1601
|
von Deimling A, Korshunov A, Hartmann C. The next generation of glioma biomarkers: MGMT methylation, BRAF fusions and IDH1 mutations. Brain Pathol 2011; 21:74-87. [PMID: 21129061 PMCID: PMC8094257 DOI: 10.1111/j.1750-3639.2010.00454.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 10/11/2010] [Indexed: 01/12/2023] Open
Abstract
For some, glioma biomarkers have been expected to solve common diagnostic problems in routine neuropathology service caused by insufficient material, technical shortcomings or lack of experience. Further, biomarkers should predict patient outcome and direct optimal therapy for the individual patient. Unfortunately, current biomarkers still fall somewhat short of these grand expectations. While there has been some progress, it has generally been slow and in small steps. In this review, the newest set of glioma biomarkers: O(6) -methylguanine-DNA methyltransferase (MGMT) methylation, BRAF fusion and IDH1 mutation are discussed. MGMT methylation is well established as a prognostic/predictive marker for glioblastoma; however, technical questions regarding testing remain, it is not currently utilized widely in guiding patient management, and it has proven to be of no assistance in diagnostics. In contrast, BRAF fusion and IDH1 mutation analyses promise to be very helpful for classifying and grading gliomas, while their potential predictive value has yet to be established.
Collapse
Affiliation(s)
- Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, and Clinical Cooperation Unit Neuropathology, German Cancer Research Center, Heidelberg, Germany.
| | | | | |
Collapse
|
1602
|
Collins-Underwood JR, Mullighan CG. Genetic Alterations Targeting Lymphoid Development in Acute Lymphoblastic Leukemia. Curr Top Dev Biol 2011; 94:171-96. [DOI: 10.1016/b978-0-12-380916-2.00006-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
1603
|
Gentles AJ, Plevritis SK, Majeti R, Alizadeh AA. Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia. JAMA 2010; 304:2706-15. [PMID: 21177505 PMCID: PMC4089862 DOI: 10.1001/jama.2010.1862] [Citation(s) in RCA: 302] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONTEXT In many cancers, specific subpopulations of cells appear to be uniquely capable of initiating and maintaining tumors. The strongest support for this cancer stem cell model comes from transplantation assays in immunodeficient mice, which indicate that human acute myeloid leukemia (AML) is driven by self-renewing leukemic stem cells (LSCs). This model has significant implications for the development of novel therapies, but its clinical relevance has yet to be determined. OBJECTIVE To identify an LSC gene expression signature and test its association with clinical outcomes in AML. DESIGN, SETTING, AND PATIENTS Retrospective study of global gene expression (microarray) profiles of LSC-enriched subpopulations from primary AML and normal patient samples, which were obtained at a US medical center between April 2005 and July 2007, and validation data sets of global transcriptional profiles of AML tumors from 4 independent cohorts (n = 1047). MAIN OUTCOME MEASURES Identification of genes discriminating LSC-enriched populations from other subpopulations in AML tumors; and association of LSC-specific genes with overall, event-free, and relapse-free survival and with therapeutic response. RESULTS Expression levels of 52 genes distinguished LSC-enriched populations from other subpopulations in cell-sorted AML samples. An LSC score summarizing expression of these genes in bulk primary AML tumor samples was associated with clinical outcomes in the 4 independent patient cohorts. High LSC scores were associated with worse overall, event-free, and relapse-free survival among patients with either normal karyotypes or chromosomal abnormalities. For the largest cohort of patients with normal karyotypes (n = 163), the LSC score was significantly associated with overall survival as a continuous variable (hazard ratio [HR], 1.15; 95% confidence interval [CI], 1.08-1.22; log-likelihood P <.001). The absolute risk of death by 3 years was 57% (95% CI, 43%-67%) for the low LSC score group compared with 78% (95% CI, 66%-86%) for the high LSC score group (HR, 1.9 [95% CI, 1.3-2.7]; log-rank P = .002). In another cohort with available data on event-free survival for 70 patients with normal karyotypes, the risk of an event by 3 years was 48% (95% CI, 27%-63%) in the low LSC score group vs 81% (95% CI, 60%-91%) in the high LSC score group (HR, 2.4 [95% CI, 1.3-4.5]; log-rank P = .006). In multivariate Cox regression including age, mutations in FLT3 and NPM1, and cytogenetic abnormalities, the HRs for LSC score in the 3 cohorts with data on all variables were 1.07 (95% CI, 1.01-1.13; P = .02), 1.10 (95% CI, 1.03-1.17; P = .005), and 1.17 (95% CI, 1.05-1.30; P = .005). CONCLUSION High expression of an LSC gene signature is independently associated with adverse outcomes in patients with AML.
Collapse
Affiliation(s)
- Andrew J Gentles
- Department of Radiology, Lucas Center for MR Spectroscopy and Imaging, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | | | | | | |
Collapse
|
1604
|
O'Connor BD, Merriman B, Nelson SF. SeqWare Query Engine: storing and searching sequence data in the cloud. BMC Bioinformatics 2010; 11 Suppl 12:S2. [PMID: 21210981 PMCID: PMC3040528 DOI: 10.1186/1471-2105-11-s12-s2] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Since the introduction of next-generation DNA sequencers the rapid increase in sequencer throughput, and associated drop in costs, has resulted in more than a dozen human genomes being resequenced over the last few years. These efforts are merely a prelude for a future in which genome resequencing will be commonplace for both biomedical research and clinical applications. The dramatic increase in sequencer output strains all facets of computational infrastructure, especially databases and query interfaces. The advent of cloud computing, and a variety of powerful tools designed to process petascale datasets, provide a compelling solution to these ever increasing demands. Results In this work, we present the SeqWare Query Engine which has been created using modern cloud computing technologies and designed to support databasing information from thousands of genomes. Our backend implementation was built using the highly scalable, NoSQL HBase database from the Hadoop project. We also created a web-based frontend that provides both a programmatic and interactive query interface and integrates with widely used genome browsers and tools. Using the query engine, users can load and query variants (SNVs, indels, translocations, etc) with a rich level of annotations including coverage and functional consequences. As a proof of concept we loaded several whole genome datasets including the U87MG cell line. We also used a glioblastoma multiforme tumor/normal pair to both profile performance and provide an example of using the Hadoop MapReduce framework within the query engine. This software is open source and freely available from the SeqWare project (http://seqware.sourceforge.net). Conclusions The SeqWare Query Engine provided an easy way to make the U87MG genome accessible to programmers and non-programmers alike. This enabled a faster and more open exploration of results, quicker tuning of parameters for heuristic variant calling filters, and a common data interface to simplify development of analytical tools. The range of data types supported, the ease of querying and integrating with existing tools, and the robust scalability of the underlying cloud-based technologies make SeqWare Query Engine a nature fit for storing and searching ever-growing genome sequence datasets.
Collapse
Affiliation(s)
- Brian D O'Connor
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
1605
|
Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J, Harris CC, Lichti CF, Townsend RR, Fulton RS, Dooling DJ, Koboldt DC, Schmidt H, Zhang Q, Osborne JR, Lin L, O'Laughlin M, McMichael JF, Delehaunty KD, McGrath SD, Fulton LA, Magrini VJ, Vickery TL, Hundal J, Cook LL, Conyers JJ, Swift GW, Reed JP, Alldredge PA, Wylie T, Walker J, Kalicki J, Watson MA, Heath S, Shannon WD, Varghese N, Nagarajan R, Westervelt P, Tomasson MH, Link DC, Graubert TA, DiPersio JF, Mardis ER, Wilson RK. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010; 363:2424-33. [PMID: 21067377 PMCID: PMC3201818 DOI: 10.1056/nejmoa1005143] [Citation(s) in RCA: 1550] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The genetic alterations responsible for an adverse outcome in most patients with acute myeloid leukemia (AML) are unknown. METHODS Using massively parallel DNA sequencing, we identified a somatic mutation in DNMT3A, encoding a DNA methyltransferase, in the genome of cells from a patient with AML with a normal karyotype. We sequenced the exons of DNMT3A in 280 additional patients with de novo AML to define recurring mutations. RESULTS A total of 62 of 281 patients (22.1%) had mutations in DNMT3A that were predicted to affect translation. We identified 18 different missense mutations, the most common of which was predicted to affect amino acid R882 (in 37 patients). We also identified six frameshift, six nonsense, and three splice-site mutations and a 1.5-Mbp deletion encompassing DNMT3A. These mutations were highly enriched in the group of patients with an intermediate-risk cytogenetic profile (56 of 166 patients, or 33.7%) but were absent in all 79 patients with a favorable-risk cytogenetic profile (P<0.001 for both comparisons). The median overall survival among patients with DNMT3A mutations was significantly shorter than that among patients without such mutations (12.3 months vs. 41.1 months, P<0.001). DNMT3A mutations were associated with adverse outcomes among patients with an intermediate-risk cytogenetic profile or FLT3 mutations, regardless of age, and were independently associated with a poor outcome in Cox proportional-hazards analysis. CONCLUSIONS DNMT3A mutations are highly recurrent in patients with de novo AML with an intermediate-risk cytogenetic profile and are independently associated with a poor outcome. (Funded by the National Institutes of Health and others.).
