1701
|
Abstract
Microfluidic culture of primary adipose tissue allows for reduced sample and reagent volumes as well as constant media perfusion of the cells. By continuously flowing media over the tissue, microfluidic sampling systems can more accurately mimic vascular flow in vivo. Quantitative measurements can be performed on or off chip to provide time-resolved secretion data, furthering insight into the dynamics of the function of adipose tissue. Buoyancy resulting from the large lipid storage capacity in this tissue presents a unique challenge for culture, and it is important to account for this buoyancy during microdevice design. Herein, we describe approaches for microfluidic device fabrication that utilize 3D-printed interface templating to help counteract cell buoyancy. We apply such methods to the culture of both isolated, dispersed primary adipocytes and epididymal adipose explants. To facilitate more widespread adoption of the methodology, the devices presented here are designed for user-friendly operation. Only handheld syringes are needed to control flow, and devices are inexpensive and disposable.
Collapse
|
1702
|
Riebeling C, Jungnickel H, Luch A, Haase A. Systems Biology to Support Nanomaterial Grouping. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 947:143-171. [PMID: 28168668 DOI: 10.1007/978-3-319-47754-1_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The assessment of potential health risks of engineered nanomaterials (ENMs) is a challenging task due to the high number and great variety of already existing and newly emerging ENMs. Reliable grouping or categorization of ENMs with respect to hazards could help to facilitate prioritization and decision making for regulatory purposes. The development of grouping criteria, however, requires a broad and comprehensive data basis. A promising platform addressing this challenge is the systems biology approach. The different areas of systems biology, most prominently transcriptomics, proteomics and metabolomics, each of which provide a wealth of data that can be used to reveal novel biomarkers and biological pathways involved in the mode-of-action of ENMs. Combining such data with classical toxicological data would enable a more comprehensive understanding and hence might lead to more powerful and reliable prediction models. Physico-chemical data provide crucial information on the ENMs and need to be integrated, too. Overall statistical analysis should reveal robust grouping and categorization criteria and may ultimately help to identify meaningful biomarkers and biological pathways that sufficiently characterize the corresponding ENM subgroups. This chapter aims to give an overview on the different systems biology technologies and their current applications in the field of nanotoxicology, as well as to identify the existing challenges.
Collapse
Affiliation(s)
- Christian Riebeling
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany
| | - Harald Jungnickel
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany
| | - Andrea Haase
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany.
| |
Collapse
|
1703
|
Braunger JA, Björnmalm M, Isles NA, Cui J, Henderson TMA, O'Connor AJ, Caruso F. Interactions between circulating nanoengineered polymer particles and extracellular matrix components in vitro. Biomater Sci 2017; 5:267-273. [DOI: 10.1039/c6bm00726k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A simple and modular flow-based system is used to rapidly screen fundamental interactions of soft polymer particles with biologically relevant microenvironments under flow-conditions.
Collapse
Affiliation(s)
- Julia A. Braunger
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Mattias Björnmalm
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Nathan A. Isles
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Jiwei Cui
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Timothy M. A. Henderson
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Andrea J. O'Connor
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| |
Collapse
|
1704
|
Abstract
3D cell culture is an invaluable tool in developmental, cell, and cancer biology. By mimicking crucial features of in vivo environment, including cell-cell and cell-extracellular matrix interactions, 3D cell culture enables proper structural architecture and differentiated function of normal tissues or tumors in vitro. Thereby 3D cell culture realistically models in vivo tissue conditions and processes, and provides in vivo like responses. Since its early days in the 1970s, 3D cell culture has revealed important insights into mechanisms of tissue homeostasis and cancer, and accelerated translational research in cancer biology and tissue engineering.
Collapse
|
1705
|
Kaushik G, Leijten J, Khademhosseini A. Concise Review: Organ Engineering: Design, Technology, and Integration. Stem Cells 2017; 35:51-60. [PMID: 27641724 PMCID: PMC6527109 DOI: 10.1002/stem.2502] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 01/19/2023]
Abstract
Engineering complex tissues and whole organs has the potential to dramatically impact translational medicine in several avenues. Organ engineering is a discipline that integrates biological knowledge of embryological development, anatomy, physiology, and cellular interactions with enabling technologies including biocompatible biomaterials and biofabrication platforms such as three-dimensional bioprinting. When engineering complex tissues and organs, core design principles must be taken into account, such as the structure-function relationship, biochemical signaling, mechanics, gradients, and spatial constraints. Technological advances in biomaterials, biofabrication, and biomedical imaging allow for in vitro control of these factors to recreate in vivo phenomena. Finally, organ engineering emerges as an integration of biological design and technical rigor. An overall workflow for organ engineering and guiding technology to advance biology as well as a perspective on necessary future iterations in the field is discussed. Stem Cells 2017;35:51-60.
Collapse
Affiliation(s)
- Gaurav Kaushik
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Jeroen Leijten
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Ali Khademhosseini
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
- Department of Physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
1706
|
Benam KH, Mazur M, Choe Y, Ferrante TC, Novak R, Ingber DE. Human Lung Small Airway-on-a-Chip Protocol. Methods Mol Biol 2017. [PMID: 28634955 DOI: 10.1007/978-1-4939-7021-6_25] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Organs-on-chips are microfluidic cell culture devices created using microchip manufacturing techniques that contain hollow microchannels lined by living cells, which recreate specialized tissue-tissue interfaces, physical microenvironments, and vascular perfusion necessary to recapitulate organ-level physiology in vitro. Here we describe a protocol for fabrication, culture, and operation of a human lung "small airway-on-a-chip," which contains a differentiated, mucociliary bronchiolar epithelium exposed to air and an underlying microvascular endothelium that experiences fluid flow. First, microengineering is used to fabricate a multilayered microfluidic device that contains two parallel elastomeric microchannels separated by a thin rigid porous membrane; this requires less than 1 day to complete. Next, primary human airway bronchiolar epithelial cells isolated from healthy normal donors or patients with respiratory disease are cultured on the porous membrane within one microchannel while lung microvascular endothelial cells are cultured on the opposite side of the same membrane in the second channel to create a mucociliated epithelium-endothelium interface; this process take about 4-6 weeks to complete. Finally, culture medium containing neutrophils isolated from fresh whole human blood are flowed through the microvascular channel of the device to enable real-time analysis of capture and recruitment of circulating leukocytes by endothelium under physiological shear; this step requires less than 1 day to complete. The small airway-on-a-chip represents a new microfluidic tool to model complex and dynamic inflammatory responses of healthy and diseased lungs in vitro.
Collapse
Affiliation(s)
- Kambez H Benam
- Wyss Institute for Biologically Inspired Engineering, Center for Life Science Building, 5th Floor, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Marc Mazur
- Wyss Institute for Biologically Inspired Engineering, Center for Life Science Building, 5th Floor, 3 Blackfan Circle, Boston, MA, 02115, USA.,University Medical Center Utrecht, Utrecht, 3584, CX, Netherlands
| | - Youngjae Choe
- Wyss Institute for Biologically Inspired Engineering, Center for Life Science Building, 5th Floor, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Thomas C Ferrante
- Wyss Institute for Biologically Inspired Engineering, Center for Life Science Building, 5th Floor, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Richard Novak
- Wyss Institute for Biologically Inspired Engineering, Center for Life Science Building, 5th Floor, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Center for Life Science Building, 5th Floor, 3 Blackfan Circle, Boston, MA, 02115, USA. .,Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, 02139, USA. .,Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
1707
|
Abstract
The development of microfabricated devices that will provide high-throughput quantitative data and high resolution in a fast, repeatable and reproducible manner is essential for plant biology research.
