been suggested. Autophagy-related cell death has been regarded as a primary mechanism for tumor suppression. In addition, the loss of autophagy induced genome instability and significant necrosis with inflammation in transplanted mouse tumor models, suggesting an additional function of autophagy in the suppression of tumor formation and growth. Until now, investigations supporting and proving the above possibilities have not been fully completed using clinical samples and equivalent animal models. Though monitoring and the interpretation of autophagy dynamism in tumor tissues are still technically difficult, identifying the autophagic activity in clinical samples might be necessary to clarify the pathophysiological relevance of autophagy in tumor formation and progression as well as to develop new therapeutic strategies based on the regulation of autophagy.
Collapse
Affiliation(s)
- Katsuya Tsuchihara
- Cancer Physiology Project, Research Center for Innovative oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Satoshi Fujii
- Pathology Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Hiroyasu Esumi
- Cancer Physiology Project, Research Center for Innovative oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan.
| |
Collapse
|
1602
|
He C, Baba M, Cao Y, Klionsky DJ. Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy. Mol Biol Cell 2008; 19:5506-16. [PMID: 18829864 DOI: 10.1091/mbc.e08-05-0544] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is the degradation of a cell's own components within lysosomes (or the analogous yeast vacuole), and its malfunction contributes to a variety of human diseases. Atg9 is the sole integral membrane protein required in formation of the initial sequestering compartment, the phagophore, and is proposed to play a key role in membrane transport; the phagophore presumably expands by vesicular addition to form a complete autophagosome. It is not clear through what mechanism Atg9 functions at the phagophore assembly site (PAS). Here we report that Atg9 molecules self-associate independently of other known autophagy proteins in both nutrient-rich and starvation conditions. Mutational analyses reveal that self-interaction is critical for anterograde transport of Atg9 to the PAS. The ability of Atg9 to self-interact is required for both selective and nonselective autophagy at the step of phagophore expansion at the PAS. Our results support a model in which Atg9 multimerization facilitates membrane flow to the PAS for phagophore formation.
Collapse
Affiliation(s)
- Congcong He
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
1603
|
Bassham DC, Brandizzi F, Otegui MS, Sanderfoot AA. The secretory system of Arabidopsis. THE ARABIDOPSIS BOOK 2008; 6:e0116. [PMID: 22303241 PMCID: PMC3243370 DOI: 10.1199/tab.0116] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Over the past few years, a vast amount of research has illuminated the workings of the secretory system of eukaryotic cells. The bulk of this work has been focused on the yeast Saccharomyces cerevisiae, or on mammalian cells. At a superficial level, plants are typical eukaryotes with respect to the operation of the secretory system; however, important differences emerge in the function and appearance of endomembrane organelles. In particular, the plant secretory system has specialized in several ways to support the synthesis of many components of the complex cell wall, and specialized kinds of vacuole have taken on a protein storage role-a role that is intended to support the growing seedling, but has been co-opted to support human life in the seeds of many crop plants. In the past, most research on the plant secretory system has been guided by results in mammalian or fungal systems but recently plants have begun to stand on their own as models for understanding complex trafficking events within the eukaryotic endomembrane system.
Collapse
Affiliation(s)
- Diane C. Bassham
- Department of Genetics, Development and Cell Biology and Plant Sciences Institute, Iowa State University, 455 Bessey Hall, Ames, Iowa 50011
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, S-238 Plant Biology, East Lansing, Michigan 48824
| | - Marisa S. Otegui
- Department of Botany, University of Wisconsin- Madison, 224 Birge Hall, 430 Lincoln Drive, Madison, Wisconsin 53706
| | - Anton A. Sanderfoot
- Department of Plant Biology, University of Minnesota-Twin Cities, 250 Bioscience Center, 1445 Gortner Ave, St. Paul, Minnesota 55108
| |
Collapse
|
1604
|
Kanki T, Klionsky DJ. Mitophagy in yeast occurs through a selective mechanism. J Biol Chem 2008; 283:32386-93. [PMID: 18818209 DOI: 10.1074/jbc.m802403200] [Citation(s) in RCA: 279] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The regulation of mitochondrial degradation through autophagy is expected to be a tightly controlled process, considering the significant role of this organelle in many processes ranging from energy production to cell death. However, very little is known about the specific nature of the degradation process. We developed a new method to detect mitochondrial autophagy (mitophagy) by fusing the green fluorescent protein at the C terminus of two endogenous mitochondrial proteins and monitored vacuolar release of green fluorescent protein. Using this method, we screened several atg mutants and found that ATG11, a gene that is essential only for selective autophagy, is also essential for mitophagy. In addition, we found that mitophagy is blocked even under severe starvation conditions, if the carbon source makes mitochondria essential for metabolism. These findings suggest that the degradation of mitochondria is a tightly regulated process and that these organelles are largely protected from nonspecific autophagic degradation.
