1701
|
Widden H, Kaczmarczyk A, Subedi A, Whitaker RH, Placzek WJ. MCL1 binds and negatively regulates the transcriptional function of tumor suppressor p73. Cell Death Dis 2020; 11:946. [PMID: 33144577 PMCID: PMC7641127 DOI: 10.1038/s41419-020-03068-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
MCL1, an anti-apoptotic protein that controls chemosensitivity and cell fate through its regulation of intrinsic apoptosis, has been identified as a high-impact target in anti-cancer therapeutic development. With MCL1-specific inhibitors currently in clinical trials, it is imperative that we understand the roles that MCL1 plays in cells, especially when targeting the Bcl-2 homology 3 (BH3) pocket, the central region of MCL1 that mediates apoptotic regulation. Here, we establish that MCL1 has a direct role in controlling p73 transcriptional activity, which modulates target genes associated with DNA damage response, apoptosis, and cell cycle progression. This interaction is mediated through the reverse BH3 (rBH3) motif in the p73 tetramerization domain, which restricts p73 assembly on DNA. Here, we provide a novel mechanism for protein-level regulation of p73 transcriptional activity by MCL1, while also framing a foundation for studying MCL1 inhibitors in combination with platinum-based chemotherapeutics. More broadly, this work expands the role of Bcl-2 family signaling beyond cell fate regulation.
Collapse
Affiliation(s)
- Hayley Widden
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aneta Kaczmarczyk
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashok Subedi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert H Whitaker
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
1702
|
Pacheco-García JL, Cano-Muñoz M, Sánchez-Ramos I, Salido E, Pey AL. Naturally-Occurring Rare Mutations Cause Mild to Catastrophic Effects in the Multifunctional and Cancer-Associated NQO1 Protein. J Pers Med 2020; 10:E207. [PMID: 33153185 PMCID: PMC7711955 DOI: 10.3390/jpm10040207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
The functional and pathological implications of the enormous genetic diversity of the human genome are mostly unknown, primarily due to our unability to predict pathogenicity in a high-throughput manner. In this work, we characterized the phenotypic consequences of eight naturally-occurring missense variants on the multifunctional and disease-associated NQO1 protein using biophysical and structural analyses on several protein traits. Mutations found in both exome-sequencing initiatives and in cancer cell lines cause mild to catastrophic effects on NQO1 stability and function. Importantly, some mutations perturb functional features located structurally far from the mutated site. These effects are well rationalized by considering the nature of the mutation, its location in protein structure and the local stability of its environment. Using a set of 22 experimentally characterized mutations in NQO1, we generated experimental scores for pathogenicity that correlate reasonably well with bioinformatic scores derived from a set of commonly used algorithms, although the latter fail to semiquantitatively predict the phenotypic alterations caused by a significant fraction of mutations individually. These results provide insight into the propagation of mutational effects on multifunctional proteins, the implementation of in silico approaches for establishing genotype-phenotype correlations and the molecular determinants underlying loss-of-function in genetic diseases.
Collapse
Affiliation(s)
- Juan Luis Pacheco-García
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (J.L.P.-G.); (M.C.-M.); (I.S.-R.)
| | - Mario Cano-Muñoz
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (J.L.P.-G.); (M.C.-M.); (I.S.-R.)
| | - Isabel Sánchez-Ramos
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (J.L.P.-G.); (M.C.-M.); (I.S.-R.)
| | - Eduardo Salido
- Centre for Biomedical Research on Rare Diseases (CIBERER), Hospital Universitario de Canarias, 38320 Tenerife, Spain;
| | - Angel L. Pey
- Departamento de Química Física y Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
1703
|
Beer PA, Cooke SL, Chang DK, Biankin AV. Defining the clinical genomic landscape for real-world precision oncology. Genomics 2020; 112:5324-5330. [PMID: 33144218 PMCID: PMC7758710 DOI: 10.1016/j.ygeno.2020.10.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
Through the delivery of large international projects including ICGC and TCGA, knowledge of cancer genomics is reaching saturation point. Enabling this to improve patient outcomes now requires embedding comprehensive genomic profiling into routine oncology practice. Towards this goal, this study defined the biologically and clinically relevant genomic features of adult cancer through detailed curation and analysis of large genomic datasets, accumulated literature and biomarker-driven therapeutics in clinic and development. The characteristics and prevalence of these features were then interrogated in 2348 whole genome sequences, covering 21 solid tumour types, generated by the PCAWG project. This analysis highlights the predominant contribution of copy number alterations and identifies a critical role for disruptive structural variants in the inactivation of clinically important tumour suppressor genes, including PTEN and RB1, which are not currently captured by diagnostic assays. This study defines a set of essential genomic features for the characterisation of common adult cancers.
Collapse
Affiliation(s)
- Philip A Beer
- Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom; Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland G61 1QH, United Kingdom
| | - Susanna L Cooke
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland G61 1QH, United Kingdom
| | - David K Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland G61 1QH, United Kingdom; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, United Kingdom
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland G61 1QH, United Kingdom; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, United Kingdom; South Western Sydney Clinical School, Goulburn, St, Liverpool NSW, 2170, Australia.
| |
Collapse
|
1704
|
Ju Q, Li XM, Zhang H, Zhao YJ. BRCA1-Associated Protein Is a Potential Prognostic Biomarker and Is Correlated With Immune Infiltration in Liver Hepatocellular Carcinoma: A Pan-Cancer Analysis. Front Mol Biosci 2020; 7:573619. [PMID: 33240929 PMCID: PMC7667264 DOI: 10.3389/fmolb.2020.573619] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/09/2020] [Indexed: 11/30/2022] Open
Abstract
Background BRCA1-associated protein (BRAP) is a critical gene that regulates inflammation-related signaling pathway and affects patients’ prognosis in esophageal squamous cell carcinoma (ESCC). However, its roles in different cancers remain largely unknown. Methods BRAP expression in human pan-cancer was analyzed via the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) database. Pearson correlation analysis was used to evaluate the association between BRAP expression with mismatch repair (MMR) gene mutation and DNA methyltransferase. We evaluated the influence of BRAP on clinical prognosis by univariate survival analysis. Moreover, the correlation between BRAP and tumor immune infiltration was analyzed via the Tumor Immune Evaluation Resource (TIMER) database. Pearson correlation analysis was used to investigate the correlation between BRAP expression and immune checkpoint genes expression. Results BRAP is abnormally overexpressed and significantly correlated with MMR gene mutation level and DNA methyltransferase expression in human pan-cancer. Univariate survival analysis showed that BRAP was significant with patients’ overall survival (OS) in six cancer types, disease-free interval (DFI) in three cancer types, and progression-free interval (PFI) in two cancer types. Remarkably, increased BRAP expression was strongly correlated with patients’ poor prognosis in liver hepatocellular carcinoma (LIHC), whether OS (P < 0.0001, hazard ratio (HR) = 1.1), DFI (P = 0.00099, HR = 1.06), or PFI (P = 0.00025, HR = 1.07). Moreover, a positive relationship was found between BRAP expression and immune infiltrating cells including B cell, CD4 + T cell, CD8 + T cell, dendritic cell, macrophage cell, and neutrophil cell in colon adenocarcinoma (COAD), kidney renal clear cell carcinoma (KIRC), and LIHC. Additionally, BRAP expression showed strong correlations with immune checkpoint genes in LIHC. Conclusion BRAP expression is increased in human pan-cancer samples compared with normal tissues. Overexpression of BRAP is correlated with poor prognosis and immune infiltration in multiple cancers, especially in LIHC. These findings suggest that BRAP may be used as a potential molecular biomarker for determining prognosis and immune infiltration in LIHC.
Collapse
Affiliation(s)
- Qiang Ju
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xin-Mei Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Heng Zhang
- School of Public Health, Qingdao University, Qingdao, China
| | - Yan-Jie Zhao
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
1705
|
Barr RD, Ries LAG, Trama A, Gatta G, Steliarova-Foucher E, Stiller CA, Bleyer WA. A system for classifying cancers diagnosed in adolescents and young adults. Cancer 2020; 126:4634-4659. [PMID: 32901932 DOI: 10.1002/cncr.33041] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/28/2022]
Abstract
Cancer types in adolescents and young adults form a unique distribution. A system for classifying them is presented.
Collapse
Affiliation(s)
- Ronald D Barr
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | | | - Annalisa Trama
- IRCCS Foundation, National Cancer Institute, Milan, Italy
| | - Gemma Gatta
- IRCCS Foundation, National Cancer Institute, Milan, Italy
| | | | - Charles A Stiller
- National Cancer Registration and Analysis Service, Public Health England, Oxford, United Kingdom
| | - W Archie Bleyer
- Department of Radiation Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
1706
|
Bolton KL, Ptashkin RN, Gao T, Braunstein L, Devlin SM, Kelly D, Patel M, Berthon A, Syed A, Yabe M, Coombs CC, Caltabellotta NM, Walsh M, Offit K, Stadler Z, Mandelker D, Schulman J, Patel A, Philip J, Bernard E, Gundem G, Ossa JEA, Levine M, Martinez JSM, Farnoud N, Glodzik D, Li S, Robson ME, Lee C, Pharoah PDP, Stopsack KH, Spitzer B, Mantha S, Fagin J, Boucai L, Gibson CJ, Ebert BL, Young AL, Druley T, Takahashi K, Gillis N, Ball M, Padron E, Hyman DM, Baselga J, Norton L, Gardos S, Klimek VM, Scher H, Bajorin D, Paraiso E, Benayed R, Arcila ME, Ladanyi M, Solit DB, Berger MF, Tallman M, Garcia-Closas M, Chatterjee N, Diaz LA, Levine RL, Morton LM, Zehir A, Papaemmanuil E. Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat Genet 2020; 52:1219-1226. [PMID: 33106634 PMCID: PMC7891089 DOI: 10.1038/s41588-020-00710-0] [Citation(s) in RCA: 458] [Impact Index Per Article: 91.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/02/2020] [Indexed: 01/30/2023]
Abstract
Acquired mutations are pervasive across normal tissues. However, understanding of the processes that drive transformation of certain clones to cancer is limited. Here we study this phenomenon in the context of clonal hematopoiesis (CH) and the development of therapy-related myeloid neoplasms (tMNs). We find that mutations are selected differentially based on exposures. Mutations in ASXL1 are enriched in current or former smokers, whereas cancer therapy with radiation, platinum and topoisomerase II inhibitors preferentially selects for mutations in DNA damage response genes (TP53, PPM1D, CHEK2). Sequential sampling provides definitive evidence that DNA damage response clones outcompete other clones when exposed to certain therapies. Among cases in which CH was previously detected, the CH mutation was present at tMN diagnosis. We identify the molecular characteristics of CH that increase risk of tMN. The increasing implementation of clinical sequencing at diagnosis provides an opportunity to identify patients at risk of tMN for prevention strategies.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents/pharmacology
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/radiation effects
- Child
- Child, Preschool
- Clonal Evolution
- Clonal Hematopoiesis/drug effects
- Clonal Hematopoiesis/genetics
- Cohort Studies
- Female
- Genetic Fitness
- Humans
- Infant
- Infant, Newborn
- Leukemia, Myeloid/genetics
- Male
- Middle Aged
- Models, Biological
- Mutation
- Neoplasms/drug therapy
- Neoplasms/radiotherapy
- Neoplasms, Second Primary/genetics
- Selection, Genetic
- Young Adult
Collapse
Affiliation(s)
- Kelly L Bolton
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan N Ptashkin
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Teng Gao
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lior Braunstein
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean M Devlin
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Kelly
- Department of Information Systems, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Minal Patel
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antonin Berthon
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aijazuddin Syed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mariko Yabe
- Department of Pathology, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Catherine C Coombs
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicole M Caltabellotta
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mike Walsh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zsofia Stadler
- Department of Medicine, Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Diana Mandelker
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jessica Schulman
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Akshar Patel
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Philip
- Department of Health Informatics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elsa Bernard
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gunes Gundem
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juan E Arango Ossa
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Max Levine
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Noushin Farnoud
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dominik Glodzik
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sonya Li
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark E Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Choonsik Lee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul D P Pharoah
- Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Konrad H Stopsack
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Barbara Spitzer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon Mantha
- Department of Medicine, Hematology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James Fagin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura Boucai
- Department of Medicine, Endocrinology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew L Young
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Todd Druley
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nancy Gillis
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Markus Ball
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eric Padron
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - David M Hyman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Jose Baselga
- Research & Development, AstraZeneca, Milton, Cambridge, UK
| | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Stuart Gardos
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Virginia M Klimek
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Howard Scher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Dean Bajorin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Eder Paraiso
- Department of Medicine, Endocrinology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Strategy & Innovation, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria E Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David B Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Endocrinology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael F Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Endocrinology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martin Tallman
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nilanjan Chatterjee
- Department of Biostatistics, Bloomberg School of Public Health Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Luis A Diaz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Program in Precision Interception and Prevention, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Solid Tumor Division, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ross L Levine
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lindsay M Morton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Elli Papaemmanuil
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
1707
|
Affiliation(s)
- Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain.