Collapse
Affiliation(s)
- Meltem Elitaş
- Department of Mechatronics
- Faculty of Engineering and Natural Sciences
- Sabanci University
- 34956, Istanbul
- Turkey
| | - Meral Yüce
- Nanotechnology Research and Application Centre
- Sabanci University
- 34956, Istanbul
- Turkey
| | - Hikmet Budak
- Department of Molecular Biology
- Genetics and Bioengineering
- Faculty of Engineering and Natural Sciences
- Sabanci University
- 34956, Istanbul
| |
Collapse
|
1708
|
Three-Dimensional Tissue Models and Available Probes for Multi-Parametric Live Cell Microscopy: A Brief Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1035:49-67. [DOI: 10.1007/978-3-319-67358-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
1709
|
Mowes A, de Jongh BE, Cox T, Zhu Y, Shaffer TH. A translational cellular model to study the impact of high-frequency oscillatory ventilation on human epithelial cell function. J Appl Physiol (1985) 2017; 122:198-205. [PMID: 27834669 PMCID: PMC5283848 DOI: 10.1152/japplphysiol.00400.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 12/27/2022] Open
Abstract
High-frequency oscillatory ventilation (HFOV) has been proposed as gentle ventilation strategy to prevent lung injury in the preterm infant. High-frequency jet ventilation leads to dimensional and mechanical airway deformation in animal airway models, which is consistent with translational studies demonstrating the impact of oxygen and biophysical stresses on normal airway cellular function. There is an overall paucity of clinical and cellular data on the impact of HFOV on the conducting airway. We developed an innovative method to test the impact of the clinical HFO Ventilator (SensorMedics 3100A) on human epithelial cell function. In this translational model, we were able to study the differential effects of biophysical stress due to HFOV independently and in combination with hyperoxia on a direct cellular level of the conducting airway system. Additionally, we could demonstrate that hyperoxia and pressure by HFOV independently resulted in significant cell dysfunction and inflammation, while the combination of HFOV and hyperoxia had a synergistic effect, resulting in greater cell death. NEW & NOTEWORTHY Traditionally, large-animal models are used to analyze the impact of clinical ventilators on lung cellular function. In our dual-chamber model, we interface high-frequency oscillatory ventilation (HFOV) directly with airway cells to study the effects of HFOV independently and combined with hyperoxia. Therefore, it is possible to study the preclinical impact of interventional factors without the high cost of animal models, thus reducing staff, time, as well as animal sparing.
Collapse
Affiliation(s)
- Anja Mowes
- Department of Neonatology, St. Christopher's Hospital for Children, Philadelphia, Pennsylvania;
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Beatriz E de Jongh
- Department of Neonatology, St. Christopher's Hospital for Children, Philadelphia, Pennsylvania
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Timothy Cox
- Nemours Research Lung Center, Alfred I. duPont Children's Hospital, Wilmington, Delaware
| | - Yan Zhu
- Nemours Research Lung Center, Alfred I. duPont Children's Hospital, Wilmington, Delaware
| | - Thomas H Shaffer
- Nemours Research Lung Center, Alfred I. duPont Children's Hospital, Wilmington, Delaware
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania; and
- Department of Pediatrics, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
1710
|
Escutia-Guadarrama L, Vázquez-Victorio G, Martínez-Pastor D, Nieto-Rivera B, Sosa-Garrocho M, Macías-Silva M, Hautefeuille M. Fabrication of low-cost micropatterned polydimethyl-siloxane scaffolds to organise cells in a variety of two-dimensioanl biomimetic arrangements for lab-on-chip culture platforms. J Tissue Eng 2017; 8:2041731417741505. [PMID: 29225769 PMCID: PMC5714070 DOI: 10.1177/2041731417741505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022] Open
Abstract
We present the rapid-prototyping of type I collagen micropatterns on poly-dimethylsiloxane substrates for the biomimetic confinement of cells using the combination of a surface oxidation treatment and 3-aminopropyl triethoxysilane silanisation followed by glutaraldehyde crosslinking. The aim of surface treatment is to stabilise microcontact printing transfer of this natural extracellular matrix protein that usually wears out easily from poly-dimethylsiloxane, which is not suitable for biomimetic cell culture platforms and lab-on-chip applications. A low-cost CD-DVD laser was used to etch biomimetic micropatterns into acrylic sheets that were in turn replicated to poly-dimethylsiloxane slabs with the desired features. These stamps were finally inked with type I collagen for microcontact printing transfer on the culture substrates in a simple manner. Human hepatoma cells (HepG2) and rat primary hepatocytes, which do not adhere to bare poly-dimethylsiloxane, were successfully seeded and showed optimal adhesion and survival on simple protein micropatterns with a hepatic cord geometry in order to validate our technique. HepG2 cells also proliferated on the stamps. Soft and stiff poly-dimethylsiloxane layers were also tested to demonstrate that our cost-effective process is compatible with biomimetic organ-on-chip technology integrating tunable stiffness with a potential application to drug testing probes development where such cells are commonly used.
Collapse
Affiliation(s)
- Lidia Escutia-Guadarrama
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Genaro Vázquez-Victorio
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - David Martínez-Pastor
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Brenda Nieto-Rivera
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Marcela Sosa-Garrocho
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Marina Macías-Silva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mathieu Hautefeuille
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
1711
|
Kamei KI, Kato Y, Hirai Y, Ito S, Satoh J, Oka A, Tsuchiya T, Chen Y, Tabata O. Integrated heart/cancer on a chip to reproduce the side effects of anti-cancer drugs in vitro. RSC Adv 2017. [DOI: 10.1039/c7ra07716e] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Integrated Heart/Cancer on a Chip (iHCC) is a promising microfluidic platform that allows the culture of different cell types separately and application of closed-medium circulation to reproduce the side effects of doxorubicin on heart in vitro.
Collapse
Affiliation(s)
- Ken-ichiro Kamei
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
- Kyoto University
- Sakyo-ku
- Japan
| | - Yoshiki Kato
- Department of Micro Engineering
- Kyoto University
- Nishikyo-ku
- Japan
| | - Yoshikazu Hirai
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
- Kyoto University
- Sakyo-ku
- Japan
- Department of Micro Engineering
| | - Shinji Ito
- Medical Research Support Center
- Graduate School of Medicine
- Kyoto University
- Sakyo-ku
- Japan
| | - Junko Satoh
- Medical Research Support Center
- Graduate School of Medicine
- Kyoto University
- Sakyo-ku
- Japan
| | - Atsuko Oka
- Medical Research Support Center
- Graduate School of Medicine
- Kyoto University
- Sakyo-ku
- Japan
| | | | - Yong Chen
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
- Kyoto University
- Sakyo-ku
- Japan
- École Normale Supérieure-PSL Research University
| | - Osamu Tabata
- Department of Micro Engineering
- Kyoto University
- Nishikyo-ku
- Japan
| |
Collapse
|
1712
|
Mawad D, Figtree G, Gentile C. Current Technologies Based on the Knowledge of the Stem Cells Microenvironments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1041:245-262. [DOI: 10.1007/978-3-319-69194-7_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
1713
|
FUNANO SI, TANAKA N, TANAKA Y. Analysis of Long-term Morphological Changes of Micro-patterned Molecules and Cells on PDMS and Glass Surfaces. ANAL SCI 2017; 33:723-725. [DOI: 10.2116/analsci.33.723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | | | - Yo TANAKA
- Quantitative Biology Center (QBiC), RIKEN
| |
Collapse
|
1714
|
Wu W, Manz A. Biocompatibility assay of cellular behavior inside a leaf-inspired biomimetic microdevice at the single-cell level. RSC Adv 2017. [DOI: 10.1039/c7ra00290d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inspired by recent studies, we created a biomimetic method to replicate the veinal microvasculature from a natural leaf into a lab-on-a-chip system, which could be further utilized as a biomimetic animal vessel as well as in vessel-derived downstream applications.