Collapse
Affiliation(s)
- Tomotake Kanki
- Life Sciences Institute and Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | | |
Collapse
|
1605
|
Abstract
Macroautophagy, often referred to as autophagy, designates the process by which portions of the cytoplasm, intracellular organelles and long-lived proteins are engulfed in double-membraned vacuoles (autophagosomes) and sent for lysosomal degradation. Basal levels of autophagy contribute to the maintenance of intracellular homoeostasis by ensuring the turnover of supernumerary, aged and/or damaged components. Under conditions of starvation, the autophagic pathway operates to supply cells with metabolic substrates, and hence represents an important pro-survival mechanism. Moreover, autophagy is required for normal development and for the protective response to intracellular pathogens. Conversely, uncontrolled autophagy is associated with a particular type of cell death (termed autophagic, or type II) that is characterized by the massive accumulation of autophagosomes. Regulators of apoptosis (e.g. Bcl-2 family members) also modulate autophagy, suggesting an intimate cross-talk between these two degradative pathways. It is still unclear whether autophagic vacuolization has a causative role in cell death or whether it represents the ultimate attempt of cells to cope with lethal stress. For a multicellular organism, autophagic cell death might well represent a pro-survival mechanism, by providing metabolic supplies during whole-body nutrient deprivation. Alternatively, type II cell death might contribute to the disposal of cell corpses when heterophagy is deficient. Here, we briefly review the roles of autophagy in cell death and its avoidance.
Collapse
|
1606
|
Abstract
Niemann-Pick type C disease (NPC) is a sphingolipid-storage disorder that results from inherited deficiencies of intracellular lipid-trafficking proteins, and is characterised by an accumulation of cholesterol and glycosphingolipids in late endosomes and lysosomes. Patients with this disorder develop progressive neurological impairment that often begins in childhood, is ultimately fatal and is currently untreatable. How impaired lipid trafficking leads to neurodegeneration is largely unknown. Here we review NPC clinical features and biochemical defects, and discuss model systems used to study this disorder. Recent studies have established that NPC is associated with an induction of autophagy, a regulated and evolutionarily conserved process by which cytoplasmic proteins are sequestered within autophagosomes and targeted for degradation. This pathway enables recycling of limited or damaged macromolecules to promote cell survival. However, in other instances, robust activation of autophagy leads to cell stress and programmed cell death. We summarise evidence showing that autophagy induction and flux are increased in NPC by signalling through a complex of the class III phosphoinositide 3-kinase and beclin-1. We propose that an imbalance between induction and flux through the autophagic pathway contributes to cell stress and neuronal loss in NPC and related sphingolipid-storage disorders, and discuss potential therapeutic strategies for modulating activity of this pathway.
Collapse
Affiliation(s)
- Chris D. Pacheco
- Neuroscience Program, University of Michigan, Ann Arbor, MI 48109
| | - Andrew P. Lieberman
- Neuroscience Program, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
1607
|
Abstract
Autophagy is emerging as a central component of antimicrobial host defense against diverse viral, bacterial, and parasitic infections. In addition to pathogen degradation, autophagy has other functions during infection such as innate and adaptive immune activation. As an important host defense pathway, microbes have also evolved mechanisms to evade, subvert, or exploit autophagy. Additionally, some fungal pathogens harness autophagy within their own cells to promote pathogenesis. This review will highlight our current understanding of autophagy in infection, focusing on the most recent advances in the field, and will discuss the potential implications of these studies in the design of anti-infective therapeutics.
Collapse
|
1608
|
|
1609
|
Abstract
Autophagy is important for the degradation of bulk cytoplasm, long-lived proteins, and entire organelles. In lower eukaryotes, autophagy functions as a cell death mechanism or as a stress response during development. However, autophagy's significance in vertebrate development, and the role (if any) of vertebrate-specific factors in its regulation, remains unexplained. Through careful analysis of the current autophagy gene mutant mouse models, we propose that in mammals, autophagy may be involved in specific cytosolic rearrangements needed for proliferation, death, and differentiation during embryogenesis and postnatal development. Thus, autophagy is a process of cytosolic "renovation," crucial in cell fate decisions.
Collapse
Affiliation(s)
- Francesco Cecconi
- Dulbecco Telethon Institute at the Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Laboratory of Molecular Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy.
| | - Beth Levine
- Howard Hughes Medical Institute, Southwestern Medical Center, University of Texas, Dallas, TX 75390, USA; Department of Internal Medicine, Southwestern Medical Center, University of Texas, Dallas, TX 75390, USA; Department of Microbiology, Southwestern Medical Center, University of Texas, Dallas, TX 75390, USA.