Collapse
Affiliation(s)
- Timothy J Ley
- Department of Genetics, Genome Center, Washington University, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1606
|
Affiliation(s)
- Kevin Shannon
- Department of Pediatrics and Comprehensive Cancer Center, University of California, San Francisco, California
| | - Scott A. Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
1607
|
Figueroa ME, Wahab OA, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF, Tallman MS, Sun Z, Wolniak K, Peeters JK, Liu W, Choe SE, Fantin VR, Paietta E, Löwenberg B, Licht JD, Godley LA, Delwel R, Valk PJ, Thompson CB, Levine RL, Melnick A. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010; 18:553-67. [PMID: 21130701 PMCID: PMC4105845 DOI: 10.1016/j.ccr.2010.11.015] [Citation(s) in RCA: 2186] [Impact Index Per Article: 145.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 11/06/2010] [Accepted: 11/11/2010] [Indexed: 02/06/2023]
Abstract
Cancer-associated IDH mutations are characterized by neomorphic enzyme activity and resultant 2-hydroxyglutarate (2HG) production. Mutational and epigenetic profiling of a large acute myeloid leukemia (AML) patient cohort revealed that IDH1/2-mutant AMLs display global DNA hypermethylation and a specific hypermethylation signature. Furthermore, expression of 2HG-producing IDH alleles in cells induced global DNA hypermethylation. In the AML cohort, IDH1/2 mutations were mutually exclusive with mutations in the α-ketoglutarate-dependent enzyme TET2, and TET2 loss-of-function mutations were associated with similar epigenetic defects as IDH1/2 mutants. Consistent with these genetic and epigenetic data, expression of IDH mutants impaired TET2 catalytic function in cells. Finally, either expression of mutant IDH1/2 or Tet2 depletion impaired hematopoietic differentiation and increased stem/progenitor cell marker expression, suggesting a shared proleukemogenic effect.
Collapse
Affiliation(s)
- Maria E. Figueroa
- Division of Hematology/Oncology, Weill Cornell Medical College, New York, NY
| | - Omar Abdel Wahab
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chao Lu
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Patrick S. Ward
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Jay Patel
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alan Shih
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yushan Li
- Division of Hematology/Oncology, Weill Cornell Medical College, New York, NY
| | - Neha Bhagwat
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aparna Vasanthakumar
- Hematology Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| | - Hugo F. Fernandez
- Department of Blood and Bone Marrow Transplantation, Moffitt Cancer Center, Tampa, FL
| | - Martin S. Tallman
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zhuoxin Sun
- Dana Farber Cancer Institute, Harvard School of Public Health, Boston, MA
| | - Kristy Wolniak
- Division of Hematology/Oncology, Northwestern University, Chicago, IL
| | - Justine K. Peeters
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Wei Liu
- Agios Pharmaceuticals, Cambridge, MA
| | | | | | | | - Bob Löwenberg
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jonathan D. Licht
- Division of Hematology/Oncology, Northwestern University, Chicago, IL
| | - Lucy A Godley
- Hematology Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| | - Ruud Delwel
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter J.M. Valk
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Craig B. Thompson
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Correspondence: Craig B. Thompson, Abramson Cancer Center, 1600 Penn Tower, University of Pennsylvania School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104, . Ross L. Levine, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 20, New York, NY, 10065, . Ari Melnick, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065,
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Correspondence: Craig B. Thompson, Abramson Cancer Center, 1600 Penn Tower, University of Pennsylvania School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104, . Ross L. Levine, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 20, New York, NY, 10065, . Ari Melnick, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065,
| | - Ari Melnick
- Division of Hematology/Oncology, Weill Cornell Medical College, New York, NY
- Correspondence: Craig B. Thompson, Abramson Cancer Center, 1600 Penn Tower, University of Pennsylvania School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104, . Ross L. Levine, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 20, New York, NY, 10065, . Ari Melnick, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065,
| |
Collapse
|
1608
|
MacConaill LE, Garraway LA. Clinical implications of the cancer genome. J Clin Oncol 2010; 28:5219-28. [PMID: 20975063 PMCID: PMC3020694 DOI: 10.1200/jco.2009.27.4944] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 08/11/2010] [Indexed: 01/06/2023] Open
Abstract
Cancer is a disease of the genome. Most tumors harbor a constellation of structural genomic alterations that may dictate their clinical behavior and treatment response. Whereas elucidating the nature and importance of these genomic alterations has been the goal of cancer biologists for several decades, ongoing global genome characterization efforts are revolutionizing both tumor biology and the optimal paradigm for cancer treatment at an unprecedented scope. The pace of advance has been empowered, in large part, through disruptive technological innovations that render complete cancer genome characterization feasible on a large scale. This article highlights cardinal biologic and clinical insights gleaned from systematic cancer genome characterization. We also discuss how the convergence of cancer genome biology, technology, and targeted therapeutics articulates a cohesive framework for the advent of personalized cancer medicine.
Collapse
Affiliation(s)
- Laura E. MacConaill
- From the Center for Cancer Genome Discovery; Dana-Farber Cancer Institute and Harvard Medical School, Boston; and The Broad Institute, Cambridge, MA
| | - Levi A. Garraway
- From the Center for Cancer Genome Discovery; Dana-Farber Cancer Institute and Harvard Medical School, Boston; and The Broad Institute, Cambridge, MA
| |
Collapse
|
1609
|
Shuen A, Foulkes WD. Clinical implications of next-generation sequencing for cancer medicine. ACTA ACUST UNITED AC 2010; 17:39-42. [PMID: 20975877 DOI: 10.3747/co.v17i5.630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In 1976, Peter Nowell, following observations of cytogenetic heterogeneity in a population of cancer-ous cells, proposed that this genetic diversity could be explained by hypothesizing that these cells are subject to evolutionary forces[...]
Collapse
Affiliation(s)
- A Shuen
- Department of Medical Genetics, McGill University Health Centre, McGill University, Montreal, QC
| | | |
Collapse
|
1610
|
Abstract
Abstract
Acute myeloid leukemia (AML) is a disease with marked heterogeneity in both response to therapy and survival. Cytogenetics, age, and performance status have long determined prognosis and therapy. The advent of molecular diagnostics has heralded an explosion in new prognostic factors, including gene mutations in KIT, FLT3 (Fms-like tyrosine kinase 3), NPM1 (nucleophosmin 1), and CEBPA (CCAAT enhancer-binding protein-α). Microarray technology can now identify unique gene expression signatures associated with prognosis. Similarly microRNA expression, single nucleotide polymorphism arrays, and DNA methylation signatures have recently described important new prognostic subgroups of AML, and are contributing to our understanding of AML disease biology. Combined with proteomic profiling, these technologies have helped identify new targets and signaling pathways, and may soon help to identify individual patients likely to benefit from specific therapies, including allogeneic hematopoietic cell transplantation. In summary, new clinical and molecular prognostic markers have begun to significantly improve our understanding of AML biology. We are now close to a time when we will be able to use these prognostic factors and technologies to identify new targets for therapy and to determine who may benefit from that therapy, and ultimately change how we treat individual patients with AML.
Collapse
|
1611
|
Thol F, Ganser A. Molecular pathogenesis of acute myeloid leukemia: a diverse disease with new perspectives. ACTA ACUST UNITED AC 2010; 4:356-62. [PMID: 21125345 DOI: 10.1007/s11684-010-0220-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/06/2010] [Indexed: 12/12/2022]
Abstract
Acute myeloid leukemia (AML) is a very heterogeneous neoplasm of the hematopoietic stem cell. Despite important achievements in the treatment of AML, the long term survival of patients with the disease remains poor. Understanding the pathogenesis of AML better is crucial for finding new treatment approaches. During AML development, hematopoietic precursor cells undergo clonal transformation in a multistep process through acquisition of chromosomal rearrangements and/or different gene mutations. Over recent years, novel gene mutations have been found in patients with AML. These mutations can be divided into two important categories, class I mutations that confer a proliferation advantage and class II mutations that inhibit myeloid differentiation. Screening for some of these mutations is now part of the initial diagnostic workup in newly diagnosed AML patients. Information about the mutation status of specific genes is useful for risk-stratification, minimal residual disease (MRD) monitoring and increasingly also for targeted therapy, especially for patients with cytogenetically normal AML (CN-AML). Besides chromosomal rearrangements and gene mutations, epigenetic regulation of genes - meaning changes in gene expression by mechanisms other than changes in the underlying DNA sequence - also represents an important mechanism of leukemogenesis. This article reviews some of the most common mutations in CN-AML and gives a perspective of the translation of these discoveries from bench to bedside.