Collapse
Affiliation(s)
- Wenming Wu
- The State Key Laboratory of Applied Optics
- Changchun Institute of Optics
- Fine Mechanics and Physics
- Chinese Academy of Sciences
- Changchun
| | - Andreas Manz
- University of Saarland
- Germany
- Korea Institute of Science and Technology Europe
- Germany
| |
Collapse
|
1715
|
Hosoya M, Czysz K. Translational Prospects and Challenges in Human Induced Pluripotent Stem Cell Research in Drug Discovery. Cells 2016; 5:cells5040046. [PMID: 28009813 PMCID: PMC5187530 DOI: 10.3390/cells5040046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/27/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023] Open
Abstract
Despite continuous efforts to improve the process of drug discovery and development, achieving success at the clinical stage remains challenging because of a persistent translational gap between the preclinical and clinical settings. Under these circumstances, the discovery of human induced pluripotent stem (iPS) cells has brought new hope to the drug discovery field because they enable scientists to humanize a variety of pharmacological and toxicological models in vitro. The availability of human iPS cell-derived cells, particularly as an alternative for difficult-to-access tissues and organs, is increasing steadily; however, their use in the field of translational medicine remains challenging. Biomarkers are an essential part of the translational effort to shift new discoveries from bench to bedside as they provide a measurable indicator with which to evaluate pharmacological and toxicological effects in both the preclinical and clinical settings. In general, during the preclinical stage of the drug development process, in vitro models that are established to recapitulate human diseases are validated by using a set of biomarkers; however, their translatability to a clinical setting remains problematic. This review provides an overview of current strategies for human iPS cell-based drug discovery from the perspective of translational research, and discusses the importance of early consideration of clinically relevant biomarkers.
Collapse
Affiliation(s)
- Masaki Hosoya
- Integrated Technology Research Laboratories, Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Katherine Czysz
- Integrated Technology Research Laboratories, Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
1716
|
Donato MT, Gómez-Lechón MJ, Tolosa L. Using high-content screening technology for studying drug-induced hepatotoxicity in preclinical studies. Expert Opin Drug Discov 2016; 12:201-211. [DOI: 10.1080/17460441.2017.1271784] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maria Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Fondo de Investigaciones Sanitarias, CIBEREHD, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Maria José Gómez-Lechón
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Fondo de Investigaciones Sanitarias, CIBEREHD, Madrid, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| |
Collapse
|
1717
|
Kim JH, Yoo JJ, Lee SJ. Three-dimensional cell-based bioprinting for soft tissue regeneration. Tissue Eng Regen Med 2016; 13:647-662. [PMID: 30603446 DOI: 10.1007/s13770-016-0133-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/31/2016] [Accepted: 11/04/2016] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional (3D) bioprinting technologies have been developed to offer construction of biological tissue constructs that mimic the anatomical and functional features of native tissues or organs. These cutting-edge technologies could make it possible to precisely place multiple cell types and biomaterials in a single 3D tissue construct. Hence, 3D bioprinting is one of the most attractive and powerful tools to provide more anatomical and functional similarity of human tissues or organs in tissue engineering and regenerative medicine. In recent years, this 3D bioprinting continually shows promise for building complex soft tissue constructs through placement of cell-laden hydrogel-based bioinks in a layer-by-layer fashion. This review will discuss bioprinting technologies and their applications in soft tissue regeneration.
Collapse
Affiliation(s)
- Ji Hyun Kim
- 1Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - James J Yoo
- 1Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Sang Jin Lee
- 1Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC USA.,Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| |
Collapse
|
1718
|
Ugolini GS, Cruz-Moreira D, Visone R, Redaelli A, Rasponi M. Microfabricated Physiological Models for In Vitro Drug Screening Applications. MICROMACHINES 2016; 7:E233. [PMID: 30404405 PMCID: PMC6189704 DOI: 10.3390/mi7120233] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022]
Abstract
Microfluidics and microfabrication have recently been established as promising tools for developing a new generation of in vitro cell culture microdevices. The reduced amounts of reagents employed within cell culture microdevices make them particularly appealing to drug screening processes. In addition, latest advancements in recreating physiologically relevant cell culture conditions within microfabricated devices encourage the idea of using such advanced biological models in improving the screening of drug candidates prior to in vivo testing. In this review, we discuss microfluidics-based models employed for chemical/drug screening and the strategies to mimic various physiological conditions: fine control of 3D extra-cellular matrix environment, physical and chemical cues provided to cells and organization of co-cultures. We also envision future directions for achieving multi-organ microfluidic devices.
Collapse
Affiliation(s)
- Giovanni Stefano Ugolini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Daniela Cruz-Moreira
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| |
Collapse
|
1719
|
Kelava I, Lancaster MA. Dishing out mini-brains: Current progress and future prospects in brain organoid research. Dev Biol 2016; 420:199-209. [PMID: 27402594 PMCID: PMC5161139 DOI: 10.1016/j.ydbio.2016.06.037] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/16/2016] [Accepted: 06/25/2016] [Indexed: 01/15/2023]
Abstract
The ability to model human brain development in vitro represents an important step in our study of developmental processes and neurological disorders. Protocols that utilize human embryonic and induced pluripotent stem cells can now generate organoids which faithfully recapitulate, on a cell-biological and gene expression level, the early period of human embryonic and fetal brain development. In combination with novel gene editing tools, such as CRISPR, these methods represent an unprecedented model system in the field of mammalian neural development. In this review, we focus on the similarities of current organoid methods to in vivo brain development, discuss their limitations and potential improvements, and explore the future venues of brain organoid research.
Collapse
Affiliation(s)
- Iva Kelava
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, CB2 0QH Cambridge, United Kingdom
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, CB2 0QH Cambridge, United Kingdom.
| |
Collapse
|
1720
|
Santo VE, Rebelo SP, Estrada MF, Alves PM, Boghaert E, Brito C. Drug screening in 3D in vitro tumor models: overcoming current pitfalls of efficacy read-outs. Biotechnol J 2016; 12. [PMID: 27966285 DOI: 10.1002/biot.201600505] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022]
Abstract
There is cumulating evidence that in vitro 3D tumor models with increased physiological relevance can improve the predictive value of pre-clinical research and ultimately contribute to achieve decisions earlier during the development of cancer-targeted therapies. Due to the role of tumor microenvironment in the response of tumor cells to therapeutics, the incorporation of different elements of the tumor niche on cell model design is expected to contribute to the establishment of more predictive in vitro tumor models. This review is focused on the several challenges and adjustments that the field of oncology research is facing to translate these advanced tumor cells models to drug discovery, taking advantage of the progress on culture technologies, imaging platforms, high throughput and automated systems. The choice of 3D cell model, the experimental design, choice of read-outs and interpretation of data obtained from 3D cell models are critical aspects when considering their implementation in drug discovery. In this review, we foresee some of these aspects and depict the potential directions of pre-clinical oncology drug discovery towards improved prediction of drug efficacy.
Collapse
Affiliation(s)
- Vítor E Santo
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sofia P Rebelo
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marta F Estrada
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
1721
|
Abstract
Defined genetic models based on human pluripotent stem cells have opened new avenues for understanding disease mechanisms and drug screening. Many of these models assume cell-autonomous mechanisms of disease but it is possible that disease phenotypes or drug responses will only be evident if all cellular and extracellular components of a tissue are present and functionally mature. To derive optimal benefit from such models, complex multicellular structures with vascular components that mimic tissue niches will thus likely be necessary. Here we consider emerging research creating human tissue mimics and provide some recommendations for moving the field forward.
Collapse
|
1722
|
Borenstein JT. Organs-on-Chips: How Microsystems Technology Can Transform the Drug Development Process. IEEE Pulse 2016; 7:22-6. [PMID: 26978847 DOI: 10.1109/mpul.2015.2513722] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The drug development pipeline, once one of the most successful and lucrative commercial sectors in the United States, is now strained by a combination of factors: increased development costs, lengthy time lines, and the poor predictive power of preclinical studies, among others. These factors, in combination with the need to respond to newly evolving demands?including the trend toward personalized or precision medicine, rising rates for many chronic diseases, and continued threats from emerging infectious diseases?are placing extraordinary pressure on an already strained development process.