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
1708
|
Nørøxe DS, Yde CW, Østrup O, Michaelsen SR, Schmidt AY, Kinalis S, Torp MH, Skjøth‐Rasmussen J, Brennum J, Hamerlik P, Poulsen HS, Nielsen FC, Lassen U. Genomic profiling of newly diagnosed glioblastoma patients and its potential for clinical utility - a prospective, translational study. Mol Oncol 2020; 14:2727-2743. [PMID: 32885540 PMCID: PMC7607169 DOI: 10.1002/1878-0261.12790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/29/2020] [Accepted: 08/27/2020] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is an incurable brain tumor for which new treatment strategies are urgently needed. Next-generation sequencing of GBM has most often been performed retrospectively and on archival tissue from both diagnostic and relapse surgeries with limited knowledge of clinical information, including treatment given. We sought to investigate the genomic composition prospectively in treatment-naïve patients, searched for possible targetable aberrations, and investigated for prognostic and/or predictive factors. A total of 108 newly diagnosed GBM patients were included. Clinical information, progression-free survival, and overall survival (OS) were noted. Tissues were analyzed by whole-exome sequencing, single nucleotide polymorphism (SNP) and transcriptome arrays, and RNA sequencing; assessed for mutations, fusions, tumor mutational burden (TMB), and chromosomal instability (CI); and classified into GBM subgroups. Each genomic report was discussed at a multidisciplinary tumor board meeting to evaluate for matching trials. From 111 consecutive patients, 97.3% accepted inclusion in this study. Eighty-six (77%) were treated with radiation therapy/temozolomide (TMZ) and adjuvant TMZ. One NTRK2 and three FGFR3-TACC3 fusions were identified. Copy number alterations in GRB2 and SMYD4 were significantly correlated with worse median OS together with known clinical variables like age, performance status, steroid dose, and O6-methyl-guanine-DNA-methyl-transferase status. Patients with CI-median or TMB-high had significantly worse median OS compared to CI-low/high or TMB-low/median. In conclusion, performing genomic profiling at diagnosis enables evaluation of genomic-driven therapy at the first progression. Furthermore, TMB-high or CI-median patients had worse median OS, which can support the possibility of offering experimental treatment already at the first line for this group.
Collapse
Affiliation(s)
- Dorte S. Nørøxe
- Department of Radiation BiologyRigshospitaletCopenhagenDenmark
- Department of OncologyRigshospitaletCopenhagenDenmark
| | | | - Olga Østrup
- Center for Genomic MedicineRigshospitaletCopenhagenDenmark
| | - Signe R. Michaelsen
- Department of Radiation BiologyRigshospitaletCopenhagenDenmark
- Biotech, Research and Innovation Centre (BRIC)University of CopenhagenCopenhagenDenmark
| | - Ane Y. Schmidt
- Center for Genomic MedicineRigshospitaletCopenhagenDenmark
| | - Savvas Kinalis
- Center for Genomic MedicineRigshospitaletCopenhagenDenmark
| | | | | | | | | | - Hans S. Poulsen
- Department of Radiation BiologyRigshospitaletCopenhagenDenmark
- Department of OncologyRigshospitaletCopenhagenDenmark
| | | | - Ulrik Lassen
- Department of OncologyRigshospitaletCopenhagenDenmark
| |
Collapse
|
1709
|
Lyu J, Li JJ, Su J, Peng F, Chen YE, Ge X, Li W. DORGE: Discovery of Oncogenes and tumoR suppressor genes using Genetic and Epigenetic features. SCIENCE ADVANCES 2020; 6:6/46/eaba6784. [PMID: 33177077 PMCID: PMC7673741 DOI: 10.1126/sciadv.aba6784] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 09/29/2020] [Indexed: 05/09/2023]
Abstract
Data-driven discovery of cancer driver genes, including tumor suppressor genes (TSGs) and oncogenes (OGs), is imperative for cancer prevention, diagnosis, and treatment. Although epigenetic alterations are important for tumor initiation and progression, most known driver genes were identified based on genetic alterations alone. Here, we developed an algorithm, DORGE (Discovery of Oncogenes and tumor suppressoR genes using Genetic and Epigenetic features), to identify TSGs and OGs by integrating comprehensive genetic and epigenetic data. DORGE identified histone modifications as strong predictors for TSGs, and it found missense mutations, super enhancers, and methylation differences as strong predictors for OGs. We extensively validated DORGE-predicted cancer driver genes using independent functional genomics data. We also found that DORGE-predicted dual-functional genes (both TSGs and OGs) are enriched at hubs in protein-protein interaction and drug-gene networks. Overall, our study has deepened the understanding of epigenetic mechanisms in tumorigenesis and revealed previously undetected cancer driver genes.
Collapse
Affiliation(s)
- Jie Lyu
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Jingyi Jessica Li
- Department of Statistics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Jianzhong Su
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fanglue Peng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yiling Elaine Chen
- Department of Statistics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xinzhou Ge
- Department of Statistics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
1710
|
Rustad EH, Yellapantula VD, Glodzik D, Maclachlan KH, Diamond B, Boyle EM, Ashby C, Blaney P, Gundem G, Hultcrantz M, Leongamornlert D, Angelopoulos N, Agnelli L, Auclair D, Zhang Y, Dogan A, Bolli N, Papaemmanuil E, Anderson KC, Moreau P, Avet-Loiseau H, Munshi NC, Keats JJ, Campbell PJ, Morgan GJ, Landgren O, Maura F. Revealing the impact of structural variants in multiple myeloma. Blood Cancer Discov 2020; 1:258-273. [PMID: 33392515 PMCID: PMC7774871 DOI: 10.1158/2643-3230.bcd-20-0132] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
The landscape of structural variants (SVs) in multiple myeloma remains poorly understood. Here, we performed comprehensive analysis of SVs in a large cohort of 752 multiple myeloma patients by low coverage long-insert whole genome sequencing. We identified 68 SV hotspots involving 17 new candidate driver genes, including the therapeutic targets BCMA (TNFRSF17), SLAMF and MCL1. Catastrophic complex rearrangements termed chromothripsis were present in 24% of patients and independently associated with poor clinical outcomes. Templated insertions were the second most frequent complex event (19%), mostly involved in super-enhancer hijacking and activation of oncogenes such as CCND1 and MYC. Importantly, in 31% of patients two or more seemingly independent putative driver events were caused by a single structural event, demonstrating that the complex genomic landscape of multiple myeloma can be acquired through few key events during tumor evolutionary history. Overall, this study reveals the critical role of SVs in multiple myeloma pathogenesis.
Collapse
Affiliation(s)
- Even H Rustad
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Venkata D Yellapantula
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dominik Glodzik
- Epidemiology & Biostatistics, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kylee H Maclachlan
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Benjamin Diamond
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Cody Ashby
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Gunes Gundem
- Epidemiology & Biostatistics, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Malin Hultcrantz
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel Leongamornlert
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Nicos Angelopoulos
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| | - Luca Agnelli
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniel Auclair
- Multiple Myeloma Research Foundation (MMRF), Norwalk, Connecticut
| | - Yanming Zhang
- Cytogenetics Laboratory, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ahmet Dogan
- Hematopathology Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Niccolò Bolli
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elli Papaemmanuil
- Epidemiology & Biostatistics, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Philippe Moreau
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | | | - Nikhil C Munshi
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Veterans Administration Boston Healthcare System, West Roxbury, Massachusetts
| | - Jonathan J Keats
- Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Peter J Campbell
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | | | - Ola Landgren
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Francesco Maura
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
1711
|
Wong M, Mayoh C, Lau LMS, Khuong-Quang DA, Pinese M, Kumar A, Barahona P, Wilkie EE, Sullivan P, Bowen-James R, Syed M, Martincorena I, Abascal F, Sherstyuk A, Bolanos NA, Baber J, Priestley P, Dolman MEM, Fleuren EDG, Gauthier ME, Mould EVA, Gayevskiy V, Gifford AJ, Grebert-Wade D, Strong PA, Manouvrier E, Warby M, Thomas DM, Kirk J, Tucker K, O'Brien T, Alvaro F, McCowage GB, Dalla-Pozza L, Gottardo NG, Tapp H, Wood P, Khaw SL, Hansford JR, Moore AS, Norris MD, Trahair TN, Lock RB, Tyrrell V, Haber M, Marshall GM, Ziegler DS, Ekert PG, Cowley MJ. Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nat Med 2020; 26:1742-1753. [PMID: 33020650 DOI: 10.1038/s41591-020-1072-4] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023]
Abstract
The Zero Childhood Cancer Program is a precision medicine program to benefit children with poor-outcome, rare, relapsed or refractory cancer. Using tumor and germline whole genome sequencing (WGS) and RNA sequencing (RNAseq) across 252 tumors from high-risk pediatric patients with cancer, we identified 968 reportable molecular aberrations (39.9% in WGS and RNAseq, 35.1% in WGS only and 25.0% in RNAseq only). Of these patients, 93.7% had at least one germline or somatic aberration, 71.4% had therapeutic targets and 5.2% had a change in diagnosis. WGS identified pathogenic cancer-predisposing variants in 16.2% of patients. In 76 central nervous system tumors, methylome analysis confirmed diagnosis in 71.1% of patients and contributed to a change of diagnosis in two patients (2.6%). To date, 43 patients have received a recommended therapy, 38 of whom could be evaluated, with 31% showing objective evidence of clinical benefit. Comprehensive molecular profiling resolved the molecular basis of virtually all high-risk cancers, leading to clinical benefit in some patients.
Collapse
Affiliation(s)
- Marie Wong
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Loretta M S Lau
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Dong-Anh Khuong-Quang
- Children's Cancer Centre, Royal Children's Hospital, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Mark Pinese
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Amit Kumar
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Paulette Barahona
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Emilie E Wilkie
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Patricia Sullivan
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Rachel Bowen-James
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Mustafa Syed
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | | | | | - Alexandra Sherstyuk
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Noemi A Bolanos
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Jonathan Baber
- Hartwig Medical Foundation, Amsterdam, The Netherlands
- Hartwig Medical Foundation Australia, Sydney, NSW, Australia
| | - Peter Priestley
- Hartwig Medical Foundation, Amsterdam, The Netherlands
- Hartwig Medical Foundation Australia, Sydney, NSW, Australia
| | - M Emmy M Dolman
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Emmy D G Fleuren
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Marie-Emilie Gauthier
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Emily V A Mould
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Velimir Gayevskiy
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- Department of Anatomical Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Dylan Grebert-Wade
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Patrick A Strong
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Elodie Manouvrier
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Meera Warby
- Cancer Centre for Children, The Children's Hospital Westmead, Westmead, NSW, Australia
| | - David M Thomas
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Judy Kirk
- Familial Cancer Service, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, NSW, Australia
- Sydney Medical School, University of Sydney Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Katherine Tucker
- Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, NSW, Australia
- Prince of Wales Hospital Clinical School, University of New South Wales, Randwick, NSW, Australia
| | - Tracey O'Brien
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Frank Alvaro
- John Hunter Children's Hospital, New Lambton Heights, NSW, Australia
| | - Geoffry B McCowage
- Cancer Centre for Children, The Children's Hospital Westmead, Westmead, NSW, Australia
| | - Luciano Dalla-Pozza
- Cancer Centre for Children, The Children's Hospital Westmead, Westmead, NSW, Australia
| | - Nicholas G Gottardo
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children's Hospital, Nedlands, WA, Australia
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands, WA, Australia
| | - Heather Tapp
- Women's and Children's Hospital, Adelaide, SA, Australia
| | - Paul Wood
- Monash Children's Hospital, Melbourne, VIC, Australia
| | - Seong-Lin Khaw
- Children's Cancer Centre, Royal Children's Hospital, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Jordan R Hansford
- Children's Cancer Centre, Royal Children's Hospital, Parkville, VIC, Australia
| | - Andrew S Moore
- Oncology Service, Oncology Service, Queensland Children's Hospital, Brisbane, QLD, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, Australia
| | - Toby N Trahair
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Vanessa Tyrrell
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Glenn M Marshall
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia.
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia.
| | - Paul G Ekert
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia.
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| | - Mark J Cowley
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia.
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
| |
Collapse
|
1712
|
Kumar M, Bowers RR, Delaney JR. Single-cell analysis of copy-number alterations in serous ovarian cancer reveals substantial heterogeneity in both low- and high-grade tumors. Cell Cycle 2020; 19:3154-3166. [PMID: 33121339 DOI: 10.1080/15384101.2020.1836439] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Unusually high aneuploidy is a hallmark of epithelial serous ovarian cancer (SOC). Previous analyses have focused on aneuploidy on average across all tumor cells. With the expansion of single-cell sequencing technologies, however, an analysis of copy number heterogeneity cell-to-cell is now technically feasible. Here, we describe an analysis of single-cell RNA sequencing (scRNA-seq) data to infer arm-level aneuploidy in individual serous ovarian cancer cells. By first clustering high-quality sequenced epithelial versus non-epithelial cells, high-confidence tumor cell populations were identified. InferCNV was used to predict segmented copy-number alterations (CNAs), which were then used to determine arm-level aneuploidy at the single-cell level. Control comparisons of normal cells to normal cells showed zero arm-level aneuploidy, whereas a median of four aneuploid events were detectable in cancer cells. A heterogeneity analysis of high-grade tumor cells compared to low-grade tumor cells showed similar levels of cell-to-cell variation between cancer grades. Metastatic tumors potentially showed selection pressure with reduced cell-to-cell variation compared to cells from primary tumors. Minor cell populations with CNAs similar to metastatic cells were identified within the matched primary tumors. Taken together, these results provide a minimum estimate for single-cell aneuploidy in serous ovarian cancer and demonstrate the utility of single-cell sequencing for CNA analysis.