| |
Collapse
|
1610
|
Rautou PE, Cazals-Hatem D, Moreau R, Francoz C, Feldmann G, Lebrec D, Ogier-Denis E, Bedossa P, Valla D, Durand F. Acute liver cell damage in patients with anorexia nervosa: a possible role of starvation-induced hepatocyte autophagy. Gastroenterology 2008; 135:840-8, 848.e1-3. [PMID: 18644371 DOI: 10.1053/j.gastro.2008.05.055] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 05/20/2008] [Accepted: 05/21/2008] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Acute liver insufficiency is a rare complication of anorexia nervosa. The mechanisms for this complication are unclear. The aim of this study was to describe patient characteristics and clarify the mechanisms involved. METHODS Liver specimens from 12 patients (median age, 24 years; median body mass index, 11.3 kg/m(2)), with a prothrombin index <50% and/or an International Normalized Ratio >1.7 and anorexia nervosa as the only cause for acute liver injury were analyzed. A detailed pathologic examination was performed, including under electron microscopy. RESULTS Liver cell glycogen depletion was a constant finding. There was a contrast between the increase in serum alanine aminotransferase (56 times normal on average; 1,904 IU/L) and the absence of significant hepatocyte necrosis on histology. Centrilobular changes (trabecular atrophy and/or sinusoidal fibrosis) were observed in 6 patients. There were rare or no (<5%) terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive hepatocytes, suggesting that apoptosis was not the primary mechanism. Hepatocytes from 4 patients showed numerous autophagosomes, a morphologic hallmark of autophagy, on electron microscopy. In contrast, the mitochondria, endoplasmic reticulum, and nuclei were normal in most cells. These features were absent in 11 control patients. The outcome was favorable in all patients, with a rapid return to normal liver function. CONCLUSIONS Anorexia nervosa with extremely poor nutritional status should be added to the list of conditions causing acute liver insufficiency. Our findings show that starvation-induced autophagy in the human liver may be involved in liver cell death during anorexia nervosa, even though other mechanisms of liver cell damage could also play a role.
Collapse
Affiliation(s)
- Pierre-Emmanuel Rautou
- Pôle des Maladies de l'Appareil Digestif, Service d'Hépatologie, Hôpital Beaujon, AP-HP, Clichy, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1611
|
Vergarajauregui S, Connelly PS, Daniels MP, Puertollano R. Autophagic dysfunction in mucolipidosis type IV patients. Hum Mol Genet 2008; 17:2723-37. [PMID: 18550655 PMCID: PMC2515373 DOI: 10.1093/hmg/ddn174] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 05/20/2008] [Accepted: 06/10/2008] [Indexed: 12/18/2022] Open
Abstract
Mutations in Mucolipin 1 (MCOLN1) have been linked to mucolipidosis type IV (MLIV), a lysosomal storage disease characterized by several neurological and ophthalmological abnormalities. It has been proposed that MCOLN1 might regulate transport of membrane components in the late endosomal-lysosomal pathway; however, the mechanisms by which defects of MCOLN1 function result in mental and psychomotor retardation remain largely unknown. In this study, we show constitutive activation of autophagy in fibroblasts obtained from MLIV patients. Accumulation of autophagosomes in MLIV cells was due to the increased de novo autophagosome formation and to delayed fusion of autophagosomes with late endosomes/lysosomes. Impairment of the autophagic pathway led to increased levels and aggregation of p62, suggesting that abnormal accumulation of ubiquitin proteins may contribute to the neurodegeneration observed in MLIV patients. In addition, we found that delivery of platelet-derived growth factor receptor to lysosomes is delayed in MCOLN1-deficient cells, suggesting that MCOLN1 is necessary for efficient fusion of both autophagosomes and late endosomes with lysosomes. Our data are in agreement with recent evidence showing that autophagic defects may be a common characteristic of many neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Patricia S. Connelly
- Electron Microscopy Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mathew P. Daniels
- Electron Microscopy Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
1612
|
Krick R, Muehe Y, Prick T, Bremer S, Schlotterhose P, Eskelinen EL, Millen J, Goldfarb DS, Thumm M. Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol Biol Cell 2008; 19:4492-505. [PMID: 18701704 DOI: 10.1091/mbc.e08-04-0363] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Autophagy is a diverse family of processes that transport cytoplasm and organelles into the lysosome/vacuole lumen for degradation. During macroautophagy cargo is packaged in autophagosomes that fuse with the lysosome/vacuole. During microautophagy cargo is directly engulfed by the lysosome/vacuole membrane. Piecemeal microautophagy of the nucleus (PMN) occurs in Saccharomyces cerevisiae at nucleus-vacuole (NV) junctions and results in the pinching-off and release into the vacuole of nonessential portions of the nucleus. Previous studies concluded macroautophagy ATG genes are not absolutely required for PMN. Here we report using two biochemical assays that PMN is efficiently inhibited in atg mutant cells: PMN blebs are produced, but vesicles are rarely released into the vacuole lumen. Electron microscopy of arrested PMN structures in atg7, atg8, and atg9 mutant cells suggests that NV-junction-associated micronuclei may normally be released from the nucleus before their complete enclosure by the vacuole membrane. In this regard PMN is similar to the microautophagy of peroxisomes (micropexophagy), where the side of the peroxisome opposite the engulfing vacuole is capped by a structure called the "micropexophagy-specific membrane apparatus" (MIPA). The MIPA contains Atg proteins and facilitates terminal enclosure and fusion steps. PMN does not require the complete vacuole homotypic fusion genes. We conclude that a spectrum of ATG genes is required for the terminal vacuole enclosure and fusion stages of PMN.