Collapse
|
1723
|
Yen DP, Ando Y, Shen K. A cost-effective micromilling platform for rapid prototyping of microdevices. TECHNOLOGY 2016; 4:234-239. [PMID: 28317005 PMCID: PMC5356927 DOI: 10.1142/s2339547816200041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Micromilling has great potential in producing microdevices for lab-on-a-chip and organ-on-a-chip applications, but has remained under-utilized due to the high machinery costs and limited accessibility. In this paper, we assessed the machining capabilities of a low-cost 3-D mill in polycarbonate material, which were showcased by the production of microfluidic devices. The study demonstrates that this particular mill is well suited for the fabrication of multi-scale microdevices with feature sizes from micrometers to centimeters.
Collapse
Affiliation(s)
- Daniel P Yen
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yuta Ando
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Keyue Shen
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
1724
|
Zhang YS, Yu C. Towards engineering integrated cardiac organoids: beating recorded. J Thorac Dis 2016; 8:E1683-E1687. [PMID: 28149613 PMCID: PMC5227195 DOI: 10.21037/jtd.2016.12.37] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 11/23/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Cunjiang Yu
- Department of Mechanical Engineering, University of Houston, Houston, TX, USA
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
- Program of Materials Science and Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
1725
|
Naranjo JD, Scarritt ME, Huleihel L, Ravindra A, Torres CM, Badylak SF. Regenerative Medicine: lessons from Mother Nature. Regen Med 2016; 11:767-775. [PMID: 27885899 DOI: 10.2217/rme-2016-0111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine strategies for the restoration of functional tissue have evolved from the concept of ex vivo creation of engineered tissue toward the broader concept of in vivo induction of functional tissue reconstruction. Multidisciplinary approaches are being investigated to achieve this goal using evolutionarily conserved principles of stem cell biology, developmental biology and immunology, current methods of engineering and medicine. This evolution from ex vivo tissue engineering to the manipulation of fundamental in vivo tenets of development and regeneration has the potential to capitalize upon the incredibly complex and only partially understood ability of cells to adapt, proliferate, self-organize and differentiate into functional tissue.
Collapse
Affiliation(s)
- Juan Diego Naranjo
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michelle E Scarritt
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Luai Huleihel
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anjani Ravindra
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA.,Division of Pediatric Pulmonary Medicine, Allergy & Immunology, Children's Hospital of UPMC, Pittsburgh, PA 15224, USA
| | - Crisanto M Torres
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
1726
|
Ruprecht V, Monzo P, Ravasio A, Yue Z, Makhija E, Strale PO, Gauthier N, Shivashankar GV, Studer V, Albiges-Rizo C, Viasnoff V. How cells respond to environmental cues - insights from bio-functionalized substrates. J Cell Sci 2016; 130:51-61. [PMID: 27856508 DOI: 10.1242/jcs.196162] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Biomimetic materials have long been the (he)art of bioengineering. They usually aim at mimicking in vivo conditions to allow in vitro culture, differentiation and expansion of cells. The past decade has witnessed a considerable amount of progress in soft lithography, bio-inspired micro-fabrication and biochemistry, allowing the design of sophisticated and physiologically relevant micro- and nano-environments. These systems now provide an exquisite toolbox with which we can control a large set of physicochemical environmental parameters that determine cell behavior. Bio-functionalized surfaces have evolved from simple protein-coated solid surfaces or cellular extracts into nano-textured 3D surfaces with controlled rheological and topographical properties. The mechanobiological molecular processes by which cells interact and sense their environment can now be unambiguously understood down to the single-molecule level. This Commentary highlights recent successful examples where bio-functionalized substrates have contributed in raising and answering new questions in the area of extracellular matrix sensing by cells, cell-cell adhesion and cell migration. The use, the availability, the impact and the challenges of such approaches in the field of biology are discussed.
Collapse
Affiliation(s)
- Verena Ruprecht
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Andrea Ravasio
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Zhang Yue
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Ekta Makhija
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Pierre Olivier Strale
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
| | | | - G V Shivashankar
- IFOM, Via Adamello, 16, Milano 20139, Italy.,Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Vincent Studer
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
| | - Corinne Albiges-Rizo
- INSERM, U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Institute Albert Bonniot, University Grenoble Alpes, La Tronche F-38700, France
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore .,CNRS UMI 3639, 5A Engineering Drive 1, 117411 Singapore
| |
Collapse
|
1727
|
A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors. Sci Rep 2016; 6:36670. [PMID: 27830712 PMCID: PMC5103210 DOI: 10.1038/srep36670] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/10/2016] [Indexed: 12/22/2022] Open
Abstract
The blood-brain barrier (BBB) restricts the uptake of many neuro-therapeutic molecules, presenting a formidable hurdle to drug development in brain diseases. We proposed a new and dynamic in vivo-like three-dimensional microfluidic system that replicates the key structural, functional and mechanical properties of the blood-brain barrier in vivo. Multiple factors in this system work synergistically to accentuate BBB-specific attributes-permitting the analysis of complex organ-level responses in both normal and pathological microenvironments in brain tumors. The complex BBB microenvironment is reproduced in this system via physical cell-cell interaction, vascular mechanical cues and cell migration. This model possesses the unique capability to examine brain metastasis of human lung, breast and melanoma cells and their therapeutic responses to chemotherapy. The results suggest that the interactions between cancer cells and astrocytes in BBB microenvironment might affect the ability of malignant brain tumors to traverse between brain and vascular compartments. Furthermore, quantification of spatially resolved barrier functions exists within a single assay, providing a versatile and valuable platform for pharmaceutical development, drug testing and neuroscientific research.
Collapse
|
1728
|
Li X, He J, Zhang W, Jiang N, Li D. Additive Manufacturing of Biomedical Constructs with Biomimetic Structural Organizations. MATERIALS 2016; 9:ma9110909. [PMID: 28774030 PMCID: PMC5457198 DOI: 10.3390/ma9110909] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 12/11/2022]
Abstract
Additive manufacturing (AM), sometimes called three-dimensional (3D) printing, has attracted a lot of research interest and is presenting unprecedented opportunities in biomedical fields, because this technology enables the fabrication of biomedical constructs with great freedom and in high precision. An important strategy in AM of biomedical constructs is to mimic the structural organizations of natural biological organisms. This can be done by directly depositing cells and biomaterials, depositing biomaterial structures before seeding cells, or fabricating molds before casting biomaterials and cells. This review organizes the research advances of AM-based biomimetic biomedical constructs into three major directions: 3D constructs that mimic tubular and branched networks of vasculatures; 3D constructs that contains gradient interfaces between different tissues; and 3D constructs that have different cells positioned to create multicellular systems. Other recent advances are also highlighted, regarding the applications of AM for organs-on-chips, AM-based micro/nanostructures, and functional nanomaterials. Under this theme, multiple aspects of AM including imaging/characterization, material selection, design, and printing techniques are discussed. The outlook at the end of this review points out several possible research directions for the future.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC H3A 0C3, Canada.
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Weijie Zhang
- Department of Knee Joint Surgery, Hong Hui Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Nan Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
1729
|
Kamei KI, Koyama Y, Tokunaga Y, Mashimo Y, Yoshioka M, Fockenberg C, Mosbergen R, Korn O, Wells C, Chen Y. Characterization of Phenotypic and Transcriptional Differences in Human Pluripotent Stem Cells under 2D and 3D Culture Conditions. Adv Healthc Mater 2016; 5:2951-2958. [PMID: 27775225 DOI: 10.1002/adhm.201600893] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Indexed: 12/26/2022]
Abstract
Human pluripotent stem cells hold great promise for applications in drug discovery and regenerative medicine. Microfluidic technology is a promising approach for creating artificial microenvironments; however, although a proper 3D microenvironment is required to achieve robust control of cellular phenotypes, most current microfluidic devices provide only 2D cell culture and do not allow tuning of physical and chemical environmental cues simultaneously. Here, the authors report a 3D cellular microenvironment plate (3D-CEP), which consists of a microfluidic device filled with thermoresponsive poly(N-isopropylacrylamide)-β-poly(ethylene glycol) hydrogel (HG), which enables systematic tuning of both chemical and physical environmental cues as well as in situ cell monitoring. The authors show that H9 human embryonic stem cells (hESCs) and 253G1 human induced pluripotent stem cells in the HG/3D-CEP system maintain their pluripotent marker expression under HG/3D-CEP self-renewing conditions. Additionally, global gene expression analyses are used to elucidate small variations among different test environments. Interestingly, the authors find that treatment of H9 hESCs under HG/3D-CEP self-renewing conditions results in initiation of entry into the neural differentiation process by induction of PAX3 and OTX1 expression. The authors believe that this HG/3D-CEP system will serve as a versatile platform for developing targeted functional cell lines and facilitate advances in drug screening and regenerative medicine.