Collapse
Affiliation(s)
- Manonmani Kumar
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina , Charleston, SC, USA
| | - Robert R Bowers
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina , Charleston, SC, USA
| | - Joe R Delaney
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina , Charleston, SC, USA
| |
Collapse
|
1713
|
Lu J, Wilfred P, Korbie D, Trau M. Regulation of Canonical Oncogenic Signaling Pathways in Cancer via DNA Methylation. Cancers (Basel) 2020; 12:E3199. [PMID: 33143142 PMCID: PMC7692324 DOI: 10.3390/cancers12113199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Disruption of signaling pathways that plays a role in the normal development and cellular homeostasis may lead to the dysregulation of cellular signaling and bring about the onset of different diseases, including cancer. In addition to genetic aberrations, DNA methylation also acts as an epigenetic modifier to drive the onset and progression of cancer by mediating the reversible transcription of related genes. Although the role of DNA methylation as an alternative driver of carcinogenesis has been well-established, the global effects of DNA methylation on oncogenic signaling pathways and the presentation of cancer is only emerging. In this article, we introduced a differential methylation parsing pipeline (MethylMine) which mined for epigenetic biomarkers based on feature selection. This pipeline was used to mine for biomarkers, which presented a substantial difference in methylation between the tumor and the matching normal tissue samples. Combined with the Data Integration Analysis for Biomarker discovery (DIABLO) framework for machine learning and multi-omic analysis, we revisited the TCGA DNA methylation and RNA-Seq datasets for breast, colorectal, lung, and prostate cancer, and identified differentially methylated genes within the NRF2-KEAP1/PI3K oncogenic pathway, which regulates the expression of cytoprotective genes, that serve as potential therapeutic targets to treat different cancers.
Collapse
Affiliation(s)
- Jennifer Lu
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (J.L.); (P.W.)
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Premila Wilfred
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (J.L.); (P.W.)
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Darren Korbie
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (J.L.); (P.W.)
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (J.L.); (P.W.)
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
1714
|
Srinivasan S, Kalinava N, Aldana R, Li Z, van Hagen S, Rodenburg SYA, Wind-Rotolo M, Qian X, Sasson AS, Tang H, Kirov S. Misannotated Multi-Nucleotide Variants in Public Cancer Genomics Datasets Lead to Inaccurate Mutation Calls with Significant Implications. Cancer Res 2020; 81:282-288. [PMID: 33115802 DOI: 10.1158/0008-5472.can-20-2151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/11/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022]
Abstract
Although next-generation sequencing is widely used in cancer to profile tumors and detect variants, most somatic variant callers used in these pipelines identify variants at the lowest possible granularity, single-nucleotide variants (SNV). As a result, multiple adjacent SNVs are called individually instead of as a multi-nucleotide variants (MNV). With this approach, the amino acid change from the individual SNV within a codon could be different from the amino acid change based on the MNV that results from combining SNV, leading to incorrect conclusions about the downstream effects of the variants. Here, we analyzed 10,383 variant call files (VCF) from the Cancer Genome Atlas (TCGA) and found 12,141 incorrectly annotated MNVs. Analysis of seven commonly mutated genes from 178 studies in cBioPortal revealed that MNVs were consistently missed in 20 of these studies, whereas they were correctly annotated in 15 more recent studies. At the BRAF V600 locus, the most common example of MNV, several public datasets reported separate BRAF V600E and BRAF V600M variants instead of a single merged V600K variant. VCFs from the TCGA Mutect2 caller were used to develop a solution to merge SNV to MNV. Our custom script used the phasing information from the SNV VCF and determined whether SNVs were at the same codon and needed to be merged into MNV before variant annotation. This study shows that institutions performing NGS sequencing for cancer genomics should incorporate the step of merging MNV as a best practice in their pipelines. SIGNIFICANCE: Identification of incorrect mutation calls in TCGA, including clinically relevant BRAF V600 and KRAS G12, will influence research and potentially clinical decisions.
Collapse
Affiliation(s)
- Sujaya Srinivasan
- Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, New Jersey
| | - Natallia Kalinava
- Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, New Jersey
| | | | - Zhipan Li
- Sentieon Inc., Mountain View, California
| | | | | | | | - Xiaozhong Qian
- Translational Medicine, Bristol Myers Squibb, Princeton, New Jersey.,Translational Sciences, Daichi Sankyo, Basking Ridge, New Jersey
| | - Ariella S Sasson
- Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, New Jersey
| | - Hao Tang
- Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, New Jersey
| | - Stefan Kirov
- Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, New Jersey.
| |
Collapse
|
1715
|
Lutsik P, Baude A, Mancarella D, Öz S, Kühn A, Toth R, Hey J, Toprak UH, Lim J, Nguyen VH, Jiang C, Mayakonda A, Hartmann M, Rosemann F, Breuer K, Vonficht D, Grünschläger F, Lee S, Schuhmacher MK, Kusevic D, Jauch A, Weichenhan D, Zustin J, Schlesner M, Haas S, Park JH, Park YJ, Oppermann U, Jeltsch A, Haller F, Fellenberg J, Lindroth AM, Plass C. Globally altered epigenetic landscape and delayed osteogenic differentiation in H3.3-G34W-mutant giant cell tumor of bone. Nat Commun 2020; 11:5414. [PMID: 33110075 PMCID: PMC7591516 DOI: 10.1038/s41467-020-18955-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The neoplastic stromal cells of giant cell tumor of bone (GCTB) carry a mutation in H3F3A, leading to a mutant histone variant, H3.3-G34W, as a sole recurrent genetic alteration. We show that in patient-derived stromal cells H3.3-G34W is incorporated into the chromatin and associates with massive epigenetic alterations on the DNA methylation, chromatin accessibility and histone modification level, that can be partially recapitulated in an orthogonal cell line system by the introduction of H3.3-G34W. These epigenetic alterations affect mainly heterochromatic and bivalent regions and provide possible explanations for the genomic instability, as well as the osteolytic phenotype of GCTB. The mutation occurs in differentiating mesenchymal stem cells and associates with an impaired osteogenic differentiation. We propose that the observed epigenetic alterations reflect distinct differentiation stages of H3.3 WT and H3.3 MUT stromal cells and add to H3.3-G34W-associated changes. The histone variant mutation H3.3-G34W occurs in the majority of giant cell tumor of bone (GCTB). By profiling patient-derived GCTB tumor cells, the authors show that this mutation associates with epigenetic alterations in heterochromatic and bivalent regions that contribute to an impaired osteogenic differentiation and the osteolytic phenotype of GCTB.
Collapse
Affiliation(s)
- Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Annika Baude
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Daniela Mancarella
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Faculty of Biosciences, Ruprecht Karl University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
| | - Simin Öz
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Alexander Kühn
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Faculty of Biosciences, Ruprecht Karl University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
| | - Reka Toth
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Faculty of Biosciences, Ruprecht Karl University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
| | - Umut H Toprak
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jinyeong Lim
- Graduate School of Cancer Science and Policy, Cancer Biomedical Science, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea, Republic of Korea
| | - Viet Ha Nguyen
- Graduate School of Cancer Science and Policy, Cancer Biomedical Science, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea, Republic of Korea
| | - Chao Jiang
- Botnar Research Centre, Oxford NIHR BRC, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Anand Mayakonda
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Faculty of Biosciences, Ruprecht Karl University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
| | - Mark Hartmann
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) & German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Felix Rosemann
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Kersten Breuer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Dominik Vonficht
- Faculty of Biosciences, Ruprecht Karl University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine-HI-STEM gGmbH, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Florian Grünschläger
- Faculty of Biosciences, Ruprecht Karl University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine-HI-STEM gGmbH, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Suman Lee
- Graduate School of Cancer Science and Policy, Cancer Biomedical Science, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea, Republic of Korea
| | - Maren Kirstin Schuhmacher
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Denis Kusevic
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Anna Jauch
- Institute of Human Genetics, Ruprecht Karl University of Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jozef Zustin
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251, Hamburg, Germany
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Simon Haas
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine-HI-STEM gGmbH, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Joo Hyun Park
- Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Daehyeon-dong, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Yoon Jung Park
- Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Daehyeon-dong, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Udo Oppermann
- Botnar Research Centre, Oxford NIHR BRC, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.,FRIAS-Freiburg Institute of Advanced Studies, Albert Ludwig University of Freiburg, Alberstrasse 19, 79104, Freiburg, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Florian Haller
- Institute of Pathology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Krankenstrasse 8, 91054, Erlangen, Germany
| | - Jörg Fellenberg
- Department of Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Ruprecht Karl University of Heidelberg, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany
| | - Anders M Lindroth
- Graduate School of Cancer Science and Policy, Cancer Biomedical Science, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea, Republic of Korea.
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
| |
Collapse
|
1716
|
MacDonald KM, Benguerfi S, Harding SM. Alerting the immune system to DNA damage: micronuclei as mediators. Essays Biochem 2020; 64:753-764. [PMID: 32844183 PMCID: PMC7588664 DOI: 10.1042/ebc20200016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/01/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022]
Abstract
Healthy cells experience thousands of DNA lesions per day during normal cellular metabolism, and ionizing radiation and chemotherapeutic drugs rely on DNA damage to kill cancer cells. In response to such lesions, the DNA damage response (DDR) activates cell-cycle checkpoints, initiates DNA repair mechanisms, or promotes the clearance of irreparable cells. Work over the past decade has revealed broader influences of the DDR, involving inflammatory gene expression following unresolved DNA damage, and immune surveillance of damaged or mutated cells. Subcellular structures called micronuclei, containing broken fragments of DNA or whole chromosomes that have been isolated away from the rest of the genome, are now recognized as one mediator of DDR-associated immune recognition. Micronuclei can initiate pro-inflammatory signaling cascades, or massively degrade to invoke distinct forms of genomic instability. In this mini-review, we aim to provide an overview of the current evidence linking the DDR to activation of the immune response through micronuclei formation, identifying key areas of interest, open questions, and emerging implications.
Collapse
Affiliation(s)
- Kate M MacDonald
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Soraya Benguerfi
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Shane M Harding
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- Department of Radiation Oncology and Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
1717
|
Das T, Andrieux G, Ahmed M, Chakraborty S. Integration of Online Omics-Data Resources for Cancer Research. Front Genet 2020; 11:578345. [PMID: 33193699 PMCID: PMC7645150 DOI: 10.3389/fgene.2020.578345] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
The manifestations of cancerous phenotypes necessitate alterations at different levels of information-flow from genome to proteome. The molecular alterations at different information processing levels serve as the basis for the cancer phenotype to emerge. To understand the underlying mechanisms that drive the acquisition of cancer hallmarks it is required to interrogate cancer cells using multiple levels of information flow represented by different omics - such as genomics, epigenomics, transcriptomics, and proteomics. The advantage of multi-omics data integration comes with a trade-off in the form of an added layer of complexity originating from inherently diverse types of omics-datasets that may pose a challenge to integrate the omics-data in a biologically meaningful manner. The plethora of cancer-specific online omics-data resources, if able to be integrated efficiently and systematically, may facilitate the generation of new biological insights for cancer research. In this review, we provide a comprehensive overview of the online single- and multi-omics resources that are dedicated to cancer. We catalog various online omics-data resources such as The Cancer Genome Atlas (TCGA) along with various TCGA-associated data portals and tools for multi-omics analysis and visualization, the International Cancer Genome Consortium (ICGC), Catalogue of Somatic Mutations in Cancer (COSMIC), The Pathology Atlas, Gene Expression Omnibus (GEO), and PRoteomics IDEntifications (PRIDE). By comparing the strengths and limitations of the respective online resources, we aim to highlight the current biological and technological challenges and possible strategies to overcome these challenges. We outline the available schemes for the integration of the multi-omics dimensions for stratifying cancer patients and biomarker prediction based on the integrated molecular-signatures of cancer. Finally, we propose the multi-omics driven systems-biology approaches to realize the potential of precision onco-medicine as the future of cancer research. We believe this systematic review will encourage scientists and clinicians worldwide to utilize the online resources to explore and integrate the available omics datasets that may provide a window of opportunity to generate new biological insights and contribute to the advancement of the field of cancer research.
Collapse
Affiliation(s)
- Tonmoy Das
- Molecular Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Geoffroy Andrieux
- Medical Center - University of Freiburg, Faculty of Medicine, Institute of Medical Bioinformatics and Systems Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg, Freiburg, Germany
| | - Musaddeque Ahmed
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sajib Chakraborty
- Molecular Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
1718
|
Li Y, Li J, Guo E, Huang J, Fang G, Chen S, Yang B, Fu Y, Li F, Wang Z, Xiao R, Liu C, Huang Y, Wu X, Lu F, You L, Feng L, Xi L, Wu P, Ma D, Sun C, Wang B, Chen G. Integrating pathology, chromosomal instability and mutations for risk stratification in early-stage endometrioid endometrial carcinoma. Cell Biosci 2020; 10:122. [PMID: 33110489 PMCID: PMC7583263 DOI: 10.1186/s13578-020-00486-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background Risk stratifications for endometrial carcinoma (EC) depend on histopathology and molecular pathology. Histopathological risk stratification lacks reproducibility, neglects heterogeneity and contributes little to surgical procedures. Existing molecular stratification is useless in patients with specific pathological or molecular characteristics and cannot guide postoperative adjuvant radiotherapies. Chromosomal instability (CIN), the numerical and structural alterations of chromosomes resulting from ongoing errors of chromosome segregation, is an intrinsic biological mechanism for the evolution of different prognostic factors of histopathology and molecular pathology and may be applicable to the risk stratification of EC. Results By analyzing CIN25 and CIN70, two reliable gene expression signatures for CIN, we found that EC with unfavorable prognostic factors of histopathology or molecular pathology had serious CIN. However, the POLE mutant, as a favorable prognostic factor, had elevated CIN signatures, and the CTNNB1 mutant, as an unfavorable prognostic factor, had decreased CIN signatures. Only if these two mutations were excluded were CIN signatures strongly prognostic for outcomes in different adjuvant radiotherapy subgroups. Integrating pathology, CIN signatures and POLE/CTNNB1 mutation stratified stageIendometrioid EC into four groups with improved risk prognostication and treatment recommendations. Conclusions We revealed the possibility of integrating histopathology and molecular pathology by CIN for risk stratification in early-stage EC. Our integrated risk model deserves further improvement and validation.
