1651
|
McDonald PC, Chafe SC, Dedhar S. Overcoming Hypoxia-Mediated Tumor Progression: Combinatorial Approaches Targeting pH Regulation, Angiogenesis and Immune Dysfunction. Front Cell Dev Biol 2016; 4:27. [PMID: 27066484 PMCID: PMC4814851 DOI: 10.3389/fcell.2016.00027] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/18/2016] [Indexed: 12/22/2022] Open
Abstract
Hypoxia is an important contributor to the heterogeneity of the microenvironment of solid tumors and is a significant environmental stressor that drives adaptations which are essential for the survival and metastatic capabilities of tumor cells. Critical adaptive mechanisms include altered metabolism, pH regulation, epithelial-mesenchymal transition, angiogenesis, migration/invasion, diminished response to immune cells and resistance to chemotherapy and radiation therapy. In particular, pH regulation by hypoxic tumor cells, through the modulation of cell surface molecules such as extracellular carbonic anhydrases (CAIX and CAXII) and monocarboxylate transporters (MCT-1 and MCT-4) functions to increase cancer cell survival and enhance cell invasion while also contributing to immune evasion. Indeed, CAIX is a vital regulator of hypoxia mediated tumor progression, and targeted inhibition of its function results in reduced tumor growth, metastasis, and cancer stem cell function. However, the integrated contributions of the repertoire of hypoxia-induced effectors of pH regulation for tumor survival and invasion remain to be fully explored and exploited as therapeutic avenues. For example, the clinical use of anti-angiogenic agents has identified a conundrum whereby this treatment increases hypoxia and cancer stem cell components of tumors, and accelerates metastasis. Furthermore, hypoxia results in the infiltration of myeloid-derived suppressor cells (MDSCs), regulatory T cells (Treg) and Tumor Associated Macrophages (TAMs), and also stimulates the expression of PD-L1 on tumor cells, which collectively suppress T-cell mediated tumor cell killing. Therefore, combinatorial targeting of angiogenesis, the immune system and pH regulation in the context of hypoxia may lead to more effective strategies for curbing tumor progression and therapeutic resistance, thereby increasing therapeutic efficacy and leading to more effective strategies for the treatment of patients with aggressive cancer.
Collapse
Affiliation(s)
- Paul C McDonald
- Department of Integrative Oncology, British Columbia Cancer Research Centre Vancouver, BC, Canada
| | - Shawn C Chafe
- Department of Integrative Oncology, British Columbia Cancer Research Centre Vancouver, BC, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, British Columbia Cancer Research CentreVancouver, BC, Canada; Department of Biochemistry and Molecular Biology, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
1652
|
Zomer A, van Rheenen J. Implications of Extracellular Vesicle Transfer on Cellular Heterogeneity in Cancer: What Are the Potential Clinical Ramifications? Cancer Res 2016; 76:2071-5. [PMID: 27032418 DOI: 10.1158/0008-5472.can-15-2804] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/11/2015] [Indexed: 11/16/2022]
Abstract
The functional and phenotypic heterogeneity of tumor cells represents one of the greatest challenges in the successful treatment of cancer patients, because it increases the risk that certain individual tumor cells possess the ability to, for example, metastasize or to tolerate cytotoxic drugs. This heterogeneity in cellular behavior is driven by genetic and epigenetic changes and environmental differences. Recent studies suggest that an additional layer of complexity of tumor heterogeneity exists, based on the ability of cells to share functional biomolecules through local and systemic transfer of extracellular vesicles (EV), with profound effects on cellular behavior. The transfer of functional biomolecules between various populations of tumor cells and between tumor cells and nontumor cells has large consequences for both the tumor cells and the microenvironment that support the cellular behavior of tumor cells, and therefore for the clinical outcome of cancer. Here, we discuss the latest findings on EV transfer and the potential implications of EV-mediated local and systemic transmission of phenotypic behavior, particularly in the context of tumor heterogeneity, metastatic disease, and treatment response. Cancer Res; 76(8); 2071-5. ©2016 AACR.
Collapse
Affiliation(s)
- Anoek Zomer
- Cancer Genomics Netherlands, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jacco van Rheenen
- Cancer Genomics Netherlands, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
1653
|
Luo H, England CG, Shi S, Graves SA, Hernandez R, Liu B, Theuer CP, Wong HC, Nickles RJ, Cai W. Dual Targeting of Tissue Factor and CD105 for Preclinical PET Imaging of Pancreatic Cancer. Clin Cancer Res 2016; 22:3821-30. [PMID: 27026197 DOI: 10.1158/1078-0432.ccr-15-2054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 03/01/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE Pancreatic adenocarcinoma is a highly aggressive cancer, currently treated with limited success and dismal outcomes. New diagnostic and treatment strategies offer the potential to reduce cancer mortality. Developing highly specific noninvasive imaging probes for pancreatic cancer is essential to improving diagnostic accuracy and monitoring therapeutic intervention. EXPERIMENTAL DESIGN A bispecific heterodimer was synthesized by conjugating an anti-tissue factor (TF) Fab with an anti-CD105 Fab, via the bio-orthogonal "click" reaction between tetrazine (Tz) and trans-cyclooctene (TCO). The heterodimer was labeled with (64)Cu for PET imaging of nude mice bearing BXPC-3 xenograft and orthotopic pancreatic tumors. RESULTS PET imaging of BXPC-3 (TF/CD105(+/+)) xenograft tumors with (64)Cu-labeled heterodimer displayed significantly enhanced tumor uptake (28.8 ± 3.2 %ID/g; n = 4; SD) at 30 hours postinjection, as compared with each of their monospecific Fab tracers (12.5 ± 1.4 and 7.1 ± 2.6 %ID/g; n = 3; SD). In addition, the activity-concentration ratio allowed for effective tumor visualization (tumor/muscle ratio 75.2 ± 9.4 at 30 hours postinjection.; n = 4; SD). Furthermore, (64)Cu-NOTA-heterodimer enabled sensitive detection of orthotopic pancreatic tumor lesions with an uptake of 17.1 ± 4.9 %ID/g at 30 hours postinjection and tumor/muscle ratio of 72.3 ± 46.7. CONCLUSIONS This study demonstrates that dual targeting of TF and CD105 provided synergistic improvements in binding affinity and tumor localization of the heterodimer. Dual-targeted imaging agents of pancreatic and other cancers may assist in diagnosing pancreatic malignancies as well as reliable monitoring of therapeutic response. Clin Cancer Res; 22(15); 3821-30. ©2016 AACR.
Collapse
Affiliation(s)
- Haiming Luo
- Department of Radiology, University of Wisconsin-Madison, Wisconsin
| | | | - Sixiang Shi
- Materials Science Program, University of Wisconsin-Madison, Wisconsin
| | - Stephen A Graves
- Department of Medical Physics, University of Wisconsin-Madison, Wisconsin
| | - Reinier Hernandez
- Department of Medical Physics, University of Wisconsin-Madison, Wisconsin
| | - Bai Liu
- Altor BioSciences, Miramar, Florida
| | | | | | - Robert J Nickles
- Department of Medical Physics, University of Wisconsin-Madison, Wisconsin
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Wisconsin. Department of Medical Physics, University of Wisconsin-Madison, Wisconsin. Materials Science Program, University of Wisconsin-Madison, Wisconsin. University of Wisconsin Carbone Cancer Center, Madison, Wisconsin.
| |
Collapse
|
1654
|
Abstract
BACKGROUND The histopathological structure of malignant tumours involves two essential compartments - the tumour parenchyma with the actual transformed cells, and the supportive tumour stroma. The latter consists of specialized mesenchymal cells, such as fibroblasts, macrophages, lymphocytes and vascular cells, as well as of their secreted products, including components of the extracellular matrix, matrix modifying enzymes and numerous regulatory growth factors and cytokines. In consequence, the tumour stroma has the ability to influence virtually all aspects of tumour development and progression, including therapeutic response. AIM In this article we review the current knowledge of tumor stroma interactions in urothelial carcinoma and present various experimental systems that are currently in use to unravel the biological basis of these heterotypic cell interactions. RESULTS For urothelial carcinoma, an extensive tumour stroma is quite typical and markers of activated fibroblasts correlate significantly with clinical parameters of advanced disease. Another clinically important variable is provided by the stromal expression of syndecan-1. CONCLUSION Integration of markers of activated stroma into clinical risk evaluation could aid to better stratification of urothelial bladder carcinoma patients. Elucidation of biological mechanisms underlying tumour-stroma interactions could provide new therapeutical targets.
Collapse
|
1655
|
Larsen SA, Meldgaard T, Fridriksdottir AJ, Lykkemark S, Poulsen PC, Overgaard LF, Petersen HB, Petersen OW, Kristensen P. Selection of a breast cancer subpopulation-specific antibody using phage display on tissue sections. Immunol Res 2016; 62:263-72. [PMID: 25963139 PMCID: PMC4469306 DOI: 10.1007/s12026-015-8657-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer tumors are composed of heterogeneous cell populations. These populations display a high variance in morphology, growth and metastatic propensity. They respond differently to therapeutic interventions, and some may be more prone to cause recurrence. Studying individual subpopulations of breast cancer may provide crucial knowledge for the development of individualized therapy. However, this process is challenged by the availability of biomarkers able to identify subpopulations specifically. Here, we demonstrate an approach for phage display selection of recombinant antibody fragments on cryostat sections of human breast cancer tissue. This method allows for selection of recombinant antibodies binding to antigens specifically expressed in a small part of the tissue section. In this case, a CD271+ subpopulation of breast cancer cells was targeted, and these may be potential breast cancer stem cells. We isolated an antibody fragment LH 7, which in immunohistochemistry experiments demonstrates specific binding to breast cancer subpopulations. The selection of antibody fragments directly on small defined areas within a larger section of malignant tissue is a novel approach by which it is possible to better target cellular heterogeneity in proteomic studies. The identification of novel biomarkers is relevant for our understanding and intervention in human diseases. The selection of the breast cancer-specific antibody fragment LH 7 may reveal novel subpopulation-specific biomarkers, which has the potential to provide new insight and treatment strategies for breast cancer.
Collapse
Affiliation(s)
- Simon Asbjørn Larsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
1656
|
Bluestein BM, Morrish F, Graham DJ, Guenthoer J, Hockenbery D, Porter PL, Gamble LJ. An unsupervised MVA method to compare specific regions in human breast tumor tissue samples using ToF-SIMS. Analyst 2016; 141:1947-57. [PMID: 26878076 PMCID: PMC4783233 DOI: 10.1039/c5an02406d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Imaging time-of-flight secondary ion mass spectrometry (ToF-SIMS) and principal component analysis (PCA) were used to investigate two sets of pre- and post-chemotherapy human breast tumor tissue sections to characterize lipids associated with tumor metabolic flexibility and response to treatment. The micron spatial resolution imaging capability of ToF-SIMS provides a powerful approach to attain spatially-resolved molecular and cellular data from cancerous tissues not available with conventional imaging techniques. Three ca. 1 mm(2) areas per tissue section were analyzed by stitching together 200 μm × 200 μm raster area scans. A method to isolate and analyze specific tissue regions of interest by utilizing PCA of ToF-SIMS images is presented, which allowed separation of cellularized areas from stromal areas. These PCA-generated regions of interest were then used as masks to reconstruct representative spectra from specifically stromal or cellular regions. The advantage of this unsupervised selection method is a reduction in scatter in the spectral PCA results when compared to analyzing all tissue areas or analyzing areas highlighted by a pathologist. Utilizing this method, stromal and cellular regions of breast tissue biopsies taken pre- versus post-chemotherapy demonstrate chemical separation using negatively-charged ion species. In this sample set, the cellular regions were predominantly all cancer cells. Fatty acids (i.e. palmitic, oleic, and stearic), monoacylglycerols, diacylglycerols and vitamin E profiles were distinctively different between the pre- and post-therapy tissues. These results validate a new unsupervised method to isolate and interpret biochemically distinct regions in cancer tissues using imaging ToF-SIMS data. In addition, the method developed here can provide a framework to compare a variety of tissue samples using imaging ToF-SIMS, especially where there is section-to-section variability that makes it difficult to use a serial hematoxylin and eosin (H&E) stained section to direct the SIMS analysis.