Collapse
Affiliation(s)
- R Krick
- Center of Biochemistry and Molecular Cell Biology, Georg-August University, D-37073 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
1613
|
Wloga D, Strzyzewska-Jówko I, Gaertig J, Jerka-Dziadosz M. Septins stabilize mitochondria in Tetrahymena thermophila. EUKARYOTIC CELL 2008; 7:1373-86. [PMID: 18586950 PMCID: PMC2519767 DOI: 10.1128/ec.00085-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Accepted: 06/18/2008] [Indexed: 01/02/2023]
Abstract
We describe phylogenetic and functional studies of three septins in the free-living ciliate Tetrahymena thermophila. Both deletion and overproduction of septins led to vacuolization of mitochondria, destabilization of the nuclear envelope, and increased autophagy. All three green fluorescent protein-tagged septins localized to mitochondria. Specific septins localized to the outer mitochondrial membrane, to septa formed during mitochondrial scission, or to the mitochondrion-associated endoplasmic reticulum. The only other septins known to localize to mitochondria are human ARTS and murine M-septin, both alternatively spliced forms of Sep4 (S. Larisch, Cell Cycle 3:1021-1023, 2004; S. Takahashi, R. Inatome, H. Yamamura, and S. Yanagi, Genes Cells 8:81-93, 2003). It therefore appears that septins have been recruited to mitochondrial functions independently in at least two eukaryotic lineages and in both cases are involved in apoptotic events.
Collapse
Affiliation(s)
- D Wloga
- Department of Cellular Biology, University of Georgia, Athens, GA 30602-2607, USA
| | | | | | | |
Collapse
|
1614
|
Castino R, Lazzeri G, Lenzi P, Bellio N, Follo C, Ferrucci M, Fornai F, Isidoro C. Suppression of autophagy precipitates neuronal cell death following low doses of methamphetamine. J Neurochem 2008; 106:1426-39. [DOI: 10.1111/j.1471-4159.2008.05488.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
1615
|
Vyas JM, Van der Veen AG, Ploegh HL. The known unknowns of antigen processing and presentation. Nat Rev Immunol 2008; 8:607-18. [PMID: 18641646 PMCID: PMC2735460 DOI: 10.1038/nri2368] [Citation(s) in RCA: 434] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The principal components of both MHC class I and class II antigen processing and presentation pathways are well known. In dendritic cells, these pathways are tightly regulated by Toll-like-receptor signalling and include features, such as cross-presentation, that are not seen in other cell types. However, the exact mechanisms involved in the subcellular trafficking of antigens remain poorly understood and in some cases are controversial. Recent data suggest that diverse cellular machineries, including autophagy, participate in antigen processing and presentation, although their relative contributions remain to be fully elucidated. Here, we highlight some emerging themes of antigen processing and presentation that we think merit further attention.
Collapse
Affiliation(s)
- Jatin M Vyas
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
1616
|
Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ 2008; 16:46-56. [PMID: 18636076 DOI: 10.1038/cdd.2008.110] [Citation(s) in RCA: 415] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The formation of intra-neuronal mutant protein aggregates is a characteristic of several human neurodegenerative disorders, like Alzheimer's disease, Parkinson's disease (PD) and polyglutamine disorders, including Huntington's disease (HD). Autophagy is a major clearance pathway for the removal of mutant huntingtin associated with HD, and many other disease-causing, cytoplasmic, aggregate-prone proteins. Autophagy is negatively regulated by the mammalian target of rapamycin (mTOR) and can be induced in all mammalian cell types by the mTOR inhibitor rapamycin. It can also be induced by a recently described cyclical mTOR-independent pathway, which has multiple drug targets, involving links between Ca(2+)-calpain-G(salpha) and cAMP-Epac-PLC-epsilon-IP(3) signalling. Both pathways enhance the clearance of mutant huntingtin fragments and attenuate polyglutamine toxicity in cell and animal models. The protective effects of rapamycin in vivo are autophagy-dependent. In Drosophila models of various diseases, the benefits of rapamycin are lost when the expression of different autophagy genes is reduced, implicating that its effects are not mediated by autophagy-independent processes (like mild translation suppression). Also, the mTOR-independent autophagy enhancers have no effects on mutant protein clearance in autophagy-deficient cells. In this review, we describe various drugs and pathways inducing autophagy, which may be potential therapeutic approaches for HD and related conditions.
Collapse
|
1617
|
|
1618
|
Giles LM, Chen J, Li L, Chin LS. Dystonia-associated mutations cause premature degradation of torsinA protein and cell-type-specific mislocalization to the nuclear envelope. Hum Mol Genet 2008; 17:2712-22. [PMID: 18552369 DOI: 10.1093/hmg/ddn173] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
An in-frame 3 bp deletion in the torsinA gene resulting in the loss of a glutamate residue at position 302 or 303 (torsinA DeltaE) is the major cause for early-onset torsion dystonia (DYT1). In addition, an 18 bp deletion in the torsinA gene resulting in the loss of residues 323-328 (torsinA Delta323-8) has also been associated with dystonia. Here we report that torsinA DeltaE and torsinA Delta323-8 mutations cause neuronal cell-type-specific mislocalization of torsinA protein to the nuclear envelope without affecting torsinA oligomerization. Furthermore, both dystonia-associated mutations destabilize torsinA protein in dopaminergic cells. We find that wild-type torsinA protein is degraded primarily through the macroautophagy-lysosome pathway. In contrast, torsinA DeltaE and torsinA Delta323-8 mutant proteins are degraded by both the proteasome and macroautophagy-lysosome pathways. Our findings suggest that torsinA mutation-induced premature degradation may contribute to the pathogenesis of dystonia via a loss-of-function mechanism and underscore the importance of both the proteasome and macroautophagy in the clearance of dystonia-associated torsinA mutant proteins.