Collapse
Affiliation(s)
- Yuan Li
- National Clinical Research Center of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv, Wuhan, 430030 Hubei China
| | - Jiaqi Li
- National Clinical Research Center of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ensong Guo
- National Clinical Research Center of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv, Wuhan, 430030 Hubei China
| | - Jia Huang
- National Clinical Research Center of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv, Wuhan, 430030 Hubei China
| | - Guangguang Fang
- Department of Gynecology,Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen Dapeng New District Maternity & Child Health Hospital, Shenzhen, 518038 China
| | - Shaohua Chen
- Department of Gynecology and Obstetrics, The People's Hospital of Macheng City, Macheng, 438300 China
| | - Bin Yang
- National Clinical Research Center of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv, Wuhan, 430030 Hubei China
| | - Yu Fu
- National Clinical Research Center of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv, Wuhan, 430030 Hubei China
| | - Fuxia Li
- National Clinical Research Center of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv, Wuhan, 430030 Hubei China
| | - Zizhuo Wang
- National Clinical Research Center of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv, Wuhan, 430030 Hubei China
| | - Rourou Xiao
- National Clinical Research Center of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv, Wuhan, 430030 Hubei China
| | - Chen Liu
- National Clinical Research Center of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv, Wuhan, 430030 Hubei China
| | - Yuhan Huang
- National Clinical Research Center of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv, Wuhan, 430030 Hubei China
| | - Xue Wu
- National Clinical Research Center of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv, Wuhan, 430030 Hubei China
| | - Funian Lu
- National Clinical Research Center of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv, Wuhan, 430030 Hubei China
| | - Lixin You
- National Clinical Research Center of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv, Wuhan, 430030 Hubei China
| | - Ling Feng
- National Clinical Research Center of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Xi
- National Clinical Research Center of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv, Wuhan, 430030 Hubei China
| | - Peng Wu
- National Clinical Research Center of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv, Wuhan, 430030 Hubei China
| | - Ding Ma
- National Clinical Research Center of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv, Wuhan, 430030 Hubei China
| | - Chaoyang Sun
- National Clinical Research Center of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv, Wuhan, 430030 Hubei China
| | - Beibei Wang
- National Clinical Research Center of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv, Wuhan, 430030 Hubei China
| | - Gang Chen
- National Clinical Research Center of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Anv, Wuhan, 430030 Hubei China
| |
Collapse
|
1719
|
Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol 2020; 21:729-749. [PMID: 33087899 DOI: 10.1038/s41580-020-00294-x] [Citation(s) in RCA: 746] [Impact Index Per Article: 149.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Glycosylation is the most abundant and diverse form of post-translational modification of proteins that is common to all eukaryotic cells. Enzymatic glycosylation of proteins involves a complex metabolic network and different types of glycosylation pathways that orchestrate enormous amplification of the proteome in producing diversity of proteoforms and its biological functions. The tremendous structural diversity of glycans attached to proteins poses analytical challenges that limit exploration of specific functions of glycosylation. Major advances in quantitative transcriptomics, proteomics and nuclease-based gene editing are now opening new global ways to explore protein glycosylation through analysing and targeting enzymes involved in glycosylation processes. In silico models predicting cellular glycosylation capacities and glycosylation outcomes are emerging, and refined maps of the glycosylation pathways facilitate genetic approaches to address functions of the vast glycoproteome. These approaches apply commonly available cell biology tools, and we predict that use of (single-cell) transcriptomics, genetic screens, genetic engineering of cellular glycosylation capacities and custom design of glycoprotein therapeutics are advancements that will ignite wider integration of glycosylation in general cell biology.
Collapse
|
1720
|
Sill M, Plass C, Pfister SM, Lipka DB. Molecular tumor classification using DNA methylome analysis. Hum Mol Genet 2020; 29:R205-R213. [PMID: 32657331 DOI: 10.1093/hmg/ddaa147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
Tumor classifiers based on molecular patterns promise to define and reliably classify tumor entities. The high tissue- and cell type-specificity of DNA methylation, as well as its high stability, makes DNA methylation an ideal choice for the development of tumor classifiers. Herein, we review existing tumor classifiers using DNA methylome analysis and will provide an overview on their emerging impact on cancer classification, the detection of novel cancer subentities and patient stratification with a focus on brain tumors, sarcomas and hematopoietic malignancies. Furthermore, we provide an outlook on the enormous potential of DNA methylome analysis to complement classical histopathological and genetic diagnostics, including the emerging field of epigenomic analysis in liquid biopsies.
Collapse
Affiliation(s)
- Martin Sill
- Hopp Children's Cancer Center at the National Center for Tumor Diseases (NCT) Heidelberg, 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology (B062), German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center at the National Center for Tumor Diseases (NCT) Heidelberg, 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology (B062), German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Daniel B Lipka
- Division of Translational Medical Oncology, Section Translational Cancer Epigenomics, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT) Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
1721
|
Khalighi S, Singh S, Varadan V. Untangling a complex web: Computational analyses of tumor molecular profiles to decode driver mechanisms. J Genet Genomics 2020; 47:595-609. [PMID: 33423960 PMCID: PMC7902422 DOI: 10.1016/j.jgg.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 11/04/2020] [Accepted: 11/14/2020] [Indexed: 12/19/2022]
Abstract
Genome-scale studies focusing on molecular profiling of cancers across tissue types have revealed a plethora of aberrations across the genomic, transcriptomic, and epigenomic scales. The significant molecular heterogeneity across individual tumors even within the same tissue context complicates decoding the key etiologic mechanisms of this disease. Furthermore, it is increasingly likely that biologic mechanisms underlying the pathobiology of cancer involve multiple molecular entities interacting across functional scales. This has motivated the development of computational approaches that integrate molecular measurements with prior biological knowledge in increasingly intricate ways to enable the discovery of driver genomic aberrations across cancers. Here, we review diverse methodological approaches that have powered significant advances in our understanding of the genomic underpinnings of cancer at the cohort and at the individual tumor scales. We outline the key advances and challenges in the computational discovery of cancer mechanisms while motivating the development of systems biology approaches to comprehensively decode the biologic drivers of this complex disease.
Collapse
Affiliation(s)
- Sirvan Khalighi
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Salendra Singh
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Vinay Varadan
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
1722
|
Prediction of genome-wide effects of single nucleotide variants on transcription factor binding. Sci Rep 2020; 10:17632. [PMID: 33077858 PMCID: PMC7572467 DOI: 10.1038/s41598-020-74793-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/07/2020] [Indexed: 11/26/2022] Open
Abstract
Single nucleotide variants (SNVs) located in transcriptional regulatory regions can result in gene expression changes that lead to adaptive or detrimental phenotypic outcomes. Here, we predict gain or loss of binding sites for 741 transcription factors (TFs) across the human genome. We calculated ‘gainability’ and ‘disruptability’ scores for each TF that represent the likelihood of binding sites being created or disrupted, respectively. We found that functional cis-eQTL SNVs are more likely to alter TF binding sites than rare SNVs in the human population. In addition, we show that cancer somatic mutations have different effects on TF binding sites from different TF families on a cancer-type basis. Finally, we discuss the relationship between these results and cancer mutational signatures. Altogether, we provide a blueprint to study the impact of SNVs derived from genetic variation or disease association on TF binding to gene regulatory regions.
Collapse
|
1723
|
Yalcin GD, Danisik N, Baygin RC, Acar A. Systems Biology and Experimental Model Systems of Cancer. J Pers Med 2020; 10:E180. [PMID: 33086677 PMCID: PMC7712848 DOI: 10.3390/jpm10040180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/29/2022] Open
Abstract
Over the past decade, we have witnessed an increasing number of large-scale studies that have provided multi-omics data by high-throughput sequencing approaches. This has particularly helped with identifying key (epi)genetic alterations in cancers. Importantly, aberrations that lead to the activation of signaling networks through the disruption of normal cellular homeostasis is seen both in cancer cells and also in the neighboring tumor microenvironment. Cancer systems biology approaches have enabled the efficient integration of experimental data with computational algorithms and the implementation of actionable targeted therapies, as the exceptions, for the treatment of cancer. Comprehensive multi-omics data obtained through the sequencing of tumor samples and experimental model systems will be important in implementing novel cancer systems biology approaches and increasing their efficacy for tailoring novel personalized treatment modalities in cancer. In this review, we discuss emerging cancer systems biology approaches based on multi-omics data derived from bulk and single-cell genomics studies in addition to existing experimental model systems that play a critical role in understanding (epi)genetic heterogeneity and therapy resistance in cancer.
Collapse
Affiliation(s)
| | | | | | - Ahmet Acar
- Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupınar Bulvarı 1, Çankaya, Ankara 06800, Turkey; (G.D.Y.); (N.D.); (R.C.B.)
| |
Collapse
|
1724
|
Adhikari S, Nice EC, Deutsch EW, Lane L, Omenn GS, Pennington SR, Paik YK, Overall CM, Corrales FJ, Cristea IM, Van Eyk JE, Uhlén M, Lindskog C, Chan DW, Bairoch A, Waddington JC, Justice JL, LaBaer J, Rodriguez H, He F, Kostrzewa M, Ping P, Gundry RL, Stewart P, Srivastava S, Srivastava S, Nogueira FCS, Domont GB, Vandenbrouck Y, Lam MPY, Wennersten S, Vizcaino JA, Wilkins M, Schwenk JM, Lundberg E, Bandeira N, Marko-Varga G, Weintraub ST, Pineau C, Kusebauch U, Moritz RL, Ahn SB, Palmblad M, Snyder MP, Aebersold R, Baker MS. A high-stringency blueprint of the human proteome. Nat Commun 2020; 11:5301. [PMID: 33067450 PMCID: PMC7568584 DOI: 10.1038/s41467-020-19045-9] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
The Human Proteome Organization (HUPO) launched the Human Proteome Project (HPP) in 2010, creating an international framework for global collaboration, data sharing, quality assurance and enhancing accurate annotation of the genome-encoded proteome. During the subsequent decade, the HPP established collaborations, developed guidelines and metrics, and undertook reanalysis of previously deposited community data, continuously increasing the coverage of the human proteome. On the occasion of the HPP's tenth anniversary, we here report a 90.4% complete high-stringency human proteome blueprint. This knowledge is essential for discerning molecular processes in health and disease, as we demonstrate by highlighting potential roles the human proteome plays in our understanding, diagnosis and treatment of cancers, cardiovascular and infectious diseases.
Collapse
Grants
- WT101477MA Wellcome Trust
- R24 GM127667 NIGMS NIH HHS
- U24 CA210985 NCI NIH HHS
- U19 AG023122 NIA NIH HHS
- U24 CA210967 NCI NIH HHS
- R01 GM087221 NIGMS NIH HHS
- R01 GM114141 NIGMS NIH HHS
- U24 CA115102 NCI NIH HHS
- P30 ES017885 NIEHS NIH HHS
- R01 HL111362 NHLBI NIH HHS
- Wellcome Trust
- 208391/Z/17/Z Wellcome Trust
- International Macquarie Research Excellence Scholarship
- NHMRC 1010303 (MSB, ECN); Cancer Council NSW RG19-04 (MSB, SBA, ECN); Cancer Institute NSW Fellowship 15/ECF/1-38 (SBA), Sydney Vital CINSW Translational Cancer Research Centre grant (MSB, SBA, SA), “Fight on the Beaches” (MSB, SBA, ECN, SA)
- Department of Health | National Health and Medical Research Council (NHMRC)
- Cancer Institute NSW (Cancer Institute New South Wales)
- “Fight on the Beaches” research grant
Collapse
Affiliation(s)
- Subash Adhikari
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Edouard C Nice
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Faculty of Medicine, Nursing and Health Sciences, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Eric W Deutsch
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98109, USA
| | - Lydie Lane
- Faculty of Medicine, SIB-Swiss Institute of Bioinformatics and Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Michel-Servet 1, 1211, Geneva, Switzerland
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109-2218, USA
| | - Stephen R Pennington
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Young-Ki Paik
- Yonsei Proteome Research Center, 50 Yonsei-ro, Sudaemoon-ku, Seoul, 120-749, South Korea
| | | | - Fernando J Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología-CSIC, Proteored-ISCIII, 28049, Madrid, Spain
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Jennifer E Van Eyk
- Cedars Sinai Medical Center, Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Los Angeles, CA, 90048, USA
| | - Mathias Uhlén
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 17121, Solna, Sweden
| | - Cecilia Lindskog
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden
| | - Daniel W Chan
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Amos Bairoch
- Faculty of Medicine, SIB-Swiss Institute of Bioinformatics and Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Michel-Servet 1, 1211, Geneva, Switzerland
| | - James C Waddington
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Joshua L Justice
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Joshua LaBaer
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Markus Kostrzewa
- Bruker Daltonik GmbH, Microbiology and Diagnostics, Fahrenheitstrasse, 428359, Bremen, Germany
| | - Peipei Ping
- Cardiac Proteomics and Signaling Laboratory, Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Rebekah L Gundry
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter Stewart
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | | | - Sudhir Srivastava
- Cancer Biomarkers Research Branch, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Suite 5E136, Rockville, MD, 20852, USA
| | - Fabio C S Nogueira
- Proteomics Unit and Laboratory of Proteomics, Institute of Chemistry, Federal University of Rio de Janeiro, Av Athos da Silveria Ramos, 149, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Gilberto B Domont
- Proteomics Unit and Laboratory of Proteomics, Institute of Chemistry, Federal University of Rio de Janeiro, Av Athos da Silveria Ramos, 149, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Yves Vandenbrouck
- University of Grenoble Alpes, Inserm, CEA, IRIG-BGE, U1038, 38000, Grenoble, France
| | - Maggie P Y Lam
- Departments of Medicine-Cardiology and Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Consortium for Fibrosis Research and Translation, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Sara Wennersten
- Division of Cardiology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Juan Antonio Vizcaino
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Marc Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jochen M Schwenk
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 17121, Solna, Sweden
| | - Emma Lundberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 17121, Solna, Sweden
| | - Nuno Bandeira
- Department of Computer Science and Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0404, La Jolla, CA, 92093-0404, USA
| | | | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center San Antonio, UT Health, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Charles Pineau
- University of Rennes, Inserm, EHESP, IREST, UMR_S 1085, F-35042, Rennes, France
| | - Ulrike Kusebauch
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98109, USA
| | - Robert L Moritz
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98109, USA
| | - Seong Beom Ahn
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Magnus Palmblad
- Leiden University Medical Center, Leiden, 2333, The Netherlands
| | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Ruedi Aebersold
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98109, USA
- Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Mark S Baker
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
- Department of Genetics, Stanford School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
1725
|
Newell F, Wilmott JS, Johansson PA, Nones K, Addala V, Mukhopadhyay P, Broit N, Amato CM, Van Gulick R, Kazakoff SH, Patch AM, Koufariotis LT, Lakis V, Leonard C, Wood S, Holmes O, Xu Q, Lewis K, Medina T, Gonzalez R, Saw RPM, Spillane AJ, Stretch JR, Rawson RV, Ferguson PM, Dodds TJ, Thompson JF, Long GV, Levesque MP, Robinson WA, Pearson JV, Mann GJ, Scolyer RA, Waddell N, Hayward NK. Whole-genome sequencing of acral melanoma reveals genomic complexity and diversity. Nat Commun 2020; 11:5259. [PMID: 33067454 PMCID: PMC7567804 DOI: 10.1038/s41467-020-18988-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/24/2020] [Indexed: 12/21/2022] Open
Abstract
To increase understanding of the genomic landscape of acral melanoma, a rare form of melanoma occurring on palms, soles or nail beds, whole genome sequencing of 87 tumors with matching transcriptome sequencing for 63 tumors was performed. Here we report that mutational signature analysis reveals a subset of tumors, mostly subungual, with an ultraviolet radiation signature. Significantly mutated genes are BRAF, NRAS, NF1, NOTCH2, PTEN and TYRP1. Mutations and amplification of KIT are also common. Structural rearrangement and copy number signatures show that whole genome duplication, aneuploidy and complex rearrangements are common. Complex rearrangements occur recurrently and are associated with amplification of TERT, CDK4, MDM2, CCND1, PAK1 and GAB2, indicating potential therapeutic options.