Collapse
Affiliation(s)
- Felicitas Thol
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, 30625, Germany.
| | | |
Collapse
|
1612
|
Mailankody S, Mena E, Yuan CM, Balakumaran A, Kuehl WM, Landgren O. Molecular and biologic markers of progression in monoclonal gammopathy of undetermined significance to multiple myeloma. Leuk Lymphoma 2010; 51:2159-70. [PMID: 20958231 PMCID: PMC7032041 DOI: 10.3109/10428194.2010.525725] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multiple myeloma (MM) is a malignant plasma cell dyscrasia localized in the bone marrow. Recent studies have shown that MM is preceded in virtually all cases by a premalignant state called monoclonal gammopathy of undetermined significance (MGUS). This review focuses on non-IgM MGUS and its progression to MM. Although certain clinical markers of MGUS progression have been identified, it currently is not possible to accurately determine individual risk of progression. This review focuses on the various biologic and molecular markers that could be used to determine the risk of MM progression. A better understanding of the pathogenesis will allow us to define the biological high-risk precursor disease and, ultimately, to develop early intervention strategies designed to delay and prevent full-blown MM.
Collapse
Affiliation(s)
- Sham Mailankody
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
1613
|
Eklund EA, Raychaudhuri P, Platanias LC. Correlation between IDH2 mutations and disease status in acute myeloid leukemia. Leuk Lymphoma 2010; 51:2157-2158. [PMID: 20929316 DOI: 10.3109/10428194.2010.525271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Elizabeth A Eklund
- The Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
1614
|
Knockdown of Hspa9, a del(5q31.2) gene, results in a decrease in hematopoietic progenitors in mice. Blood 2010; 117:1530-9. [PMID: 21123823 DOI: 10.1182/blood-2010-06-293167] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Heterozygous deletions spanning chromosome 5q31.2 occur frequently in the myelodysplastic syndromes (MDS) and are highly associated with progression to acute myeloid leukemia (AML) when p53 is mutated. Mutagenesis screens in zebrafish and mice identified Hspa9 as a del(5q31.2) candidate gene that may contribute to MDS and AML pathogenesis, respectively. To test whether HSPA9 haploinsufficiency recapitulates the features of ineffective hematopoiesis observed in MDS, we knocked down the expression of HSPA9 in primary human hematopoietic cells and in a murine bone marrow-transplantation model using lentivirally mediated gene silencing. Knockdown of HSPA9 in human cells significantly delayed the maturation of erythroid precursors, but not myeloid or megakaryocytic precursors, and suppressed cell growth by 6-fold secondary to an increase in apoptosis and a decrease in the cycling of cells compared with control cells. Erythroid precursors, B lymphocytes, and the bone marrow progenitors c-kit(+)/lineage(-)/Sca-1(+) (KLS) and megakaryocyte/erythrocyte progenitor (MEP) were significantly reduced in a murine Hspa9-knockdown model. These abnormalities suggest that cooperating gene mutations are necessary for del(5q31.2) MDS cells to gain clonal dominance in the bone marrow. Our results demonstrate that Hspa9 haploinsufficiency alters the hematopoietic progenitor pool in mice and contributes to abnormal hematopoiesis.
Collapse
|
1615
|
Boca SM, Kinzler KW, Velculescu VE, Vogelstein B, Parmigiani G. Patient-oriented gene set analysis for cancer mutation data. Genome Biol 2010; 11:R112. [PMID: 21092299 PMCID: PMC3156951 DOI: 10.1186/gb-2010-11-11-r112] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 08/26/2010] [Accepted: 11/23/2010] [Indexed: 12/01/2022] Open
Abstract
Recent research has revealed complex heterogeneous genomic landscapes in human cancers. However, mutations tend to occur within a core group of pathways and biological processes that can be grouped into gene sets. To better understand the significance of these pathways, we have developed an approach that initially scores each gene set at the patient rather than the gene level. In mutation analysis, these patient-oriented methods are more transparent, interpretable, and statistically powerful than traditional gene-oriented methods.
Collapse
Affiliation(s)
- Simina M Boca
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N, Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
1616
|
Rakheja D, Boriack RL, Mitui M, Khokhar S, Holt SA, Kapur P. Papillary thyroid carcinoma shows elevated levels of 2-hydroxyglutarate. Tumour Biol 2010; 32:325-33. [PMID: 21080253 DOI: 10.1007/s13277-010-0125-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/29/2010] [Indexed: 12/01/2022] Open
Abstract
Elevated levels of D: -2-hydroxyglutarate (D: -2-HG) occur in gliomas and myeloid leukemias associated with mutations of IDH1 and IDH2. L: -2-Hydroxyglutaric aciduria, an inherited metabolic disorder, predisposes to brain tumors. Therefore, we asked whether sporadic cancers, without IDH1 or IDH2 hot-spot mutations, show elevated 2-hydroxyglutarate levels. We retrieved 15 pairs of frozen papillary thyroid carcinoma (PTC) and adjacent non-neoplastic thyroid, and 14 pairs of hyperplastic nodule (HN) and adjacent non-hyperplastic thyroid. In all lesions, exon 4 sequencing confirmed the absence of known mutations of IDH1 and IDH2. We measured 2-hydroxyglutarate by liquid chromatography-tandem mass spectrometry. Compared to normal thyroid, PTCs had significantly higher D: -2-HG and L: -2-hydroxyglutarate (L: -2-HG) levels, and compared to HNs, PTCs had significantly higher D: -2-HG levels. D: -2-HG/L: -2-HG levels were not significantly different between HNs and normal thyroid. Further studies should clarify if elevated 2-hydroxyglutarate in PTC may be useful as cancer biomarker and evaluate the role of 2-hydroxyglutarate in cancer biology.
Collapse
Affiliation(s)
- Dinesh Rakheja
- Department of Pathology, Children's Medical Center, Dallas, TX, USA.
| | | | | | | | | | | |
Collapse
|
1617
|
Chou WC, Lei WC, Ko BS, Hou HA, Chen CY, Tang JL, Yao M, Tsay W, Wu SJ, Huang SY, Hsu SC, Chen YC, Chang YC, Kuo KT, Lee FY, Liu MC, Liu CW, Tseng MH, Huang CF, Tien HF. The prognostic impact and stability of Isocitrate dehydrogenase 2 mutation in adult patients with acute myeloid leukemia. Leukemia 2010; 25:246-53. [PMID: 21079611 DOI: 10.1038/leu.2010.267] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although the clinical features of the Isocitrate dehydrogenase 2 (IDH2) mutation in acute myeloid leukemia (AML) have been characterized, its prognostic significance remains controversial and its stability has not been investigated. We analyzed 446 adults with primary non-M3 AML and found IDH2 R172, R140 and IDH1 R132 mutations occurred at a frequency of 2.9, 9.2 and 6.1%, respectively. Compared with wild-type IDH2, mutation of IDH2 was associated with higher platelet counts, intermediate-risk or normal karyotype and isolated +8, but was inversely correlated with expression of HLA-DR, CD34, CD15, CD7 and CD56, and was mutually exclusive with WT1 mutation and chromosomal translocations involving core-binding factors. All these correlations became stronger when IDH1 and IDH2 mutations were considered together. Multivariate analysis revealed IDH2 mutation as an independent favorable prognostic factor. IDH2(-)/FLT3-ITD(+) genotype conferred especially negative impact on survival. Compared with IDH2 R140 mutation, IDH2 R172 mutation was associated with younger age, lower white blood cell count and lactate dehydrogenase level, and was mutually exclusive with NPM1 mutation. Serial analyses of IDH2 mutations at both diagnosis and relapse in 121 patients confirmed high stability of IDH2 mutations. In conclusion, IDH2 mutation is a stable marker during disease evolution and confers favorable prognosis.