Collapse
Affiliation(s)
- Lisa M Giles
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322-3090, USA
| | | | | | | |
Collapse
|
1619
|
Abstract
Autophagy is a cellular process that has been defined and analyzed almost entirely by qualitative measures. In no small part, this is attributable to the absence of robust quantitative assays that can easily and reliably permit the progress of key steps in autophagy to be assessed. We have recently developed a cell-based assay that specifically measures proteolytic cleavage of a tripartite sensor protein by the autophagy protease ATG4B. Activation of ATG4B results in release of Gaussia luciferase from cells that can be non-invasively harvested from cellular supernatants. Here, we compare this technique to existing methods and propose that this type of assay will be suitable for genome-wide functional screens and in vivo analysis of autophagy.
Collapse
Affiliation(s)
- Robin Ketteler
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
1620
|
Xie Z, Nair U, Klionsky DJ. Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell 2008; 19:3290-8. [PMID: 18508918 DOI: 10.1091/mbc.e07-12-1292] [Citation(s) in RCA: 563] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a potent intracellular degradation process with pivotal roles in health and disease. Atg8, a lipid-conjugated ubiquitin-like protein, is required for the formation of autophagosomes, double-membrane vesicles responsible for the delivery of cytoplasmic material to lysosomes. How and when Atg8 functions in this process, however, is not clear. Here we show that Atg8 controls the expansion of the autophagosome precursor, the phagophore, and give the first real-time, observation-based temporal dissection of the autophagosome formation process. We demonstrate that the amount of Atg8 determines the size of autophagosomes. During autophagosome biogenesis, Atg8 forms an expanding structure and later dissociates from the site of vesicle formation. On the basis of the dynamics of Atg8, we present a multistage model of autophagosome formation. This model provides a foundation for future analyses of the functions and dynamics of known autophagy-related proteins and for screening new genes.
Collapse
Affiliation(s)
- Zhiping Xie
- Life Sciences Institute and Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
1621
|
Yoshimori T, Noda T. Toward unraveling membrane biogenesis in mammalian autophagy. Curr Opin Cell Biol 2008; 20:401-7. [PMID: 18472412 DOI: 10.1016/j.ceb.2008.03.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 03/22/2008] [Accepted: 03/25/2008] [Indexed: 01/07/2023]
Abstract
Autophagy is a unique form of membrane trafficking, which delivers macromolecules and organelles from the cytoplasm to lysosomes for degradation. This fundamental and ubiquitous process in eukaryotic cells is mediated by the double-membrane-bound structures called autophagosomes, which transiently emerge in the cytoplasm. The recent remarkable explosion of knowledge of autophagy has revealed its multiple roles, especially in mammals; in addition to its basic role in turnover and reuse of cellular constituents, the process unexpectedly functions in elimination of invading bacteria and antigen presentation. Analysis of mammalian homologs of the autophagy-related (Atg) proteins identified in yeast has shed light on not only the common molecular mechanisms underlying autophagosome formation, but also specialized mechanisms that are related to the diverse functions and complex regulation of autophagy in higher organisms.
Collapse
Affiliation(s)
- Tamotsu Yoshimori
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
1622
|
Gomes LC, Scorrano L. High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:860-6. [PMID: 18515060 DOI: 10.1016/j.bbabio.2008.05.442] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 05/20/2008] [Accepted: 05/21/2008] [Indexed: 12/31/2022]
Abstract
Damaged mitochondria can be eliminated in a process of organelle autophagy, termed mitophagy. In most cells, the organization of mitochondria in a network could interfere with the selective elimination of damaged ones. In principle, fission of this network should precede mitophagy; but it is unclear whether it is per se a trigger of autophagy. The pro-fission mitochondrial protein Fis1 induced mitochondrial fragmentation and enhanced the formation of autophagosomes which could enclose mitochondria. These changes correlated with mitochondrial dysfunction rather than with fragmentation, as substantiated by Fis1 mutants with different effects on organelle shape and function. In conclusion, fission associated with mitochondrial dysfunction stimulates an increase in autophagy.