Collapse
Affiliation(s)
- Felicity Newell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | | | - Katia Nones
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Venkateswar Addala
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | | | - Natasa Broit
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Carol M Amato
- Center for Rare Melanomas, University of Colorado Cancer Center, Aurora, Colorado, USA
| | - Robert Van Gulick
- Center for Rare Melanomas, University of Colorado Cancer Center, Aurora, Colorado, USA
| | | | - Ann-Marie Patch
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Vanessa Lakis
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Conrad Leonard
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Scott Wood
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Oliver Holmes
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Qinying Xu
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Karl Lewis
- Center for Rare Melanomas, University of Colorado Cancer Center, Aurora, Colorado, USA
| | - Theresa Medina
- Center for Rare Melanomas, University of Colorado Cancer Center, Aurora, Colorado, USA
| | - Rene Gonzalez
- Center for Rare Melanomas, University of Colorado Cancer Center, Aurora, Colorado, USA
| | - Robyn P M Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Andrew J Spillane
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Royal North Shore Hospital, Sydney, NSW, Australia
| | - Jonathan R Stretch
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Robert V Rawson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
- New South Wales Health Pathology, Sydney, NSW, Australia
| | - Peter M Ferguson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
- New South Wales Health Pathology, Sydney, NSW, Australia
| | - Tristan J Dodds
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Royal North Shore Hospital, Sydney, NSW, Australia
| | - Mitchell P Levesque
- Dermatology Clinic, University Hospital Zürich, University of Zurich, Zurich, Switzerland
| | - William A Robinson
- Center for Rare Melanomas, University of Colorado Cancer Center, Aurora, Colorado, USA
| | - John V Pearson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Graham J Mann
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
- New South Wales Health Pathology, Sydney, NSW, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
1726
|
Hie B, Bryson BD, Berger B. Leveraging Uncertainty in Machine Learning Accelerates Biological Discovery and Design. Cell Syst 2020; 11:461-477.e9. [PMID: 33065027 DOI: 10.1016/j.cels.2020.09.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/01/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
Machine learning that generates biological hypotheses has transformative potential, but most learning algorithms are susceptible to pathological failure when exploring regimes beyond the training data distribution. A solution to address this issue is to quantify prediction uncertainty so that algorithms can gracefully handle novel phenomena that confound standard methods. Here, we demonstrate the broad utility of robust uncertainty prediction in biological discovery. By leveraging Gaussian process-based uncertainty prediction on modern pre-trained features, we train a model on just 72 compounds to make predictions over a 10,833-compound library, identifying and experimentally validating compounds with nanomolar affinity for diverse kinases and whole-cell growth inhibition of Mycobacterium tuberculosis. Uncertainty facilitates a tight iterative loop between computation and experimentation and generalizes across biological domains as diverse as protein engineering and single-cell transcriptomics. More broadly, our work demonstrates that uncertainty should play a key role in the increasing adoption of machine learning algorithms into the experimental lifecycle.
Collapse
Affiliation(s)
- Brian Hie
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bryan D Bryson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA 02139, USA.
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
1727
|
Billaud A, Chevalier LM, Campone M, Morel A, Bigot F. [Genetic instability, a factor limiting the efficiency of targeted therapies in solid oncology]. Bull Cancer 2020; 107:1161-1170. [PMID: 33070953 DOI: 10.1016/j.bulcan.2020.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/31/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
Abstract
Genomic instability is one of the main properties of tumour development, promoting first the acquisition of genetic alterations and thus carcinogenesis. Then, the chronic and anarchic proliferation of cancer cells also supports and contributes to this instability allowing a continuous evolution of the tumour. The accumulation of mutations resulting from that instability contributes to tumour heterogeneity that occurs in a specific environment. The resulting diversity of oncogenic drivers further complicates the characterization of the origin of cancer cells dysfunction and consequently therapeutic decision. However, the consideration of the molecular context in oncology has initiated the development of targeted therapies. Based on the concept of oncogene addiction and synthetic lethality, these new drugs require the characterization and identification of specific tumour biomarkers. Targeted therapies have thus considerably optimized patient management, improving efficiency and quality of life while limiting the side effects observed with conventional chemotherapies. However, despite significant clinical benefits, some major limitations to their administration remain. The study of the current issues related to these new therapeutic molecules is becoming crucial for patient management towards an improvement of personalized medicine.
Collapse
Affiliation(s)
- Amandine Billaud
- Université d'Angers, Inserm, CRCINA, 49000 Angers, France; Institut de cancérologie de l'Ouest, Angers, France
| | - Louise-Marie Chevalier
- Université d'Angers, Inserm, CRCINA, 49000 Angers, France; Institut de cancérologie de l'Ouest, Angers, France
| | - Mario Campone
- Université de Nantes, Inserm, CRCINA, 44000 Nantes, France; Institut de cancérologie de l'Ouest, Angers, France
| | - Alain Morel
- Université d'Angers, Inserm, CRCINA, 49000 Angers, France; Institut de cancérologie de l'Ouest, Angers, France.
| | | |
Collapse
|
1728
|
Brady SW, Liu Y, Ma X, Gout AM, Hagiwara K, Zhou X, Wang J, Macias M, Chen X, Easton J, Mulder HL, Rusch M, Wang L, Nakitandwe J, Lei S, Davis EM, Naranjo A, Cheng C, Maris JM, Downing JR, Cheung NKV, Hogarty MD, Dyer MA, Zhang J. Pan-neuroblastoma analysis reveals age- and signature-associated driver alterations. Nat Commun 2020; 11:5183. [PMID: 33056981 PMCID: PMC7560655 DOI: 10.1038/s41467-020-18987-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Neuroblastoma is a pediatric malignancy with heterogeneous clinical outcomes. To better understand neuroblastoma pathogenesis, here we analyze whole-genome, whole-exome and/or transcriptome data from 702 neuroblastoma samples. Forty percent of samples harbor at least one recurrent driver gene alteration and most aberrations, including MYCN, ATRX, and TERT alterations, differ in frequency by age. MYCN alterations occur at median 2.3 years of age, TERT at 3.8 years, and ATRX at 5.6 years. COSMIC mutational signature 18, previously associated with reactive oxygen species, is the most common cause of driver point mutations in neuroblastoma, including most ALK and Ras-activating variants. Signature 18 appears early and is continuous throughout disease evolution. Signature 18 is enriched in neuroblastomas with MYCN amplification, 17q gain, and increased expression of mitochondrial ribosome and electron transport-associated genes. Recurrent FGFR1 variants in six patients, and ALK N-terminal structural alterations in five samples, identify additional patients potentially amenable to precision therapy.
Collapse
Affiliation(s)
- Samuel W Brady
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alexander M Gout
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kohei Hagiwara
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jian Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Macias
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather L Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lu Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joy Nakitandwe
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shaohua Lei
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Eric M Davis
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Arlene Naranjo
- Department of Biostatistics, University of Florida, Children's Oncology Group Statistics & Data Center, Gainesville, FL, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael D Hogarty
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
1729
|
Wang H, Wang T, Zhao X, Wu H, You M, Sun Z, Mao F. AI-Driver: an ensemble method for identifying driver mutations in personal cancer genomes. NAR Genom Bioinform 2020; 2:lqaa084. [PMID: 33575629 PMCID: PMC7671397 DOI: 10.1093/nargab/lqaa084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 01/02/2023] Open
Abstract
The current challenge in cancer research is to increase the resolution of driver prediction from gene-level to mutation-level, which is more closely aligned with the goal of precision cancer medicine. Improved methods to distinguish drivers from passengers are urgently needed to dig out driver mutations from increasing exome sequencing studies. Here, we developed an ensemble method, AI-Driver (AI-based driver classifier, https://github.com/hatchetProject/AI-Driver), to predict the driver status of somatic missense mutations based on 23 pathogenicity features. AI-Driver has the best overall performance compared with any individual tool and two cancer-specific driver predicting methods. We demonstrate the superior and stable performance of our model using four independent benchmarks. We provide pre-computed AI-Driver scores for all possible human missense variants (http://aidriver.maolab.org/) to identify driver mutations in the sea of somatic mutations discovered by personal cancer sequencing. We believe that AI-Driver together with pre-computed database will play vital important roles in the human cancer studies, such as identification of driver mutation in personal cancer genomes, discovery of targeting sites for cancer therapeutic treatments and prediction of tumor biomarkers for early diagnosis by liquid biopsy.
Collapse
Affiliation(s)
- Haoxuan Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Tao Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410083, China
| | - Xiaolu Zhao
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Honghu Wu
- Department of Science and Technology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | | | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengbiao Mao
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
1730
|
The Impact of Next Generation Sequencing in Cancer Research. Cancers (Basel) 2020; 12:cancers12102928. [PMID: 33053644 PMCID: PMC7601779 DOI: 10.3390/cancers12102928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022] Open
|
1731
|
Sacco A, Forgione L, Carotenuto M, De Luca A, Ascierto PA, Botti G, Normanno N. Circulating Tumor DNA Testing Opens New Perspectives in Melanoma Management. Cancers (Basel) 2020; 12:E2914. [PMID: 33050536 PMCID: PMC7601606 DOI: 10.3390/cancers12102914] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Malignant melanoma accounts for about 1% of all skin cancers, but it causes most of the skin cancer-related deaths. Circulating tumor DNA (ctDNA) testing is emerging as a relevant tool for the diagnosis and monitoring of cancer. The availability of highly sensitive techniques, including next generation sequencing (NGS)-based panels, has increased the fields of application of ctDNA testing. While ctDNA-based tests for the early detection of melanoma are not available yet, perioperative ctDNA analysis in patients with surgically resectable melanoma offers relevant prognostic information: i) the detection of ctDNA before surgery correlates with the extent and the aggressiveness of the disease; ii) ctDNA testing after surgery/adjuvant therapy identifies minimal residual disease; iii) testing ctDNA during the follow-up can detect a tumor recurrence, anticipating clinical/radiological progression. In patients with advanced melanoma, several studies have demonstrated that the analysis of ctDNA can better depict tumor heterogeneity and provides relevant prognostic information. In addition, ctDNA testing during treatment allows assessing the response to systemic therapy and identifying resistance mechanisms. Although validation in prospective clinical trials is needed for most of these approaches, ctDNA testing opens up new scenarios in the management of melanoma patients that could lead to improvements in the diagnosis and therapy of this disease.