Collapse
Affiliation(s)
- W-C Chou
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1618
|
Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG, Ferraris DV, Tsukamoto T, Rojas CJ, Slusher BS, Rabinowitz JD, Dang CV, Riggins GJ. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res 2010; 70:8981-7. [PMID: 21045145 PMCID: PMC3058858 DOI: 10.1158/0008-5472.can-10-1666] [Citation(s) in RCA: 410] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mutation at the R132 residue of isocitrate dehydrogenase 1 (IDH1), frequently found in gliomas and acute myelogenous leukemia, creates a neoenzyme that produces 2-hydroxyglutarate (2-HG) from α-ketoglutarate (α-KG). We sought to therapeutically exploit this neoreaction in mutant IDH1 cells that require α-KG derived from glutamine. Glutamine is converted to glutamate by glutaminase and further metabolized to α-KG. Therefore, we inhibited glutaminase with siRNA or the small molecule inhibitor bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and found slowed growth of glioblastoma cells expressing mutant IDH1 compared with those expressing wild-type IDH1. Growth suppression of mutant IDH1 cells by BPTES was rescued by adding exogenous α-KG. BPTES inhibited glutaminase activity, lowered glutamate and α-KG levels, and increased glycolytic intermediates while leaving total 2-HG levels unaffected. The ability to selectively slow growth in cells with IDH1 mutations by inhibiting glutaminase suggests a unique reprogramming of intermediary metabolism and a potential therapeutic strategy.
Collapse
Affiliation(s)
- Meghan J. Seltzer
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Bryson D. Bennett
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ
| | - Avadhut D. Joshi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ping Gao
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ajit G. Thomas
- Department of Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Dana V. Ferraris
- Department of Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Takashi Tsukamoto
- Department of Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Camilo J. Rojas
- Department of Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Barbara S. Slusher
- Department of Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Joshua D. Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ
| | - Chi V. Dang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gregory J. Riggins
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
1619
|
O'Keefe LV, Colella A, Dayan S, Chen Q, Choo A, Jacob R, Price G, Venter D, Richards RI. Drosophila orthologue of WWOX, the chromosomal fragile site FRA16D tumour suppressor gene, functions in aerobic metabolism and regulates reactive oxygen species. Hum Mol Genet 2010; 20:497-509. [PMID: 21075834 PMCID: PMC3016910 DOI: 10.1093/hmg/ddq495] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Common chromosomal fragile sites FRA3B and FRA16D are frequent sites of DNA instability in cancer, but their contribution to cancer cell biology is not yet understood. Genes that span these sites (FHIT and WWOX, respectively) are often perturbed (either increased or decreased) in cancer cells and both are able to suppress tumour growth. While WWOX has some tumour suppressor characteristics, its normal role and functional contribution to cancer has not been fully determined. We find that a significant proportion of Drosophila Wwox interactors identified by proteomics and microarray analyses have roles in aerobic metabolism. Functional relationships between Wwox and either CG6439/isocitrate dehydrogenase (Idh) or Cu–Zn superoxide dismutase (Sod) were confirmed by genetic interactions. In addition, altered levels of Wwox resulted in altered levels of endogenous reactive oxygen species. Wwox (like FHIT) contributes to pathways involving aerobic metabolism and oxidative stress, providing an explanation for the ‘non-classical tumour suppressor’ behaviour of WWOX. Fragile sites, and the genes that span them, are therefore part of a protective response mechanism to oxidative stress and likely contributors to the differences seen in aerobic glycolysis (Warburg effect) in cancer cells.
Collapse
Affiliation(s)
- Louise V O'Keefe
- ARC Special Research Centre for the Molecular Genetics of Development and Discipline of Genetics, School ofMolecular and Biomedical Sciences, The University of Adelaide, Adelaide S.A. 5005, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
1620
|
CD34+ cells from AML with mutated NPM1 harbor cytoplasmic mutated nucleophosmin and generate leukemia in immunocompromised mice. Blood 2010; 116:3907-22. [DOI: 10.1182/blood-2009-08-238899] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Acute myeloid leukemia (AML) with mutated NPM1 shows distinctive biologic and clinical features, including absent/low CD34 expression, the significance of which remains unclear. Therefore, we analyzed CD34+ cells from 41 NPM1-mutated AML. At flow cytometry, 31 of 41 samples contained less than 10% cells showing low intensity CD34 positivity and variable expression of CD38. Mutational analysis and/or Western blotting of purified CD34+ cells from 17 patients revealed NPM1-mutated gene and/or protein in all. Immunohistochemistry of trephine bone marrow biopsies and/or flow cytometry proved CD34+ leukemia cells from NPM1-mutated AML had aberrant nucleophosmin expression in cytoplasm. NPM1-mutated gene and/or protein was also confirmed in a CD34+ subfraction exhibiting the phenotype (CD34+/CD38−/CD123+/CD33+/CD90−) of leukemic stem cells. When transplanted into immunocompromised mice, CD34+ cells generated a leukemia recapitulating, both morphologically and immunohistochemically (aberrant cytoplasmic nucleophosmin, CD34 negativity), the original patient's disease. These results indicate that the CD34+ fraction in NPM1-mutated AML belongs to the leukemic clone and contains NPM1-mutated cells exhibiting properties typical of leukemia-initiating cells. CD34− cells from few cases (2/15) also showed significant leukemia-initiating cell potential in immunocompromised mice. This study provides further evidence that NPM1 mutation is a founder genetic lesion and has potential implications for the cell-of-origin and targeted therapy of NPM1-mutated AML.
Collapse
|
1621
|
Bourne TD, Schiff D. Update on molecular findings, management and outcome in low-grade gliomas. Nat Rev Neurol 2010. [PMID: 21045797 DOI: 10.1038/nrneurol.2010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Low-grade infiltrating gliomas in adults include diffuse astrocytoma, oligoastrocytoma and oligodendroglioma. The current gold standard diagnosis of these tumors relies on histological classification; however, emerging molecular abnormalities discovered in these tumors are playing an increasingly prominent part in the process of tumor diagnosis and, consequently, patient management. The frequency and clinical importance of tumor protein p53 (TP53) abnormalities, deletions involving chromosomes 1p and 19q, O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation status, abnormalities in the PTEN tumor suppressor gene and the BRAF oncogene, and isocitrate dehydrogenase (IDH) mutations have become better defined. Molecular markers have not, historically, had an important role in determining the course of treatment for patients with low-grade gliomas, but ongoing phase III clinical trials incorporate 1p deletion or 1p19q codeletion status-and future trials plan to incorporate MGMT promoter methylation status-as stratification factors. Future trials will need to incorporate IDH mutational status in addition to these factors. Ultimately, molecular marker assessment will, hopefully, improve the accuracy of tumor diagnosis and enhance the effectiveness of treatment to achieve improved patient outcomes.
Collapse
Affiliation(s)
- T David Bourne
- University of Virginia Health System, Department of Pathology, Division of Neuropathology, Charlottesville, VA 22908-0214, USA
| | | |
Collapse
|
1622
|
|
1623
|
Hemerly JP, Bastos AU, Cerutti JM. Identification of several novel non-p.R132 IDH1 variants in thyroid carcinomas. Eur J Endocrinol 2010; 163:747-55. [PMID: 20702649 DOI: 10.1530/eje-10-0473] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CONTEXT Somatic mutations at residue R132 of isocitrate dehydrogenase 1 (IDH1) were recently discovered in gliomas and leukaemia at a high frequency. IDH1 is a metabolic gene, and the R132 mutations create a new enzymatic activity. OBJECTIVES To determine whether IDH1 had somatically acquired mutations in thyroid carcinomas. DESIGN Exons 4 and 6 of IDH1 were sequenced in a large panel of thyroid tumours (n=138) and compared with the patients normal DNA (n=26). We also correlated IDH1 mutations with clinical-pathological data and BRAF and RAS mutational status. RESULTS We identified four novel and two previously described non-synonymous variants in thyroid carcinomas, which were absent in benign tumours and paired normal thyroid. Although IDH1 variants occurred at higher frequency in follicular thyroid carcinomas, follicular variant of papillary thyroid carcinoma (PTC) and undifferentiated thyroid carcinomas than the observed variants in classical PTC (15/72 vs 3/37), it was not significant (P=0.1). Sequence alignment across several species shows that all IDH1 genetic alterations occurred at evolutionarily conserved residues located within the active site, and therefore, are likely to affect protein function. Unlike other tumours, IDH1 and BRAF or RAS mutations are not mutually exclusive. There was no association between IDH1 mutational status and clinical characteristics. CONCLUSION IDH1-acquired genetic alterations are highly prevalent in thyroid carcinomas (16%). Our findings not only extend our understanding of the molecular mechanism underlying pathogenesis of thyroid tumours, but also emphasize the biological differences between tumour types. Those tumours with IDH1 mutations might benefit from therapies that exploit this alteration.