Collapse
Affiliation(s)
- Blake M Bluestein
- University of Washington, Dept. of Bioengineering, MolES Building, Box 351653, Seattle, WA 98195-1653, USA.
| | | | - Daniel J Graham
- University of Washington, Dept. of Bioengineering, MolES Building, Box 351653, Seattle, WA 98195-1653, USA.
| | - Jamie Guenthoer
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Peggy L Porter
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lara J Gamble
- University of Washington, Dept. of Bioengineering, MolES Building, Box 351653, Seattle, WA 98195-1653, USA.
| |
Collapse
|
1657
|
Wen WS, Yuan ZM, Ma SJ, Xu J, Yuan DT. CRISPR-Cas9 systems: versatile cancer modelling platforms and promising therapeutic strategies. Int J Cancer 2016; 138:1328-36. [PMID: 26044706 DOI: 10.1002/ijc.29626] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/12/2015] [Accepted: 05/28/2015] [Indexed: 12/26/2022]
Abstract
The RNA-guided nuclease CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated nuclease 9) and its variants such as nickase Cas9, dead Cas9, guide RNA scaffolds and RNA-targeting Cas9 are convenient and versatile platforms for site-specific genome editing and epigenome modulation. They are easy-to-use, simple-to-design and capable of targeting multiple loci simultaneously. Given that cancer develops from cumulative genetic and epigenetic alterations, CRISPR-Cas9 and its variants (hereafter referred to as CRISPR-Cas9 systems) hold extensive application potentials in cancer modeling and therapy. To date, they have already been applied to model oncogenic mutations in cell lines (e.g., Choi and Meyerson, Nat Commun 2014;5:3728) and in adult animals (e.g., Xue et al., Nature 2014;514:380-4), as well as to combat cancer by disabling oncogenic viruses (e.g., Hu et al., Biomed Res Int 2014;2014:612823) or by manipulating cancer genome (e.g., Liu et al., Nat Commun 2014;5:5393). Given the importance of epigenome and transcriptome in tumourigenesis, manipulation of cancer epigenome and transcriptome for cancer modeling and therapy is a promising area in the future. Whereas (epi)genetic modifications of cancer microenvironment with CRISPR-Cas9 systems for therapeutic purposes represent another promising area in cancer research. Herein, we introduce the functions and mechanisms of CRISPR-Cas9 systems in genome editing and epigenome modulation, retrospect their applications in cancer modelling and therapy, discuss limitations and possible solutions and propose future directions, in hope of providing concise and enlightening information for readers interested in this area.
Collapse
Affiliation(s)
- Wan-Shun Wen
- Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province, China
| | - Zhi-Min Yuan
- Cervical Disease Clinic, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, China
| | - Shi-Jie Ma
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Jiang Xu
- Department of Rehabilitation, the Affiliated Huai'an Hospital of Xuzhou Medical College and the Second People's Hospital of Huai'an, Huai'an, China
| | - Dong-Tang Yuan
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| |
Collapse
|
1658
|
Park JI, Lee J, Kwon JL, Park HB, Lee SY, Kim JY, Sung J, Kim JM, Song KS, Kim KH. Scaffold-Free Coculture Spheroids of Human Colonic Adenocarcinoma Cells and Normal Colonic Fibroblasts Promote Tumorigenicity in Nude Mice. Transl Oncol 2016; 9:79-88. [PMID: 26947885 PMCID: PMC4800065 DOI: 10.1016/j.tranon.2015.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to form a scaffold-free coculture spheroid model of colonic adenocarcinoma cells (CACs) and normal colonic fibroblasts (NCFs) and to use the spheroids to investigate the role of NCFs in the tumorigenicity of CACs in nude mice. We analysed three-dimensional (3D) scaffold-free coculture spheroids of CACs and NCFs. CAC Matrigel invasion assays and tumorigenicity assays in nude mice were performed to examine the effect of NCFs on CAC invasive behaviour and tumorigenicity in 3D spheroids. We investigated the expression pattern of fibroblast activation protein-α (FAP-α) by immunohistochemical staining. CAC monocultures did not form densely-packed 3D spheroids, whereas cocultured CACs and NCFs formed 3D spheroids. The 3D coculture spheroids seeded on a Matrigel extracellular matrix showed higher CAC invasiveness compared to CACs alone or CACs and NCFs in suspension. 3D spheroids injected into nude mice generated more and faster-growing tumors compared to CACs alone or mixed suspensions consisting of CACs and NCFs. FAP-α was expressed in NCFs-CACs cocultures and xenograft tumors, whereas monocultures of NCFs or CACs were negative for FAP-α expression. Our findings provide evidence that the interaction between CACs and NCFs is essential for the tumorigenicity of cancer cells as well as for tumor propagation.
Collapse
Affiliation(s)
- Jong-Il Park
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Jisu Lee
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Ju-Lee Kwon
- Department of Pathology, Cancer Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hong-Bum Park
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Su-Yel Lee
- Chungnam National University Hospital Biobank, Daejeon, Republic of Korea
| | - Ji-Yeon Kim
- Department of Surgery, Division of Colorectal Surgery, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Jaekye Sung
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Jin Man Kim
- Department of Pathology, Cancer Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Kyu Sang Song
- Department of Pathology, Cancer Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Kyung-Hee Kim
- Department of Pathology, Cancer Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
1659
|
Wei M, Lü L, Lin P, Chen Z, Quan Z, Tang Z. Multiple cellular origins and molecular evolution of intrahepatic cholangiocarcinoma. Cancer Lett 2016; 379:253-61. [PMID: 26940139 DOI: 10.1016/j.canlet.2016.02.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 12/12/2022]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy associated with unfavorable prognosis and for which no effective treatments are available. Its molecular pathogenesis is poorly understood. Genome-wide sequencing and high-throughput technologies have provided critical insights into the molecular basis of ICC while sparking a heated debate on the cellular origin. Cancer exhibits variabilities in origin, progression and cell biology. Recent evidence suggests that ICC has multiple cellular origins, including differentiated hepatocytes; intrahepatic biliary epithelial cells (IBECs)/cholangiocytes; pluripotent stem cells, such as hepatic stem/progenitor cells (HPCs) and biliary tree stem/progenitor cells (BTSCs); and peribiliary gland (PBG). However, both somatic mutagenesis and epigenomic features are highly cell type-specific. Multiple cellular origins may have profoundly different genomic landscapes and key signaling pathways, driving phenotypic variation and thereby posing significant challenges to personalized medicine in terms of achieving the optimal drug response and patient outcome. Considering this information, we have summarized the latest experimental evidence and relevant literature to provide an up-to-date view of the cellular origin of ICC, which will contribute to establishment of a hierarchical model of carcinogenesis and allow for improvement of the anatomical-based classification of ICC. These new insights have important implications for both the diagnosis and treatment of ICC patients.
Collapse
Affiliation(s)
- Miaoyan Wei
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lisheng Lü
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Peiyi Lin
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhisheng Chen
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhiwei Quan
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhaohui Tang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
1660
|
Somasundaram R, Herlyn M, Wagner SN. The role of tumor microenvironment in melanoma therapy resistance. Melanoma Manag 2016; 3:23-32. [PMID: 30190870 PMCID: PMC6094607 DOI: 10.2217/mmt.15.37] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/06/2015] [Indexed: 12/16/2022] Open
Abstract
Melanoma patients develop resistance to both chemotherapy and targeted-therapy drugs. Promising preclinical and clinical results with immune checkpoint inhibitors using antibodies directed against cytotoxic T-lymphocyte-associated protein 4 and programmed cell death protein 1 have re-energized the field of immune-based therapies in melanoma. However, similar to chemotherapy or targeted therapies, immune checkpoint blockade responds in only subsets of melanoma patients. A number of factors, including gene mutations, altered cell-signaling pathways and tumor heterogeneity can contribute to therapy resistance. Recent studies have highlighted the role of inflammatory tumor microenvironment on therapy resistance of cancer cells. Cancer cells either alone or in conjunction with the tumor stroma can contribute to an inflammatory microenvironment. Multimodal approaches of targeting the tumor microenvironment, in addition to malignant cells, may be necessary for better therapy responses.
Collapse
Affiliation(s)
| | - Meenhard Herlyn
- The Wistar Institute, 3601 Spruce St, Philadelphia, PA 19104, USA
| | - Stephan N Wagner
- Division of Immunology, Allergy & Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Wien, Austria
| |
Collapse
|
1661
|
Kemp JA, Shim MS, Heo CY, Kwon YJ. "Combo" nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv Drug Deliv Rev 2016; 98:3-18. [PMID: 26546465 DOI: 10.1016/j.addr.2015.10.019] [Citation(s) in RCA: 360] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/23/2022]
Abstract
The dynamic and versatile nature of diseases such as cancer has been a pivotal challenge for developing efficient and safe therapies. Cancer treatments using a single therapeutic agent often result in limited clinical outcomes due to tumor heterogeneity and drug resistance. Combination therapies using multiple therapeutic modalities can synergistically elevate anti-cancer activity while lowering doses of each agent, hence, reducing side effects. Co-administration of multiple therapeutic agents requires a delivery platform that can normalize pharmacokinetics and pharmacodynamics of the agents, prolong circulation, selectively accumulate, specifically bind to the target, and enable controlled release in target site. Nanomaterials, such as polymeric nanoparticles, gold nanoparticles/cages/shells, and carbon nanomaterials, have the desired properties, and they can mediate therapeutic effects different from those generated by small molecule drugs (e.g., gene therapy, photothermal therapy, photodynamic therapy, and radiotherapy). This review aims to provide an overview of developing multi-modal therapies using nanomaterials ("combo" nanomedicine) along with the rationale, up-to-date progress, further considerations, and the crucial roles of interdisciplinary approaches.
Collapse
Affiliation(s)
- Jessica A Kemp
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea
| | - Chan Yeong Heo
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States; Department of Plastic Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Plastic Surgery, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States; Department of Chemical Engineering and Materials Science,University of California, Irvine, CA 92697, United States; Department of Biomedical Engineering,University of California, Irvine, CA 92697, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States.
| |
Collapse
|
1662
|
Heath JR, Ribas A, Mischel PS. Single-cell analysis tools for drug discovery and development. Nat Rev Drug Discov 2016; 15:204-16. [PMID: 26669673 PMCID: PMC4883669 DOI: 10.1038/nrd.2015.16] [Citation(s) in RCA: 348] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The genetic, functional or compositional heterogeneity of healthy and diseased tissues presents major challenges in drug discovery and development. Such heterogeneity hinders the design of accurate disease models and can confound the interpretation of biomarker levels and of patient responses to specific therapies. The complex nature of virtually all tissues has motivated the development of tools for single-cell genomic, transcriptomic and multiplex proteomic analyses. Here, we review these tools and assess their advantages and limitations. Emerging applications of single cell analysis tools in drug discovery and development, particularly in the field of oncology, are discussed.