Collapse
Affiliation(s)
- Alessandra Sacco
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (A.S.); (L.F.); (M.C.); (A.D.L.)
| | - Laura Forgione
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (A.S.); (L.F.); (M.C.); (A.D.L.)
| | - Marianeve Carotenuto
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (A.S.); (L.F.); (M.C.); (A.D.L.)
| | - Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (A.S.); (L.F.); (M.C.); (A.D.L.)
| | - Paolo A. Ascierto
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Napoli, Italy;
| | - Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Napoli, Italy;
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (A.S.); (L.F.); (M.C.); (A.D.L.)
| |
Collapse
|
1732
|
Cooke SL, Beer PA. Bridging the gaps between cancer genomics, computational solutions and healthcare delivery. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1825937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Susanna L. Cooke
- Glasgow Precision Oncology Laboratory, University of Glasgow, Glasgow, Scotland
| | - Philip A. Beer
- NHS Greater Glasgow and Clyde, Queen Elizabeth University Hospital, Glasgow, Scotland
| |
Collapse
|
1733
|
Krasny L, Huang PH. Data-independent acquisition mass spectrometry (DIA-MS) for proteomic applications in oncology. Mol Omics 2020; 17:29-42. [PMID: 33034323 DOI: 10.1039/d0mo00072h] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Data-independent acquisition mass spectrometry (DIA-MS) is a next generation proteomic methodology that generates permanent digital proteome maps offering highly reproducible retrospective analysis of cellular and tissue specimens. The adoption of this technology has ushered a new wave of oncology studies across a wide range of applications including its use in molecular classification, oncogenic pathway analysis, drug and biomarker discovery and unravelling mechanisms of therapy response and resistance. In this review, we provide an overview of the experimental workflows commonly used in DIA-MS, including its current strengths and limitations versus conventional data-dependent acquisition mass spectrometry (DDA-MS). We further summarise a number of key studies to illustrate the power of this technology when applied to different facets of oncology. Finally we offer a perspective of the latest innovations in DIA-MS technology and machine learning-based algorithms necessary for driving the development of high-throughput, in-depth and reproducible proteomic assays that are compatible with clinical diagnostic workflows, which will ultimately enable the delivery of precision cancer medicine to achieve optimal patient outcomes.
Collapse
Affiliation(s)
- Lukas Krasny
- Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.
| | | |
Collapse
|
1734
|
NFE2L2 Is a Potential Prognostic Biomarker and Is Correlated with Immune Infiltration in Brain Lower Grade Glioma: A Pan-Cancer Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3580719. [PMID: 33101586 PMCID: PMC7569466 DOI: 10.1155/2020/3580719] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/17/2020] [Accepted: 09/20/2020] [Indexed: 01/07/2023]
Abstract
Nuclear factor, erythroid 2 like 2 (NFE2L2, NRF2) is a transcription factor that regulates various antioxidant enzymes. It plays a vital physiological role in regulating oxidative stress and inflammatory response. However, the roles of NFE2L2 in human cancers are still unclear. Our study is aimed at analyzing the prognostic value of NFE2L2 in pan-cancer and at revealing the relationship between NFE2L2 expression and tumor immunity. The present study revealed that NFE2L2 was abnormally expressed and significantly correlated with mismatch repair (MMR) gene mutation levels and DNA methyltransferase expression in human pan-cancer. In particular, pan-cancer survival analysis indicated that NFE2L2 expression was associated with adverse outcomes-overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI)-in adrenocortical carcinoma (ACC), brain lower grade glioma (LGG), and pancreatic adenocarcinoma (PAAD) patients. A positive relationship was also found between NFE2L2 expression and immune infiltration, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells, especially in breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), kidney renal clear cell carcinoma (KIRC), LGG, liver hepatocellular carcinoma (LIHC), and prostate adenocarcinoma (PRAD). Additionally, NFE2L2 expression was positively correlated with the immune score and the expression of immune checkpoint markers in LGG. In conclusion, these results indicate that transcription factor NFE2L2 is a potential prognostic biomarker and is correlated with immune infiltration in LGG.
Collapse
|
1735
|
Whalley JP, Buchhalter I, Rheinbay E, Raine KM, Stobbe MD, Kleinheinz K, Werner J, Beltran S, Gut M, Hübschmann D, Hutter B, Livitz D, Perry MD, Rosenberg M, Saksena G, Trotta JR, Eils R, Gerhard DS, Campbell PJ, Schlesner M, Gut IG. Framework for quality assessment of whole genome cancer sequences. Nat Commun 2020; 11:5040. [PMID: 33028839 PMCID: PMC7541455 DOI: 10.1038/s41467-020-18688-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/22/2020] [Indexed: 11/25/2022] Open
Abstract
Bringing together cancer genomes from different projects increases power and allows the investigation of pan-cancer, molecular mechanisms. However, working with whole genomes sequenced over several years in different sequencing centres requires a framework to compare the quality of these sequences. We used the Pan-Cancer Analysis of Whole Genomes cohort as a test case to construct such a framework. This cohort contains whole cancer genomes of 2832 donors from 18 sequencing centres. We developed a non-redundant set of five quality control (QC) measurements to establish a star rating system. These QC measures reflect known differences in sequencing protocol and provide a guide to downstream analyses and allow for exclusion of samples of poor quality. We have found that this is an effective framework of quality measures. The implementation of the framework is available at: https://dockstore.org/containers/quay.io/jwerner_dkfz/pancanqc:1.2.2. Working with cancer genomes from multiple projects can increase investigative power, but quality of sequences can vary. Here, the authors present a framework for comparing whole genome sequencing quality to help researchers guide downstream analyses and exclude poor quality samples.
Collapse
Affiliation(s)
- Justin P Whalley
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 4, 08028, Barcelona, Spain.,Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Ivo Buchhalter
- Division of Theoretical Bioinformatics (B080), German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant, Heidelberg University, Heidelberg, Germany.,Omics IT and Data Management Core Facility (W610), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Applied Bioinformatics (G200), Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Esther Rheinbay
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Massachusetts General Hospital Cancer Center and Department of Pathology, Boston, MA, USA
| | | | - Miranda D Stobbe
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Kortine Kleinheinz
- Division of Theoretical Bioinformatics (B080), German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Johannes Werner
- Division of Theoretical Bioinformatics (B080), German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Department of Biological Oceanography, Leibniz Institute of Baltic Sea Research, Seestraße 15, Rostock, Germany
| | - Sergi Beltran
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Daniel Hübschmann
- Division of Theoretical Bioinformatics (B080), German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant, Heidelberg University, Heidelberg, Germany.,Department of Pediatric Immunology, Hematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany.,Computational Oncology, Molecular Diagnostics Program, National Center for Tumor diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Insititute for Stem cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Barbara Hutter
- Division of Applied Bioinformatics (G200), Cancer Research Centre (DKFZ), Heidelberg, Germany.,Computational Oncology, Molecular Diagnostics Program, National Center for Tumor diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Marc D Perry
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Mara Rosenberg
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Massachusetts General Hospital Cancer Center and Department of Pathology, Boston, MA, USA
| | | | - Jean-Rémi Trotta
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Health Data Science Unit, Heidelberg University Hospital and BioQuant, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Daniela S Gerhard
- Office of Cancer Genomics, National Cancer Institute, US National Institutes of Health, Bethesda, MD, USA
| | | | - Matthias Schlesner
- Division of Theoretical Bioinformatics (B080), German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Bioinformatics and Omics Data Analytics (B240), German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Ivo G Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 4, 08028, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
1736
|
Bergstrom EN, Barnes M, Martincorena I, Alexandrov LB. Generating realistic null hypothesis of cancer mutational landscapes using SigProfilerSimulator. BMC Bioinformatics 2020; 21:438. [PMID: 33028213 PMCID: PMC7539472 DOI: 10.1186/s12859-020-03772-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/22/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Performing a statistical test requires a null hypothesis. In cancer genomics, a key challenge is the fast generation of accurate somatic mutational landscapes that can be used as a realistic null hypothesis for making biological discoveries. RESULTS Here we present SigProfilerSimulator, a powerful tool that is capable of simulating the mutational landscapes of thousands of cancer genomes at different resolutions within seconds. Applying SigProfilerSimulator to 2144 whole-genome sequenced cancers reveals: (i) that most doublet base substitutions are not due to two adjacent single base substitutions but likely occur as single genomic events; (ii) that an extended sequencing context of ± 2 bp is required to more completely capture the patterns of substitution mutational signatures in human cancer; (iii) information on false-positive discovery rate of commonly used bioinformatics tools for detecting driver genes. CONCLUSIONS SigProfilerSimulator's breadth of features allows one to construct a tailored null hypothesis and use it for evaluating the accuracy of other bioinformatics tools or for downstream statistical analysis for biological discoveries. SigProfilerSimulator is freely available at https://github.com/AlexandrovLab/SigProfilerSimulator with an extensive documentation at https://osf.io/usxjz/wiki/home/ .
Collapse
Affiliation(s)
- Erik N Bergstrom
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Mark Barnes
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, CB10 1SA, Cambridgeshire, UK
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
1737
|
Fittall MW, Lyskjaer I, Ellery P, Lombard P, Ijaz J, Strobl AC, Oukrif D, Tarabichi M, Sill M, Koelsche C, Mechtersheimer G, Demeulemeester J, Tirabosco R, Amary F, Campbell PJ, Pfister SM, Jones DT, Pillay N, Van Loo P, Behjati S, Flanagan AM. Drivers underpinning the malignant transformation of giant cell tumour of bone. J Pathol 2020; 252:433-440. [PMID: 32866294 PMCID: PMC8432151 DOI: 10.1002/path.5537] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/29/2020] [Accepted: 08/20/2020] [Indexed: 02/02/2023]
Abstract
The rare benign giant cell tumour of bone (GCTB) is defined by an almost unique mutation in the H3.3 family of histone genes H3‐3A or H3‐3B; however, the same mutation is occasionally found in primary malignant bone tumours which share many features with the benign variant. Moreover, lung metastases can occur despite the absence of malignant histological features in either the primary or metastatic lesions. Herein we investigated the genetic events of 17 GCTBs including benign and malignant variants and the methylation profiles of 122 bone tumour samples including GCTBs. Benign GCTBs possessed few somatic alterations and no other known drivers besides the H3.3 mutation, whereas all malignant tumours harboured at least one additional driver mutation and exhibited genomic features resembling osteosarcomas, including high mutational burden, additional driver event(s), and a high degree of aneuploidy. The H3.3 mutation was found to predate the development of aneuploidy. In contrast to osteosarcomas, malignant H3.3‐mutated tumours were enriched for a variety of alterations involving TERT, other than amplification, suggesting telomere dysfunction in the transformation of benign to malignant GCTB. DNA sequencing of the benign metastasising GCTB revealed no additional driver alterations; polyclonal seeding in the lung was identified, implying that the metastatic lesions represent an embolic event. Unsupervised clustering of DNA methylation profiles revealed that malignant H3.3‐mutated tumours are distinct from their benign counterpart, and other bone tumours. Differential methylation analysis identified CCND1, encoding cyclin D1, as a plausible cancer driver gene in these tumours because hypermethylation of the CCND1 promoter was specific for GCTBs. We report here the genomic and methylation patterns underlying the rare clinical phenomena of benign metastasising and malignant transformation of GCTB and show how the combination of genomic and epigenomic findings could potentially distinguish benign from malignant GCTBs, thereby predicting aggressive behaviour in challenging diagnostic cases. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Matthew W Fittall
- The Francis Crick Institute, London, UK.,Department of Pathology (research), University College London Cancer Institute, London, UK.,Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Iben Lyskjaer
- Department of Pathology (research), University College London Cancer Institute, London, UK.,Department of Molecular Medicine, Aarhus Universitet, Aarhus, Denmark
| | - Peter Ellery
- Department of Pathology (research), University College London Cancer Institute, London, UK.,Department of Cellular Pathology, University College London NHS Trust, London, UK
| | - Patrick Lombard
- Department of Pathology (research), University College London Cancer Institute, London, UK
| | - Jannat Ijaz
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Anna-Christina Strobl
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK
| | - Dahmane Oukrif
- Department of Pathology (research), University College London Cancer Institute, London, UK
| | - Maxime Tarabichi
- The Francis Crick Institute, London, UK.,Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Martin Sill
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Christian Koelsche
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Jonas Demeulemeester
- The Francis Crick Institute, London, UK.,Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Roberto Tirabosco
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK
| | - Fernanda Amary
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - David Tw Jones
- Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany.,Pediatric Glioma Research Group, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nischalan Pillay
- Department of Pathology (research), University College London Cancer Institute, London, UK.,Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK
| | - Peter Van Loo
- The Francis Crick Institute, London, UK.,Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Sam Behjati
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, UK.,Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Adrienne M Flanagan
- Department of Pathology (research), University College London Cancer Institute, London, UK.,Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK
| |
Collapse
|
1738
|
Loeillet S, Herzog M, Puddu F, Legoix P, Baulande S, Jackson SP, Nicolas AG. Trajectory and uniqueness of mutational signatures in yeast mutators. Proc Natl Acad Sci U S A 2020; 117:24947-24956. [PMID: 32968016 PMCID: PMC7547211 DOI: 10.1073/pnas.2011332117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The acquisition of mutations plays critical roles in adaptation, evolution, senescence, and tumorigenesis. Massive genome sequencing has allowed extraction of specific features of many mutational landscapes but it remains difficult to retrospectively determine the mechanistic origin(s), selective forces, and trajectories of transient or persistent mutations and genome rearrangements. Here, we conducted a prospective reciprocal approach to inactivate 13 single or multiple evolutionary conserved genes involved in distinct genome maintenance processes and characterize de novo mutations in 274 diploid Saccharomyces cerevisiae mutation accumulation lines. This approach revealed the diversity, complexity, and ultimate uniqueness of mutational landscapes, differently composed of base substitutions, small insertions/deletions (InDels), structural variants, and/or ploidy variations. Several landscapes parallel the repertoire of mutational signatures in human cancers while others are either novel or composites of subsignatures resulting from distinct DNA damage lesions. Notably, the increase of base substitutions in the homologous recombination-deficient Rad51 mutant, specifically dependent on the Polζ translesion polymerase, yields COSMIC signature 3 observed in BRCA1/BRCA2-mutant breast cancer tumors. Furthermore, "mutome" analyses in highly polymorphic diploids and single-cell bottleneck lineages revealed a diverse spectrum of loss-of-heterozygosity (LOH) signatures characterized by interstitial and terminal chromosomal events resulting from interhomolog mitotic cross-overs. Following the appearance of heterozygous mutations, the strong stimulation of LOHs in the rad27/FEN1 and tsa1/PRDX1 backgrounds leads to fixation of homozygous mutations or their loss along the lineage. Overall, these mutomes and their trajectories provide a mechanistic framework to understand the origin and dynamics of genome variations that accumulate during clonal evolution.