Collapse
Affiliation(s)
- Ken-ichiro Kamei
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Kyoto 6068501 Japan
| | - Yoshie Koyama
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Kyoto 6068501 Japan
| | - Yumie Tokunaga
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Kyoto 6068501 Japan
| | - Yasumasa Mashimo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Kyoto 6068501 Japan
| | - Momoko Yoshioka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Kyoto 6068501 Japan
| | - Christopher Fockenberg
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Kyoto 6068501 Japan
| | - Rowland Mosbergen
- Australia Institute for Biotechnology and Nanotechnology (AIBN); University of Queensland; Brisbane QLD 4072 Australia
- Department of Anatomy and Neuroscience; University of Melbourne; Melbourne Vic 3010 Australia
| | - Othmar Korn
- Australia Institute for Biotechnology and Nanotechnology (AIBN); University of Queensland; Brisbane QLD 4072 Australia
| | - Christine Wells
- Australia Institute for Biotechnology and Nanotechnology (AIBN); University of Queensland; Brisbane QLD 4072 Australia
- Department of Anatomy and Neuroscience; University of Melbourne; Melbourne Vic 3010 Australia
| | - Yong Chen
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Kyoto 6068501 Japan
- Ecole Normale Supérieure; CNRS-ENS-UPMC UMR 8640; 24 Rue L'homond Paris 75005 France
| |
Collapse
|
1730
|
|
1731
|
Edwards JL, Jennings MP, Apicella MA, Seib KL. Is gonococcal disease preventable? The importance of understanding immunity and pathogenesis in vaccine development. Crit Rev Microbiol 2016; 42:928-41. [PMID: 26805040 PMCID: PMC4958600 DOI: 10.3109/1040841x.2015.1105782] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/01/2015] [Accepted: 10/06/2015] [Indexed: 12/31/2022]
Abstract
Gonorrhea is a major, global public health problem for which there is no vaccine. The continuing emergence of antibiotic-resistant strains raises concerns that untreatable Neisseria gonorrhoeae may become widespread in the near future. Consequently, there is an urgent need for increased efforts towards the development of new anti-gonococcal therapeutics and vaccines, as well as suitable models for potential pre-clinical vaccine trials. Several current issues regarding gonorrhea are discussed herein, including the global burden of disease, the emergence of antibiotic-resistance, the status of vaccine development and, in particular, a focus on the model systems available to evaluate drug and vaccine candidates. Finally, alternative approaches to evaluate vaccine candidates are presented. Such approaches may provide valuable insights into the protective mechanisms, and correlates of protection, required to prevent gonococcal transmission, local infection and disease sequelae.
Collapse
Affiliation(s)
- Jennifer L. Edwards
- Department of Pediatrics, The Research Institute at Nationwide Children's Hospital and The Ohio State UniversityColumbus,
OH,
USA
| | | | | | - Kate L. Seib
- Institute for Glycomics, Griffith University,
Gold Coast,
Australia
| |
Collapse
|
1732
|
Abstract
Treatment and management of kidney disease currently presents an enormous global burden, and the application of nanotechnology principles to renal disease therapy, although still at an early stage, has profound transformative potential. The increasing translation of nanomedicines to the clinic, alongside research efforts in tissue regeneration and organ-on-a-chip investigations, are likely to provide novel solutions to treat kidney diseases. Our understanding of renal anatomy and of how the biological and physico-chemical properties of nanomedicines (the combination of a nanocarrier and a drug) influence their interactions with renal tissues has improved dramatically. Tailoring of nanomedicines in terms of kidney retention and binding to key membranes and cell populations associated with renal diseases is now possible and greatly enhances their localization, tolerability, and efficacy. This Review outlines nanomedicine characteristics central to improved targeting of renal cells and highlights the prospects, challenges, and opportunities of nanotechnology-mediated therapies for renal diseases.
Collapse
|
1733
|
Nierode GJ, Perea BC, McFarland SK, Pascoal JF, Clark DS, Schaffer DV, Dordick JS. High-Throughput Toxicity and Phenotypic Screening of 3D Human Neural Progenitor Cell Cultures on a Microarray Chip Platform. Stem Cell Reports 2016; 7:970-982. [PMID: 28157485 PMCID: PMC5106528 DOI: 10.1016/j.stemcr.2016.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 01/09/2023] Open
Abstract
A 3D cell culture chip was used for high-throughput screening of a human neural progenitor cell line. The differential toxicity of 24 compounds was determined on undifferentiated and differentiating NPCs. Five compounds led to significant differences in IC50 values between undifferentiated and differentiating cultures. This platform has potential use in phenotypic screening to elucidate molecular toxicology on human stem cells. Demonstrated chip platform for HTS of protein expression and toxicity of 3D cultures Dose-response viability and proliferation of a 24-compound library on human NPC lines Assessed differential toxicity between progenitors and differentiating progeny Identified five compounds more toxic to undifferentiated progenitors
Collapse
Affiliation(s)
- Gregory J Nierode
- Chemical and Biological Engineering and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Brian C Perea
- Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Sean K McFarland
- Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Jorge F Pascoal
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
| | - Douglas S Clark
- Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - David V Schaffer
- Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA; Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Jonathan S Dordick
- Chemical and Biological Engineering and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
1734
|
Abstract
INTRODUCTION The technologies used to design, create and use microphysiological systems (MPS, "tissue chips" or "organs-on-chips") have progressed rapidly in the last 5 years, and validation studies of the functional relevance of these platforms to human physiology, and response to drugs for individual model organ systems, are well underway. These studies are paving the way for integrated multi-organ systems that can model diseases and predict drug efficacy and toxicology of multiple organs in real-time, improving the potential for diagnostics and development of novel treatments of rare diseases in the future. AREAS COVERED This review will briefly summarize the current state of tissue chip research and highlight model systems where these microfabricated (or bioengineered) devices are already being used to screen therapeutics, model disease states, and provide potential treatments in addition to helping elucidate the basic molecular and cellular phenotypes of rare diseases. EXPERT OPINION Microphysiological systems hold great promise and potential for modeling rare disorders, as well as for their potential use to enhance the predictive power of new drug therapeutics, plus potentially increase the statistical power of clinical trials while removing the inherent risks of these trials in rare disease populations.
Collapse
Affiliation(s)
- Lucie A Low
- National Center for Advancing Translational Sciences, National Institutes of Health, 6701 Democracy Boulevard, Bethesda, MD, 20892.,National Center for Complementary and Integrative Health, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892
| | - Danilo A Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, 6701 Democracy Boulevard, Bethesda, MD, 20892
| |
Collapse
|
1735
|
Kilic O, Pamies D, Lavell E, Schiapparelli P, Feng Y, Hartung T, Bal-Price A, Hogberg HT, Quinones-Hinojosa A, Guerrero-Cazares H, Levchenko A. Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. LAB ON A CHIP 2016; 16:4152-4162. [PMID: 27722368 DOI: 10.1039/c6lc00946h] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Migration of neural progenitors in the complex tissue environment of the central nervous system is not well understood. Progress in this area has the potential to drive breakthroughs in neuroregenerative therapies, brain cancer treatments, and neurodevelopmental studies. To a large extent, advances have been limited due to a lack of controlled environments recapitulating characteristics of the central nervous system milieu. Reductionist cell culture models are frequently too simplistic, and physiologically more relevant approaches such as ex vivo brain slices or in situ experiments provide little control and make information extraction difficult. Here, we present a brain-on-chip model that bridges the gap between cell culture and ex vivo/in vivo conditions through recapitulation of self-organized neural differentiation. We use a new multi-layer silicone elastomer device, over the course of four weeks to differentiate pluripotent human (NTERA2) cells into neuronal clusters interconnected with thick axonal bundles and interspersed with astrocytes, resembling the brain parenchyma. Neurons within the device express the neurofilament heavy (NF200) mature axonal marker and the microtubule-associated protein (MAP2ab) mature dendritic marker, demonstrating that the devices are sufficiently biocompatible to allow neuronal maturation. This neuronal-glial environment is interfaced with a layer of human brain microvascular endothelial cells showing characteristics of the blood-brain barrier including the expression of zonula occludens (ZO1) tight junctions and increased trans-endothelial electrical resistance. We used this device to model migration of human neural progenitors in response to chemotactic cues within a brain-tissue setting. We show that in the presence of an environment mimicking brain conditions, neural progenitor cells show a significantly enhanced chemotactic response towards shallow gradients of CXCL12, a key chemokine expressed during embryonic brain development and in pathological tissue regions of the central nervous system. Our brain-on-chip model thus provides a convenient and scalable model of neural differentiation and maturation extensible to analysis of complex cell and tissue behaviors.