Collapse
Affiliation(s)
- James R Heath
- California Institute of Technology Division of Chemistry and Chemical Engineering, MC 127-72, 1200 East California Boulevard, Pasadena, California 91125, USA
| | - Antoni Ribas
- Department of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, USA
| | - Paul S Mischel
- Ludwig Institute for Cancer Research San Diego, Department of Pathology and Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
1663
|
Balamurugan K. HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int J Cancer 2016; 138:1058-66. [PMID: 25784597 PMCID: PMC4573780 DOI: 10.1002/ijc.29519] [Citation(s) in RCA: 431] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/24/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022]
Abstract
The complex cross-talk of intricate intercellular signaling networks between the tumor and stromal cells promotes cancer progression. Hypoxia is one of the most common conditions encountered within the tumor microenvironment that drives tumorigenesis. Most responses to hypoxia are elicited by a family of transcription factors called hypoxia-inducible factors (HIFs), which induce expression of a diverse set of genes that assist cells to adapt to hypoxic environments. Among the three HIF protein family members, the role of HIF-1 is well established in cancer progression. HIF-1 functions as a signaling hub to coordinate the activities of many transcription factors and signaling molecules that impact tumorigenesis. This mini review discusses the complex role of HIF-1 and its context-dependent partners under various cancer-promoting events including inflammation and generation of cancer stem cells, which are implicated in tumor metastasis and relapse. In addition, the review highlights the importance of therapeutic targeting of HIF-1 for cancer prevention.
Collapse
Affiliation(s)
- Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD
| |
Collapse
|
1664
|
Morphological heterogeneity in ductal adenocarcinoma of the pancreas - Does it matter? Pancreatology 2016; 16:295-301. [PMID: 26924665 DOI: 10.1016/j.pan.2016.02.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/07/2016] [Accepted: 02/08/2016] [Indexed: 02/08/2023]
Abstract
Morphological heterogeneity is a common finding in pancreatic ductal adenocarcinoma. Inter- and intra-tumour heterogeneity relates not only to the microscopic appearances of the tumour cell population, but pertains also to other essential aspects of the cancer, including the grade of differentiation, growth pattern and desmoplastic stroma. While the existence of considerable morphological variation is well known among pathologists, it is usually not fully appreciated by the wider community. Morphological heterogeneity in pancreatic cancer is only partially represented in the WHO classification, and current pathology guidelines do not recommend reporting on morphological variation other than the conventional variants of ductal adenocarcinoma. Although tumour heterogeneity is increasingly recognized as a major determinant of therapeutic response, morphological heterogeneity has been left unconsidered as a possible proxy for underlying aberrations - genomic or otherwise - that determine the effect of treatment. Various aspects of morphological heterogeneity in pancreatic ductal adenocarcinoma are illustrated in this article and discussed along with the possible implications for patient management and research.
Collapse
|
1665
|
Tailoring nanoparticle designs to target cancer based on tumor pathophysiology. Proc Natl Acad Sci U S A 2016; 113:E1142-51. [PMID: 26884153 DOI: 10.1073/pnas.1521265113] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nanoparticles can provide significant improvements in the diagnosis and treatment of cancer. How nanoparticle size, shape, and surface chemistry can affect their accumulation, retention, and penetration in tumors remains heavily investigated, because such findings provide guiding principles for engineering optimal nanosystems for tumor targeting. Currently, the experimental focus has been on particle design and not the biological system. Here, we varied tumor volume to determine whether cancer pathophysiology can influence tumor accumulation and penetration of different sized nanoparticles. Monte Carlo simulations were also used to model the process of nanoparticle accumulation. We discovered that changes in pathophysiology associated with tumor volume can selectively change tumor uptake of nanoparticles of varying size. We further determine that nanoparticle retention within tumors depends on the frequency of interaction of particles with the perivascular extracellular matrix for smaller nanoparticles, whereas transport of larger nanomaterials is dominated by Brownian motion. These results reveal that nanoparticles can potentially be personalized according to a patient's disease state to achieve optimal diagnostic and therapeutic outcomes.
Collapse
|
1666
|
O'Connor JPB, Boult JKR, Jamin Y, Babur M, Finegan KG, Williams KJ, Little RA, Jackson A, Parker GJM, Reynolds AR, Waterton JC, Robinson SP. Oxygen-Enhanced MRI Accurately Identifies, Quantifies, and Maps Tumor Hypoxia in Preclinical Cancer Models. Cancer Res 2016; 76:787-95. [PMID: 26659574 PMCID: PMC4757751 DOI: 10.1158/0008-5472.can-15-2062] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/09/2015] [Indexed: 01/10/2023]
Abstract
There is a clinical need for noninvasive biomarkers of tumor hypoxia for prognostic and predictive studies, radiotherapy planning, and therapy monitoring. Oxygen-enhanced MRI (OE-MRI) is an emerging imaging technique for quantifying the spatial distribution and extent of tumor oxygen delivery in vivo. In OE-MRI, the longitudinal relaxation rate of protons (ΔR1) changes in proportion to the concentration of molecular oxygen dissolved in plasma or interstitial tissue fluid. Therefore, well-oxygenated tissues show positive ΔR1. We hypothesized that the fraction of tumor tissue refractory to oxygen challenge (lack of positive ΔR1, termed "Oxy-R fraction") would be a robust biomarker of hypoxia in models with varying vascular and hypoxic features. Here, we demonstrate that OE-MRI signals are accurate, precise, and sensitive to changes in tumor pO2 in highly vascular 786-0 renal cancer xenografts. Furthermore, we show that Oxy-R fraction can quantify the hypoxic fraction in multiple models with differing hypoxic and vascular phenotypes, when used in combination with measurements of tumor perfusion. Finally, Oxy-R fraction can detect dynamic changes in hypoxia induced by the vasomodulator agent hydralazine. In contrast, more conventional biomarkers of hypoxia (derived from blood oxygenation-level dependent MRI and dynamic contrast-enhanced MRI) did not relate to tumor hypoxia consistently. Our results show that the Oxy-R fraction accurately quantifies tumor hypoxia noninvasively and is immediately translatable to the clinic.
Collapse
Affiliation(s)
- James P B O'Connor
- Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom. Centre for Imaging Sciences, University of Manchester, Manchester, United Kingdom. Department of Radiology, Christie NHS Foundation Trust, Manchester, United Kingdom. james.o'
| | - Jessica K R Boult
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Muhammad Babur
- Manchester Pharmacy School, University of Manchester, Manchester, United Kingdom
| | - Katherine G Finegan
- Manchester Pharmacy School, University of Manchester, Manchester, United Kingdom
| | - Kaye J Williams
- Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom. Manchester Pharmacy School, University of Manchester, Manchester, United Kingdom
| | - Ross A Little
- Centre for Imaging Sciences, University of Manchester, Manchester, United Kingdom
| | - Alan Jackson
- Centre for Imaging Sciences, University of Manchester, Manchester, United Kingdom
| | - Geoff J M Parker
- Centre for Imaging Sciences, University of Manchester, Manchester, United Kingdom
| | - Andrew R Reynolds
- Tumour Biology Team, Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - John C Waterton
- Centre for Imaging Sciences, University of Manchester, Manchester, United Kingdom
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
1667
|
Onion D, Argent RH, Reece-Smith AM, Craze ML, Pineda RG, Clarke PA, Ratan HL, Parsons SL, Lobo DN, Duffy JP, Atherton JC, McKenzie AJ, Kumari R, King P, Hall BM, Grabowska AM. 3-Dimensional Patient-Derived Lung Cancer Assays Reveal Resistance to Standards-of-Care Promoted by Stromal Cells but Sensitivity to Histone Deacetylase Inhibitors. Mol Cancer Ther 2016; 15:753-63. [PMID: 26873730 DOI: 10.1158/1535-7163.mct-15-0598] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/10/2015] [Indexed: 11/16/2022]
Abstract
There is a growing recognition that current preclinical models do not reflect the tumor microenvironment in cellular, biological, and biophysical content and this may have a profound effect on drug efficacy testing, especially in the era of molecular-targeted agents. Here, we describe a method to directly embed low-passage patient tumor-derived tissue into basement membrane extract, ensuring a low proportion of cell death to anoikis and growth complementation by coculture with patient-derived cancer-associated fibroblasts (CAF). A range of solid tumors proved amenable to growth and pharmacologic testing in this 3D assay. A study of 30 early-stage non-small cell lung cancer (NSCLC) specimens revealed high levels of de novo resistance to a large range of standard-of-care agents, while histone deacetylase (HDAC) inhibitors and their combination with antineoplastic drugs displayed high levels of efficacy. Increased resistance was seen in the presence of patient-derived CAFs for many agents, highlighting the utility of the assay for tumor microenvironment-educated drug testing. Standard-of-care agents showed similar responses in the 3D ex vivo and patient-matched in vivo models validating the 3D-Tumor Growth Assay (3D-TGA) as a high-throughput screen for close-to-patient tumors using significantly reduced animal numbers. Mol Cancer Ther; 15(4); 753-63. ©2016 AACR.
Collapse
Affiliation(s)
- David Onion
- Ex Vivo Cancer Pharmacology Centre of Excellence, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom. University of Nottingham Flow Cytometry Facility, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Richard H Argent
- Ex Vivo Cancer Pharmacology Centre of Excellence, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Alexander M Reece-Smith
- Ex Vivo Cancer Pharmacology Centre of Excellence, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Madeleine L Craze
- Ex Vivo Cancer Pharmacology Centre of Excellence, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Robert G Pineda
- Ex Vivo Cancer Pharmacology Centre of Excellence, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Philip A Clarke
- Ex Vivo Cancer Pharmacology Centre of Excellence, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Hari L Ratan
- Department of Urology, Nottingham University NHS Trust, QMC, Nottingham, United Kingdom
| | - Simon L Parsons
- Nottingham University NHS Trust, City Hospital Campus, Nottingham, United Kingdom
| | - Dileep N Lobo
- Nottingham Digestive Diseases National Institute of Health Research Biomedical Research Unit, University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - John P Duffy
- Department of Thoracic Surgery, Nottingham University NHS Trust, City Hospital Campus, Nottingham United Kingdom
| | - John C Atherton
- Nottingham Digestive Diseases National Institute of Health Research Biomedical Research Unit, University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | | | - Rajendra Kumari
- Crown Bioscience UK Ltd, Hillcrest, Loughborough, United Kingdom
| | - Peter King
- Janssen Research and Development, Spring House, Pennsylvania
| | - Brett M Hall
- Janssen Research and Development, Spring House, Pennsylvania
| | - Anna M Grabowska
- Ex Vivo Cancer Pharmacology Centre of Excellence, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
1668
|
Xu L, Pan Q, Lin R. Prevalence rate and influencing factors of preoperative anxiety and depression in gastric cancer patients in China: Preliminary study. J Int Med Res 2016; 44:377-88. [PMID: 26857859 PMCID: PMC5580059 DOI: 10.1177/0300060515616722] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/20/2015] [Indexed: 12/19/2022] Open
Abstract
Objectives To investigate the prevalence rate and influencing factors of preoperative anxiety and depression in patients with gastric cancer, in China. Methods Patients with gastric cancer who were diagnosed by gastroscopy and would accept laparoscopic surgery were eligible for the study. Each participant completed self-administered questionnaires, including the Hospital Anxiety and Depression Scale (HADS), Medical Coping Modes Questionnaire (MCMQ), Social Support Rating Scale, and Type D personality scale before surgery. Routine blood tests were undertaken within 7 days before surgery, to calculate the neutrophil-to-lymphocyte ratio (NLR). Based on HADS, patients were divided into an anxiety/depression group and a nonanxiety/depression group. Results Fifty-three patients with gastric cancer were included in the study. The prevalence of preoperative anxiety and/or depression was 20.75% (11/53). Factors influencing preoperative anxiety and depression were a resigned dimension of coping style, type D personality and NLR. Logistic regression analysis showed that a higher score for the resigned dimension of coping style on the MCMQ and a higher NLR were significantly associated with preoperative anxiety and depression. Conclusions The prevalence of preoperative anxiety and depression in Chinese patients with gastric cancer may be influenced by both the coping mode and NLR.