Collapse
Affiliation(s)
- Sophie Loeillet
- Institut Curie, Paris Sciences et Lettres Research University, CNRS, UMR3244, 75248 Paris Cedex 05, France
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, CNRS, UMR3244, 75248 Paris Cedex 05, France
| | - Mareike Herzog
- Wellcome/Cancer Research UK Gurdon Institute and Department of Biochemistry, Cambridge CB2 1QN, United Kingdom
| | - Fabio Puddu
- Wellcome/Cancer Research UK Gurdon Institute and Department of Biochemistry, Cambridge CB2 1QN, United Kingdom
| | - Patricia Legoix
- ICGex NGS Platform, Institut Curie, 75248 Paris Cedex 05, France
| | - Sylvain Baulande
- ICGex NGS Platform, Institut Curie, 75248 Paris Cedex 05, France
| | - Stephen P Jackson
- Wellcome/Cancer Research UK Gurdon Institute and Department of Biochemistry, Cambridge CB2 1QN, United Kingdom
| | - Alain G Nicolas
- Institut Curie, Paris Sciences et Lettres Research University, CNRS, UMR3244, 75248 Paris Cedex 05, France;
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, CNRS, UMR3244, 75248 Paris Cedex 05, France
| |
Collapse
|
1739
|
Lawson ARJ, Abascal F, Coorens THH, Hooks Y, O'Neill L, Latimer C, Raine K, Sanders MA, Warren AY, Mahbubani KTA, Bareham B, Butler TM, Harvey LMR, Cagan A, Menzies A, Moore L, Colquhoun AJ, Turner W, Thomas B, Gnanapragasam V, Williams N, Rassl DM, Vöhringer H, Zumalave S, Nangalia J, Tubío JMC, Gerstung M, Saeb-Parsy K, Stratton MR, Campbell PJ, Mitchell TJ, Martincorena I. Extensive heterogeneity in somatic mutation and selection in the human bladder. Science 2020; 370:75-82. [PMID: 33004514 DOI: 10.1126/science.aba8347] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022]
Abstract
The extent of somatic mutation and clonal selection in the human bladder remains unknown. We sequenced 2097 bladder microbiopsies from 20 individuals using targeted (n = 1914 microbiopsies), whole-exome (n = 655), and whole-genome (n = 88) sequencing. We found widespread positive selection in 17 genes. Chromatin remodeling genes were frequently mutated, whereas mutations were absent in several major bladder cancer genes. There was extensive interindividual variation in selection, with different driver genes dominating the clonal landscape across individuals. Mutational signatures were heterogeneous across clones and individuals, which suggests differential exposure to mutagens in the urine. Evidence of APOBEC mutagenesis was found in 22% of the microbiopsies. Sequencing multiple microbiopsies from five patients with bladder cancer enabled comparisons with cancer-free individuals and across histological features. This study reveals a rich landscape of mutational processes and selection in normal urothelium with large heterogeneity across clones and individuals.
Collapse
Affiliation(s)
- Andrew R J Lawson
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Federico Abascal
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Tim H H Coorens
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Yvette Hooks
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Laura O'Neill
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Calli Latimer
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Keiran Raine
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Mathijs A Sanders
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 GD, Netherlands
| | - Anne Y Warren
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Krishnaa T A Mahbubani
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Bethany Bareham
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Timothy M Butler
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Luke M R Harvey
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Alex Cagan
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Andrew Menzies
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Luiza Moore
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Alexandra J Colquhoun
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - William Turner
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Benjamin Thomas
- The Royal Melbourne Hospital, Parkville, Victoria 3010, Australia
- Department of Surgery, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Vincent Gnanapragasam
- Academic Urology Group, Department of Surgery and Oncology, University of Cambridge, Cambridge CB2 0QQ, UK
- Cambridge Urology Translational Research and Clinical Trials Office, University of Cambridge CB2 0QQ, UK
| | - Nicholas Williams
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Doris M Rassl
- Department of Pathology, Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0AY, UK
| | - Harald Vöhringer
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton CB10 1SD, UK
| | - Sonia Zumalave
- Mobile Genomes and Disease, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain
| | - Jyoti Nangalia
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - José M C Tubío
- Mobile Genomes and Disease, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain
- The Biomedical Research Centre (CINBIO), University of Vigo, Vigo 36310, Spain
| | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton CB10 1SD, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Haematology, University of Cambridge, Cambridge CB2 2XY, UK
| | - Thomas J Mitchell
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK.
| |
Collapse
|
1740
|
Rajan N, Khanal T, Ringel MD. Progression and dormancy in metastatic thyroid cancer: concepts and clinical implications. Endocrine 2020; 70:24-35. [PMID: 32779092 PMCID: PMC7530083 DOI: 10.1007/s12020-020-02453-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023]
Abstract
Distant metastasis classically has been defined as a late-stage event in cancer progression. However, it has become clear that metastases also may occur early in the "lifetime" of a cancer and that they may remain stable at distant sites. This stability of metastatic cancer deposits has been termed "metastatic dormancy" or, as we term it, "metastatic progression dormancy" as the progression either may reflect growth of already existing metastases or new cancer spread. Biologically, dormancy is the presence of nongrowing, static metastatic cells that survive over time. Clinically, dormancy is defined by stability in tumor markers, imaging, and clinical course. Metastatic well-differentiated thyroid cancer offers an excellent tumor type to understand these processes for several reasons: (1) primary therapy often includes removal of the entire gland with ablation of residual normal tissue thereby removing one source for new metastases; (2) the presence of a sensitive biochemical and radiographic monitoring tests enabling monitoring of metastasis throughout the progression process; and (3) its tendency toward prolonged clinical dormancy that can last for years or decades be followed by progression. This latter factor provides opportunities to define therapeutic targets and/or markers of progression. In this review, we will discuss concepts of metastatic progression dormancy and the factors that drive both long-term stability and loss of dormancy with a focus on thyroid cancer.
Collapse
Affiliation(s)
- Neel Rajan
- Division of Endocrinology, Diabetes, and Metabolism, Arthur G. James Comprehensive Center, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Tilak Khanal
- Division of Endocrinology, Diabetes, and Metabolism, Arthur G. James Comprehensive Center, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Matthew D Ringel
- Division of Endocrinology, Diabetes, and Metabolism, Arthur G. James Comprehensive Center, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
1741
|
Affiliation(s)
- Mario Cazzola
- From Fondazione IRCCS Policlinico San Matteo and the University of Pavia, Pavia, Italy
| |
Collapse
|
1742
|
Prendergast SC, Strobl A, Cross W, Pillay N, Strauss SJ, Ye H, Lindsay D, Tirabosco R, Chalker J, Mahamdallie SS, Sosinsky A, RNOH Pathology Laboratory and Biobank Team, Genomics England Research Consortium, Flanagan AM, Amary F. Sarcoma and the 100,000 Genomes Project: our experience and changes to practice. J Pathol Clin Res 2020; 6:297-307. [PMID: 32573957 PMCID: PMC7578291 DOI: 10.1002/cjp2.174] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 11/06/2022]
Abstract
The largest whole genome sequencing (WGS) endeavour involving cancer and rare diseases was initiated in the UK in 2015 and ran for 5 years. Despite its rarity, sarcoma ranked third overall among the number of patients' samples sent for sequencing. Herein, we recount the lessons learned by a specialist sarcoma centre that recruited close to 1000 patients to the project, so that we and others may learn from our experience. WGS data was generated from 597 patients, but samples from the remaining approximately 400 patients were not sequenced. This was largely accounted for by unsuitability due to extensive necrosis, secondary to neoadjuvant radiotherapy or chemotherapy, or being placed in formalin. The number of informative genomes produced was reduced further by a PCR amplification step. We showed that this loss of genomic data could be mitigated by sequencing whole genomes from needle core biopsies. Storage of resection specimens at 4 °C for up to 96 h overcame the challenge of freezing tissue out of hours including weekends. Removing access to formalin increased compliance to these storage arrangements. With over 70 different sarcoma subtypes described, WGS was a useful tool for refining diagnoses and identifying novel alterations. Genomes from 350 of the cohort of 597 patients were analysed in this study. Overall, diagnoses were modified for 3% of patients following review of the WGS findings. Continued refinement of the variant-calling bioinformatic pipelines is required as not all alterations were identified when validated against histology and standard of care diagnostic tests. Further research is necessary to evaluate the impact of germline mutations in patients with sarcoma, and sarcomas with evidence of hypermutation. Despite 50% of the WGS exhibiting domain 1 alterations, the number of patients with sarcoma who were eligible for clinical trials remains small, highlighting the need to revaluate clinical trial design.
Collapse
Affiliation(s)
- Sophie C Prendergast
- Research Department of PathologyUniversity College London Cancer InstituteLondonUK
| | - Anna‐Christina Strobl
- Research Department of PathologyUniversity College London Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic Hospital NHS TrustStanmoreUK
| | - William Cross
- Research Department of PathologyUniversity College London Cancer InstituteLondonUK
| | - Nischalan Pillay
- Research Department of PathologyUniversity College London Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic Hospital NHS TrustStanmoreUK
| | - Sandra J Strauss
- Research Department of PathologyUniversity College London Cancer InstituteLondonUK
- Department of OncologyUniversity College London Hospital NHS Foundation TrustLondonUK
| | - Hongtao Ye
- Department of HistopathologyRoyal National Orthopaedic Hospital NHS TrustStanmoreUK
| | - Daniel Lindsay
- Department of HistopathologyRoyal National Orthopaedic Hospital NHS TrustStanmoreUK
| | - Roberto Tirabosco
- Department of HistopathologyRoyal National Orthopaedic Hospital NHS TrustStanmoreUK
| | - Jane Chalker
- SHIMDS Acquired GenomicsGreat Ormond Street Hospital for Children NHS TrustLondonUK
| | - Shazia S Mahamdallie
- Rare and Inherited Disease LaboratoryGreat Ormond Street Hospital for Children NHS TrustLondonUK
| | | | | | | | - Adrienne M Flanagan
- Research Department of PathologyUniversity College London Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic Hospital NHS TrustStanmoreUK
| | - Fernanda Amary
- Research Department of PathologyUniversity College London Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic Hospital NHS TrustStanmoreUK
| |
Collapse
|
1743
|
van Wietmarschen N, Sridharan S, Nathan WJ, Tubbs A, Chan EM, Callen E, Wu W, Belinky F, Tripathi V, Wong N, Foster K, Noorbakhsh J, Garimella K, Cruz-Migoni A, Sommers JA, Huang Y, Borah AA, Smith JT, Kalfon J, Kesten N, Fugger K, Walker RL, Dolzhenko E, Eberle MA, Hayward BE, Usdin K, Freudenreich CH, Brosh RM, West SC, McHugh PJ, Meltzer PS, Bass AJ, Nussenzweig A. Repeat expansions confer WRN dependence in microsatellite-unstable cancers. Nature 2020; 586:292-298. [PMID: 32999459 PMCID: PMC8916167 DOI: 10.1038/s41586-020-2769-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022]
Abstract
The RecQ DNA helicase WRN is a synthetic lethal target for cancer cells with microsatellite instability (MSI), a form of genetic hypermutability that arises from impaired mismatch repair1-4. Depletion of WRN induces widespread DNA double-strand breaks in MSI cells, leading to cell cycle arrest and/or apoptosis. However, the mechanism by which WRN protects MSI-associated cancers from double-strand breaks remains unclear. Here we show that TA-dinucleotide repeats are highly unstable in MSI cells and undergo large-scale expansions, distinct from previously described insertion or deletion mutations of a few nucleotides5. Expanded TA repeats form non-B DNA secondary structures that stall replication forks, activate the ATR checkpoint kinase, and require unwinding by the WRN helicase. In the absence of WRN, the expanded TA-dinucleotide repeats are susceptible to cleavage by the MUS81 nuclease, leading to massive chromosome shattering. These findings identify a distinct biomarker that underlies the synthetic lethal dependence on WRN, and support the development of therapeutic agents that target WRN for MSI-associated cancers.