Collapse
Affiliation(s)
- Jefferson Pessoa Hemerly
- Laboratório Bases Genéticas dos Tumores da Tiroide, Disciplinas de Genética e Endocrinologia, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, São Paulo, SP, Brazil
| | | | | |
Collapse
|
1624
|
McBride DJ, Orpana AK, Sotiriou C, Joensuu H, Stephens PJ, Mudie LJ, Hämälaïnen E, Stebbings LA, Andersson LC, Flanagan AM, Durbecq V, Ignatiadis M, Kallioniemi O, Heckman CA, Alitalo K, Edgren H, Futreal PA, Stratton MR, Campbell PJ. Use of cancer-specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors. Genes Chromosomes Cancer 2010; 49:1062-9. [PMID: 20725990 PMCID: PMC3145117 DOI: 10.1002/gcc.20815] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Detection of recurrent somatic rearrangements routinely allows monitoring of residual disease burden in leukemias, but is not used for most solid tumors. However, next-generation sequencing now allows rapid identification of patient-specific rearrangements in solid tumors. We mapped genomic rearrangements in three cancers and showed that PCR assays for rearrangements could detect a single copy of the tumor genome in plasma without false positives. Disease status, drug responsiveness, and incipient relapse could be serially assessed. In future, this strategy could be readily established in diagnostic laboratories, with major impact on monitoring of disease status and personalizing treatment of solid tumors.
Collapse
Affiliation(s)
| | - Arto K. Orpana
- Department of Clinical Chemistry,University of Helsinki,Finland
| | | | - Heikki Joensuu
- Department of Oncology,Helsinki University Central Hospital,University of Helsinki,Helsinki,Finland
| | | | - Laura J. Mudie
- WellcomeTrust Sanger Institute,Hinxton,Cambridgeshire,UK
| | - Eija Hämälaïnen
- WellcomeTrust Sanger Institute,Hinxton,Cambridgeshire,UK
- Department of Clinical Chemistry,University of Helsinki,Finland
| | | | - Leif C. Andersson
- Department of Pathology,Haartman Institute,University of Helsinki,Helsinki,Finland
| | - Adrienne M. Flanagan
- Cancer Institute,University College London,London,UK
- Royal National Orthopaedic Hospital,Middlesex,UK
| | | | | | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM),University of Helsinki,Finland
| | - Caroline A. Heckman
- Institute for Molecular Medicine Finland (FIMM),University of Helsinki,Finland
- Molecular/Cancer Biology Laboratory,Biomedicum Helsinki,University of Helsinki,Helsinki,Finland
| | - Kari Alitalo
- Molecular/Cancer Biology Laboratory,Biomedicum Helsinki,University of Helsinki,Helsinki,Finland
| | - Henrik Edgren
- Institute for Molecular Medicine Finland (FIMM),University of Helsinki,Finland
| | | | - Michael R. Stratton
- WellcomeTrust Sanger Institute,Hinxton,Cambridgeshire,UK
- Institute of Cancer Research, Sutton,UK
| | - Peter J. Campbell
- WellcomeTrust Sanger Institute,Hinxton,Cambridgeshire,UK
- Department of Hematology,University of Cambridge,Cambridge,UK
| |
Collapse
|
1625
|
Wolf A, Agnihotri S, Guha A. Targeting metabolic remodeling in glioblastoma multiforme. Oncotarget 2010; 1:552-62. [PMID: 21317451 PMCID: PMC3035636 DOI: 10.18632/oncotarget.190] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/27/2010] [Indexed: 02/06/2023] Open
Abstract
A key aberrant biological difference between tumor cells and normal differentiated cells is altered metabolism, whereby cancer cells acquire a number of stable genetic and epigenetic alterations to retain proliferation, survive under unfavorable microenvironments and invade into surrounding tissues. A classic biochemical adaptation is the metabolic shift to aerobic glycolysis rather than mitochondrial oxidative phosphorylation, regardless of oxygen availability, a phenomenon termed the "Warburg Effect". Aerobic glycolysis, characterized by high glucose uptake, low oxygen consumption and elevated production of lactate, is associated with a survival advantage as well as the generation of substrates such as fatty acids, amino acids and nucleotides necessary in rapidly proliferating cells. This review discusses the role of key metabolic enzymes and their association with aerobic glycolysis in Glioblastoma Multiforme (GBM), an aggressive, highly glycolytic and deadly brain tumor. Targeting key metabolic enzymes involved in modulating the "Warburg Effect" may provide a novel therapeutic approach either singularly or in combination with existing therapies in GBMs.
Collapse
Affiliation(s)
- Amparo Wolf
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital
for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada,
M5G 1L7
| | - Sameer Agnihotri
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital
for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada,
M5G 1L7
| | - Abhijit Guha
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital
for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada,
M5G 1L7
- Division of Neurosurgery, Toronto Western Hospital, University of
Toronto, Toronto, Ontario, Canada, M5T 2S8
| |
Collapse
|
1626
|
Malcovati L, de Latour RP, Risitano A. Aplastic anemia & MDS International Foundation (AA&MDSIF): Bone Marrow Failure Disease Scientific Symposium 2010. Leuk Res 2010; 35:291-4. [PMID: 21036397 DOI: 10.1016/j.leukres.2010.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 10/03/2010] [Accepted: 10/11/2010] [Indexed: 10/18/2022]
Abstract
Aplastic anemia (AA) and myelodysplastic syndromes (MDS) are a heterogeneous group of rare hematological disorders belonging to the Bone Marrow Failure (BMF) syndromes. The Aplastic Anemia and Myelodysplastic Syndromes International Foundation (AA&MDSIF) is a non-profit organization dedicated to supporting patients and families living with a BMF disease. They work to bring investigators together in a collaborative manner. This article summarizes key presentations from the last AA&MDSIF scientific symposium held in Bethesda, Maryland on March 2010.
Collapse
Affiliation(s)
- Luca Malcovati
- Department of Hematology Oncology, University of Pavia, Pavia, Italy
| | | | | |
Collapse
|
1627
|
Taylor BS, Ladanyi M. Clinical cancer genomics: how soon is now? J Pathol 2010; 223:318-26. [DOI: 10.1002/path.2794] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 09/17/2010] [Accepted: 09/21/2010] [Indexed: 12/14/2022]
|
1628
|
Acute myeloid leukemia with mutated nucleophosmin (NPM1): is it a distinct entity? Blood 2010; 117:1109-20. [PMID: 21030560 DOI: 10.1182/blood-2010-08-299990] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
After the discovery of NPM1-mutated acute myeloid leukemia (AML) in 2005 and its subsequent inclusion as a provisional entity in the 2008 World Health Organization classification of myeloid neoplasms, several controversial issues remained to be clarified. It was unclear whether the NPM1 mutation was a primary genetic lesion and whether additional chromosomal aberrations and multilineage dysplasia had any impact on the biologic and prognostic features of NPM1-mutated AML. Moreover, it was uncertain how to classify AML patients who were double-mutated for NPM1 and CEBPA. Recent studies have shown that: (1) the NPM1 mutant perturbs hemopoiesis in experimental models; (2) leukemic stem cells from NPM1-mutated AML patients carry the mutation; and (3) the NPM1 mutation is usually mutually exclusive of biallelic CEPBA mutations. Moreover, the biologic and clinical features of NPM1-mutated AML do not seem to be significantly influenced by concomitant chromosomal aberrations or multilineage dysplasia. Altogether, these pieces of evidence point to NPM1-mutated AML as a founder genetic event that defines a distinct leukemia entity accounting for approximately one-third of all AML.
Collapse
|
1629
|
Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA, Morsberger LA, Latimer C, McLaren S, Lin ML, McBride DJ, Varela I, Nik-Zainal SA, Leroy C, Jia M, Menzies A, Butler AP, Teague JW, Griffin CA, Burton J, Swerdlow H, Quail MA, Stratton MR, Iacobuzio-Donahue C, Futreal PA. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 2010; 467:1109-13. [PMID: 20981101 PMCID: PMC3137369 DOI: 10.1038/nature09460] [Citation(s) in RCA: 1022] [Impact Index Per Article: 68.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 08/24/2010] [Indexed: 11/09/2022]
Abstract
Pancreatic cancer is an aggressive malignancy with a five-year mortality of 97-98%, usually due to widespread metastatic disease. Previous studies indicate that this disease has a complex genomic landscape, with frequent copy number changes and point mutations, but genomic rearrangements have not been characterized in detail. Despite the clinical importance of metastasis, there remain fundamental questions about the clonal structures of metastatic tumours, including phylogenetic relationships among metastases, the scale of ongoing parallel evolution in metastatic and primary sites, and how the tumour disseminates. Here we harness advances in DNA sequencing to annotate genomic rearrangements in 13 patients with pancreatic cancer and explore clonal relationships among metastases. We find that pancreatic cancer acquires rearrangements indicative of telomere dysfunction and abnormal cell-cycle control, namely dysregulated G1-to-S-phase transition with intact G2-M checkpoint. These initiate amplification of cancer genes and occur predominantly in early cancer development rather than the later stages of the disease. Genomic instability frequently persists after cancer dissemination, resulting in ongoing, parallel and even convergent evolution among different metastases. We find evidence that there is genetic heterogeneity among metastasis-initiating cells, that seeding metastasis may require driver mutations beyond those required for primary tumours, and that phylogenetic trees across metastases show organ-specific branches. These data attest to the richness of genetic variation in cancer, brought about by the tandem forces of genomic instability and evolutionary selection.