Collapse
Affiliation(s)
- Le Xu
- Department of Nursing, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China Fujian Medical University Union Clinical Medical Institute, Fuzhou, Fujian Province, China
| | - Qiong Pan
- Fujian Medical University Union Clinical Medical Institute, Fuzhou, Fujian Province, China
| | - Renqin Lin
- Fujian Medical University Union Clinical Medical Institute, Fuzhou, Fujian Province, China
| |
Collapse
|
1669
|
C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation. Nat Commun 2016; 7:10346. [PMID: 26831747 PMCID: PMC4740357 DOI: 10.1038/ncomms10346] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/02/2015] [Indexed: 02/06/2023] Open
Abstract
Complement C1q is the activator of the classical pathway. However, it is now recognized that C1q can exert functions unrelated to complement activation. Here we show that C1q, but not C4, is expressed in the stroma and vascular endothelium of several human malignant tumours. Compared with wild-type (WT) or C3- or C5-deficient mice, C1q-deficient (C1qa−/−) mice bearing a syngeneic B16 melanoma exhibit a slower tumour growth and prolonged survival. This effect is not attributable to differences in the tumour-infiltrating immune cells. Tumours developing in WT mice display early deposition of C1q, higher vascular density and an increase in the number of lung metastases compared with C1qa−/− mice. Bone marrow (BM) chimeras between C1qa−/− and WT mice identify non-BM-derived cells as the main local source of C1q that can promote cancer cell adhesion, migration and proliferation. Together these findings support a role for locally synthesized C1q in promoting tumour growth. C1q is known to initiate the activation of the complement classical pathway. Here, the authors show the C1q is expressed in the tumour microenvironment and can promote cancer cell migration and adhesion in a complement activation-independent manner.
Collapse
|
1670
|
Wei H, Fu P, Yao M, Chen Y, Du L. Breast cancer stem cells phenotype and plasma cell-predominant breast cancer independently indicate poor survival. Pathol Res Pract 2016; 212:294-301. [PMID: 26857534 DOI: 10.1016/j.prp.2016.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/20/2015] [Accepted: 01/24/2016] [Indexed: 01/28/2023]
Abstract
PURPOSE Cancer stem cell-tumor microenvironment ecosystem is proposed to drive tumor heterogeneity. Tumor-infiltrating lymphocytes (TILs) in breast cancer ecosystem were demonstrated to indicate better prognosis and benefit from chemotherapy. This study sought to detect the association between breast cancer stem cells and TILs. METHODS 92 patients with breast cancer were enrolled. Matched cancerous and paracancerous tissues were assembled in a tissue microarray and immunohistochemistry was employed to test expression of breast cancer stem cells (BCSCs) markers. TILs counts were estimated with global hematoxylin-eosin staining. The association between TILs and BCSCs phenotypes was analysed by multivariate analysis. RESULTS Although it was unable to find direct significant association between BCSCs phenotypes and TILs, the BCSCs phenotype with CD44(+)CD24(-)ALDH1A1(+)EpCAM(+)CD49f(+) was proved to be associated with worse DFS and OS (P=0.037 and 0.001). This result was confirmed by cox proportional-hazards regression model (for DFS and OS respectively, HR=2.438 and 3.383, P=0.019 [95%CI 1.418-3.457] and 0.025 [95%CI 1.162-9.843]). Additionally, in results of TILs, plasma cell-predominant breast cancer (PPBC) was unexpectedly found to indicate worse OS and HR was 2.686 (P=0.038 [95%CI 1.582-3.789]). CONCLUSIONS The BCSCs phenotype and PPBC may be helpful stratified factors in future clinical trials. The underlying mechanism needs further research.
Collapse
Affiliation(s)
- Haiyan Wei
- Breast Center, the Fist Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003 China.
| | - Peifen Fu
- Breast Center, the Fist Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003 China.
| | - Minya Yao
- Breast Center, the Fist Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003 China.
| | - Yaomin Chen
- Breast Center, the Fist Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003 China.
| | - Linlin Du
- Department of Intensive Care Unit, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009 China.
| |
Collapse
|
1671
|
Smith BN, Bhowmick NA. Role of EMT in Metastasis and Therapy Resistance. J Clin Med 2016; 5:E17. [PMID: 26828526 PMCID: PMC4773773 DOI: 10.3390/jcm5020017] [Citation(s) in RCA: 369] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 12/22/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complex molecular program that regulates changes in cell morphology and function during embryogenesis and tissue development. EMT also contributes to tumor progression and metastasis. Cells undergoing EMT expand out of and degrade the surrounding microenvironment to subsequently migrate from the primary site. The mesenchymal phenotype observed in fibroblasts is specifically important based on the expression of smooth muscle actin (α-SMA), fibroblast growth factor (FGF), fibroblast-specific protein-1 (FSP1), and collagen to enhance EMT. Although EMT is not completely dependent on EMT regulators such as Snail, Twist, and Zeb-1/-2, analysis of upstream signaling (i.e., TGF-β, EGF, Wnt) is necessary to understand tumor EMT more comprehensively. Tumor epithelial-fibroblast interactions that regulate tumor progression have been identified during prostate cancer. The cellular crosstalk is significant because these events influence therapy response and patient outcome. This review addresses how canonical EMT signals originating from prostate cancer fibroblasts contribute to tumor metastasis and recurrence after therapy.
Collapse
Affiliation(s)
- Bethany N Smith
- Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Blvd., Atrium 103, Los Angeles, CA 90048, USA.
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Blvd., Atrium 103, Los Angeles, CA 90048, USA.
| |
Collapse
|
1672
|
Kwon OS, Song HS, Conde J, Kim HI, Artzi N, Kim JH. Dual-Color Emissive Upconversion Nanocapsules for Differential Cancer Bioimaging In Vivo. ACS NANO 2016; 10:1512-1521. [PMID: 26727423 DOI: 10.1021/acsnano.5b07075] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Early diagnosis of tumor malignancy is crucial for timely cancer treatment aimed at imparting desired clinical outcomes. The traditional fluorescence-based imaging is unfortunately faced with challenges such as low tissue penetration and background autofluorescence. Upconversion (UC)-based bioimaging can overcome these limitations as their excitation occurs at lower frequencies and the emission at higher frequencies. In this study, multifunctional silica-based nanocapsules were synthesized to encapsulate two distinct triplet-triplet annihilation UC chromophore pairs. Each nanocapsule emits different colors, blue or green, following a red light excitation. These nanocapsules were further conjugated with either antibodies or peptides to selectively target breast or colon cancer cells, respectively. Both in vitro and in vivo experimental results herein demonstrate cancer-specific and differential-color imaging from single wavelength excitation as well as far greater accumulation at targeted tumor sites than that due to the enhanced permeability and retention effect. This approach can be used to host a variety of chromophore pairs for various tumor-specific, color-coding scenarios and can be employed for diagnosis of a wide range of cancer types within the heterogeneous tumor microenvironment.
Collapse
Affiliation(s)
- Oh Seok Kwon
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University , New Haven, Connecticut 06511, United States
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Yuseong, Daejeon 305-600, Republic of Korea
| | - Hyun Seok Song
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI) , Yuseong, Daejeon 169-148, Republic of Korea
| | - João Conde
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- School of Engineering and Materials Science, Queen Mary University of London , London E1 4NS, U.K
| | - Hyoung-Il Kim
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University , New Haven, Connecticut 06511, United States
| | - Natalie Artzi
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University , New Haven, Connecticut 06511, United States
| |
Collapse
|
1673
|
Spatial Metrics of Tumour Vascular Organisation Predict Radiation Efficacy in a Computational Model. PLoS Comput Biol 2016; 12:e1004712. [PMID: 26800503 PMCID: PMC4723304 DOI: 10.1371/journal.pcbi.1004712] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/16/2015] [Indexed: 02/04/2023] Open
Abstract
Intratumoural heterogeneity is known to contribute to poor therapeutic response. Variations in oxygen tension in particular have been correlated with changes in radiation response in vitro and at the clinical scale with overall survival. Heterogeneity at the microscopic scale in tumour blood vessel architecture has been described, and is one source of the underlying variations in oxygen tension. We seek to determine whether histologic scale measures of the erratic distribution of blood vessels within a tumour can be used to predict differing radiation response. Using a two-dimensional hybrid cellular automaton model of tumour growth, we evaluate the effect of vessel distribution on cell survival outcomes of simulated radiation therapy. Using the standard equations for the oxygen enhancement ratio for cell survival probability under differing oxygen tensions, we calculate average radiation effect over a range of different vessel densities and organisations. We go on to quantify the vessel distribution heterogeneity and measure spatial organization using Ripley’s L function, a measure designed to detect deviations from complete spatial randomness. We find that under differing regimes of vessel density the correlation coefficient between the measure of spatial organization and radiation effect changes sign. This provides not only a useful way to understand the differences seen in radiation effect for tissues based on vessel architecture, but also an alternate explanation for the vessel normalization hypothesis. In this paper we use a mathematical model, called a hybrid cellular automaton, to study the effect of different vessel distributions on radiation therapy outcomes at the cellular level. We show that the correlation between radiation outcome and spatial organization of vessels changes signs between relatively low and high vessel density. Specifically, that for relatively low vessel density, radiation efficacy is decreased when vessels are more homogeneously distributed, and the opposite is true, that radiation efficacy is improved, when vessel organisation is normalised in high densities. This result suggests an alteration to the vessel normalization hypothesis which states that normalisation of vascular beds should improve radio- and chemo-therapeutic response, but has failed to be validated in clinical studies. In this alteration, we show that Ripley’s L function allows discrimination between vascular architectures in different density regimes in which the standard hypothesis holds and does not hold. Further, we find that this information can be used to augment quantitative histologic analysis of tumours to aid radiation dose personalisation.
Collapse
|
1674
|
Yoon SO, Kim EK, Lee M, Jung WY, Lee H, Kang Y, Jang YJ, Hong SW, Choi SH, Yang WI. NOVA1 inhibition by miR-146b-5p in the remnant tissue microenvironment defines occult residual disease after gastric cancer removal. Oncotarget 2016; 7:2475-95. [PMID: 26673617 PMCID: PMC4823049 DOI: 10.18632/oncotarget.6542] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/21/2015] [Indexed: 12/17/2022] Open
Abstract
Occult residual disease in remnant tissues could be the cause of tumor relapse. To identify signal molecules and target cells that may be indicative of occult residual disease within a remnant microenvironment, proximal resection margin tissues of gastric cancers were used, as these correspond to the nearest remnant tissues after gastrectomy. Increased miR-146b-5p in the remnant microenvironment was determined to be a strong risk factor for tumor relapse and poor survival rate. NOVA1, a target gene of miR-146b-5p, was decreased in remnant tissues of patients with a poor prognosis. NOVA1 was enriched in stromal spindle cells such as fibroblasts within normal tissues. In non-neoplastic inflammation, such as gastritis, NOVA1 was highly enriched in T lymphocytes and stromal spindle cells, while expression of this protein was frequently decreased in those types of cells within gastric cancer tissues. Particularly, decreased NOVA1 in T cells within the gastric cancer tissues was correlated with decreased FOXP3-positive regulatory T cells and was associated with poor patient prognosis. In vitro analysis showed that the NOVA1 gene was inhibited by miR-146b-5p. In immune cells as well as stromal spindle cells, decreased NOVA1, possibly inhibited by miR-146b-5p, is a candidate biomarker predicting poor prognosis of gastric cancer patients and is also a biomarker of occult residual disease in remnant tissues after gastric cancer removal.