Collapse
Affiliation(s)
| | - Sriram Sridharan
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - William J Nathan
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Anthony Tubbs
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Edmond M Chan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Wei Wu
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Frida Belinky
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Veenu Tripathi
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Nancy Wong
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Kyla Foster
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | | | - Abimael Cruz-Migoni
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Joshua A Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | | | - Ashir A Borah
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | | | - Nikolas Kesten
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Cambridge, MA, USA
| | - Kasper Fugger
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London, UK
| | - Robert L Walker
- Genetics Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | | | - Bruce E Hayward
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | | | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Stephen C West
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London, UK
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Paul S Meltzer
- Genetics Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
1744
|
Gupta A, Belsky JA, Schieffer KM, Leraas K, Varga E, McGrath SD, Koo SC, Magrini V, Wilson RK, White P, Mardis ER, Jatana KR, Cottrell CE, Setty BA. Infantile fibrosarcoma-like tumor driven by novel RBPMS-MET fusion consolidated with cabozantinib. Cold Spring Harb Mol Case Stud 2020; 6:a005645. [PMID: 33028644 PMCID: PMC7552925 DOI: 10.1101/mcs.a005645] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/17/2020] [Indexed: 01/04/2023] Open
Abstract
Infantile fibrosarcoma (IFS) is nearly universally driven by gene fusions involving the NTRK family. ETV6-NTRK3 fusions account for ∼85% of alterations; the remainder are attributed to NTRK-variant fusions. Rarely, other genomic aberrations have been described in association with tumors identified as IFS or IFS-like. We describe the utility of genomic characterization of an IFS-like tumor. We also describe the successful treatment combination of VAC (vincristine, actinomycin, cyclophosphamide) with tyrosine kinase inhibitor (TKI) maintenance in this entity. This patient presented at birth with a right facial mass, enlarging at 1 mo to 4.9 × 4.5 × 6.3 cm. Biopsy demonstrated hypercellular fascicles of spindle cells with patchy positivity for smooth muscle actin (SMA) and negativity for S100, desmin, myogenin, and MyoD1. Targeted RNA sequencing identified a novel RBPMS-MET fusion with confirmed absence of ETV6-NTRK3, and the patient was diagnosed with an IFS-like tumor. A positron emission tomography (PET) scan was negative for metastatic disease. VAC was given for a duration of 10 mo. Resection at 13 mo of age demonstrated positive margins. Cabozantinib, a MET-targeting TKI, was initiated. The patient tolerated cabozantinib well and has no evidence of disease at 24 mo of age. We describe a novel RBPMS-MET driver fusion in association with a locally aggressive IFS-like tumor. MET functions as an oncogene and, when associated with the RNA binding protein RBPMS, forms an in-frame fusion product that retains the MET kinase domain. This fusion is associated with aberrant cell signaling pathway expression and subsequent malignancy. We describe treatment with cabozantinib in a patient with an IFS-like neoplasm.
Collapse
Affiliation(s)
- Ajay Gupta
- Division of Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Jennifer A Belsky
- Division of Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Kathleen M Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Kristen Leraas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Elizabeth Varga
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Sean D McGrath
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Selene C Koo
- Department of Pathology, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Vincent Magrini
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kris R Jatana
- Department of Otolaryngology, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio 43210, USA
| | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Bhuvana A Setty
- Division of Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
1745
|
Le BV, Podszywalow-Bartnicka P, Maifrede S, Sullivan-Reed K, Nieborowska-Skorska M, Golovine K, Yao JC, Nejati R, Cai KQ, Caruso LB, Swatler J, Dabrowski M, Lian Z, Valent P, Paietta EM, Levine RL, Fernandez HF, Tallman MS, Litzow MR, Huang J, Challen GA, Link D, Tempera I, Wasik MA, Piwocka K, Skorski T. TGFβR-SMAD3 Signaling Induces Resistance to PARP Inhibitors in the Bone Marrow Microenvironment. Cell Rep 2020; 33:108221. [PMID: 33027668 DOI: 10.1016/j.celrep.2020.108221] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/18/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Synthetic lethality triggered by PARP inhibitor (PARPi) yields promising therapeutic results. Unfortunately, tumor cells acquire PARPi resistance, which is usually associated with the restoration of homologous recombination, loss of PARP1 expression, and/or loss of DNA double-strand break (DSB) end resection regulation. Here, we identify a constitutive mechanism of resistance to PARPi. We report that the bone marrow microenvironment (BMM) facilitates DSB repair activity in leukemia cells to protect them against PARPi-mediated synthetic lethality. This effect depends on the hypoxia-induced overexpression of transforming growth factor beta receptor (TGFβR) kinase on malignant cells, which is activated by bone marrow stromal cells-derived transforming growth factor beta 1 (TGF-β1). Genetic and/or pharmacological targeting of the TGF-β1-TGFβR kinase axis results in the restoration of the sensitivity of malignant cells to PARPi in BMM and prolongs the survival of leukemia-bearing mice. Our finding may lead to the therapeutic application of the TGFβR inhibitor in patients receiving PARPis.
Collapse
Affiliation(s)
- Bac Viet Le
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Laboratory of Cytometry, Warsaw, Poland
| | | | - Silvia Maifrede
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Katherine Sullivan-Reed
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Margaret Nieborowska-Skorska
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Konstantin Golovine
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Juo-Chin Yao
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kathy Q Cai
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lisa Beatrice Caruso
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Julian Swatler
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Laboratory of Cytometry, Warsaw, Poland
| | - Michal Dabrowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Laboratory of Bioinformatics, Warsaw, Poland
| | - Zhaorui Lian
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna and Ludwig-Boltzmann Institute for Hematology and Oncology, Vienna, Austria
| | - Elisabeth M Paietta
- Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY, USA
| | - Ross L Levine
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hugo F Fernandez
- Moffitt Malignant Hematology & Cellular Therapy at Memorial Healthcare System, Pembroke Pines, FL, USA
| | - Martin S Tallman
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark R Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jian Huang
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Grant A Challen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Italo Tempera
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Mariusz A Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Katarzyna Piwocka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Laboratory of Cytometry, Warsaw, Poland.
| | - Tomasz Skorski
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
1746
|
Petljak M, Maciejowski J. Molecular origins of APOBEC-associated mutations in cancer. DNA Repair (Amst) 2020; 94:102905. [PMID: 32818816 PMCID: PMC7494591 DOI: 10.1016/j.dnarep.2020.102905] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 01/03/2023]
Abstract
The APOBEC family of cytidine deaminases has been proposed to represent a major enzymatic source of mutations in cancer. Here, we summarize available evidence that links APOBEC deaminases to cancer mutagenesis. We also highlight newly identified human cell models of APOBEC mutagenesis, including cancer cell lines with suspected endogenous APOBEC activity and a cell system of telomere crisis-associated mutations. Finally, we draw on recent data to propose potential causes of APOBEC misregulation in cancer, including the instigating factors, the relevant mutator(s), and the mechanisms underlying generation of the genome-dispersed and clustered APOBEC-induced mutations.
Collapse
Affiliation(s)
- Mia Petljak
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142 , USA.
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
1747
|
Martínez-Jiménez F, Muiños F, Sentís I, Deu-Pons J, Reyes-Salazar I, Arnedo-Pac C, Mularoni L, Pich O, Bonet J, Kranas H, Gonzalez-Perez A, Lopez-Bigas N. A compendium of mutational cancer driver genes. Nat Rev Cancer 2020; 20:555-572. [PMID: 32778778 DOI: 10.1038/s41568-020-0290-x] [Citation(s) in RCA: 703] [Impact Index Per Article: 140.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
A fundamental goal in cancer research is to understand the mechanisms of cell transformation. This is key to developing more efficient cancer detection methods and therapeutic approaches. One milestone towards this objective is the identification of all the genes with mutations capable of driving tumours. Since the 1970s, the list of cancer genes has been growing steadily. Because cancer driver genes are under positive selection in tumorigenesis, their observed patterns of somatic mutations across tumours in a cohort deviate from those expected from neutral mutagenesis. These deviations, which constitute signals of positive selection, may be detected by carefully designed bioinformatics methods, which have become the state of the art in the identification of driver genes. A systematic approach combining several of these signals could lead to a compendium of mutational cancer genes. In this Review, we present the Integrative OncoGenomics (IntOGen) pipeline, an implementation of such an approach to obtain the compendium of mutational cancer drivers. Its application to somatic mutations of more than 28,000 tumours of 66 cancer types reveals 568 cancer genes and points towards their mechanisms of tumorigenesis. The application of this approach to the ever-growing datasets of somatic tumour mutations will support the continuous refinement of our knowledge of the genetic basis of cancer.
Collapse
Affiliation(s)
- Francisco Martínez-Jiménez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ferran Muiños
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Inés Sentís
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jordi Deu-Pons
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Iker Reyes-Salazar
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Claudia Arnedo-Pac
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Loris Mularoni
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oriol Pich
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jose Bonet
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Hanna Kranas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
1748
|
Parallelized Latent Dirichlet Allocation Provides a Novel Interpretability of Mutation Signatures in Cancer Genomes. Genes (Basel) 2020; 11:genes11101127. [PMID: 32992754 PMCID: PMC7600398 DOI: 10.3390/genes11101127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
Mutation signatures are defined as the distribution of specific mutations such as activity of AID/APOBEC family proteins. Previous studies have reported numerous signatures, using matrix factorization methods for mutation catalogs. Different mutation signatures are active in different tumor types; hence, signature activity varies greatly among tumor types and becomes sparse. Because of this, many previous methods require dividing mutation catalogs for each tumor type. Here, we propose parallelized latent Dirichlet allocation (PLDA), a novel Bayesian model to simultaneously predict mutation signatures with all mutation catalogs. PLDA is an extended model of latent Dirichlet allocation (LDA), which is one of the methods used for signature prediction. It has parallelized hyperparameters of Dirichlet distributions for LDA, and they represent the sparsity of signature activities for each tumor type, thus facilitating simultaneous analyses. First, we conducted a simulation experiment to compare PLDA with previous methods (including SigProfiler and SignatureAnalyzer) using artificial data and confirmed that PLDA could predict signature structures as accurately as previous methods without searching for the optimal hyperparameters. Next, we applied PLDA to PCAWG (Pan-Cancer Analysis of Whole Genomes) mutation catalogs and obtained a signature set different from the one predicted by SigProfiler. Further, we have shown that the mutation spectrum represented by the predicted signature with PLDA provides a novel interpretability through post-analyses.
Collapse
|
1749
|
Hu X, Xu Z, De S. Characteristics of mutational signatures of unknown etiology. NAR Cancer 2020; 2:zcaa026. [PMID: 33015626 PMCID: PMC7520824 DOI: 10.1093/narcan/zcaa026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/01/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022] Open
Abstract
Although not all somatic mutations are cancer drivers, their mutational signatures, i.e. the patterns of genomic alterations at a genome-wide scale, provide insights into past exposure to mutagens, DNA damage and repair processes. Computational deconvolution of somatic mutation patterns and expert curation pan-cancer studies have identified a number of mutational signatures associated with point mutations, dinucleotide substitutions, insertions and deletions, and rearrangements, and have established etiologies for a subset of these signatures. However, the mechanisms underlying nearly one-third of all mutational signatures are not yet understood. The signatures with established etiology and those with hitherto unknown origin appear to have some differences in strand bias, GC content and nucleotide context diversity. It is possible that some of the hitherto ‘unknown’ signatures predominantly occur outside gene regions. While nucleotide contexts might be adequate to establish etiologies of some mutational signatures, in other cases additional features, such as broader (epi)genomic contexts, including chromatin, replication timing, processivity and local mutational patterns, may help fully understand the underlying DNA damage and repair processes. Nonetheless, remarkable progress in characterization of mutational signatures has provided fundamental insights into the biology of cancer, informed disease etiology and opened up new opportunities for cancer prevention, risk management, and therapeutic decision making.
Collapse
Affiliation(s)
- Xiaoju Hu
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Zhuxuan Xu
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Subhajyoti De
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
1750
|
Chen M, Chen X, Li S, Pan X, Gong Y, Zheng J, Xu J, Zhao C, Zhang Q, Zhang S, Qi L, Wang Z, Shi K, Ding BS, Xue Z, Chen L, Yang S, Wang Y, Niu T, Dai L, Lowe SW, Chen C, Liu Y. An Epigenetic Mechanism Underlying Chromosome 17p Deletion-Driven Tumorigenesis. Cancer Discov 2020; 11:194-207. [PMID: 32978226 DOI: 10.1158/2159-8290.cd-20-0336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/19/2020] [Accepted: 09/22/2020] [Indexed: 02/05/2023]
Abstract
Chromosome copy-number variations are a hallmark of cancer. Among them, the prevalent chromosome 17p deletions are associated with poor prognosis and can promote tumorigenesis more than TP53 loss. Here, we use multiple functional genetic strategies and identify a new 17p tumor suppressor gene (TSG), plant homeodomain finger protein 23 (PHF23). Its deficiency impairs B-cell differentiation and promotes immature B-lymphoblastic malignancy. Mechanistically, we demonstrate that PHF23, an H3K4me3 reader, directly binds the SIN3-HDAC complex through its N-terminus and represses its deacetylation activity on H3K27ac. Thus, the PHF23-SIN3-HDAC (PSH) complex coordinates these two major active histone markers for the activation of downstream TSGs and differentiation-related genes. Furthermore, dysregulation of the PSH complex is essential for the development and maintenance of PHF23-deficient and 17p-deleted tumors. Hence, our study reveals a novel epigenetic regulatory mechanism that contributes to the pathology of 17p-deleted cancers and suggests a susceptibility in this disease. SIGNIFICANCE: We identify PHF23, encoding an H3K4me3 reader, as a new TSG on chromosome 17p, which is frequently deleted in human cancers. Mechanistically, PHF23 forms a previously unreported histone-modifying complex, the PSH complex, which regulates gene activation through a synergistic link between H3K4me3 and H3K27ac.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Mei Chen
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuelan Chen
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shujun Li
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiangyu Pan
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanqiu Gong
- Department of General Practice and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianan Zheng
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Xu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chengjian Zhao
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi Zhang
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shan Zhang
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Qi
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhongwang Wang
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kaidou Shi
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bi-Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhihong Xue
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shengyong Yang
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Wang
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Niu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lunzhi Dai
- Department of General Practice and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Howard Hughes Medical Institute, New York, New York
| | - Chong Chen
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yu Liu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|