Collapse
Affiliation(s)
- Onur Kilic
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - David Pamies
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Emily Lavell
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Paula Schiapparelli
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Yun Feng
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. and Department of Pharmacology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA and CAAT-Europe, University of Konstanz, Germany
| | - Anna Bal-Price
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Alfredo Quinones-Hinojosa
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Hugo Guerrero-Cazares
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Andre Levchenko
- Department of Biomedical Engineering and Yale Systems Biology Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
1736
|
Abstract
Organoid systems leverage the self-organizing properties of stem cells to create diverse multi-cellular tissue proxies. Most organoid models only represent single or partial components of a tissue, and it is often difficult to control the cell type, organization, and cell-cell/cell-matrix interactions within these systems. Herein, we discuss basic approaches to generate stem cell-based organoids, their advantages and limitations, and how bioengineering strategies can be used to steer the cell composition and their 3D organization within organoids to further enhance their utility in research and therapies.
Collapse
Affiliation(s)
- Xiaolei Yin
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Cambridge, MA 02115, USA; Harvard Medical School, Cambridge, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Harvard - MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Benjamin E Mead
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Cambridge, MA 02115, USA; Harvard Medical School, Cambridge, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Harvard - MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Helia Safaee
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Cambridge, MA 02115, USA; Harvard Medical School, Cambridge, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Harvard - MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- Harvard - MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeffrey M Karp
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Cambridge, MA 02115, USA; Harvard Medical School, Cambridge, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Harvard - MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| | - Oren Levy
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Cambridge, MA 02115, USA; Harvard Medical School, Cambridge, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Harvard - MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
1737
|
Moura Rosa P, Gopalakrishnan N, Ibrahim H, Haug M, Halaas Ø. The intercell dynamics of T cells and dendritic cells in a lymph node-on-a-chip flow device. LAB ON A CHIP 2016; 16:3728-40. [PMID: 27560793 DOI: 10.1039/c6lc00702c] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
T cells play a central role in immunity towards cancer and infectious diseases. T cell responses are initiated in the T cell zone of the lymph node (LN), where resident antigen-bearing dendritic cells (DCs) prime and activate antigen-specific T cells passing by. In the present study, we investigated the T cell : DC interaction in a microfluidic device to understand the intercellular dynamics and physiological conditions in the LN. We show random migration of antigen-specific T cells onto the antigen-presenting DC monolayer independent of the flow direction with a mean T cell : DC dwell time of 12.8 min and a mean velocity of 6 μm min(-1). Furthermore, we investigated the antigen specific vs. unspecific attachment and detachment of CD8(+) and CD4(+) T cells to DCs under varying shear stress. In our system, CD4(+) T cells showed long stable contacts with APCs, whereas CD8(+) T cells presented transient interactions with DCs. By varying the shear stress from 0.01 to 100 Dyn cm(-2), it was also evident that there was a much stronger attachment of antigen-specific than unspecific T cells to stationary DCs up to 1-12 Dyn cm(-2). The mechanical force of the cell : cell interaction associated with the pMHC-TCR match under controlled tangential shear force was estimated to be in the range of 0.25-4.8 nN. Finally, upon performing attachment & detachment tests, there was a steady accumulation of antigen specific CD8(+) T cells and CD4(+) T cells on DCs at low shear stresses, which were released at a stress of 12 Dyn cm(-2). This microphysiological model provides new possibilities to recreate a controlled mechanical force threshold of pMHC-TCR binding, allowing the investigation of intercellular signalling of immune synapses and therapeutic targets for immunotherapy.
Collapse
Affiliation(s)
- Patrícia Moura Rosa
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway.
| | | | | | | | | |
Collapse
|
1738
|
Zhu L, Xia H, Wang Z, Fong ELS, Fan J, Tong WH, Seah YPD, Zhang W, Li Q, Yu H. A vertical-flow bioreactor array compacts hepatocytes for enhanced polarity and functions. LAB ON A CHIP 2016; 16:3898-3908. [PMID: 27722715 DOI: 10.1039/c6lc00811a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although hepatocytes in vivo experience intra-abdominal pressure (IAP), pressure is typically not incorporated in hepatocyte culture systems. The cuboidal cell shape and extent of intercellular contact between cultured hepatocytes are critical parameters that influence the differentiated hepatic phenotype. Using a microfluidic device, the application of pressure to artificially compact cells and forge cell-cell interactions was previously demonstrated to be effective in accelerating hepatic repolarization. In seeking to implement this approach to higher throughput culture platforms for potential drug screening applications, we specifically designed a vertical-flow compaction bioreactor array (VCBA) that compacts hepatocytes within the range of IAP and portal pressure in vivo in a multi-well setup. As a result of vertical perfusion-generated forces, hepatocytes not only exhibited accelerated repolarization, an in vivo-like cuboidal morphology, but also better maintained hepatic functions in long-term culture as compared to the same cells cultured under static conditions. As a novel engineering tool to modulate cell compaction and intercellular interactions, this platform is a promising approach to confer tight control over hepatocyte repolarization for in vitro culture.
Collapse
Affiliation(s)
- Liang Zhu
- Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore 117411, Singapore. and Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 Singapore and Institute of Biotechnology and Nanotechnology, A*STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore 138669, Singapore
| | - Huanming Xia
- Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 Singapore and School of Mechanical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei St., Nanjing, Jiangsu, China 210094
| | - Zhenfeng Wang
- Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 Singapore
| | - Eliza Li Shan Fong
- Department of Physiology, Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore 117597, Singapore
| | - Junjun Fan
- Institute of Biotechnology and Nanotechnology, A*STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore 138669, Singapore and Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602, Singapore and Fourth Military Medical University, 408-4 Changying West Road, Xincheng District, Xi'an City, Shanxi Province, China
| | - Wen Hao Tong
- Department of Physiology, Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore 117597, Singapore and Institute of Biotechnology and Nanotechnology, A*STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore 138669, Singapore
| | - Yen Peng Daphne Seah
- Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 Singapore
| | - Weian Zhang
- Department of Physiology, Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore 117597, Singapore
| | - Qiushi Li
- Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore 117411, Singapore.
| | - Hanry Yu
- Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore 117411, Singapore. and Department of Physiology, Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore 117597, Singapore and Institute of Biotechnology and Nanotechnology, A*STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore 138669, Singapore and Gastroenterology Department, Nanfang Hospital, Southern Medical University, TongHe, Guangzhou 510515, China
| |
Collapse
|
1739
|
Rezaei Nejad H, Goli Malekabadi Z, Kazemzadeh Narbat M, Annabi N, Mostafalu P, Tarlan F, Zhang YS, Hoorfar M, Tamayol A, Khademhosseini A. Laterally Confined Microfluidic Patterning of Cells for Engineering Spatially Defined Vascularization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5132-5139. [PMID: 27510763 PMCID: PMC5376063 DOI: 10.1002/smll.201601391] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/08/2016] [Indexed: 05/19/2023]
Abstract
A biofabrication strategy for creating planar multiscale protein, hydrogel, and cellular patterns, and simultaneously generating microscale topographical features is developed that laterally confines the patterned cells and direct their growth in cell permissive hydrogels.