Collapse
Affiliation(s)
- Peter J Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Shinichi Yachida
- Departments of Pathology and Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Laura J Mudie
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Erin D Pleasance
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Lucy A Stebbings
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Laura A Morsberger
- Departments of Pathology and Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Calli Latimer
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Stuart McLaren
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Meng-Lay Lin
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - David J McBride
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Ignacio Varela
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Catherine Leroy
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Mingming Jia
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Andrew Menzies
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Adam P Butler
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Jon W Teague
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Constance A Griffin
- Departments of Pathology and Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - John Burton
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Harold Swerdlow
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Michael A Quail
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Michael R Stratton
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
- Institute for Cancer Research, Sutton, Surrey, UK
| | | | - P Andrew Futreal
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| |
Collapse
|
1630
|
RNA-seq analysis of 2 closely related leukemia clones that differ in their self-renewal capacity. Blood 2010; 117:e27-38. [PMID: 20980679 DOI: 10.1182/blood-2010-07-293332] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The molecular mechanisms regulating self-renewal of leukemia stem cells remain poorly understood. Here we report the generation of 2 closely related leukemias created through the retroviral overexpression of Meis1 and Hoxa9. Despite their apparent common origin, these clonal leukemias exhibit enormous differences in stem cell frequency (from 1 in 1.4, FLA2; to 1 in 347, FLB1), suggesting that one of these leukemias undergoes nearly unlimited self-renewal divisions. Using next-generation RNA-sequencing, we characterized the transcriptomes of these phenotypically similar, but biologically distinct, leukemias, identifying hundreds of differentially expressed genes and a large number of structural differences (eg, alternative splicing and promoter usage). Focusing on ligand-receptor pairs, we observed high expression levels of Sdf1-Cxcr4; Jagged2-Notch2/1; Osm-Gp130; Scf-cKit; and Bmp15-Tgfb1/2. Interestingly, the integrin beta 2-like gene (Itgb2l) is both highly expressed and differentially expressed between our 2 leukemias (∼ 14-fold higher in FLA2 than FLB1). In addition, gene ontology analysis indicated G-protein-coupled receptor had a much higher proportion of differential expression (22%) compared with other classes (∼ 5%), suggesting a potential role regulating subtle changes in cellular behavior. These results provide the first comprehensive transcriptome analysis of a leukemia stem cell and document an unexpected level of transcriptome variation between phenotypically similar leukemic cells.
Collapse
|
1631
|
Molecular mechanisms of "off-on switch" of activities of human IDH1 by tumor-associated mutation R132H. Cell Res 2010; 20:1188-200. [PMID: 20975740 DOI: 10.1038/cr.2010.145] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Human cytosolic NADP-IDH (IDH1) has recently been found to be involved in tumorigenesis. Notably, the tumor-derived IDH1 mutations identified so far mainly occur at Arg132, and mutation R132H is the most prevalent one. This mutation impairs the oxidative IDH activity of the enzyme, but renders a new reduction function of converting α-ketoglutarate (αKG) to 2-hydroxyglutarate. Here, we report the structures of the R132H mutant IDH1 with and without isocitrate (ICT) bound. The structural data together with mutagenesis and biochemical data reveal a previously undefined initial ICT-binding state and demonstrate that IDH activity requires a conformational change to a closed pre-transition state. Arg132 plays multiple functional roles in the catalytic reaction; in particular, the R132H mutation hinders the conformational changes from the initial ICT-binding state to the pre-transition state, leading to the impairment of the IDH activity. Our results describe for the first time that there is an intermediate conformation that corresponds to an initial ICT-binding state and that the R132H mutation can trap the enzyme in this conformation, therefore shedding light on the molecular mechanism of the "off switch" of the potentially tumor-suppressive IDH activity. Furthermore, we proved the necessity of Tyr139 for the gained αKG reduction activity and propose that Tyr139 may play a vital role by compensating the increased negative charge on the C2 atom of αKG during the transfer of a hydride anion from NADPH to αKG, which provides new insights into the mechanism of the "on switch" of the hypothetically oncogenic reduction activity of IDH1 by this mutation.
Collapse
|
1632
|
Roukos DH. Trastuzumab and beyond: sequencing cancer genomes and predicting molecular networks. THE PHARMACOGENOMICS JOURNAL 2010; 11:81-92. [PMID: 20975737 DOI: 10.1038/tpj.2010.81] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Life diversity can now be clearly explored with the next-generation DNA sequencing technology, allowing the discovery of genetic variants among individuals, patients and tumors. However, beyond causal mutations catalog completion, systems medicine is essential to link genotype to phenotypic cancer diversity towards personalized medicine. Despite advances with traditional single genes molecular research, including rare mutations in BRCA1/2 and CDH1 for primary prevention and trastuzumab for treating HER2-overexpressing breast and gastric tumors, overall, treatment failure and death rates are still alarmingly high. Revolution in sequencing reveals that, now both a huge number and widespread variability of driver mutations, including single-nucleotide polymorphisms, genomic rearrangements and copy-number changes involved in breast cancer development. All these genetic alterations result in a heterogeneous deregulation of signaling pathways, including EGFR, HER2, VEGF, Wnt/Notch, TGF and others.Cancer initiation, progression and metastases are driven by complex molecular networks rather than linear genotype-phenotype relationship. Therefore, clinical expectations by traditional molecular research strategies targeting single genes and single signaling pathways are likely minimal. This review discusses the necessity of molecular networks modeling to understand complex gene-gene, protein-protein and gene-environment interactions. Moreover, the potential of systems clinico-biological approaches to predict intracellular signaling pathways components networks and cancer heterogeneous cells within an individual tumor is described. A flowchart specific for three steps in cancer evolution separately tumorigenesis, early-stage and advanced-stage breast cancer is presented. Using reverse engineering starting with the integration of available established clinical, environmental, treatment and oncological outcomes (survival and death) data and then the still incomplete but progressively accumulating genotypic data into computational networks modeling may lead to bionetworks-based discovery of robust biomarkers and highly effective cancer drugs targets.
Collapse
Affiliation(s)
- D H Roukos
- Personalized Cancer Medicine, Biobank, Ioannina University, Ioannina, Greece.
| |
Collapse
|
1633
|
Abstract
The discovery of somatic mutations in the isocitrate dehydrogenase (IDH) enzymes through a genome-wide mutational analysis in glioblastoma represents a milestone event in cancer biology. The nature of the heterozygous, point mutations mapping to arginine residues involved in the substrate binding inspired several research teams to investigate their impact on the biochemical activity of these enzymes. Soon, it became clear that the mutations identified impaired the ability of IDH1 and IDH2 to catalyze the conversion of isocitrate to α-ketoglutarate (αKG), whereas conferring a gain of a novel enzymatic activity leading to the reduction of αKG to the metabolite D2-hydroxyglutarate (D-2HG). Across glioma as well as several hematologic malignancies, mutations in IDH1 and IDH2 have shown prognostic value. Several hypotheses implicating the elevated levels of D-2HG and tumorigenesis, and the therapeutic potential of targeting mutant IDH enzymes will be discussed.
Collapse
|
1634
|
IDH2 somatic mutations in chronic myeloid leukemia patients in blast crisis. Leukemia 2010; 25:178-81. [PMID: 20962862 DOI: 10.1038/leu.2010.236] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
1635
|
Noordermeer SM, Tönnissen E, Vissers I, van der Heijden A, van de Locht LT, Deutz-Terlouw PP, Marijt EWA, Jansen JH, van der Reijden BA. Rapid identification of IDH1 and IDH2 mutations in acute myeloid leukaemia using high resolution melting curve analysis. Br J Haematol 2010; 152:493-6. [PMID: 20955413 DOI: 10.1111/j.1365-2141.2010.08423.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
1636
|
Fernandes MS, Reddy MM, Croteau NJ, Walz C, Weisbach H, Podar K, Band H, Carroll M, Reiter A, Larson RA, Salgia R, Griffin JD, Sattler M. Novel oncogenic mutations of CBL in human acute myeloid leukemia that activate growth and survival pathways depend on increased metabolism. J Biol Chem 2010; 285:32596-605. [PMID: 20622007 PMCID: PMC2952262 DOI: 10.1074/jbc.m110.106161] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 06/24/2010] [Indexed: 11/06/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by multiple mutagenic events that affect proliferation, survival, as well as differentiation. Recently, gain-of-function mutations in the α helical structure within the linker sequence of the E3 ubiquitin ligase CBL have been associated with AML. We identified four novel CBL mutations, including a point mutation (Y371H) and a putative splice site mutation in AML specimens. Characterization of these two CBL mutants revealed that coexpression with the receptor tyrosine kinases FLT3 (Fms-like tyrosine kinase 3) or KIT-induced ligand independent growth or ligand hyperresponsiveness, respectively. Growth of cells expressing mutant CBL required expression and kinase activity of FLT3. In addition to the CBL-dependent phosphorylation of FLT3 and CBL itself, transformation was associated with activation of Akt and STAT5 and required functional expression of the small GTPases Rho, Rac, and Cdc42. Furthermore, the mutations led to constitutively elevated intracellular reactive oxygen species levels, which is commonly linked to increased glucose metabolism in cancer cells. Inhibition of hexokinase with 2-deoxyglucose blocked the transforming activity of CBL mutants and reduced activation of signaling mechanisms. Overall, our data demonstrate that mutations of CBL alter cellular biology at multiple levels and require not only the activation of receptor proximal signaling events but also an increase in cellular glucose metabolism. Pathways that are activated by CBL gain-of-function mutations can be efficiently targeted by small molecule drugs.