Collapse
Affiliation(s)
- Sun Och Yoon
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Kyung Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Mira Lee
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Woon Yong Jung
- Department of Pathology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Hyunjoo Lee
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University College of Medicine, Seoul, Korea
| | - Youngran Kang
- Department of Pathology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - You-Jin Jang
- Department of Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Soon Won Hong
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Ho Choi
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Woo Ick Yang
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
1675
|
Interrogating cellular fate decisions with high-throughput arrays of multiplexed cellular communities. Nat Commun 2016; 7:10309. [PMID: 26754526 PMCID: PMC4729920 DOI: 10.1038/ncomms10309] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/27/2015] [Indexed: 01/06/2023] Open
Abstract
Recreating heterotypic cell-cell interactions in vitro is key to dissecting the role of cellular communication during a variety of biological processes. This is especially relevant for stem cell niches, where neighbouring cells provide instructive inputs that govern cell fate decisions. To investigate the logic and dynamics of cell-cell signalling networks, we prepared heterotypic cell-cell interaction arrays using DNA-programmed adhesion. Our platform specifies the number and initial position of up to four distinct cell types within each array and offers tunable control over cell-contact time during long-term culture. Here, we use the platform to study the dynamics of single adult neural stem cell fate decisions in response to competing juxtacrine signals. Our results suggest a potential signalling hierarchy between Delta-like 1 and ephrin-B2 ligands, as neural stem cells adopt the Delta-like 1 phenotype of stem cell maintenance on simultaneous presentation of both signals.
Collapse
|
1676
|
Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 2016; 16:225-38. [PMID: 25748930 DOI: 10.1016/j.stem.2015.02.015] [Citation(s) in RCA: 1165] [Impact Index Per Article: 129.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) are tumor cells that have the principal properties of self-renewal, clonal tumor initiation capacity, and clonal long-term repopulation potential. CSCs reside in niches, which are anatomically distinct regions within the tumor microenvironment. These niches maintain the principle properties of CSCs, preserve their phenotypic plasticity, protect them from the immune system, and facilitate their metastatic potential. In this perspective, we focus on the CSC niche and discuss its contribution to tumor initiation and progression. Since CSCs survive many commonly employed cancer therapies, we examine the prospects of targeting the niche components as preferable therapeutic targets.
Collapse
Affiliation(s)
- Vicki Plaks
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143-0452, USA
| | - Niwen Kong
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143-0452, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143-0452, USA.
| |
Collapse
|
1677
|
Subtumoral analysis of PRINT nanoparticle distribution reveals targeting variation based on cellular and particle properties. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1053-1062. [PMID: 26772430 DOI: 10.1016/j.nano.2015.12.382] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 12/14/2015] [Accepted: 12/22/2015] [Indexed: 12/13/2022]
Abstract
UNLABELLED The biological activity of nanoparticle-directed therapies critically depends on cellular targeting. We examined the subtumoral fate of Particle Replication in Non-Wetting Templates (PRINT) nanoparticles in a xenografted melanoma tumor model by multi-color flow cytometry and in vivo confocal tumor imaging. These approaches were compared with the typical method of whole-organ quantification by radiolabeling. In contrast to radioactivity based detection which demonstrated a linear dose-dependent accumulation in the organ, flow cytometry revealed that particle association with cancer cells became dose-independent with increased particle doses and that the majority of the nanoparticles in the tumor were associated with cancer cells despite a low fractional association. In vivo imaging demonstrated an inverse relationship between tumor cell association and other immune cells, likely macrophages. Finally, variation in particle size nonuniformly affected subtumoral association. This study demonstrates the importance of subtumoral targeting when assessing nanoparticle activity within tumors. FROM THE CLINICAL EDITOR Particle Replication in Non-Wetting Templates (PRINT) technology allows the production of nanoparticles with uniform size. The authors in the study utilized PRINT-produced nanoparticles to investigate specific tumor uptake by multi-color flow cytometry and in vivo confocal tumor imaging. This approach allowed further in-depth correlation between nanoparticle properties and tumor cells and should improve future design.
Collapse
|
1678
|
Wang N, Hoffman EP, Chen L, Chen L, Zhang Z, Liu C, Yu G, Herrington DM, Clarke R, Wang Y. Mathematical modelling of transcriptional heterogeneity identifies novel markers and subpopulations in complex tissues. Sci Rep 2016; 6:18909. [PMID: 26739359 PMCID: PMC4703969 DOI: 10.1038/srep18909] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/23/2015] [Indexed: 01/18/2023] Open
Abstract
Tissue heterogeneity is both a major confounding factor and an underexploited information source. While a handful of reports have demonstrated the potential of supervised computational methods to deconvolute tissue heterogeneity, these approaches require a priori information on the marker genes or composition of known subpopulations. To address the critical problem of the absence of validated marker genes for many (including novel) subpopulations, we describe convex analysis of mixtures (CAM), a fully unsupervised in silico method, for identifying subpopulation marker genes directly from the original mixed gene expressions in scatter space that can improve molecular analyses in many biological contexts. Validated with predesigned mixtures, CAM on the gene expression data from peripheral leukocytes, brain tissue, and yeast cell cycle, revealed novel marker genes that were otherwise undetectable using existing methods. Importantly, CAM requires no a priori information on the number, identity, or composition of the subpopulations present in mixed samples, and does not require the presence of pure subpopulations in sample space. This advantage is significant in that CAM can achieve all of its goals using only a small number of heterogeneous samples, and is more powerful to distinguish between phenotypically similar subpopulations.
Collapse
Affiliation(s)
- Niya Wang
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Eric P. Hoffman
- Research Center for Genetic Medicine, Children’s National Medical Center, Washington, DC 20007, USA
| | - Lulu Chen
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Li Chen
- Pediatric Oncology Branch, National Institutes of Health, Gaithersburg, MD 20877, USA
| | - Zhen Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Chunyu Liu
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Guoqiang Yu
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - David M. Herrington
- Department of Medicine, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Robert Clarke
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Yue Wang
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| |
Collapse
|
1679
|
Haghpanah V, Fallah P, Naderi M, Tavakoli R, Soleimani M, Larijani B. Cancer stem-like cell behavior in anaplastic thyroid cancer: A challenging dilemma. Life Sci 2016; 146:34-9. [PMID: 26772823 DOI: 10.1016/j.lfs.2015.12.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/10/2015] [Accepted: 12/31/2015] [Indexed: 02/07/2023]
Abstract
AIMS Anaplastic thyroid carcinoma (ATC) is an undifferentiated tumor of the thyroid which is characterized with poor prognosis, leading to its aggressive behavior and resistance to conventional therapies. Cancer stem cells (CSCs) are tumor cells that have self-renewal and clonal tumor initiation. Like other cancers, many studies have shown that ATC also has tumor cells with properties like stem cells. To evaluate the concept of cancer stem-like cell theory of ATC, we conducted this study to emphasize both on the concept of cancer stemness origin of these cells and target them for further therapeutic purposes. In the current study, we showed that two ATC cell lines, SW1736 and C643, have subpopulations (SP) that are similar to CSCs. MATERIALS AND METHODS Using MACS technique, cells positive for CD133 were isolated and subsequently validated with flow cytometry. For further analysis, expression of some stemness markers was evaluated. KEY FINDINGS ABCG2, CD133, and Sox2 were significantly up-regulated, while Nestin was down-regulated in CD133(pos) subpopulation compared to CD133(neg) cells. In contrast to previous reports that over-expression of Nestin was considered as a marker for thyroid CSCs, we noticed that expression of Nestin was declined in stem cell-like tumor cells, derived from ATC cell lines. SIGNIFICANCE This study reconfirmed the concept of cancer stem-like cell identity of SW1736 and C643 cells. Indeed, the characterization of CSCs should not be merely based on surface markers. Cell origin and genetic background should be additionally considered on CSCs subpopulation of ATCs for therapeutics.
Collapse
Affiliation(s)
- Vahid Haghpanah
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parviz Fallah
- Department of Laboratory Science, Faculty of Allied Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahmood Naderi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvan Tavakoli
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
1680
|
Fernández R, Garate J, Lage S, Terés S, Higuera M, Bestard-Escalas J, Martin ML, López DH, Guardiola-Serrano F, Escribá PV, Barceló-Coblijn G, Fernández JA. Optimized Protocol To Analyze Changes in the Lipidome of Xenografts after Treatment with 2-Hydroxyoleic Acid. Anal Chem 2016; 88:1022-9. [PMID: 26607740 PMCID: PMC5017204 DOI: 10.1021/acs.analchem.5b03978] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Xenografts are a popular model for the study of the action of new antitumor drugs. However, xenografts are highly heterogeneous structures, and therefore it is sometimes difficult to evaluate the effects of the compounds on tumor metabolism. In this context, imaging mass spectrometry (IMS) may yield the required information, due to its inherent characteristics of sensitivity and spatial resolution. To the best of our knowledge, there is still no clear analysis protocol to properly evaluate the changes between samples due to the treatment. Here we present a protocol for the evaluation of the effect of 2-hydroxyoleic acid (2-OHOA), an antitumor compound, on xenografts lipidome based on IMS. Direct treated/control comparison did not show conclusive results. As we will demonstrate, a more sophisticated protocol was required to evaluate these changes including the following: (1) identification of different areas in the xenograft, (2) classification of these areas (necrotic/viable) to compare similar types of tissues, (3) suppression of the effect of the variation of adduct formation between samples, and (4) normalization of the variables using the standard deviation to eliminate the excessive impact of the stronger peaks in the statistical analysis. In this way, the 36 lipid species that experienced the largest changes between treated and control were identified. Furthermore, incorporation of 2-hydroxyoleic acid to a sphinganine base was also confirmed by MS/MS. Comparison of the changes observed here with previous results obtained with different techniques demonstrates the validity of the protocol.
Collapse
Affiliation(s)
- Roberto Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Jone Garate
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Sergio Lage
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Silvia Terés
- Unité de recherche Inserm 0916, Institut Européen de Chimie et Biologie (IECB)-INSERM, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Mónica Higuera
- Laboratory of Molecular and Cell Biomedicine, Department of Biology, University of the Balearic Islands, E-07122 Palma, Balearic Islands, Spain
| | - Joan Bestard-Escalas
- Research Unit, Hospital Universitari Son Espases, Institut d’Investigació Sanitária de Palma (IdISPa), Carretera Valldemossa 79, E-07010 Palma, Balearic Islands, Spain
| | - M. Laura Martin
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, 415 East 68th Street, New York, New York 10065, United States
| | - Daniel H. López
- Research Unit, Hospital Universitari Son Espases, Institut d’Investigació Sanitária de Palma (IdISPa), Carretera Valldemossa 79, E-07010 Palma, Balearic Islands, Spain
| | - Francisca Guardiola-Serrano
- Laboratory of Molecular and Cell Biomedicine, Department of Biology, University of the Balearic Islands, E-07122 Palma, Balearic Islands, Spain
| | - Pablo V. Escribá
- Laboratory of Molecular and Cell Biomedicine, Department of Biology, University of the Balearic Islands, E-07122 Palma, Balearic Islands, Spain
| | - Gwendolyn Barceló-Coblijn
- Research Unit, Hospital Universitari Son Espases, Institut d’Investigació Sanitária de Palma (IdISPa), Carretera Valldemossa 79, E-07010 Palma, Balearic Islands, Spain
| | - José A. Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| |
Collapse
|
1681
|
Affiliation(s)
- Sanjin Hosic
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Shashi K. Murthy
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Abigail N. Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
1682
|
Varn FS, Andrews EH, Mullins DW, Cheng C. Integrative analysis of breast cancer reveals prognostic haematopoietic activity and patient-specific immune response profiles. Nat Commun 2016; 7:10248. [PMID: 26725977 PMCID: PMC4725766 DOI: 10.1038/ncomms10248] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/17/2015] [Indexed: 12/17/2022] Open
Abstract
Transcriptional programmes active in haematopoietic cells enable a variety of functions including dedifferentiation, innate immunity and adaptive immunity. Understanding how these programmes function in the context of cancer can provide valuable insights into host immune response, cancer severity and potential therapy response. Here we present a method that uses the transcriptomes of over 200 murine haematopoietic cells, to infer the lineage-specific haematopoietic activity present in human breast tumours. Correlating this activity with patient survival and tumour purity reveals that the transcriptional programmes of many cell types influence patient prognosis and are found in environments of high lymphocytic infiltration. Collectively, these results allow for a detailed and personalized assessment of the patient immune response to a tumour. When combined with routinely collected patient biopsy genomic data, this method can enable a richer understanding of the complex interplay between the host immune system and cancer.