Collapse
Affiliation(s)
- Hojatollah Rezaei Nejad
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, University of British Columbia, Kelowna, BC, Canada, V1V 1V7
| | - Zahra Goli Malekabadi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mehdi Kazemzadeh Narbat
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nasim Annabi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115-5000, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Pooria Mostafalu
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Farhang Tarlan
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Mina Hoorfar
- Department of Mechanical Engineering, University of British Columbia, Kelowna, BC, Canada, V1V 1V7
| | - Ali Tamayol
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA.
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA.
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
- Department of Physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia.
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
1740
|
Choi JH, Lee J, Shin W, Choi JW, Kim HJ. Priming nanoparticle-guided diagnostics and therapeutics towards human organs-on-chips microphysiological system. NANO CONVERGENCE 2016; 3:24. [PMID: 28191434 PMCID: PMC5271165 DOI: 10.1186/s40580-016-0084-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/13/2016] [Indexed: 05/17/2023]
Abstract
Nanotechnology and bioengineering have converged over the past decades, by which the application of multi-functional nanoparticles (NPs) has been emerged in clinical and biomedical fields. The NPs primed to detect disease-specific biomarkers or to deliver biopharmaceutical compounds have beena validated in conventional in vitro culture models including two dimensional (2D) cell cultures or 3D organoid models. However, a lack of experimental models that have strong human physiological relevance has hampered accurate validation of the safety and functionality of NPs. Alternatively, biomimetic human "Organs-on-Chips" microphysiological systems have recapitulated the mechanically dynamic 3D tissue interface of human organ microenvironment, in which the transport, cytotoxicity, biocompatibility, and therapeutic efficacy of NPs and their conjugates may be more accurately validated. Finally, integration of NP-guided diagnostic detection and targeted nanotherapeutics in conjunction with human organs-on-chips can provide a novel avenue to accelerate the NP-based drug development process as well as the rapid detection of cellular secretomes associated with pathophysiological processes.
Collapse
Affiliation(s)
- Jin-Ha Choi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Jaewon Lee
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Woojung Shin
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107 Republic of Korea
- Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 04107 Republic of Korea
| | - Hyun Jung Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
- School of Medicine, Pusan National University, Yangsan, 50612 Republic of Korea
| |
Collapse
|
1741
|
Youssef AA, Ross EG, Bolli R, Pepine CJ, Leeper NJ, Yang PC. The Promise and Challenge of Induced Pluripotent Stem Cells for Cardiovascular Applications. JACC Basic Transl Sci 2016; 1:510-523. [PMID: 28580434 PMCID: PMC5451899 DOI: 10.1016/j.jacbts.2016.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The recent discovery of human-induced pluripotent stem cells (iPSCs) has revolutionized the field of stem cells. iPSCs have demonstrated that biological development is not an irreversible process and that mature adult somatic cells can be induced to become pluripotent. This breakthrough is projected to advance our current understanding of many disease processes and revolutionize the approach to effective therapeutics. Despite the great promise of iPSCs, many translational challenges still remain. In this article, we review the basic concept of induction of pluripotency as a novel approach to understand cardiac regeneration, cardiovascular disease modeling and drug discovery. We critically reflect on the current results of preclinical and clinical studies using iPSCs for these applications with appropriate emphasis on the challenges facing clinical translation.
Collapse
Affiliation(s)
- Amr A Youssef
- Division of Cardiology, Ain Shams University, Cairo, Egypt and Aurora Bay Area Medical Center, Marinette, Wisconsin, USA
| | - Elsie Gyang Ross
- Division of Cardiovascular Medicine and Vascular Surgery, Stanford University, California, USA
| | - Roberto Bolli
- Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Carl J Pepine
- Division of Cardiovascular Medicine, University of Florida, Gainesville, Florida, USA
| | - Nicholas J Leeper
- Division of Cardiovascular Medicine and Vascular Surgery, Stanford University, California, USA
| | - Phillip C Yang
- Division of Cardiovascular Medicine, Stanford University, California, USA
| |
Collapse
|
1742
|
Björnmalm M, Faria M, Caruso F. Increasing the Impact of Materials in and beyond Bio-Nano Science. J Am Chem Soc 2016; 138:13449-13456. [PMID: 27672703 DOI: 10.1021/jacs.6b08673] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This is an exciting time for the field of bio-nano science: enormous progress has been made in recent years, especially in academic research, and materials developed and studied in this area are poised to make a substantial impact in real-world applications. Herein, we discuss ways to leverage the strengths of the field, current limitations, and valuable lessons learned from neighboring fields that can be adopted to accelerate scientific discovery and translational research in bio-nano science. We identify and discuss five interconnected topics: (i) the advantages of cumulative research; (ii) the necessity of aligning projects with research priorities; (iii) the value of transparent science; (iv) the opportunities presented by "dark data"; and (v) the importance of establishing bio-nano standards.
Collapse
Affiliation(s)
- Mattias Björnmalm
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Matthew Faria
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
1743
|
Kuijper IA, Yang H, Van De Water B, Beltman JB. Unraveling cellular pathways contributing to drug-induced liver injury by dynamical modeling. Expert Opin Drug Metab Toxicol 2016; 13:5-17. [PMID: 27609146 DOI: 10.1080/17425255.2017.1234607] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Drug-induced liver injury (DILI) is a significant threat to human health and a major problem in drug development. It is hard to predict due to its idiosyncratic nature and which does not show up in animal trials. Hepatic adaptive stress response pathway activation is generally observed in drug-induced liver injury. Dynamical pathway modeling has the potential to foresee adverse effects of drugs before they go in trial. Ordinary differential equation modeling can offer mechanistic insight, and allows us to study the dynamical behavior of stress pathways involved in DILI. Areas covered: This review provides an overview on the progress of the dynamical modeling of stress and death pathways pertinent to DILI, i.e. pathways relevant for oxidative stress, inflammatory stress, DNA damage, unfolded proteins, heat shock and apoptosis. We also discuss the required steps for applying such modeling to the liver. Expert opinion: Despite the strong progress made since the turn of the century, models of stress pathways have only rarely been specifically applied to describe pathway dynamics for DILI. We argue that with minor changes, in some cases only to parameter values, many of these models can be repurposed for application in DILI research. Combining both dynamical models with in vitro testing might offer novel screening methods for the harmful side-effects of drugs.
Collapse
Affiliation(s)
- Isoude A Kuijper
- a Division of Toxicology, Leiden Academic Centre for Drug Research , Leiden University , Leiden , The Netherlands
| | - Huan Yang
- a Division of Toxicology, Leiden Academic Centre for Drug Research , Leiden University , Leiden , The Netherlands
| | - Bob Van De Water
- a Division of Toxicology, Leiden Academic Centre for Drug Research , Leiden University , Leiden , The Netherlands
| | - Joost B Beltman
- a Division of Toxicology, Leiden Academic Centre for Drug Research , Leiden University , Leiden , The Netherlands
| |
Collapse
|
1744
|
Ehgartner J, Strobl M, Bolivar JM, Rabl D, Rothbauer M, Ertl P, Borisov SM, Mayr T. Simultaneous Determination of Oxygen and pH Inside Microfluidic Devices Using Core–Shell Nanosensors. Anal Chem 2016; 88:9796-9804. [DOI: 10.1021/acs.analchem.6b02849] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Josef Ehgartner
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9/3, 8010 Graz, Austria
| | - Martin Strobl
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9/3, 8010 Graz, Austria
| | - Juan M. Bolivar
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/1, 8010 Graz, Austria
| | - Dominik Rabl
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9/3, 8010 Graz, Austria
| | - Mario Rothbauer
- Institute
of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt
9/163, 1060 Wien, Austria
| | - Peter Ertl
- Institute
of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt
9/163, 1060 Wien, Austria
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9/3, 8010 Graz, Austria
| | - Torsten Mayr
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9/3, 8010 Graz, Austria
| |
Collapse
|
1745
|
Oomen PE, Skolimowski MD, Verpoorte E. Implementing oxygen control in chip-based cell and tissue culture systems. LAB ON A CHIP 2016; 16:3394-414. [PMID: 27492338 DOI: 10.1039/c6lc00772d] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments.