Collapse
Affiliation(s)
- Ligia C Gomes
- Dulbecco-Telethon INStitute, Venetian INStitute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
| | | |
Collapse
|
1623
|
Wan G, Zhaorigetu S, Liu Z, Kaini R, Jiang Z, Hu CAA. Apolipoprotein L1, a novel Bcl-2 homology domain 3-only lipid-binding protein, induces autophagic cell death. J Biol Chem 2008; 283:21540-9. [PMID: 18505729 DOI: 10.1074/jbc.m800214200] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Bcl-2 family proteins are important regulators of type I programmed cell death apoptosis; however, their role in autophagic cell death (AuCD) or type II programmed cell death is still largely unknown. Here we report the cloning and characterization of a novel Bcl-2 homology domain 3 (BH3)-only protein, apolipoprotein L1 (apoL1), that, when overexpressed and accumulated intracellularly, induces AuCD in cells as characterized by the increasing formation of autophagic vacuoles and activating the translocation of LC3-II from the cytosol to the autophagic vacuoles. Wortmannin and 3-methyladenine, inhibitors of class III phosphatidylinostol 3-kinase and, subsequently, autophagy, blocked apoL1-induced AuCD. In addition, apoL1 failed to induce AuCD in autophagy-deficient ATG5(-/-) and ATG7(-/-) mouse embryonic fibroblast cells, suggesting that apoL1-induced cell death is indeed autophagy-dependent. Furthermore, a BH3 domain deletion construct of apoL1 failed to induce AuCD, demonstrating that apoL1 is a bona fide BH3-only pro-death protein. Moreover, we showed that apoL1 is inducible by p53 in p53-induced cell death and is a lipid-binding protein with high affinity for phosphatidic acid (PA) and cardiolipin (CL). Previously, it has been shown that PA directly interacted with mammalian target of rapamycin and positively regulated the ability of mammalian target of rapamycin to activate downstream effectors. In addition, CL has been shown to activate mitochondria-mediated apoptosis. Sequestering of PA and CL with apoL1 may alter the homeostasis between survival and death leading to AuCD. To our knowledge, this is the first BH3-only protein with lipid binding activity that, when overproduced intracellularly, induces AuCD.
Collapse
Affiliation(s)
- Guanghua Wan
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|
1624
|
Abstract
As terminally differentiated vital cells, neurons may be specialized to fight viral infections without undergoing cellular self-destruction. The cellular lysosomal degradation pathway, autophagy, is emerging as one such mechanism of neuronal antiviral defence. Autophagy has diverse physiological functions, such as cellular adaptation to stress, routine organelle and protein turnover, and innate immunity against intracellular pathogens, including viruses. Most of the in vivo evidence for an antiviral role of autophagy is related to viruses that specifically target neurons, including the prototype alphavirus, Sindbis virus, and the alpha-herpesvirus, herpes simplex virus type 1 (HSV-1). In the case of HSV-1, viral evasion of autophagy is essential for lethal encephalitis. As basal autophagy is important in preventing neurodegeneration, and induced autophagy is important in promoting cellular survival during stress, viral antagonism of autophagy in neurons may lead to neuronal dysfunction and/or neuronal cell death. This review provides background information on the roles of autophagy in immunity and neuroprotection, and then discusses the relationships between autophagy and viral neurovirulence.
Collapse
Affiliation(s)
- Anthony Orvedahl
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
1625
|
Cecconi F, Piacentini M, Fimia GM. The involvement of cell death and survival in neural tube defects: a distinct role for apoptosis and autophagy? Cell Death Differ 2008; 15:1170-7. [PMID: 18451869 DOI: 10.1038/cdd.2008.64] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Neural tube defects (NTDs), such as spina bifida (SB) or exencephaly, are common congenital malformations leading to infant mortality or severe disability. The etiology of NTDs is multifactorial with a strong genetic component. More than 70 NTD mouse models have been reported, suggesting the involvement of distinct pathogenetic mechanisms, including faulty cell death regulation. In this review, we focus on the contribution of functional genomics in elucidating the role of apoptosis and autophagy genes in neurodevelopment. On the basis of compared phenotypical analysis, here we discuss the relative importance of a tuned control of both apoptosome-mediated cell death and basal autophagy for regulating the correct morphogenesis and cell number in developing central nervous system (CNS). The pharmacological modulation of genes involved in these processes may thus represent a novel strategy for interfering with the occurrence of NTDs.
Collapse
Affiliation(s)
- F Cecconi
- Department of Biology, Dulbecco Telethon Institute, University of Rome 'Tor Vergata', Rome 00133, Italy
| | | | | |
Collapse
|
1626
|
Chiacchiera F, Simone C. Signal-dependent regulation of gene expression as a target for cancer treatment: inhibiting p38alpha in colorectal tumors. Cancer Lett 2008; 265:16-26. [PMID: 18395970 DOI: 10.1016/j.canlet.2008.02.061] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/15/2008] [Accepted: 02/19/2008] [Indexed: 12/27/2022]
Abstract
In the last year, several evidences indicated that pharmacological manipulation of relevant signaling pathways could selectively affect gene expression to influence cell fate. These findings render of extreme importance the elucidation of how external stimuli are transduced to mediate chromatin modifications, resulting in a permissive or repressive environment for gene expression. These signaling cascades activate or repress the function of chromatin binding proteins that represent attractive pharmacological targets for human diseases. Actually, the closer the target is to chromatin, the more the transcriptional effect will be selective. Recent studies suggest that pharmacological manipulation of signaling pathways to modulate cell fate is indeed possible and that chromatin-associated kinases could represent an optimal target. The p38 MAPK is the prototype of this class of enzymes and its central role in the transcription process is evolutionary conserved. In this review we will focus on the possibility to inhibit p38alpha in colorectal cancer to arrest tumor progression and induce autophagic cell death.