Collapse
Affiliation(s)
- Frederick S Varn
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA
| | - Erik H Andrews
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA
| | - David W Mullins
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03766, USA.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03766, USA
| | - Chao Cheng
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03766, USA.,Institute for Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03766, USA
| |
Collapse
|
1683
|
Vehlow A, Storch K, Matzke D, Cordes N. Molecular Targeting of Integrins and Integrin-Associated Signaling Networks in Radiation Oncology. Recent Results Cancer Res 2016; 198:89-106. [PMID: 27318682 DOI: 10.1007/978-3-662-49651-0_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Radiation and chemotherapy are the main pillars of the current multimodal treatment concept for cancer patients. However, tumor recurrences and resistances still hamper treatment success regardless of advances in radiation beam application, particle radiotherapy, and optimized chemotherapeutics. To specifically intervene at key recurrence- and resistance-promoting molecular processes, the development of potent and specific molecular-targeted agents is demanded for an efficient, safe, and simultaneous integration into current standard of care regimens. Potential targets for such an approach are integrins conferring structural and biochemical communication between cells and their microenvironment. Integrin binding to extracellular matrix activates intracellular signaling for regulating essential cellular functions such as survival, proliferation, differentiation, adhesion, and cell motility. Tumor-associated characteristics such as invasion, metastasis, and radiochemoresistance also highly depend on integrin function. Owing to their dual functionality and their overexpression in the majority of human malignancies, integrins present ideal and accessible targets for cancer therapy. In the following chapter, the current knowledge on aspects of the tumor microenvironment, the molecular regulation of integrin-dependent radiochemoresistance and current approaches to integrin targeting are summarized.
Collapse
Affiliation(s)
- Anne Vehlow
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Katja Storch
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Daniela Matzke
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nils Cordes
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Institute of Radiooncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| |
Collapse
|
1684
|
Mittal V, El Rayes T, Narula N, McGraw TE, Altorki NK, Barcellos-Hoff MH. The Microenvironment of Lung Cancer and Therapeutic Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 890:75-110. [PMID: 26703800 DOI: 10.1007/978-3-319-24932-2_5] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The tumor microenvironment (TME) represents a milieu that enables tumor cells to acquire the hallmarks of cancer. The TME is heterogeneous in composition and consists of cellular components, growth factors, proteases, and extracellular matrix. Concerted interactions between genetically altered tumor cells and genetically stable intratumoral stromal cells result in an "activated/reprogramed" stroma that promotes carcinogenesis by contributing to inflammation, immune suppression, therapeutic resistance, and generating premetastatic niches that support the initiation and establishment of distant metastasis. The lungs present a unique milieu in which tumors progress in collusion with the TME, as evidenced by regions of aberrant angiogenesis, acidosis and hypoxia. Inflammation plays an important role in the pathogenesis of lung cancer, and pulmonary disorders in lung cancer patients such as chronic obstructive pulmonary disease (COPD) and emphysema, constitute comorbid conditions and are independent risk factors for lung cancer. The TME also contributes to immune suppression, induces epithelial-to-mesenchymal transition (EMT) and diminishes efficacy of chemotherapies. Thus, the TME has begun to emerge as the "Achilles heel" of the disease, and constitutes an attractive target for anti-cancer therapy. Drugs targeting the components of the TME are making their way into clinical trials. Here, we will focus on recent advances and emerging concepts regarding the intriguing role of the TME in lung cancer progression, and discuss future directions in the context of novel diagnostic and therapeutic opportunities.
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Agents/therapeutic use
- Carcinogenesis/drug effects
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Cell Communication/drug effects
- Drug Resistance, Neoplasm/genetics
- Epithelial-Mesenchymal Transition/drug effects
- Epithelial-Mesenchymal Transition/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Diseases, Obstructive/complications
- Lung Diseases, Obstructive/drug therapy
- Lung Diseases, Obstructive/genetics
- Lung Diseases, Obstructive/metabolism
- Lung Neoplasms/complications
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/metabolism
- Mesenchymal Stem Cells/pathology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Pulmonary Emphysema/complications
- Pulmonary Emphysema/drug therapy
- Pulmonary Emphysema/genetics
- Pulmonary Emphysema/metabolism
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
Collapse
Affiliation(s)
- Vivek Mittal
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Cardiothoracic Surgery, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA.
- Neuberger Berman Lung Cancer Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA.
| | - Tina El Rayes
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cardiothoracic Surgery, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
| | - Navneet Narula
- Department of Pathology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
| | - Timothy E McGraw
- Department of Cardiothoracic Surgery, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
- Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
| | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, New York University School of Medicine, 566 First Avenue, New York, NY, 10016, USA.
| |
Collapse
|
1685
|
Li J, Zhao Y. Nanotechnology in the programmed cell therapy: nowhere to escape of cancer. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-015-0955-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
1686
|
Mu X, Fang C, Zhou J, Xi Y, Zhang L, Wei Y, Yi T, Wu Y, Zhao X. Fusion with human lung cancer cells elongates the life span of human umbilical endothelial cells and enhances the anti-tumor immunity. J Cancer Res Clin Oncol 2016; 142:111-23. [PMID: 26139353 DOI: 10.1007/s00432-015-2002-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/10/2015] [Indexed: 02/05/2023]
Abstract
PURPOSE Human umbilical endothelial cells (HUVECs) have been proved as an effective whole-cell vaccine inhibiting tumor angiogenesis. However, HUVECs divide a very limited number of passages before entering replicative senescence, which limits its application for clinical situation. Here, we fused HUVECs with human pulmonary adenocarcinoma cell line A549s and investigated the anti-tumor immunity of the hybrids against mice Lewis lung cancer. METHODS HUVECs were fused with A549s using polyethylene glycol and were sorted by flow cytometry. The fusion cells (HUVEC-A549s) were confirmed by testing the expression of telomerase and VE-cadherin, the senescence-associated β-galactosidase activity, and tube formation ability. HUVEC-A549s were then irradiated and injected into the C57BL/6 mice of protective, therapeutic, and metastatic models. The mechanism of the anti-tumor immunity was explored by analyzing mice sera, spleen T lymphocytes, tumor microenvironment, and histological changes. RESULTS HUVEC-A549s coexpressed tumor and endothelial markers and maintained the vascular function of tube forming at passage 30 without showing signs of senescence. HUVEC-A549s could induce protective and therapeutic anti-tumor activity for LL(2) model and presented stronger activity against metastasis than HUVECs. Both humoral and cellular immunity were participated in the anti-angiogenic activity, as HUVECs-neutralizing IgG and HUVECs-toxic lymphocytes were increased. Angiogenic mediators (VEGF and TGF-β) and tumor microenvironment cells MDSCs and Tregs were also diminished. CONCLUSIONS Our findings might provide a novel strategy for HUVECs-related immunotherapy, and this vaccine requires lower culture condition than primary HUVECs while enhancing the anti-tumor immunity.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Carcinoma, Lewis Lung/blood supply
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/prevention & control
- Cell Proliferation
- Cells, Cultured
- Cellular Senescence
- Endothelium, Vascular/immunology
- Enzyme-Linked Immunosorbent Assay
- Female
- Flow Cytometry
- Human Umbilical Vein Endothelial Cells/immunology
- Humans
- Immunity, Cellular/immunology
- Immunoenzyme Techniques
- Mice
- Mice, Inbred C57BL
- Neovascularization, Pathologic/immunology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Transforming Growth Factor beta/metabolism
- Umbilical Veins/cytology
- Umbilical Veins/immunology
- Vaccination
Collapse
Affiliation(s)
- Xiyan Mu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Chunju Fang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jing Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yufeng Xi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Li Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Tao Yi
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yang Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Xia Zhao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
1687
|
Berger L, Shamai Y, Skorecki KL, Tzukerman M. Tumor Specific Recruitment and Reprogramming of Mesenchymal Stem Cells in Tumorigenesis. Stem Cells 2015; 34:1011-26. [PMID: 26676563 DOI: 10.1002/stem.2269] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/19/2015] [Accepted: 11/29/2015] [Indexed: 01/14/2023]
Abstract
Non-neoplastic stromal cells harvested from patient tumors were identified as tumor-derived mesenchymal stem cells (MSCs) by their multipotential capacity to differentiate into adipocytes, osteoblasts, and chondrocytes and by the expression of MSC specific cell surface markers. These procedures yielded also epithelial cancer cells and their counterpart MSC from gastric carcinoma (GSC1) and lung carcinoma (LC2). While the LC2 cancer cell growth is independent of their LC-MSC, the GSC1 cancer cell growth is critically dependent on the presence of their counterpart GSC-MSC or their conditioned medium (CM). The fact that none of the various other tumor-derived MSCs was able to restore the specific effect of GSC-MSC on GSC1 cancer cell growth suggests specificity of tumor-derived MSC, which are specifically recruited and "educated"/reprogrammed by the cancer cells to support tumor growth. Using cytokine array analysis, we were able to demonstrate that GSC1 cell growth is mediated through hepatocyte growth factor (HGF)/c-MET signaling pathway which is activated exclusively by HGF secreted from GSC-MSC. An innovative approach demonstrates GSC1-mediated specific tropism of "naïve" MSC from the adjacent tissue in a tumor specific manner to support tumor progression. The results suggest that specific tumor tropic "naïve" MSC are reprogrammed in a tumor-specific manner to support gastric tumor progression. Understanding the mechanisms involved in the interactions of the tumor cancer cells and tumor-derived MSC will constitute the basis for developing multimodal anticancer therapeutic strategies that will also take into account the specific tumor tropism properties of MSC and their reprogramming.
Collapse
Affiliation(s)
- Liron Berger
- Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yeela Shamai
- Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Karl L Skorecki
- Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel.,Rambam Medical Center, Haifa, Israel
| | | |
Collapse
|
1688
|
Wang G, Lu X, Dey P, Deng P, Wu CC, Jiang S, Fang Z, Zhao K, Konaparthi R, Hua S, Zhang J, Li-Ning-Tapia EM, Kapoor A, Wu CJ, Patel NB, Guo Z, Ramamoorthy V, Tieu TN, Heffernan T, Zhao D, Shang X, Khadka S, Hou P, Hu B, Jin EJ, Yao W, Pan X, Ding Z, Shi Y, Li L, Chang Q, Troncoso P, Logothetis CJ, McArthur MJ, Chin L, Wang YA, DePinho RA. Targeting YAP-Dependent MDSC Infiltration Impairs Tumor Progression. Cancer Discov 2015; 6:80-95. [PMID: 26701088 DOI: 10.1158/2159-8290.cd-15-0224] [Citation(s) in RCA: 405] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 10/16/2015] [Indexed: 12/20/2022]
Abstract
UNLABELLED The signaling mechanisms between prostate cancer cells and infiltrating immune cells may illuminate novel therapeutic approaches. Here, utilizing a prostate adenocarcinoma model driven by loss of Pten and Smad4, we identify polymorphonuclear myeloid-derived suppressor cells (MDSC) as the major infiltrating immune cell type, and depletion of MDSCs blocks progression. Employing a novel dual reporter prostate cancer model, epithelial and stromal transcriptomic profiling identified CXCL5 as a cancer-secreted chemokine to attract CXCR2-expressing MDSCs, and, correspondingly, pharmacologic inhibition of CXCR2 impeded tumor progression. Integrated analyses identified hyperactivated Hippo-YAP signaling in driving CXCL5 upregulation in cancer cells through the YAP-TEAD complex and promoting MDSC recruitment. Clinicopathologic studies reveal upregulation and activation of YAP1 in a subset of human prostate tumors, and the YAP1 signature is enriched in primary prostate tumor samples with stronger expression of MDSC-relevant genes. Together, YAP-driven MDSC recruitment via heterotypic CXCL5-CXCR2 signaling reveals an effective therapeutic strategy for advanced prostate cancer. SIGNIFICANCE We demonstrate a critical role of MDSCs in prostate tumor progression and discover a cancer cell nonautonomous function of the Hippo-YAP pathway in regulation of CXCL5, a ligand for CXCR2-expressing MDSCs. Pharmacologic elimination of MDSCs or blocking the heterotypic CXCL5-CXCR2 signaling circuit elicits robust antitumor responses and prolongs survival.