Collapse
Affiliation(s)
- Margret S. Fernandes
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, and
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Mamatha M. Reddy
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, and
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Nicole J. Croteau
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, and
| | - Christoph Walz
- the Pathologisches Institut and
- III Medizinische Klinik, Universitätsmedizin Mannheim, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Henry Weisbach
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, and
| | - Klaus Podar
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, and
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
- the National Center for Tumor Diseases (NCT), Universität Heidelberg, 69120 Heidelberg, Germany
| | - Hamid Band
- the Eppley Institute and Departments of Genetics, Cell Biology & Anatomy and Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Martin Carroll
- the Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Andreas Reiter
- III Medizinische Klinik, Universitätsmedizin Mannheim, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Richard A. Larson
- the Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Ravi Salgia
- the Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - James D. Griffin
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, and
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Martin Sattler
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, and
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
1637
|
Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, Teague JW, Campbell PJ, Stratton MR, Futreal PA. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 2010; 39:D945-50. [PMID: 20952405 PMCID: PMC3013785 DOI: 10.1093/nar/gkq929] [Citation(s) in RCA: 1830] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
COSMIC (http://www.sanger.ac.uk/cosmic) curates comprehensive information on somatic mutations in human cancer. Release v48 (July 2010) describes over 136 000 coding mutations in almost 542 000 tumour samples; of the 18 490 genes documented, 4803 (26%) have one or more mutations. Full scientific literature curations are available on 83 major cancer genes and 49 fusion gene pairs (19 new cancer genes and 30 new fusion pairs this year) and this number is continually increasing. Key amongst these is TP53, now available through a collaboration with the IARC p53 database. In addition to data from the Cancer Genome Project (CGP) at the Sanger Institute, UK, and The Cancer Genome Atlas project (TCGA), large systematic screens are also now curated. Major website upgrades now make these data much more mineable, with many new selection filters and graphics. A Biomart is now available allowing more automated data mining and integration with other biological databases. Annotation of genomic features has become a significant focus; COSMIC has begun curating full-genome resequencing experiments, developing new web pages, export formats and graphics styles. With all genomic information recently updated to GRCh37, COSMIC integrates many diverse types of mutation information and is making much closer links with Ensembl and other data resources.
Collapse
Affiliation(s)
- Simon A Forbes
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1638
|
Pigazzi M, Ferrari G, Masetti R, Falini B, Martinolli F, Basso G, Biondi A, Pession A, Cazzaniga G. Low prevalence of IDH1 gene mutation in childhood AML in Italy. Leukemia 2010; 25:173-4. [PMID: 20944672 DOI: 10.1038/leu.2010.229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
1639
|
Genomic, immunophenotypic, and NPM1/FLT3 mutational studies on 17 patients with normal karyotype acute myeloid leukemia (AML) followed by aberrant karyotype AML at relapse. ACTA ACUST UNITED AC 2010; 202:101-7. [PMID: 20875872 DOI: 10.1016/j.cancergencyto.2010.07.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 06/28/2010] [Accepted: 07/02/2010] [Indexed: 11/23/2022]
Abstract
Normal karyotype (NK) is the most common cytogenetic group in acute myeloid leukemia (AML) diagnosis; however, up to 50% of these patients at relapse will have aberrant karyotype (AK) AML. To determine the etiology of relapsed AK AML cells, we evaluated cytogenetic, immunophenotypic, and molecular results of 17 patients with diagnostic NK AML and relapsed AK AML at our institute. AK AML karyotype was diverse, involving no favorable and largely (8 of 17) complex cytogenetics. Despite clear cytogenetic differences, immunophenotype and NPM1/FLT3 gene mutation status did not change between presentation and relapse in 83% (10 of 12) and 94% (15 of 16) cases, respectively. High-resolution array-based comparative genomic hybridization (aCGH) performed via paired aCGH on NK AML and AK AML samples from the same patient confirmed cytogenetic aberrations only in the relapse sample. Analysis of 16 additional diagnostic NK AML samples revealed no evidence of submicroscopic aberrations undetected by conventional cytogenetics in any case. These results favor evolution of NK AML leukemia cells with acquisition of novel genetic changes as the most common etiology of AK AML relapse as opposed to secondary leukemogenesis. Additional studies are needed to confirm whether AK AML cells represent selection of rare preexisting clones below aCGH detection and to further characterize the molecular lesions found at time of AK AML relapse.
Collapse
|
1640
|
Zou Y, Zeng Y, Zhang DF, Zou SH, Cheng YF, Yao YG. IDH1 and IDH2 mutations are frequent in Chinese patients with acute myeloid leukemia but rare in other types of hematological disorders. Biochem Biophys Res Commun 2010; 402:378-83. [PMID: 20946881 DOI: 10.1016/j.bbrc.2010.10.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 10/07/2010] [Indexed: 01/31/2023]
Abstract
Frequent mutations in the isocitrate dehydrogenase 1 and 2 genes (IDH1 and IDH2) have been identified in gliomas and acute myeloid leukemia (AML). Our aim is to assess whether IDH mutations were presented in Chinese patients with various hematological disorders. In this study, we screened the IDH1 and IDH2 mutations in a cohort of 456 Chinese patients with various hematological malignancies and disorders. We found three missense (p.R132C, p.R132G, and p.I99M; occurred in five patients) and one silent mutation (c.315C>T; occurred in two patients) in the IDH1 gene and two missense mutations (p.R140Q and p.R172K; occurred in four AML patients) and one silent mutation (c.435G>A) in the IDH2 gene. Except for one non-Hodgkin lymphoma (NHL) patient harboring IDH1 mutation p.R132C, all IDH1 and IDH2 missense mutations were observed in patients with AML. Intriguingly, the IDH2 mutation p.R140Q and novel IDH1 mutation p.I99M co-occurred in a 75-year-old patient with AML developed from myelodysplastic syndromes (MDS). The frequency of IDH1 and IDH2 missense mutations in Chinese AML patients reached 5.9% and 8.3%, respectively. Our results supported the recent findings that IDH gene mutations were common in AML. Conversely, IDH mutations were rather rare in Chinese patients with other types of hematological disorders.
Collapse
Affiliation(s)
- Yang Zou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | | | | | | | | | | |
Collapse
|
1641
|
Beckman RA. Efficiency of carcinogenesis: is the mutator phenotype inevitable? Semin Cancer Biol 2010; 20:340-52. [PMID: 20934514 DOI: 10.1016/j.semcancer.2010.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 10/01/2010] [Indexed: 11/15/2022]
Abstract
Cancer development requires multiple oncogenic mutations. Pathogenic mechanisms which accelerate this process may be favored carcinogenic pathways. Mutator mutations are mutations in genetic stability genes, and increase the mutation rate, speeding up the accumulation of oncogenic mutations. The mutator hypothesis states that mutator mutations play a critical role in carcinogenesis. Alternatively, tumors might arise by mutations occurring at the normal rate followed by selection and expansion of various premalignant lineages on the path to cancer. This alternative pathway is a significant argument against the mutator hypothesis. Mutator mutations may also lead to accumulation of deleterious mutations, which could lead to extinction of premalignant lineages before they become cancerous, another argument against the mutator hypothesis. Finally, the need for acquisition of a mutator mutation imposes an additional step on the carcinogenic process. Accordingly, the mutator hypothesis has been a seminal but controversial idea for several decades despite considerable experimental and theoretical work. To resolve this debate, the concept of efficiency has been introduced as a metric for comparing carcinogenic mechanisms, and a new theoretical approach of focused quantitative modeling has been applied. The results demonstrate that, given what is already known, the predominance of mutator mechanisms is likely inevitable, as they overwhelm less efficient non-mutator pathways to cancer.