Collapse
Affiliation(s)
- Fulvio Chiacchiera
- Laboratory of Signal-dependent Transcription, Department of Translational Pharmacology (DTP), Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro (Chieti), Italy
| | | |
Collapse
|
1627
|
Yang C, Kaushal V, Shah SV, Kaushal GP. Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells. Am J Physiol Renal Physiol 2008; 294:F777-87. [DOI: 10.1152/ajprenal.00590.2007] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Autophagy has emerged as another major “programmed” mechanism to control life and death much like “programmed cell death” is for apoptosis in eukaryotes. We examined the expression of autophagic proteins and formation of autophagosomes during progression of cisplatin injury to renal tubular epithelial cells (RTEC). Autophagy was detected as early as 2–4 h after cisplatin exposure as indicated by induction of LC3-I, conversion of LC3-I to LC3-II protein, and upregulation of Beclin 1 and Atg5, essential markers of autophagy. The appearance of cisplatin-induced punctated staining of autophagosome-associated LC3-II upon GFP-LC3 transfection in RTEC provided further evidence for autophagy. The autophagy inhibitor 3-methyladenine blocked punctated staining of autophagosomes. The staining of normal cells with acridine orange displayed green fluorescence with cytoplasmic and nuclear components in normal cells but displayed considerable red fluorescence in cisplatin-treated cells, suggesting formation of numerous acidic autophagolysosomal vacuoles. Autophagy inhibitors LY294002 or 3-methyladenine or wortmannin inhibited the formation of autophagosomes but induced apoptosis after 2–4 h of cisplatin treatment as indicated by caspase-3/7 and -6 activation, nuclear fragmentation, and cell death. This switch from autophagy to apoptosis by autophagic inhibitors further suggests that the preapoptotic lag phase after treatment with cisplatin is mediated by autophagy. At later stages of cisplatin injury, apoptosis was also found to be associated with autophagy, as autophagic inhibitors and inactivation of autophagy proteins Beclin 1 and Atg5 enhanced activation of caspases and apoptosis. Our results demonstrate that induction of autophagy mounts an adaptive response, suppresses cisplatin-induced apoptosis, and prolongs survival of RTEC.
Collapse
|
1628
|
Shin S, Roy CR. Host cell processes that influence the intracellular survival of Legionella pneumophila. Cell Microbiol 2008; 10:1209-20. [PMID: 18363881 DOI: 10.1111/j.1462-5822.2008.01145.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Key to the pathogenesis of intracellular pathogens is their ability to manipulate host cell processes, permitting the establishment of an intracellular replicative niche. In turn, the host cell deploys defence mechanisms that limit intracellular infection. The bacterial pathogen Legionella pneumophila, the aetiological agent of Legionnaire's Disease, has evolved virulence mechanisms that allow it to replicate within protozoa, its natural host. Many of these tactics also enable L. pneumophila's survival and replication inside macrophages within a membrane-bound compartment known as the Legionella-containing vacuole. One of the virulence factors indispensable for L. pneumophila's intracellular survival is a type IV secretion system, which translocates a large repertoire of bacterial effectors into the host cell. These effectors modulate multiple host cell processes and in particular, redirect trafficking of the L. pneumophila phagosome and mediate its conversion into an ER-derived organelle competent for intracellular bacterial replication. In this review, we discuss how L. pneumophila manipulates host cells, as well as host cell processes that either facilitate or impede its intracellular survival.
Collapse
Affiliation(s)
- Sunny Shin
- Section of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Avenue, Room 345, New Haven, CT 06536, USA.
| | | |
Collapse
|
1629
|
Neufeld TP, Baehrecke EH. Eating on the fly: function and regulation of autophagy during cell growth, survival and death in Drosophila. Autophagy 2008; 4:557-62. [PMID: 18319640 DOI: 10.4161/auto.5782] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Significant progress has been made over recent years in defining the normal progression and regulation of autophagy, particularly in cultured mammalian cells and yeast model systems. However, apart from a few notable exceptions, our understanding of the physiological roles of autophagy has lagged behind these advances, and identification of components and features of autophagy unique to higher eukaryotes also remains a challenge. In this review we describe recent insights into the roles and control mechanisms of autophagy gained from in vivo studies in Drosophila. We focus on potential roles of autophagy in controlling cell growth and death, and describe how the regulation of autophagy has evolved to include metazoan-specific signaling pathways. We discuss genetic screening approaches that are being used to identify novel regulators and effectors of autophagy, and speculate about areas of research in this system likely to bear fruit in future studies.
Collapse
Affiliation(s)
- Thomas P Neufeld
- University of Minnesota, Department of Genetics, Cell Biology and Development, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
1630
|
Abstract
Autophagy has been associated with both cell survival and cell death, but the role of autophagy in cell death has been controversial. In this issue, Berry and Baehrecke (2007) report that autophagy is involved in physiological cell death during Drosophila development and is controlled by similar mechanisms as those that control its function in cell survival.