Collapse
Affiliation(s)
- Guocan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xin Lu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Prasenjit Dey
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pingna Deng
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chia Chin Wu
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shan Jiang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhuangna Fang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Kun Zhao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ramakrishna Konaparthi
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sujun Hua
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianhua Zhang
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elsa M Li-Ning-Tapia
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Avnish Kapoor
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chang-Jiun Wu
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Neelay Bhaskar Patel
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhenglin Guo
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vandhana Ramamoorthy
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Trang N Tieu
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tim Heffernan
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Di Zhao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaoying Shang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sunada Khadka
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pingping Hou
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Baoli Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eun-Jung Jin
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Biological Science, College of Natural Sciences, Wonkwang University, Cheonbuk, Iksan, South Korea
| | - Wantong Yao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaolu Pan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhihu Ding
- Sanofi Oncology, Cambridge, Massachusetts
| | - Yanxia Shi
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Liren Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Qing Chang
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark J McArthur
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lynda Chin
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
1689
|
Kievit FM, Wang K, Erickson AE, Lan Levengood SK, Ellenbogen RG, Zhang M. Modeling the tumor microenvironment using chitosan-alginate scaffolds to control the stem-like state of glioblastoma cells. Biomater Sci 2015; 4:610-3. [PMID: 26688867 DOI: 10.1039/c5bm00514k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Better prediction of in vivo drug efficacy using in vitro models should greatly improve in vivo success. Here we utilize 3D highly porous chitosan-alginate complex scaffolds to probe how various components of the glioblastoma microenvironment including extracellular matrix and stromal cells affect tumor cell stem-like state.
Collapse
Affiliation(s)
- Forrest M Kievit
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|
1690
|
Zuo ZQ, Chen KG, Yu XY, Zhao G, Shen S, Cao ZT, Luo YL, Wang YC, Wang J. Promoting tumor penetration of nanoparticles for cancer stem cell therapy by TGF-β signaling pathway inhibition. Biomaterials 2015; 82:48-59. [PMID: 26751819 DOI: 10.1016/j.biomaterials.2015.12.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/13/2015] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs), which hold a high capacity for self-renewal, play a central role in the development, metastasis, and recurrence of various malignancies. CSCs must be eradicated to cure instances of cancer; however, because they can reside far from tumor vessels, they are not easily targeted by drug agents carried by nanoparticle-based drug delivery systems. We herein demonstrate that promoting tumor penetration of nanoparticles by transforming growth factor β (TGF-β) signaling pathway inhibition facilitates CSC therapy. In our study, we observed that although nanoparticles carrying siRNA targeting the oncogene polo-like kinase 1 (Plk1) efficiently killed breast CSCs derived from MDA-MB-231 cells in vitro, this intervention enriched CSCs in the residual tumor tissue following systemic treatment. However, inhibition of the TGF-β signaling pathway with LY364947, an inhibitor of TGF-β type I receptor, promoted the penetration of nanoparticles in tumor tissue, significantly ameliorating the intratumoral distribution of nanoparticles in MDA-MB-231 xenografts and further leading to enhanced internalization of nanoparticles by CSCs. As a result, synergistic treatment with a nanoparticle drug delivery system and LY364947 inhibited tumor growth and reduced the proportion of CSCs in vivo. This study suggests that enhanced tumor penetration of drug-carrying nanoparticles can enhance CSCs clearance in vivo and consequently provide superior anti-tumor effects.
Collapse
Affiliation(s)
- Zu-Qi Zuo
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui, 230027, PR China
| | - Kai-Ge Chen
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui, 230027, PR China
| | - Xiao-Yuan Yu
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui, 230027, PR China
| | - Gui Zhao
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui, 230027, PR China
| | - Song Shen
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui, 230027, PR China
| | - Zhi-Ting Cao
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230027, PR China
| | - Ying-Li Luo
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui, 230027, PR China
| | - Yu-Cai Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui, 230027, PR China
| | - Jun Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui, 230027, PR China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230027, PR China; CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Innovation Center for Cell Signaling Network, University of Science and Technology of China, Hefei, Anhui, 230027, PR China.
| |
Collapse
|
1691
|
Redalen KR, Sitter B, Bathen TF, Grøholt KK, Hole KH, Dueland S, Flatmark K, Ree AH, Seierstad T. High tumor glycine concentration is an adverse prognostic factor in locally advanced rectal cancer. Radiother Oncol 2015; 118:393-8. [PMID: 26705680 DOI: 10.1016/j.radonc.2015.11.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/23/2015] [Accepted: 11/28/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Recognizing the link between altered tumor metabolism and disease aggressiveness, this study aimed to identify associations between tumor metabolic profiles and therapeutic outcome in locally advanced rectal cancer (LARC). MATERIALS AND METHODS Pretreatment tumor metabolic profiles from 54 LARC patients receiving combined-modality neoadjuvant treatment and surgery were acquired by high-resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS). Metabolite concentrations were correlated to TNM and the presence of disseminated tumor cells (DTC) at diagnosis, ypTN and tumor regression grade (TRG) following neoadjuvant treatment, and progression-free survival (PFS). RESULTS Pretreatment tumor metabolite concentrations showed no significant associations to TNM, DTC, ypTN or TRG. In univariate regression analysis, high concentrations of glycine, creatine and myo-inositol were significantly associated with poor PFS, with metastasis as main PFS event. In multivariate analysis, high glycine concentration remained most significantly associated with poor PFS (hazard ratio=4.4, 95% confidence interval=1.4-14.3, p=0.008). CONCLUSIONS High tumor glycine concentration was identified as adverse prognostic factor for PFS in LARC. In a patient population treated with curative intent but with metastatic disease as main PFS event further investigations of glycine as early predictor of metastatic progression and therapeutic target are warranted.
Collapse
Affiliation(s)
| | - Beathe Sitter
- Department of Health Science, Sør-Trøndelag University College, Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tone Frost Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Knut Håkon Hole
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - Svein Dueland
- Department of Oncology, Oslo University Hospital, Norway
| | - Kjersti Flatmark
- Department of Gastroenterological Surgery, Oslo University Hospital, Norway; Department of Tumor Biology, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| | - Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| | - Therese Seierstad
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| |
Collapse
|
1692
|
Lacombe J, Phillips SL, Zenhausern F. Microfluidics as a new tool in radiation biology. Cancer Lett 2015; 371:292-300. [PMID: 26704304 DOI: 10.1016/j.canlet.2015.11.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 12/26/2022]
Abstract
Ionizing radiations interact with molecules at the cellular and molecular levels leading to several biochemical modifications that may be responsible for biological effects on tissue or whole organisms. The study of these changes is difficult because of the complexity of the biological response(s) to radiations and the lack of reliable models able to mimic the whole molecular phenomenon and different communications between the various cell networks, from the cell activation to the macroscopic effect at the tissue or organismal level. Microfluidics, the science and technology of systems that can handle small amounts of fluids in confined and controlled environment, has been an emerging field for several years. Some microfluidic devices, even at early stages of development, may already help radiobiological research by proposing new approaches to study cellular, tissue and total-body behavior upon irradiation. These devices may also be used in clinical biodosimetry since microfluidic technology is frequently developed for integrating complex bioassay chemistries into automated user-friendly, reproducible and sensitive analyses. In this review, we discuss the use, numerous advantages, and possible future of microfluidic technology in the field of radiobiology. We will also examine the disadvantages and required improvements for microfluidics to be fully practical in radiation research and to become an enabling tool for radiobiologists and radiation oncologists.
Collapse
Affiliation(s)
- Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, University of Arizona, 145 S. 79th Street, Chandler, AZ 85226, USA.
| | - Shanna Leslie Phillips
- Center for Applied NanoBioscience and Medicine, University of Arizona, 145 S. 79th Street, Chandler, AZ 85226, USA; Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ 85004, USA
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, University of Arizona, 145 S. 79th Street, Chandler, AZ 85226, USA; Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ 85004, USA; Department of Basic Medical Sciences, College of Medicine Phoenix, 425 N. 5th Street, Phoenix, AZ 85004, USA.
| |
Collapse
|
1693
|
Fujimori H, Sato A, Kikuhara S, Wang J, Hirai T, Sasaki Y, Murakami Y, Okayasu R, Masutani M. A comprehensive analysis of radiosensitization targets; functional inhibition of DNA methyltransferase 3B radiosensitizes by disrupting DNA damage regulation. Sci Rep 2015; 5:18231. [PMID: 26667181 PMCID: PMC4678329 DOI: 10.1038/srep18231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/29/2015] [Indexed: 02/07/2023] Open
Abstract
A comprehensive genome-wide screen of radiosensitization targets in HeLa cells was performed using a shRNA-library/functional cluster analysis and DNMT3B was identified as a candidate target. DNMT3B RNAi increased the sensitivity of HeLa, A549 and HCT116 cells to both γ-irradiation and carbon-ion beam irradiation. DNMT3B RNAi reduced the activation of DNA damage responses induced by γ-irradiation, including HP1β-, γH2AX- and Rad51-foci formation. DNMT3B RNAi impaired damage-dependent H2AX accumulation and showed a reduced level of γH2AX induction after γ-irradiation. DNMT3B interacted with HP1β in non-irradiated conditions, whereas irradiation abrogated the DNMT3B/HP1β complex but induced interaction between DNMT3B and H2AX. Consistent with radiosensitization, TP63, BAX, PUMA and NOXA expression was induced after γ-irradiation in DNMT3B knockdown cells. Together with the observation that H2AX overexpression canceled radiosensitization by DNMT3B RNAi, these results suggest that DNMT3B RNAi induced radiosensitization through impairment of damage-dependent HP1β foci formation and efficient γH2AX-induction mechanisms including H2AX accumulation. Enhanced radiosensitivity by DNMT3B RNAi was also observed in a tumor xenograft model. Taken together, the current study implies that comprehensive screening accompanied by a cluster analysis enabled the identification of radiosensitization targets. Downregulation of DNMT3B, one of the targets identified using this method, radiosensitizes cancer cells by disturbing multiple DNA damage responses.