Collapse
Affiliation(s)
- Pieter E Oomen
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1 (XB20), 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
1746
|
Chen CS. 3D Biomimetic Cultures: The Next Platform for Cell Biology. Trends Cell Biol 2016; 26:798-800. [PMID: 27637342 DOI: 10.1016/j.tcb.2016.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/23/2016] [Indexed: 01/06/2023]
Abstract
Advances in engineering of cells and culture formats have led to the development of a new generation of 3D cultures that can recapitulate a variety of multicell-type, morphogenetic behaviors that were previously largely observable only in in vivo settings. Ultimately, these systems are likely to be assimilated into and forever change the landscape of biomedical research.
Collapse
Affiliation(s)
- Christopher S Chen
- Biomedical Engineering and The Biological Design Center, Boston University, Boston, MA, USA; The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA.
| |
Collapse
|
1747
|
Abstract
Digital microfluidics (DMF) is a droplet-based liquid-handling technology that has recently become popular for cell culture and analysis. In DMF, picoliter- to microliter-sized droplets are manipulated on a planar surface using electric fields, thus enabling software-reconfigurable operations on individual droplets, such as move, merge, split, and dispense from reservoirs. Using this technique, multistep cell-based processes can be carried out using simple and compact instrumentation, making DMF an attractive platform for eventual integration into routine biology workflows. In this review, we summarize the state-of-the-art in DMF cell culture, and describe design considerations, types of DMF cell culture, and cell-based applications of DMF.
Collapse
Affiliation(s)
- Alphonsus H C Ng
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; .,The Terrence Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario M5S 3E1, Canada
| | - Bingyu Betty Li
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; .,The Terrence Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario M5S 3E1, Canada
| | - M Dean Chamberlain
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; .,The Terrence Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario M5S 3E1, Canada
| | - Aaron R Wheeler
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; .,The Terrence Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario M5S 3E1, Canada.,Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
1748
|
Bursac N, Juhas M, Rando TA. Synergizing Engineering and Biology to Treat and Model Skeletal Muscle Injury and Disease. Annu Rev Biomed Eng 2016; 17:217-42. [PMID: 26643021 DOI: 10.1146/annurev-bioeng-071114-040640] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although skeletal muscle is one of the most regenerative organs in our body, various genetic defects, alterations in extrinsic signaling, or substantial tissue damage can impair muscle function and the capacity for self-repair. The diversity and complexity of muscle disorders have attracted much interest from both cell biologists and, more recently, bioengineers, leading to concentrated efforts to better understand muscle pathology and develop more efficient therapies. This review describes the biological underpinnings of muscle development, repair, and disease, and discusses recent bioengineering efforts to design and control myomimetic environments, both to study muscle biology and function and to aid in the development of new drug, cell, and gene therapies for muscle disorders. The synergy between engineering-aided biological discovery and biology-inspired engineering solutions will be the path forward for translating laboratory results into clinical practice.
Collapse
Affiliation(s)
- Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708;
| | - Mark Juhas
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708;
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305.,Rehabilitation Research & Development Service, VA Palo Alto Health Care System, Palo Alto, California 94304
| |
Collapse
|
1749
|
Horvath P, Aulner N, Bickle M, Davies AM, Nery ED, Ebner D, Montoya MC, Östling P, Pietiäinen V, Price LS, Shorte SL, Turcatti G, von Schantz C, Carragher NO. Screening out irrelevant cell-based models of disease. Nat Rev Drug Discov 2016; 15:751-769. [PMID: 27616293 DOI: 10.1038/nrd.2016.175] [Citation(s) in RCA: 322] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The common and persistent failures to translate promising preclinical drug candidates into clinical success highlight the limited effectiveness of disease models currently used in drug discovery. An apparent reluctance to explore and adopt alternative cell- and tissue-based model systems, coupled with a detachment from clinical practice during assay validation, contributes to ineffective translational research. To help address these issues and stimulate debate, here we propose a set of principles to facilitate the definition and development of disease-relevant assays, and we discuss new opportunities for exploiting the latest advances in cell-based assay technologies in drug discovery, including induced pluripotent stem cells, three-dimensional (3D) co-culture and organ-on-a-chip systems, complemented by advances in single-cell imaging and gene editing technologies. Funding to support precompetitive, multidisciplinary collaborations to develop novel preclinical models and cell-based screening technologies could have a key role in improving their clinical relevance, and ultimately increase clinical success rates.
Collapse
Affiliation(s)
- Peter Horvath
- Synthetic and Systems Biology Unit, Biological Research Centre of the Hungarian Academy of Sciences, Szeged H-6726, Hungary; and at the Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland.,European Cell-Based Assays Interest Group
| | - Nathalie Aulner
- Imagopole-Citech, Institut Pasteur, Paris 75015, France.,European Cell-Based Assays Interest Group
| | - Marc Bickle
- Technology Development Studio, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany.,European Cell-Based Assays Interest Group
| | - Anthony M Davies
- Translational Cell Imaging Queensland (TCIQ), Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane 4102 QLD, Australia; and The Irish National Centre for High Content Screening and Analysis, Trinity Translational Medicine Institute, Trinity College Dublin, Phase 3 Trinity Health Sciences 1.20, St James Hospital, Dublin D8, Republic of Ireland.,European Cell-Based Assays Interest Group
| | - Elaine Del Nery
- Institut Curie, PSL Research University, Department of Translational Research, The Biophenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), F-75005, Paris, France.,European Cell-Based Assays Interest Group
| | - Daniel Ebner
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK.,European Cell-Based Assays Interest Group
| | - Maria C Montoya
- Cellomics Unit, Cell Biology &Physiology Program, Cell &Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain.,European Cell-Based Assays Interest Group
| | - Päivi Östling
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland.,Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Stockholm 17165, Sweden.,European Cell-Based Assays Interest Group
| | - Vilja Pietiäinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland.,European Cell-Based Assays Interest Group
| | - Leo S Price
- Faculty of Science, Leiden Academic Centre for Drug Research, Toxicology, Universiteit Leiden, The Netherlands; and at OcellO, J.H Oortweg 21, 2333 CH, Leiden, The Netherlands.,European Cell-Based Assays Interest Group
| | - Spencer L Shorte
- Imagopole-Citech, Institut Pasteur, Paris 75015, France.,European Cell-Based Assays Interest Group
| | - Gerardo Turcatti
- Biomolecular Screening Facility, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland.,European Cell-Based Assays Interest Group
| | - Carina von Schantz
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland.,European Cell-Based Assays Interest Group
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK.,European Cell-Based Assays Interest Group
| |
Collapse
|
1750
|
Cordes T, Metallo CM. Tracing insights into human metabolism using chemical engineering approaches. Curr Opin Chem Eng 2016; 14:72-81. [PMID: 28480159 DOI: 10.1016/j.coche.2016.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metabolism coordinates the conversion of available nutrients toward energy, biosynthetic intermediates, and signaling molecules to mediate virtually all biological functions. Dysregulation of metabolic pathways contributes to many diseases, so a detailed understanding of human metabolism has significant therapeutic implications. Over the last decade major technological advances in the areas of analytical chemistry, computational estimation of intracellular fluxes, and biological engineering have improved our ability to observe and engineer metabolic pathways. These approaches are reminiscent of the design, operation, and control of industrial chemical plants. Immune cells have emerged as an intriguing system in which metabolism influences diverse biological functions. Application of metabolic flux analysis and related approaches to macrophages and T cells offers great therapeutic opportunities to biochemical engineers.
Collapse
Affiliation(s)
- Thekla Cordes
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|