Collapse
|
1631
|
Abstract
Autophagic cell death is a prominent morphological form of cell death that occurs in diverse animals. Autophagosomes are abundant during autophagic cell death, yet the functional role of autophagy in cell death has been enigmatic. We find that autophagy and the Atg genes are required for autophagic cell death of Drosophila salivary glands. Although caspases are present in dying salivary glands, autophagy is required for complete cell degradation. Further, induction of high levels of autophagy results in caspase-independent autophagic cell death. Our results provide the first in vivo evidence that autophagy and the Atg genes are required for autophagic cell death and confirm that autophagic cell death is a physiological death program that occurs during development.
Collapse
Affiliation(s)
- Deborah L Berry
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | | |
Collapse
|
1632
|
Vicencio JM, Galluzzi L, Tajeddine N, Ortiz C, Criollo A, Tasdemir E, Morselli E, Ben Younes A, Maiuri MC, Lavandero S, Kroemer G. Senescence, Apoptosis or Autophagy? Gerontology 2008; 54:92-9. [DOI: 10.1159/000129697] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 01/30/2008] [Indexed: 12/11/2022] Open
|
1633
|
Cheong H, Klionsky DJ. Biochemical methods to monitor autophagy-related processes in yeast. Methods Enzymol 2008; 451:1-26. [PMID: 19185709 DOI: 10.1016/s0076-6879(08)03201-1] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An increasing number of reports have elucidated the importance of macroautophagy in cell physiology and pathology. Macroautophagy occurs at a basal level and participates in the turnover of cytoplasmic constituents including long-lived proteins to maintain cellular homeostasis, but it also serves as an adaptive response to protect cells from various intra- or extracellular stresses. In addition, macroautophagy plays a role in development and aging and acts to protect against cancer, microbial invasion, and neurodegeneration. The machinery involved in carrying out this process, the autophagy-related (Atg) proteins were identified and characterized in various fungal systems, in particular because of the powerful tools available for genetic manipulation and the relative abundance of good biochemical assays in these model organisms. The analysis of these Atg proteins has allowed us to begin to understand the molecular mechanism of this process. Furthermore, many of the autophagy genes are functionally conserved in higher eukaryotes, including mammals, allowing the findings in fungi to be applied to other systems. Here, we discuss three biochemical methods to measure autophagy-related activities and to examine individual steps of the corresponding process. These methods rely on the detection of different modification states of certain marker proteins. Processing of the precursor form of the resident vacuolar hydrolase aminopeptidase I (Ape1) is applicable to fungi, whereas cleavage of the GFP-Atg8 and Pex14-GFP chimeras can be used in a wide array of systems.
Collapse
Affiliation(s)
- Heesun Cheong
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
1634
|
Denninger V, Koopmann R, Muhammad K, Barth T, Bassarak B, Schönfeld C, Kilunga BK, Duszenko M. Chapter Twenty‐Five Kinetoplastida. Methods Enzymol 2008; 451:373-408. [DOI: 10.1016/s0076-6879(08)03225-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
1635
|
Picazarri K, Nakada‐Tsukui K, Sato D, Nozaki T. Chapter 24 Analysis of Autophagy in the Enteric Protozoan Parasite Entamoeba. Methods Enzymol 2008; 451:359-71. [DOI: 10.1016/s0076-6879(08)03224-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
1636
|
Affiliation(s)
- Beth Levine
- UT Southwestern Medical Center, Dallas, Texas
| | | |
Collapse
|
1637
|
Slavikova S, Ufaz S, Avin-Wittenberg T, Levanony H, Galili G. An autophagy-associated Atg8 protein is involved in the responses of Arabidopsis seedlings to hormonal controls and abiotic stresses. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:4029-43. [PMID: 18836138 PMCID: PMC2576633 DOI: 10.1093/jxb/ern244] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/27/2008] [Accepted: 09/08/2008] [Indexed: 05/18/2023]
Abstract
Eukaryotes contain a ubiquitous family of autophagy-associated Atg8 proteins. In animal cells, these proteins have multiple functions associated with growth, cancer, and degenerative diseases, but their functions in plants are still largely unknown. To search for novel functions of Atg8 in plants, the present report tested the effect of expression of a recombinant AtAtg8 protein, fused at its N-terminus to green fluorescent protein (GFP) and at its C-terminus to the haemagglutinin epitope tag, on the response of Arabidopsis thaliana plants to the hormones cytokinin and auxin as well as to salt and osmotic stresses. Expression of this AtAtg8 fusion protein modulates the effect of cytokinin on root architecture. Moreover, expression of this fusion protein also reduces shoot anthocyanin accumulation in response to cytokinin feeding to the roots, implying the participation of AtAtg8 in cytokinin-regulated root-shoot communication. External application of cytokinin leads to the formation of novel GFP-AtAtg8-containing structures in cells located in the vicinity of the root vascular system, which are clearly distinct in size and dynamic movement from the GFP-AtAtg8-containing autophagosome-resembling structures that were observed in root epidermis cells. Expression of the AtAtg8 fusion construct also renders the plants more sensitive to a mild salt stress and to a lesser extent to a mild osmotic stress. This sensitivity is also associated with various changes in the root architecture, which are morphologically distinct from those observed in response to cytokinin. The results imply multiple functions for AtAtg8 in different root tissues that may also be regulated by different mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Gad Galili
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|