Collapse
Affiliation(s)
- Hiroaki Fujimori
- Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Division of Chemotherapy and Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Akira Sato
- Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Sota Kikuhara
- Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Division of Chemotherapy and Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Junhui Wang
- Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 103-8501, Japan
| | - Takahisa Hirai
- Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Department of Radiation Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuka Sasaki
- Division of Chemotherapy and Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yasufumi Murakami
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ryuichi Okayasu
- Open Laboratory/Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
| | - Mitsuko Masutani
- Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Division of Chemotherapy and Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Department of Frontier Life Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
1694
|
Abstract
![]()
Development
of novel imaging probes for cancer diagnostics remains
critical for early detection of disease, yet most imaging agents are
hindered by suboptimal tumor accumulation. To overcome these limitations,
researchers have adapted antibodies for imaging purposes. As cancerous
malignancies express atypical patterns of cell surface proteins in
comparison to noncancerous tissues, novel antibody-based imaging agents
can be constructed to target individual cancer cells or surrounding
vasculature. Using molecular imaging techniques, these agents may
be utilized for detection of malignancies and monitoring of therapeutic
response. Currently, there are several imaging modalities commonly
employed for molecular imaging. These imaging modalities include positron
emission tomography (PET), single-photon emission computed tomography
(SPECT), magnetic resonance (MR) imaging, optical imaging (fluorescence
and bioluminescence), and photoacoustic (PA) imaging. While antibody-based
imaging agents may be employed for a broad range of diseases, this
review focuses on the molecular imaging of pancreatic cancer, as there
are limited resources for imaging and treatment of pancreatic malignancies.
Additionally, pancreatic cancer remains the most lethal cancer with
an overall 5-year survival rate of approximately 7%, despite significant
advances in the imaging and treatment of many other cancers. In this
review, we discuss recent advances in molecular imaging of pancreatic
cancer using antibody-based imaging agents. This task is accomplished
by summarizing the current progress in each type of molecular imaging
modality described above. Also, several considerations for designing
and synthesizing novel antibody-based imaging agents are discussed.
Lastly, the future directions of antibody-based imaging agents are
discussed, emphasizing the potential applications for personalized
medicine.
Collapse
Affiliation(s)
- Christopher G England
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Reinier Hernandez
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Savo Bou Zein Eddine
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Radiology, University of Wisconsin-Madison , Madison, Wisconsin 53792, United States.,University of Wisconsin Carbone Cancer Center , Madison, Wisconsin 53792, United States
| |
Collapse
|
1695
|
Capturing complex tumour biology in vitro: histological and molecular characterisation of precision cut slices. Sci Rep 2015; 5:17187. [PMID: 26647838 PMCID: PMC4673528 DOI: 10.1038/srep17187] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/26/2015] [Indexed: 11/08/2022] Open
Abstract
Precision-cut slices of in vivo tumours permit interrogation in vitro of heterogeneous cells from solid tumours together with their native microenvironment. They offer a low throughput but high content in vitro experimental platform. Using mouse models as surrogates for three common human solid tumours, we describe a standardised workflow for systematic comparison of tumour slice cultivation methods and a tissue microarray-based method to archive them. Cultivated slices were compared to their in vivo source tissue using immunohistochemical and transcriptional biomarkers, particularly of cellular stress. Mechanical slicing induced minimal stress. Cultivation of tumour slices required organotypic support materials and atmospheric oxygen for maintenance of integrity and was associated with significant temporal and loco-regional changes in protein expression, for example HIF-1α. We recommend adherence to the robust workflow described, with recognition of temporal-spatial changes in protein expression before interrogation of tumour slices by pharmacological or other means.
Collapse
|
1696
|
Abstract
The tumour microenvironment is the non-cancerous cells present in and around a tumour, including mainly immune cells, but also fibroblasts and cells that comprise supporting blood vessels. These non-cancerous components of the tumour may play an important role in cancer biology. They also have a strong influence on the genomic analysis of tumour samples, and may alter the biological interpretation of results. Here we present a systematic analysis using different measurement modalities of tumour purity in >10,000 samples across 21 cancer types from the Cancer Genome Atlas. Patients are stratified according to clinical features in an attempt to detect clinical differences driven by purity levels. We demonstrate the confounding effect of tumour purity on correlating and clustering tumours with transcriptomics data. Finally, using a differential expression method that accounts for tumour purity, we find an immunotherapy gene signature in several cancer types that is not detected by traditional differential expression analyses. The importance of the tumour microenvironment has now been realised, however the presence of non-tumour cells in cancer samples can complicate genomic analyses. Here, the authors estimate tumour purity in 10,000 samples from the TCGA dataset and can detect a signature of T cell activation.
Collapse
|
1697
|
van Neerven SM, Tieken M, Vermeulen L, Bijlsma MF. Bidirectional interconversion of stem and non-stem cancer cell populations: A reassessment of theoretical models for tumor heterogeneity. Mol Cell Oncol 2015; 3:e1098791. [PMID: 27308617 PMCID: PMC4905404 DOI: 10.1080/23723556.2015.1098791] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/18/2015] [Accepted: 09/18/2015] [Indexed: 02/07/2023]
Abstract
Resolving the origin of intratumor heterogeneity has proven to be one of the central challenges in cancer research during recent years. Two theoretical models explaining the emergence of intratumor heterogeneity have come to dominate cancer biology literature: the clonal evolution model and the hierarchical/cancer stem cell model. Recently, a plastic model that combines elements of both the clonal and the hierarchical model has gained traction. Basically, this model proposes that cancer stem cells engage in bidirectional interconversion with non-stem cells, thereby providing the missing link between the 2 conventional models. Confirming bidirectional interconversion as a hallmark of cancer is a crucial step in understanding tumor heterogeneity and has important therapeutic implications. In this review, current methodologies and theoretical and empirical evidence regarding bidirectional interconversion will be discussed.
Collapse
Affiliation(s)
- Sanne M van Neerven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center , Amsterdam, The Netherlands
| | - Mathijs Tieken
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center , Amsterdam, The Netherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center , Amsterdam, The Netherlands
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center , Amsterdam, The Netherlands
| |
Collapse
|
1698
|
Hu G, Zhang H, Zhang L, Ruan S, He Q, Gao H. Integrin-mediated active tumor targeting and tumor microenvironment response dendrimer-gelatin nanoparticles for drug delivery and tumor treatment. Int J Pharm 2015; 496:1057-68. [DOI: 10.1016/j.ijpharm.2015.11.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/08/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
|
1699
|
Jhaveri K, Teplinsky E, Silvera D, Valeta-Magara A, Arju R, Giashuddin S, Sarfraz Y, Alexander M, Darvishian F, Levine PH, Hashmi S, Zolfaghari L, Hoffman HJ, Singh B, Goldberg JD, Hochman T, Formenti S, Esteva FJ, Moran MS, Schneider RJ. Hyperactivated mTOR and JAK2/STAT3 Pathways: Molecular Drivers and Potential Therapeutic Targets of Inflammatory and Invasive Ductal Breast Cancers After Neoadjuvant Chemotherapy. Clin Breast Cancer 2015; 16:113-22.e1. [PMID: 26774497 DOI: 10.1016/j.clbc.2015.11.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/09/2015] [Accepted: 11/12/2015] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Inflammatory breast cancer (IBC) is an aggressive and rare cancer with a poor prognosis and a need for novel targeted therapeutic strategies. Preclinical IBC data showed strong activation of the phosphatidylinositide-3-kinase/mammalian target of rapamycin (mTOR) and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways, and expression of inflammatory cytokines and tumor-associated macrophages (TAMs). PATIENTS AND METHODS Archival tumor tissue from 3 disease types (IBC treated with neoadjuvant chemotherapy [NAC], n = 45; invasive ductal carcinoma [IDC] treated with NAC [n = 24; 'treated IDC'; and untreated IDC [n = 27; 'untreated IDC']) was analyzed for the expression of biomarkers phospho-S6 (pS6) (mTOR), phospho-JAK2 (pJAK2), pSTAT3, interleukin (IL)-6, CD68 (monocytes, macrophages), and CD163 (TAMs). Surrounding nontumor tissue was also analyzed. RESULTS Biomarker levels and surrogate activity according to site-specific phosphorylation were shown in the tumor tissue of all 3 disease types but were greatest in IBC and treated IDC and least in untreated IDC for pS6, pJAK2, pSTAT3, and IL-6. Of 37 IBC patients with complete biomarker data available, 100% were pS6-positive and 95% were pJAK2-positive. In nontumor tissue, biomarker levels were observed in all groups but were generally greatest in untreated IDC and least in IBC, except for JAK2. CONCLUSION IBC and treated IDC display similar levels of mTOR and JAK2 biomarker activation, which suggests a potential mechanism of resistance after NAC. Biomarker levels in surrounding nontumor tissue suggested that the stroma might be activated by chemotherapy and resembles the oncogenic tumor-promoting environment. Activation of pS6 and pJAK2 in IBC might support dual targeting of the mTOR and JAK/STAT pathways, and the need for prospective studies to investigate combined targeted therapies in IBC.
Collapse
Affiliation(s)
- Komal Jhaveri
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY.
| | - Eleonora Teplinsky
- Division of Hematology & Medical Oncology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Deborah Silvera
- Department of Microbiology, New York University School of Medicine, New York, NY
| | - Amanda Valeta-Magara
- Department of Microbiology, New York University School of Medicine, New York, NY
| | - Rezina Arju
- Department of Microbiology, New York University School of Medicine, New York, NY
| | - Shah Giashuddin
- Department of Pathology, The Brooklyn Hospital Center, Brooklyn, NY
| | - Yasmeen Sarfraz
- Department of Microbiology, New York University School of Medicine, New York, NY
| | | | | | - Paul H Levine
- Department of Epidemiology and Biostatistics, George Washington University, Washington, DC
| | - Salman Hashmi
- Division of Biostatistics, New York University School of Medicine, New York, NY
| | - Ladan Zolfaghari
- Division of Biostatistics, New York University School of Medicine, New York, NY
| | - Heather J Hoffman
- Division of Biostatistics, New York University School of Medicine, New York, NY
| | - Baljit Singh
- Department of Epidemiology and Biostatistics, George Washington University, Washington, DC
| | - Judith D Goldberg
- Division of Biostatistics, New York University School of Medicine, New York, NY
| | - Tsivia Hochman
- Division of Biostatistics, New York University School of Medicine, New York, NY
| | - Silvia Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY
| | - Francisco J Esteva
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Meena S Moran
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT
| | - Robert J Schneider
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY; Department of Microbiology, New York University School of Medicine, New York, NY
| |
Collapse
|
1700
|
Friedman AA, Letai A, Fisher DE, Flaherty KT. Precision medicine for cancer with next-generation functional diagnostics. Nat Rev Cancer 2015; 15:747-56. [PMID: 26536825 PMCID: PMC4970460 DOI: 10.1038/nrc4015] [Citation(s) in RCA: 405] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Precision medicine is about matching the right drugs to the right patients. Although this approach is technology agnostic, in cancer there is a tendency to make precision medicine synonymous with genomics. However, genome-based cancer therapeutic matching is limited by incomplete biological understanding of the relationship between phenotype and cancer genotype. This limitation can be addressed by functional testing of live patient tumour cells exposed to potential therapies. Recently, several 'next-generation' functional diagnostic technologies have been reported, including novel methods for tumour manipulation, molecularly precise assays of tumour responses and device-based in situ approaches; these address the limitations of the older generation of chemosensitivity tests. The promise of these new technologies suggests a future diagnostic strategy that integrates functional testing with next-generation sequencing and immunoprofiling to precisely match combination therapies to individual cancer patients.
Collapse
Affiliation(s)
- Adam A Friedman
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, USA
| | - Anthony Letai
- Dana-Farber Cancer Institute, Harvard Medical School, 440 Brookline Avenue, Mayer 430, Boston, Massachusetts 02215, USA
| | - David E Fisher
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, USA
- Dermatology and Cutaneous Biology Research Center, Massachusetts General Hospital, 149 East 13th Street, Charlestown, Massachusetts 02129, USA
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, USA
| |
Collapse
|