Collapse
Affiliation(s)
- Robert A Beckman
- Department of Oncology Clinical Research, Daiichi Sankyo Pharmaceutical Development, Edison, NJ 08837, USA.
| |
Collapse
|
1642
|
Hoffmann JS, Cazaux C. Aberrant expression of alternative DNA polymerases: a source of mutator phenotype as well as replicative stress in cancer. Semin Cancer Biol 2010; 20:312-9. [PMID: 20934518 DOI: 10.1016/j.semcancer.2010.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 10/01/2010] [Indexed: 12/22/2022]
Abstract
The cell life span depends on a subtle equilibrium between the accurate duplication of the genomic DNA and less stringent DNA transactions which allow cells to tolerate mutations associated with DNA damage. The physiological role of the alternative, specialized or TLS (translesion synthesis) DNA polymerases could be to favor the necessary "flexibility" of the replication machinery, by allowing DNA replication to occur even in the presence of blocking DNA damage. As these alternative DNA polymerases are inaccurate when replicating undamaged DNA, the regulation of their expression needs to be carefully controlled. Evidence in the literature supports that dysregulation of these error-prone enzymes contributes to the acquisition of a mutator phenotype that, along with defective cell cycle control or other genome stability pathways, could be a motor for accelerated tumor progression.
Collapse
Affiliation(s)
- Jean-Sébastien Hoffmann
- CNRS, IPBS (Institute of Pharmacology and Structural Biology), 205, route de Narbonne, University of Toulouse, UPS, 31077 Toulouse, France.
| | | |
Collapse
|
1643
|
Jeziskova I, Razga F, Bajerova M, Racil Z, Mayer J, Dvorakova D. IDH2mutations in patients with acute myeloid leukemia: missense p.R140 mutations are linked to disease status. Leuk Lymphoma 2010; 51:2285-7. [DOI: 10.3109/10428194.2010.523126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
1644
|
Abstract
Neuropathology is a challenging field, in large part because of the consequential decisions that must be made with small biopsy material. This is especially true concerning the most common primary brain tumor, the infiltrative glioma. Fortunately, abundant research has identified specific molecular alterations that are characteristic of gliomas, according to diagnostic class and tumor grade. Such alterations include 1p19q codeletion, EGFR amplification, p16 deletion, and IDH1/2 mutations. Using specific cases as examples, this review illustrates how molecular testing is of great help in avoiding misdiagnoses and enhancing the quality of information provided to clinicians.
Collapse
Affiliation(s)
- Craig Horbinski
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky 40536, USA.
| |
Collapse
|
1645
|
Stepanov VA. Genomes, populations and diseases: ethnic genomics and personalized medicine. Acta Naturae 2010; 2:15-30. [PMID: 22649660 PMCID: PMC3347589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
This review discusses the progress of ethnic genetics, the genetics of common diseases, and the concepts of personalized medicine. We show the relationship between the structure of genetic diversity in human populations and the varying frequencies of Mendelian and multifactor diseases. We also examine the population basis of pharmacogenetics and evaluate the effectiveness of pharmacotherapy, along with a review of new achievements and prospects in personalized genomics.
Collapse
Affiliation(s)
- V A Stepanov
- Research Institute for Medical Genetics, Siberian Branch, Russian Academy of Medical Sciences
| |
Collapse
|
1646
|
Churpek JE, Onel K. Heritability of hematologic malignancies: from pedigrees to genomics. Hematol Oncol Clin North Am 2010; 24:939-72. [PMID: 20816581 DOI: 10.1016/j.hoc.2010.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Many hematologic malignancies have an underlying heritable component. Although not as well characterized as the acquired genetic abnormalities that define important prognostic and therapeutic subgroups of myeloid and lymphoid neoplasms, investigations are beginning to unravel the role of germline genetic variation in the predisposition to hematologic malignancies. Information gained from the study of striking family pedigrees, epidemiologic data, and candidate genes are now being combined with unbiased genome-wide investigations to outline the network of genetic abnormalities that contribute to hematologic malignancy risk. This article reviews the current understanding of the heritability of hematologic malignancies in the genomics era.
Collapse
Affiliation(s)
- Jane E Churpek
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
1647
|
Fox EJ, Loeb LA. Lethal mutagenesis: targeting the mutator phenotype in cancer. Semin Cancer Biol 2010; 20:353-9. [PMID: 20934515 PMCID: PMC3256989 DOI: 10.1016/j.semcancer.2010.10.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 10/01/2010] [Indexed: 12/31/2022]
Abstract
The evolution of cancer and RNA viruses share many similarities. Both exploit high levels of genotypic diversity to enable extensive phenotypic plasticity and thereby facilitate rapid adaptation. In order to accumulate large numbers of mutations, we have proposed that cancers express a mutator phenotype. Similar to cancer cells, many viral populations, by replicating their genomes with low fidelity, carry a substantial mutational load. As high levels of mutation are potentially deleterious, the viral mutation frequency is thresholded at a level below which viral populations equilibrate in a traditional mutation-selection balance, and above which the population is no longer viable, i.e., the population undergoes an error catastrophe. Because their mutation frequencies are fine-tuned just below this error threshold, viral populations are susceptible to further increases in mutational load and, recently this phenomenon has been exploited therapeutically by a concept that has been termed lethal mutagenesis. Here we review the application of lethal mutagenesis to the treatment of HIV and discuss how lethal mutagenesis may represent a novel therapeutic approach for the treatment of solid cancers.
Collapse
Affiliation(s)
- Edward J. Fox
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Lawrence A. Loeb
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
1648
|
Shuga J, Zeng Y, Novak R, Mathies RA, Hainaut P, Smith MT. Selected technologies for measuring acquired genetic damage in humans. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:851-870. [PMID: 20872848 DOI: 10.1002/em.20630] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Technical advances have improved the capacity to detect and quantify genetic variants, providing novel methods for the detection of rare mutations and for better understanding the underlying environmental factors and biological mechanisms contributing to mutagenesis. The polymerase chain reaction (PCR) has revolutionized genetic testing and remains central to many of these new techniques for mutation detection. Millions of genetic variations have been discovered across the genome. These variations include germline mutations and polymorphisms, which are inherited in a Mendelian manner and present in all cells, as well as acquired, somatic mutations that differ widely by type and size [from single-base mutations to whole chromosome rearrangements, and including submicroscopic copy number variations (CNVs)]. This review focuses on current methods for assessing acquired somatic mutations in the genome, and it examines their application in molecular epidemiology and sensitive detection and analysis of disease. Although older technologies have been exploited for detecting acquired mutations in cancer and other disease, the high-throughput and high-sensitivity offered by next-generation sequencing (NGS) systems are transforming the discovery of disease-associated acquired mutations by enabling comparative whole-genome sequencing of diseased and healthy tissues from the same individual. Emerging microfluidic technologies are beginning to facilitate single-cell genetic analysis of target variable regions for investigating cell heterogeneity within tumors as well as preclinical detection of disease. The technologies discussed in this review will significantly expand our knowledge of acquired genetic mutations and causative mechanisms.
Collapse
Affiliation(s)
- Joe Shuga
- School of Public Health, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
1649
|
Cowin PA, Anglesio M, Etemadmoghadam D, Bowtell DDL. Profiling the cancer genome. Annu Rev Genomics Hum Genet 2010; 11:133-59. [PMID: 20590430 DOI: 10.1146/annurev-genom-082509-141536] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cancer profiling studies have had a profound impact on our understanding of the biology of cancers in a number of ways, including providing insights into the biological heterogeneity of specific cancer types, identification of novel oncogenes and tumor suppressors, and defining pathways that interact to drive the growth of individual cancers. Several large-scale genomic studies are underway that aim to catalog all biologically significant mutational events in each cancer type, and these findings will allow researchers to understand how mutational networks function within individual tumors. The identification of molecular predictive and prognostic tools to facilitate treatment decisions is an important step for individualized patient therapy and, ultimately, in improving patient outcomes. Whereas there are still significant challenges to implementing genomic testing and targeted therapy into routine clinical practice, rapid technological advancements provide hope for overcoming these obstacles.
Collapse
Affiliation(s)
- Prue A Cowin
- Peter MacCallum Cancer Center, East Melbourne, Australia 3002.
| | | | | | | |
Collapse
|
1650
|
DeBerardinis RJ. 2010 Keystone Symposium: Metabolism and Cancer Progression. Future Oncol 2010; 6:893-5. [PMID: 20528226 DOI: 10.2217/fon.10.52] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Ralph J DeBerardinis
- Department of Pediatrics & McDermott Center for Human Growth & Development, University of Texas-Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Room K4.216, Dallas, TX 75390-9063, USA.
| |
Collapse
|